elevator.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/delay.h>
  35. #include <linux/blktrace_api.h>
  36. #include <trace/block.h>
  37. #include <linux/hash.h>
  38. #include <linux/uaccess.h>
  39. #include "blk.h"
  40. static DEFINE_SPINLOCK(elv_list_lock);
  41. static LIST_HEAD(elv_list);
  42. DEFINE_TRACE(block_rq_abort);
  43. /*
  44. * Merge hash stuff.
  45. */
  46. static const int elv_hash_shift = 6;
  47. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  48. #define ELV_HASH_FN(sec) \
  49. (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  50. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  51. #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
  52. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  53. DEFINE_TRACE(block_rq_insert);
  54. DEFINE_TRACE(block_rq_issue);
  55. /*
  56. * Query io scheduler to see if the current process issuing bio may be
  57. * merged with rq.
  58. */
  59. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  60. {
  61. struct request_queue *q = rq->q;
  62. struct elevator_queue *e = q->elevator;
  63. if (e->ops->elevator_allow_merge_fn)
  64. return e->ops->elevator_allow_merge_fn(q, rq, bio);
  65. return 1;
  66. }
  67. /*
  68. * can we safely merge with this request?
  69. */
  70. int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  71. {
  72. if (!rq_mergeable(rq))
  73. return 0;
  74. /*
  75. * Don't merge file system requests and discard requests
  76. */
  77. if (bio_discard(bio) != bio_discard(rq->bio))
  78. return 0;
  79. /*
  80. * different data direction or already started, don't merge
  81. */
  82. if (bio_data_dir(bio) != rq_data_dir(rq))
  83. return 0;
  84. /*
  85. * must be same device and not a special request
  86. */
  87. if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
  88. return 0;
  89. /*
  90. * only merge integrity protected bio into ditto rq
  91. */
  92. if (bio_integrity(bio) != blk_integrity_rq(rq))
  93. return 0;
  94. if (!elv_iosched_allow_merge(rq, bio))
  95. return 0;
  96. return 1;
  97. }
  98. EXPORT_SYMBOL(elv_rq_merge_ok);
  99. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  100. {
  101. int ret = ELEVATOR_NO_MERGE;
  102. /*
  103. * we can merge and sequence is ok, check if it's possible
  104. */
  105. if (elv_rq_merge_ok(__rq, bio)) {
  106. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  107. ret = ELEVATOR_BACK_MERGE;
  108. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  109. ret = ELEVATOR_FRONT_MERGE;
  110. }
  111. return ret;
  112. }
  113. static struct elevator_type *elevator_find(const char *name)
  114. {
  115. struct elevator_type *e;
  116. list_for_each_entry(e, &elv_list, list) {
  117. if (!strcmp(e->elevator_name, name))
  118. return e;
  119. }
  120. return NULL;
  121. }
  122. static void elevator_put(struct elevator_type *e)
  123. {
  124. module_put(e->elevator_owner);
  125. }
  126. static struct elevator_type *elevator_get(const char *name)
  127. {
  128. struct elevator_type *e;
  129. spin_lock(&elv_list_lock);
  130. e = elevator_find(name);
  131. if (!e) {
  132. char elv[ELV_NAME_MAX + strlen("-iosched")];
  133. spin_unlock(&elv_list_lock);
  134. if (!strcmp(name, "anticipatory"))
  135. sprintf(elv, "as-iosched");
  136. else
  137. sprintf(elv, "%s-iosched", name);
  138. request_module("%s", elv);
  139. spin_lock(&elv_list_lock);
  140. e = elevator_find(name);
  141. }
  142. if (e && !try_module_get(e->elevator_owner))
  143. e = NULL;
  144. spin_unlock(&elv_list_lock);
  145. return e;
  146. }
  147. static void *elevator_init_queue(struct request_queue *q,
  148. struct elevator_queue *eq)
  149. {
  150. return eq->ops->elevator_init_fn(q);
  151. }
  152. static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
  153. void *data)
  154. {
  155. q->elevator = eq;
  156. eq->elevator_data = data;
  157. }
  158. static char chosen_elevator[16];
  159. static int __init elevator_setup(char *str)
  160. {
  161. /*
  162. * Be backwards-compatible with previous kernels, so users
  163. * won't get the wrong elevator.
  164. */
  165. if (!strcmp(str, "as"))
  166. strcpy(chosen_elevator, "anticipatory");
  167. else
  168. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  169. return 1;
  170. }
  171. __setup("elevator=", elevator_setup);
  172. static struct kobj_type elv_ktype;
  173. static struct elevator_queue *elevator_alloc(struct request_queue *q,
  174. struct elevator_type *e)
  175. {
  176. struct elevator_queue *eq;
  177. int i;
  178. eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
  179. if (unlikely(!eq))
  180. goto err;
  181. eq->ops = &e->ops;
  182. eq->elevator_type = e;
  183. kobject_init(&eq->kobj, &elv_ktype);
  184. mutex_init(&eq->sysfs_lock);
  185. eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
  186. GFP_KERNEL, q->node);
  187. if (!eq->hash)
  188. goto err;
  189. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  190. INIT_HLIST_HEAD(&eq->hash[i]);
  191. return eq;
  192. err:
  193. kfree(eq);
  194. elevator_put(e);
  195. return NULL;
  196. }
  197. static void elevator_release(struct kobject *kobj)
  198. {
  199. struct elevator_queue *e;
  200. e = container_of(kobj, struct elevator_queue, kobj);
  201. elevator_put(e->elevator_type);
  202. kfree(e->hash);
  203. kfree(e);
  204. }
  205. int elevator_init(struct request_queue *q, char *name)
  206. {
  207. struct elevator_type *e = NULL;
  208. struct elevator_queue *eq;
  209. int ret = 0;
  210. void *data;
  211. INIT_LIST_HEAD(&q->queue_head);
  212. q->last_merge = NULL;
  213. q->end_sector = 0;
  214. q->boundary_rq = NULL;
  215. if (name) {
  216. e = elevator_get(name);
  217. if (!e)
  218. return -EINVAL;
  219. }
  220. if (!e && *chosen_elevator) {
  221. e = elevator_get(chosen_elevator);
  222. if (!e)
  223. printk(KERN_ERR "I/O scheduler %s not found\n",
  224. chosen_elevator);
  225. }
  226. if (!e) {
  227. e = elevator_get(CONFIG_DEFAULT_IOSCHED);
  228. if (!e) {
  229. printk(KERN_ERR
  230. "Default I/O scheduler not found. " \
  231. "Using noop.\n");
  232. e = elevator_get("noop");
  233. }
  234. }
  235. eq = elevator_alloc(q, e);
  236. if (!eq)
  237. return -ENOMEM;
  238. data = elevator_init_queue(q, eq);
  239. if (!data) {
  240. kobject_put(&eq->kobj);
  241. return -ENOMEM;
  242. }
  243. elevator_attach(q, eq, data);
  244. return ret;
  245. }
  246. EXPORT_SYMBOL(elevator_init);
  247. void elevator_exit(struct elevator_queue *e)
  248. {
  249. mutex_lock(&e->sysfs_lock);
  250. if (e->ops->elevator_exit_fn)
  251. e->ops->elevator_exit_fn(e);
  252. e->ops = NULL;
  253. mutex_unlock(&e->sysfs_lock);
  254. kobject_put(&e->kobj);
  255. }
  256. EXPORT_SYMBOL(elevator_exit);
  257. static void elv_activate_rq(struct request_queue *q, struct request *rq)
  258. {
  259. struct elevator_queue *e = q->elevator;
  260. if (e->ops->elevator_activate_req_fn)
  261. e->ops->elevator_activate_req_fn(q, rq);
  262. }
  263. static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
  264. {
  265. struct elevator_queue *e = q->elevator;
  266. if (e->ops->elevator_deactivate_req_fn)
  267. e->ops->elevator_deactivate_req_fn(q, rq);
  268. }
  269. static inline void __elv_rqhash_del(struct request *rq)
  270. {
  271. hlist_del_init(&rq->hash);
  272. }
  273. static void elv_rqhash_del(struct request_queue *q, struct request *rq)
  274. {
  275. if (ELV_ON_HASH(rq))
  276. __elv_rqhash_del(rq);
  277. }
  278. static void elv_rqhash_add(struct request_queue *q, struct request *rq)
  279. {
  280. struct elevator_queue *e = q->elevator;
  281. BUG_ON(ELV_ON_HASH(rq));
  282. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  283. }
  284. static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
  285. {
  286. __elv_rqhash_del(rq);
  287. elv_rqhash_add(q, rq);
  288. }
  289. static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
  290. {
  291. struct elevator_queue *e = q->elevator;
  292. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  293. struct hlist_node *entry, *next;
  294. struct request *rq;
  295. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  296. BUG_ON(!ELV_ON_HASH(rq));
  297. if (unlikely(!rq_mergeable(rq))) {
  298. __elv_rqhash_del(rq);
  299. continue;
  300. }
  301. if (rq_hash_key(rq) == offset)
  302. return rq;
  303. }
  304. return NULL;
  305. }
  306. /*
  307. * RB-tree support functions for inserting/lookup/removal of requests
  308. * in a sorted RB tree.
  309. */
  310. struct request *elv_rb_add(struct rb_root *root, struct request *rq)
  311. {
  312. struct rb_node **p = &root->rb_node;
  313. struct rb_node *parent = NULL;
  314. struct request *__rq;
  315. while (*p) {
  316. parent = *p;
  317. __rq = rb_entry(parent, struct request, rb_node);
  318. if (rq->sector < __rq->sector)
  319. p = &(*p)->rb_left;
  320. else if (rq->sector > __rq->sector)
  321. p = &(*p)->rb_right;
  322. else
  323. return __rq;
  324. }
  325. rb_link_node(&rq->rb_node, parent, p);
  326. rb_insert_color(&rq->rb_node, root);
  327. return NULL;
  328. }
  329. EXPORT_SYMBOL(elv_rb_add);
  330. void elv_rb_del(struct rb_root *root, struct request *rq)
  331. {
  332. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  333. rb_erase(&rq->rb_node, root);
  334. RB_CLEAR_NODE(&rq->rb_node);
  335. }
  336. EXPORT_SYMBOL(elv_rb_del);
  337. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  338. {
  339. struct rb_node *n = root->rb_node;
  340. struct request *rq;
  341. while (n) {
  342. rq = rb_entry(n, struct request, rb_node);
  343. if (sector < rq->sector)
  344. n = n->rb_left;
  345. else if (sector > rq->sector)
  346. n = n->rb_right;
  347. else
  348. return rq;
  349. }
  350. return NULL;
  351. }
  352. EXPORT_SYMBOL(elv_rb_find);
  353. /*
  354. * Insert rq into dispatch queue of q. Queue lock must be held on
  355. * entry. rq is sort instead into the dispatch queue. To be used by
  356. * specific elevators.
  357. */
  358. void elv_dispatch_sort(struct request_queue *q, struct request *rq)
  359. {
  360. sector_t boundary;
  361. struct list_head *entry;
  362. int stop_flags;
  363. if (q->last_merge == rq)
  364. q->last_merge = NULL;
  365. elv_rqhash_del(q, rq);
  366. q->nr_sorted--;
  367. boundary = q->end_sector;
  368. stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
  369. list_for_each_prev(entry, &q->queue_head) {
  370. struct request *pos = list_entry_rq(entry);
  371. if (blk_discard_rq(rq) != blk_discard_rq(pos))
  372. break;
  373. if (rq_data_dir(rq) != rq_data_dir(pos))
  374. break;
  375. if (pos->cmd_flags & stop_flags)
  376. break;
  377. if (rq->sector >= boundary) {
  378. if (pos->sector < boundary)
  379. continue;
  380. } else {
  381. if (pos->sector >= boundary)
  382. break;
  383. }
  384. if (rq->sector >= pos->sector)
  385. break;
  386. }
  387. list_add(&rq->queuelist, entry);
  388. }
  389. EXPORT_SYMBOL(elv_dispatch_sort);
  390. /*
  391. * Insert rq into dispatch queue of q. Queue lock must be held on
  392. * entry. rq is added to the back of the dispatch queue. To be used by
  393. * specific elevators.
  394. */
  395. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  396. {
  397. if (q->last_merge == rq)
  398. q->last_merge = NULL;
  399. elv_rqhash_del(q, rq);
  400. q->nr_sorted--;
  401. q->end_sector = rq_end_sector(rq);
  402. q->boundary_rq = rq;
  403. list_add_tail(&rq->queuelist, &q->queue_head);
  404. }
  405. EXPORT_SYMBOL(elv_dispatch_add_tail);
  406. int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
  407. {
  408. struct elevator_queue *e = q->elevator;
  409. struct request *__rq;
  410. int ret;
  411. /*
  412. * First try one-hit cache.
  413. */
  414. if (q->last_merge) {
  415. ret = elv_try_merge(q->last_merge, bio);
  416. if (ret != ELEVATOR_NO_MERGE) {
  417. *req = q->last_merge;
  418. return ret;
  419. }
  420. }
  421. if (blk_queue_nomerges(q))
  422. return ELEVATOR_NO_MERGE;
  423. /*
  424. * See if our hash lookup can find a potential backmerge.
  425. */
  426. __rq = elv_rqhash_find(q, bio->bi_sector);
  427. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  428. *req = __rq;
  429. return ELEVATOR_BACK_MERGE;
  430. }
  431. if (e->ops->elevator_merge_fn)
  432. return e->ops->elevator_merge_fn(q, req, bio);
  433. return ELEVATOR_NO_MERGE;
  434. }
  435. void elv_merged_request(struct request_queue *q, struct request *rq, int type)
  436. {
  437. struct elevator_queue *e = q->elevator;
  438. if (e->ops->elevator_merged_fn)
  439. e->ops->elevator_merged_fn(q, rq, type);
  440. if (type == ELEVATOR_BACK_MERGE)
  441. elv_rqhash_reposition(q, rq);
  442. q->last_merge = rq;
  443. }
  444. void elv_merge_requests(struct request_queue *q, struct request *rq,
  445. struct request *next)
  446. {
  447. struct elevator_queue *e = q->elevator;
  448. if (e->ops->elevator_merge_req_fn)
  449. e->ops->elevator_merge_req_fn(q, rq, next);
  450. elv_rqhash_reposition(q, rq);
  451. elv_rqhash_del(q, next);
  452. q->nr_sorted--;
  453. q->last_merge = rq;
  454. }
  455. void elv_requeue_request(struct request_queue *q, struct request *rq)
  456. {
  457. /*
  458. * it already went through dequeue, we need to decrement the
  459. * in_flight count again
  460. */
  461. if (blk_account_rq(rq)) {
  462. q->in_flight--;
  463. if (blk_sorted_rq(rq))
  464. elv_deactivate_rq(q, rq);
  465. }
  466. rq->cmd_flags &= ~REQ_STARTED;
  467. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  468. }
  469. void elv_drain_elevator(struct request_queue *q)
  470. {
  471. static int printed;
  472. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  473. ;
  474. if (q->nr_sorted == 0)
  475. return;
  476. if (printed++ < 10) {
  477. printk(KERN_ERR "%s: forced dispatching is broken "
  478. "(nr_sorted=%u), please report this\n",
  479. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  480. }
  481. }
  482. /*
  483. * Call with queue lock held, interrupts disabled
  484. */
  485. void elv_quisce_start(struct request_queue *q)
  486. {
  487. queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
  488. /*
  489. * make sure we don't have any requests in flight
  490. */
  491. elv_drain_elevator(q);
  492. while (q->rq.elvpriv) {
  493. blk_start_queueing(q);
  494. spin_unlock_irq(q->queue_lock);
  495. msleep(10);
  496. spin_lock_irq(q->queue_lock);
  497. elv_drain_elevator(q);
  498. }
  499. }
  500. void elv_quisce_end(struct request_queue *q)
  501. {
  502. queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
  503. }
  504. void elv_insert(struct request_queue *q, struct request *rq, int where)
  505. {
  506. struct list_head *pos;
  507. unsigned ordseq;
  508. int unplug_it = 1;
  509. trace_block_rq_insert(q, rq);
  510. rq->q = q;
  511. switch (where) {
  512. case ELEVATOR_INSERT_FRONT:
  513. rq->cmd_flags |= REQ_SOFTBARRIER;
  514. list_add(&rq->queuelist, &q->queue_head);
  515. break;
  516. case ELEVATOR_INSERT_BACK:
  517. rq->cmd_flags |= REQ_SOFTBARRIER;
  518. elv_drain_elevator(q);
  519. list_add_tail(&rq->queuelist, &q->queue_head);
  520. /*
  521. * We kick the queue here for the following reasons.
  522. * - The elevator might have returned NULL previously
  523. * to delay requests and returned them now. As the
  524. * queue wasn't empty before this request, ll_rw_blk
  525. * won't run the queue on return, resulting in hang.
  526. * - Usually, back inserted requests won't be merged
  527. * with anything. There's no point in delaying queue
  528. * processing.
  529. */
  530. blk_remove_plug(q);
  531. blk_start_queueing(q);
  532. break;
  533. case ELEVATOR_INSERT_SORT:
  534. BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
  535. rq->cmd_flags |= REQ_SORTED;
  536. q->nr_sorted++;
  537. if (rq_mergeable(rq)) {
  538. elv_rqhash_add(q, rq);
  539. if (!q->last_merge)
  540. q->last_merge = rq;
  541. }
  542. /*
  543. * Some ioscheds (cfq) run q->request_fn directly, so
  544. * rq cannot be accessed after calling
  545. * elevator_add_req_fn.
  546. */
  547. q->elevator->ops->elevator_add_req_fn(q, rq);
  548. break;
  549. case ELEVATOR_INSERT_REQUEUE:
  550. /*
  551. * If ordered flush isn't in progress, we do front
  552. * insertion; otherwise, requests should be requeued
  553. * in ordseq order.
  554. */
  555. rq->cmd_flags |= REQ_SOFTBARRIER;
  556. /*
  557. * Most requeues happen because of a busy condition,
  558. * don't force unplug of the queue for that case.
  559. */
  560. unplug_it = 0;
  561. if (q->ordseq == 0) {
  562. list_add(&rq->queuelist, &q->queue_head);
  563. break;
  564. }
  565. ordseq = blk_ordered_req_seq(rq);
  566. list_for_each(pos, &q->queue_head) {
  567. struct request *pos_rq = list_entry_rq(pos);
  568. if (ordseq <= blk_ordered_req_seq(pos_rq))
  569. break;
  570. }
  571. list_add_tail(&rq->queuelist, pos);
  572. break;
  573. default:
  574. printk(KERN_ERR "%s: bad insertion point %d\n",
  575. __func__, where);
  576. BUG();
  577. }
  578. if (unplug_it && blk_queue_plugged(q)) {
  579. int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
  580. - q->in_flight;
  581. if (nrq >= q->unplug_thresh)
  582. __generic_unplug_device(q);
  583. }
  584. }
  585. void __elv_add_request(struct request_queue *q, struct request *rq, int where,
  586. int plug)
  587. {
  588. if (q->ordcolor)
  589. rq->cmd_flags |= REQ_ORDERED_COLOR;
  590. if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  591. /*
  592. * toggle ordered color
  593. */
  594. if (blk_barrier_rq(rq))
  595. q->ordcolor ^= 1;
  596. /*
  597. * barriers implicitly indicate back insertion
  598. */
  599. if (where == ELEVATOR_INSERT_SORT)
  600. where = ELEVATOR_INSERT_BACK;
  601. /*
  602. * this request is scheduling boundary, update
  603. * end_sector
  604. */
  605. if (blk_fs_request(rq) || blk_discard_rq(rq)) {
  606. q->end_sector = rq_end_sector(rq);
  607. q->boundary_rq = rq;
  608. }
  609. } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
  610. where == ELEVATOR_INSERT_SORT)
  611. where = ELEVATOR_INSERT_BACK;
  612. if (plug)
  613. blk_plug_device(q);
  614. elv_insert(q, rq, where);
  615. }
  616. EXPORT_SYMBOL(__elv_add_request);
  617. void elv_add_request(struct request_queue *q, struct request *rq, int where,
  618. int plug)
  619. {
  620. unsigned long flags;
  621. spin_lock_irqsave(q->queue_lock, flags);
  622. __elv_add_request(q, rq, where, plug);
  623. spin_unlock_irqrestore(q->queue_lock, flags);
  624. }
  625. EXPORT_SYMBOL(elv_add_request);
  626. static inline struct request *__elv_next_request(struct request_queue *q)
  627. {
  628. struct request *rq;
  629. while (1) {
  630. while (!list_empty(&q->queue_head)) {
  631. rq = list_entry_rq(q->queue_head.next);
  632. if (blk_do_ordered(q, &rq))
  633. return rq;
  634. }
  635. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  636. return NULL;
  637. }
  638. }
  639. struct request *elv_next_request(struct request_queue *q)
  640. {
  641. struct request *rq;
  642. int ret;
  643. while ((rq = __elv_next_request(q)) != NULL) {
  644. if (!(rq->cmd_flags & REQ_STARTED)) {
  645. /*
  646. * This is the first time the device driver
  647. * sees this request (possibly after
  648. * requeueing). Notify IO scheduler.
  649. */
  650. if (blk_sorted_rq(rq))
  651. elv_activate_rq(q, rq);
  652. /*
  653. * just mark as started even if we don't start
  654. * it, a request that has been delayed should
  655. * not be passed by new incoming requests
  656. */
  657. rq->cmd_flags |= REQ_STARTED;
  658. trace_block_rq_issue(q, rq);
  659. }
  660. if (!q->boundary_rq || q->boundary_rq == rq) {
  661. q->end_sector = rq_end_sector(rq);
  662. q->boundary_rq = NULL;
  663. }
  664. if (rq->cmd_flags & REQ_DONTPREP)
  665. break;
  666. if (q->dma_drain_size && rq->data_len) {
  667. /*
  668. * make sure space for the drain appears we
  669. * know we can do this because max_hw_segments
  670. * has been adjusted to be one fewer than the
  671. * device can handle
  672. */
  673. rq->nr_phys_segments++;
  674. }
  675. if (!q->prep_rq_fn)
  676. break;
  677. ret = q->prep_rq_fn(q, rq);
  678. if (ret == BLKPREP_OK) {
  679. break;
  680. } else if (ret == BLKPREP_DEFER) {
  681. /*
  682. * the request may have been (partially) prepped.
  683. * we need to keep this request in the front to
  684. * avoid resource deadlock. REQ_STARTED will
  685. * prevent other fs requests from passing this one.
  686. */
  687. if (q->dma_drain_size && rq->data_len &&
  688. !(rq->cmd_flags & REQ_DONTPREP)) {
  689. /*
  690. * remove the space for the drain we added
  691. * so that we don't add it again
  692. */
  693. --rq->nr_phys_segments;
  694. }
  695. rq = NULL;
  696. break;
  697. } else if (ret == BLKPREP_KILL) {
  698. rq->cmd_flags |= REQ_QUIET;
  699. __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
  700. } else {
  701. printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
  702. break;
  703. }
  704. }
  705. return rq;
  706. }
  707. EXPORT_SYMBOL(elv_next_request);
  708. void elv_dequeue_request(struct request_queue *q, struct request *rq)
  709. {
  710. BUG_ON(list_empty(&rq->queuelist));
  711. BUG_ON(ELV_ON_HASH(rq));
  712. list_del_init(&rq->queuelist);
  713. /*
  714. * the time frame between a request being removed from the lists
  715. * and to it is freed is accounted as io that is in progress at
  716. * the driver side.
  717. */
  718. if (blk_account_rq(rq))
  719. q->in_flight++;
  720. }
  721. int elv_queue_empty(struct request_queue *q)
  722. {
  723. struct elevator_queue *e = q->elevator;
  724. if (!list_empty(&q->queue_head))
  725. return 0;
  726. if (e->ops->elevator_queue_empty_fn)
  727. return e->ops->elevator_queue_empty_fn(q);
  728. return 1;
  729. }
  730. EXPORT_SYMBOL(elv_queue_empty);
  731. struct request *elv_latter_request(struct request_queue *q, struct request *rq)
  732. {
  733. struct elevator_queue *e = q->elevator;
  734. if (e->ops->elevator_latter_req_fn)
  735. return e->ops->elevator_latter_req_fn(q, rq);
  736. return NULL;
  737. }
  738. struct request *elv_former_request(struct request_queue *q, struct request *rq)
  739. {
  740. struct elevator_queue *e = q->elevator;
  741. if (e->ops->elevator_former_req_fn)
  742. return e->ops->elevator_former_req_fn(q, rq);
  743. return NULL;
  744. }
  745. int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  746. {
  747. struct elevator_queue *e = q->elevator;
  748. if (e->ops->elevator_set_req_fn)
  749. return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
  750. rq->elevator_private = NULL;
  751. return 0;
  752. }
  753. void elv_put_request(struct request_queue *q, struct request *rq)
  754. {
  755. struct elevator_queue *e = q->elevator;
  756. if (e->ops->elevator_put_req_fn)
  757. e->ops->elevator_put_req_fn(rq);
  758. }
  759. int elv_may_queue(struct request_queue *q, int rw)
  760. {
  761. struct elevator_queue *e = q->elevator;
  762. if (e->ops->elevator_may_queue_fn)
  763. return e->ops->elevator_may_queue_fn(q, rw);
  764. return ELV_MQUEUE_MAY;
  765. }
  766. void elv_abort_queue(struct request_queue *q)
  767. {
  768. struct request *rq;
  769. while (!list_empty(&q->queue_head)) {
  770. rq = list_entry_rq(q->queue_head.next);
  771. rq->cmd_flags |= REQ_QUIET;
  772. trace_block_rq_abort(q, rq);
  773. __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
  774. }
  775. }
  776. EXPORT_SYMBOL(elv_abort_queue);
  777. void elv_completed_request(struct request_queue *q, struct request *rq)
  778. {
  779. struct elevator_queue *e = q->elevator;
  780. /*
  781. * request is released from the driver, io must be done
  782. */
  783. if (blk_account_rq(rq)) {
  784. q->in_flight--;
  785. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  786. e->ops->elevator_completed_req_fn(q, rq);
  787. }
  788. /*
  789. * Check if the queue is waiting for fs requests to be
  790. * drained for flush sequence.
  791. */
  792. if (unlikely(q->ordseq)) {
  793. struct request *next = NULL;
  794. if (!list_empty(&q->queue_head))
  795. next = list_entry_rq(q->queue_head.next);
  796. if (!q->in_flight &&
  797. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  798. (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
  799. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  800. blk_start_queueing(q);
  801. }
  802. }
  803. }
  804. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  805. static ssize_t
  806. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  807. {
  808. struct elv_fs_entry *entry = to_elv(attr);
  809. struct elevator_queue *e;
  810. ssize_t error;
  811. if (!entry->show)
  812. return -EIO;
  813. e = container_of(kobj, struct elevator_queue, kobj);
  814. mutex_lock(&e->sysfs_lock);
  815. error = e->ops ? entry->show(e, page) : -ENOENT;
  816. mutex_unlock(&e->sysfs_lock);
  817. return error;
  818. }
  819. static ssize_t
  820. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  821. const char *page, size_t length)
  822. {
  823. struct elv_fs_entry *entry = to_elv(attr);
  824. struct elevator_queue *e;
  825. ssize_t error;
  826. if (!entry->store)
  827. return -EIO;
  828. e = container_of(kobj, struct elevator_queue, kobj);
  829. mutex_lock(&e->sysfs_lock);
  830. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  831. mutex_unlock(&e->sysfs_lock);
  832. return error;
  833. }
  834. static struct sysfs_ops elv_sysfs_ops = {
  835. .show = elv_attr_show,
  836. .store = elv_attr_store,
  837. };
  838. static struct kobj_type elv_ktype = {
  839. .sysfs_ops = &elv_sysfs_ops,
  840. .release = elevator_release,
  841. };
  842. int elv_register_queue(struct request_queue *q)
  843. {
  844. struct elevator_queue *e = q->elevator;
  845. int error;
  846. error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
  847. if (!error) {
  848. struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
  849. if (attr) {
  850. while (attr->attr.name) {
  851. if (sysfs_create_file(&e->kobj, &attr->attr))
  852. break;
  853. attr++;
  854. }
  855. }
  856. kobject_uevent(&e->kobj, KOBJ_ADD);
  857. }
  858. return error;
  859. }
  860. static void __elv_unregister_queue(struct elevator_queue *e)
  861. {
  862. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  863. kobject_del(&e->kobj);
  864. }
  865. void elv_unregister_queue(struct request_queue *q)
  866. {
  867. if (q)
  868. __elv_unregister_queue(q->elevator);
  869. }
  870. void elv_register(struct elevator_type *e)
  871. {
  872. char *def = "";
  873. spin_lock(&elv_list_lock);
  874. BUG_ON(elevator_find(e->elevator_name));
  875. list_add_tail(&e->list, &elv_list);
  876. spin_unlock(&elv_list_lock);
  877. if (!strcmp(e->elevator_name, chosen_elevator) ||
  878. (!*chosen_elevator &&
  879. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  880. def = " (default)";
  881. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
  882. def);
  883. }
  884. EXPORT_SYMBOL_GPL(elv_register);
  885. void elv_unregister(struct elevator_type *e)
  886. {
  887. struct task_struct *g, *p;
  888. /*
  889. * Iterate every thread in the process to remove the io contexts.
  890. */
  891. if (e->ops.trim) {
  892. read_lock(&tasklist_lock);
  893. do_each_thread(g, p) {
  894. task_lock(p);
  895. if (p->io_context)
  896. e->ops.trim(p->io_context);
  897. task_unlock(p);
  898. } while_each_thread(g, p);
  899. read_unlock(&tasklist_lock);
  900. }
  901. spin_lock(&elv_list_lock);
  902. list_del_init(&e->list);
  903. spin_unlock(&elv_list_lock);
  904. }
  905. EXPORT_SYMBOL_GPL(elv_unregister);
  906. /*
  907. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  908. * we don't free the old io scheduler, before we have allocated what we
  909. * need for the new one. this way we have a chance of going back to the old
  910. * one, if the new one fails init for some reason.
  911. */
  912. static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
  913. {
  914. struct elevator_queue *old_elevator, *e;
  915. void *data;
  916. /*
  917. * Allocate new elevator
  918. */
  919. e = elevator_alloc(q, new_e);
  920. if (!e)
  921. return 0;
  922. data = elevator_init_queue(q, e);
  923. if (!data) {
  924. kobject_put(&e->kobj);
  925. return 0;
  926. }
  927. /*
  928. * Turn on BYPASS and drain all requests w/ elevator private data
  929. */
  930. spin_lock_irq(q->queue_lock);
  931. elv_quisce_start(q);
  932. /*
  933. * Remember old elevator.
  934. */
  935. old_elevator = q->elevator;
  936. /*
  937. * attach and start new elevator
  938. */
  939. elevator_attach(q, e, data);
  940. spin_unlock_irq(q->queue_lock);
  941. __elv_unregister_queue(old_elevator);
  942. if (elv_register_queue(q))
  943. goto fail_register;
  944. /*
  945. * finally exit old elevator and turn off BYPASS.
  946. */
  947. elevator_exit(old_elevator);
  948. spin_lock_irq(q->queue_lock);
  949. elv_quisce_end(q);
  950. spin_unlock_irq(q->queue_lock);
  951. blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
  952. return 1;
  953. fail_register:
  954. /*
  955. * switch failed, exit the new io scheduler and reattach the old
  956. * one again (along with re-adding the sysfs dir)
  957. */
  958. elevator_exit(e);
  959. q->elevator = old_elevator;
  960. elv_register_queue(q);
  961. spin_lock_irq(q->queue_lock);
  962. queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
  963. spin_unlock_irq(q->queue_lock);
  964. return 0;
  965. }
  966. ssize_t elv_iosched_store(struct request_queue *q, const char *name,
  967. size_t count)
  968. {
  969. char elevator_name[ELV_NAME_MAX];
  970. struct elevator_type *e;
  971. strlcpy(elevator_name, name, sizeof(elevator_name));
  972. strstrip(elevator_name);
  973. e = elevator_get(elevator_name);
  974. if (!e) {
  975. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  976. return -EINVAL;
  977. }
  978. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  979. elevator_put(e);
  980. return count;
  981. }
  982. if (!elevator_switch(q, e))
  983. printk(KERN_ERR "elevator: switch to %s failed\n",
  984. elevator_name);
  985. return count;
  986. }
  987. ssize_t elv_iosched_show(struct request_queue *q, char *name)
  988. {
  989. struct elevator_queue *e = q->elevator;
  990. struct elevator_type *elv = e->elevator_type;
  991. struct elevator_type *__e;
  992. int len = 0;
  993. spin_lock(&elv_list_lock);
  994. list_for_each_entry(__e, &elv_list, list) {
  995. if (!strcmp(elv->elevator_name, __e->elevator_name))
  996. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  997. else
  998. len += sprintf(name+len, "%s ", __e->elevator_name);
  999. }
  1000. spin_unlock(&elv_list_lock);
  1001. len += sprintf(len+name, "\n");
  1002. return len;
  1003. }
  1004. struct request *elv_rb_former_request(struct request_queue *q,
  1005. struct request *rq)
  1006. {
  1007. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  1008. if (rbprev)
  1009. return rb_entry_rq(rbprev);
  1010. return NULL;
  1011. }
  1012. EXPORT_SYMBOL(elv_rb_former_request);
  1013. struct request *elv_rb_latter_request(struct request_queue *q,
  1014. struct request *rq)
  1015. {
  1016. struct rb_node *rbnext = rb_next(&rq->rb_node);
  1017. if (rbnext)
  1018. return rb_entry_rq(rbnext);
  1019. return NULL;
  1020. }
  1021. EXPORT_SYMBOL(elv_rb_latter_request);