sh_eth.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2012 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/delay.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/mdio-bitbang.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/phy.h>
  34. #include <linux/cache.h>
  35. #include <linux/io.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/slab.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/clk.h>
  41. #include <linux/sh_eth.h>
  42. #include "sh_eth.h"
  43. #define SH_ETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_LINK | \
  45. NETIF_MSG_TIMER | \
  46. NETIF_MSG_RX_ERR| \
  47. NETIF_MSG_TX_ERR)
  48. #if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
  49. defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  50. defined(CONFIG_ARCH_R8A7740)
  51. static void sh_eth_select_mii(struct net_device *ndev)
  52. {
  53. u32 value = 0x0;
  54. struct sh_eth_private *mdp = netdev_priv(ndev);
  55. switch (mdp->phy_interface) {
  56. case PHY_INTERFACE_MODE_GMII:
  57. value = 0x2;
  58. break;
  59. case PHY_INTERFACE_MODE_MII:
  60. value = 0x1;
  61. break;
  62. case PHY_INTERFACE_MODE_RMII:
  63. value = 0x0;
  64. break;
  65. default:
  66. pr_warn("PHY interface mode was not setup. Set to MII.\n");
  67. value = 0x1;
  68. break;
  69. }
  70. sh_eth_write(ndev, value, RMII_MII);
  71. }
  72. #endif
  73. /* There is CPU dependent code */
  74. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  75. #define SH_ETH_RESET_DEFAULT 1
  76. static void sh_eth_set_duplex(struct net_device *ndev)
  77. {
  78. struct sh_eth_private *mdp = netdev_priv(ndev);
  79. if (mdp->duplex) /* Full */
  80. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  81. else /* Half */
  82. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  83. }
  84. static void sh_eth_set_rate(struct net_device *ndev)
  85. {
  86. struct sh_eth_private *mdp = netdev_priv(ndev);
  87. switch (mdp->speed) {
  88. case 10: /* 10BASE */
  89. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  90. break;
  91. case 100:/* 100BASE */
  92. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  93. break;
  94. default:
  95. break;
  96. }
  97. }
  98. /* SH7724 */
  99. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  100. .set_duplex = sh_eth_set_duplex,
  101. .set_rate = sh_eth_set_rate,
  102. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  103. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  104. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  105. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  106. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  107. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  108. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  109. .apr = 1,
  110. .mpr = 1,
  111. .tpauser = 1,
  112. .hw_swap = 1,
  113. .rpadir = 1,
  114. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  115. };
  116. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  117. #define SH_ETH_HAS_BOTH_MODULES 1
  118. #define SH_ETH_HAS_TSU 1
  119. static void sh_eth_set_duplex(struct net_device *ndev)
  120. {
  121. struct sh_eth_private *mdp = netdev_priv(ndev);
  122. if (mdp->duplex) /* Full */
  123. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  124. else /* Half */
  125. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  126. }
  127. static void sh_eth_set_rate(struct net_device *ndev)
  128. {
  129. struct sh_eth_private *mdp = netdev_priv(ndev);
  130. switch (mdp->speed) {
  131. case 10: /* 10BASE */
  132. sh_eth_write(ndev, 0, RTRATE);
  133. break;
  134. case 100:/* 100BASE */
  135. sh_eth_write(ndev, 1, RTRATE);
  136. break;
  137. default:
  138. break;
  139. }
  140. }
  141. /* SH7757 */
  142. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  143. .set_duplex = sh_eth_set_duplex,
  144. .set_rate = sh_eth_set_rate,
  145. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  146. .rmcr_value = 0x00000001,
  147. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  148. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  149. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  150. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  151. .apr = 1,
  152. .mpr = 1,
  153. .tpauser = 1,
  154. .hw_swap = 1,
  155. .no_ade = 1,
  156. .rpadir = 1,
  157. .rpadir_value = 2 << 16,
  158. };
  159. #define SH_GIGA_ETH_BASE 0xfee00000
  160. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  161. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  162. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  163. {
  164. int i;
  165. unsigned long mahr[2], malr[2];
  166. /* save MAHR and MALR */
  167. for (i = 0; i < 2; i++) {
  168. malr[i] = ioread32((void *)GIGA_MALR(i));
  169. mahr[i] = ioread32((void *)GIGA_MAHR(i));
  170. }
  171. /* reset device */
  172. iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
  173. mdelay(1);
  174. /* restore MAHR and MALR */
  175. for (i = 0; i < 2; i++) {
  176. iowrite32(malr[i], (void *)GIGA_MALR(i));
  177. iowrite32(mahr[i], (void *)GIGA_MAHR(i));
  178. }
  179. }
  180. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  181. static void sh_eth_reset(struct net_device *ndev)
  182. {
  183. struct sh_eth_private *mdp = netdev_priv(ndev);
  184. int cnt = 100;
  185. if (sh_eth_is_gether(mdp)) {
  186. sh_eth_write(ndev, 0x03, EDSR);
  187. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  188. EDMR);
  189. while (cnt > 0) {
  190. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  191. break;
  192. mdelay(1);
  193. cnt--;
  194. }
  195. if (cnt < 0)
  196. printk(KERN_ERR "Device reset fail\n");
  197. /* Table Init */
  198. sh_eth_write(ndev, 0x0, TDLAR);
  199. sh_eth_write(ndev, 0x0, TDFAR);
  200. sh_eth_write(ndev, 0x0, TDFXR);
  201. sh_eth_write(ndev, 0x0, TDFFR);
  202. sh_eth_write(ndev, 0x0, RDLAR);
  203. sh_eth_write(ndev, 0x0, RDFAR);
  204. sh_eth_write(ndev, 0x0, RDFXR);
  205. sh_eth_write(ndev, 0x0, RDFFR);
  206. } else {
  207. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  208. EDMR);
  209. mdelay(3);
  210. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  211. EDMR);
  212. }
  213. }
  214. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  215. {
  216. struct sh_eth_private *mdp = netdev_priv(ndev);
  217. if (mdp->duplex) /* Full */
  218. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  219. else /* Half */
  220. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  221. }
  222. static void sh_eth_set_rate_giga(struct net_device *ndev)
  223. {
  224. struct sh_eth_private *mdp = netdev_priv(ndev);
  225. switch (mdp->speed) {
  226. case 10: /* 10BASE */
  227. sh_eth_write(ndev, 0x00000000, GECMR);
  228. break;
  229. case 100:/* 100BASE */
  230. sh_eth_write(ndev, 0x00000010, GECMR);
  231. break;
  232. case 1000: /* 1000BASE */
  233. sh_eth_write(ndev, 0x00000020, GECMR);
  234. break;
  235. default:
  236. break;
  237. }
  238. }
  239. /* SH7757(GETHERC) */
  240. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  241. .chip_reset = sh_eth_chip_reset_giga,
  242. .set_duplex = sh_eth_set_duplex_giga,
  243. .set_rate = sh_eth_set_rate_giga,
  244. .ecsr_value = ECSR_ICD | ECSR_MPD,
  245. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  246. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  247. .tx_check = EESR_TC1 | EESR_FTC,
  248. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  249. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  250. EESR_ECI,
  251. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  252. EESR_TFE,
  253. .fdr_value = 0x0000072f,
  254. .rmcr_value = 0x00000001,
  255. .apr = 1,
  256. .mpr = 1,
  257. .tpauser = 1,
  258. .bculr = 1,
  259. .hw_swap = 1,
  260. .rpadir = 1,
  261. .rpadir_value = 2 << 16,
  262. .no_trimd = 1,
  263. .no_ade = 1,
  264. .tsu = 1,
  265. };
  266. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  267. {
  268. if (sh_eth_is_gether(mdp))
  269. return &sh_eth_my_cpu_data_giga;
  270. else
  271. return &sh_eth_my_cpu_data;
  272. }
  273. #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
  274. #define SH_ETH_HAS_TSU 1
  275. static void sh_eth_reset_hw_crc(struct net_device *ndev);
  276. static void sh_eth_chip_reset(struct net_device *ndev)
  277. {
  278. struct sh_eth_private *mdp = netdev_priv(ndev);
  279. /* reset device */
  280. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  281. mdelay(1);
  282. }
  283. static void sh_eth_set_duplex(struct net_device *ndev)
  284. {
  285. struct sh_eth_private *mdp = netdev_priv(ndev);
  286. if (mdp->duplex) /* Full */
  287. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  288. else /* Half */
  289. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  290. }
  291. static void sh_eth_set_rate(struct net_device *ndev)
  292. {
  293. struct sh_eth_private *mdp = netdev_priv(ndev);
  294. switch (mdp->speed) {
  295. case 10: /* 10BASE */
  296. sh_eth_write(ndev, GECMR_10, GECMR);
  297. break;
  298. case 100:/* 100BASE */
  299. sh_eth_write(ndev, GECMR_100, GECMR);
  300. break;
  301. case 1000: /* 1000BASE */
  302. sh_eth_write(ndev, GECMR_1000, GECMR);
  303. break;
  304. default:
  305. break;
  306. }
  307. }
  308. /* sh7763 */
  309. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  310. .chip_reset = sh_eth_chip_reset,
  311. .set_duplex = sh_eth_set_duplex,
  312. .set_rate = sh_eth_set_rate,
  313. .ecsr_value = ECSR_ICD | ECSR_MPD,
  314. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  315. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  316. .tx_check = EESR_TC1 | EESR_FTC,
  317. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  318. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  319. EESR_ECI,
  320. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  321. EESR_TFE,
  322. .apr = 1,
  323. .mpr = 1,
  324. .tpauser = 1,
  325. .bculr = 1,
  326. .hw_swap = 1,
  327. .no_trimd = 1,
  328. .no_ade = 1,
  329. .tsu = 1,
  330. #if defined(CONFIG_CPU_SUBTYPE_SH7734)
  331. .hw_crc = 1,
  332. .select_mii = 1,
  333. #endif
  334. };
  335. static void sh_eth_reset(struct net_device *ndev)
  336. {
  337. int cnt = 100;
  338. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  339. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  340. while (cnt > 0) {
  341. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  342. break;
  343. mdelay(1);
  344. cnt--;
  345. }
  346. if (cnt == 0)
  347. printk(KERN_ERR "Device reset fail\n");
  348. /* Table Init */
  349. sh_eth_write(ndev, 0x0, TDLAR);
  350. sh_eth_write(ndev, 0x0, TDFAR);
  351. sh_eth_write(ndev, 0x0, TDFXR);
  352. sh_eth_write(ndev, 0x0, TDFFR);
  353. sh_eth_write(ndev, 0x0, RDLAR);
  354. sh_eth_write(ndev, 0x0, RDFAR);
  355. sh_eth_write(ndev, 0x0, RDFXR);
  356. sh_eth_write(ndev, 0x0, RDFFR);
  357. /* Reset HW CRC register */
  358. sh_eth_reset_hw_crc(ndev);
  359. /* Select MII mode */
  360. if (sh_eth_my_cpu_data.select_mii)
  361. sh_eth_select_mii(ndev);
  362. }
  363. static void sh_eth_reset_hw_crc(struct net_device *ndev)
  364. {
  365. if (sh_eth_my_cpu_data.hw_crc)
  366. sh_eth_write(ndev, 0x0, CSMR);
  367. }
  368. #elif defined(CONFIG_ARCH_R8A7740)
  369. #define SH_ETH_HAS_TSU 1
  370. static void sh_eth_chip_reset(struct net_device *ndev)
  371. {
  372. struct sh_eth_private *mdp = netdev_priv(ndev);
  373. /* reset device */
  374. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  375. mdelay(1);
  376. sh_eth_select_mii(ndev);
  377. }
  378. static void sh_eth_reset(struct net_device *ndev)
  379. {
  380. int cnt = 100;
  381. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  382. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  383. while (cnt > 0) {
  384. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  385. break;
  386. mdelay(1);
  387. cnt--;
  388. }
  389. if (cnt == 0)
  390. printk(KERN_ERR "Device reset fail\n");
  391. /* Table Init */
  392. sh_eth_write(ndev, 0x0, TDLAR);
  393. sh_eth_write(ndev, 0x0, TDFAR);
  394. sh_eth_write(ndev, 0x0, TDFXR);
  395. sh_eth_write(ndev, 0x0, TDFFR);
  396. sh_eth_write(ndev, 0x0, RDLAR);
  397. sh_eth_write(ndev, 0x0, RDFAR);
  398. sh_eth_write(ndev, 0x0, RDFXR);
  399. sh_eth_write(ndev, 0x0, RDFFR);
  400. }
  401. static void sh_eth_set_duplex(struct net_device *ndev)
  402. {
  403. struct sh_eth_private *mdp = netdev_priv(ndev);
  404. if (mdp->duplex) /* Full */
  405. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  406. else /* Half */
  407. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  408. }
  409. static void sh_eth_set_rate(struct net_device *ndev)
  410. {
  411. struct sh_eth_private *mdp = netdev_priv(ndev);
  412. switch (mdp->speed) {
  413. case 10: /* 10BASE */
  414. sh_eth_write(ndev, GECMR_10, GECMR);
  415. break;
  416. case 100:/* 100BASE */
  417. sh_eth_write(ndev, GECMR_100, GECMR);
  418. break;
  419. case 1000: /* 1000BASE */
  420. sh_eth_write(ndev, GECMR_1000, GECMR);
  421. break;
  422. default:
  423. break;
  424. }
  425. }
  426. /* R8A7740 */
  427. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  428. .chip_reset = sh_eth_chip_reset,
  429. .set_duplex = sh_eth_set_duplex,
  430. .set_rate = sh_eth_set_rate,
  431. .ecsr_value = ECSR_ICD | ECSR_MPD,
  432. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  433. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  434. .tx_check = EESR_TC1 | EESR_FTC,
  435. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  436. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  437. EESR_ECI,
  438. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  439. EESR_TFE,
  440. .apr = 1,
  441. .mpr = 1,
  442. .tpauser = 1,
  443. .bculr = 1,
  444. .hw_swap = 1,
  445. .no_trimd = 1,
  446. .no_ade = 1,
  447. .tsu = 1,
  448. .select_mii = 1,
  449. };
  450. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  451. #define SH_ETH_RESET_DEFAULT 1
  452. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  453. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  454. .apr = 1,
  455. .mpr = 1,
  456. .tpauser = 1,
  457. .hw_swap = 1,
  458. };
  459. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  460. #define SH_ETH_RESET_DEFAULT 1
  461. #define SH_ETH_HAS_TSU 1
  462. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  463. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  464. .tsu = 1,
  465. };
  466. #endif
  467. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  468. {
  469. if (!cd->ecsr_value)
  470. cd->ecsr_value = DEFAULT_ECSR_INIT;
  471. if (!cd->ecsipr_value)
  472. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  473. if (!cd->fcftr_value)
  474. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  475. DEFAULT_FIFO_F_D_RFD;
  476. if (!cd->fdr_value)
  477. cd->fdr_value = DEFAULT_FDR_INIT;
  478. if (!cd->rmcr_value)
  479. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  480. if (!cd->tx_check)
  481. cd->tx_check = DEFAULT_TX_CHECK;
  482. if (!cd->eesr_err_check)
  483. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  484. if (!cd->tx_error_check)
  485. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  486. }
  487. #if defined(SH_ETH_RESET_DEFAULT)
  488. /* Chip Reset */
  489. static void sh_eth_reset(struct net_device *ndev)
  490. {
  491. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  492. mdelay(3);
  493. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  494. }
  495. #endif
  496. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  497. static void sh_eth_set_receive_align(struct sk_buff *skb)
  498. {
  499. int reserve;
  500. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  501. if (reserve)
  502. skb_reserve(skb, reserve);
  503. }
  504. #else
  505. static void sh_eth_set_receive_align(struct sk_buff *skb)
  506. {
  507. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  508. }
  509. #endif
  510. /* CPU <-> EDMAC endian convert */
  511. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  512. {
  513. switch (mdp->edmac_endian) {
  514. case EDMAC_LITTLE_ENDIAN:
  515. return cpu_to_le32(x);
  516. case EDMAC_BIG_ENDIAN:
  517. return cpu_to_be32(x);
  518. }
  519. return x;
  520. }
  521. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  522. {
  523. switch (mdp->edmac_endian) {
  524. case EDMAC_LITTLE_ENDIAN:
  525. return le32_to_cpu(x);
  526. case EDMAC_BIG_ENDIAN:
  527. return be32_to_cpu(x);
  528. }
  529. return x;
  530. }
  531. /*
  532. * Program the hardware MAC address from dev->dev_addr.
  533. */
  534. static void update_mac_address(struct net_device *ndev)
  535. {
  536. sh_eth_write(ndev,
  537. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  538. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  539. sh_eth_write(ndev,
  540. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  541. }
  542. /*
  543. * Get MAC address from SuperH MAC address register
  544. *
  545. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  546. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  547. * When you want use this device, you must set MAC address in bootloader.
  548. *
  549. */
  550. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  551. {
  552. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  553. memcpy(ndev->dev_addr, mac, 6);
  554. } else {
  555. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  556. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  557. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  558. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  559. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  560. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  561. }
  562. }
  563. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  564. {
  565. if (mdp->reg_offset == sh_eth_offset_gigabit)
  566. return 1;
  567. else
  568. return 0;
  569. }
  570. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  571. {
  572. if (sh_eth_is_gether(mdp))
  573. return EDTRR_TRNS_GETHER;
  574. else
  575. return EDTRR_TRNS_ETHER;
  576. }
  577. struct bb_info {
  578. void (*set_gate)(void *addr);
  579. struct mdiobb_ctrl ctrl;
  580. void *addr;
  581. u32 mmd_msk;/* MMD */
  582. u32 mdo_msk;
  583. u32 mdi_msk;
  584. u32 mdc_msk;
  585. };
  586. /* PHY bit set */
  587. static void bb_set(void *addr, u32 msk)
  588. {
  589. iowrite32(ioread32(addr) | msk, addr);
  590. }
  591. /* PHY bit clear */
  592. static void bb_clr(void *addr, u32 msk)
  593. {
  594. iowrite32((ioread32(addr) & ~msk), addr);
  595. }
  596. /* PHY bit read */
  597. static int bb_read(void *addr, u32 msk)
  598. {
  599. return (ioread32(addr) & msk) != 0;
  600. }
  601. /* Data I/O pin control */
  602. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  603. {
  604. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  605. if (bitbang->set_gate)
  606. bitbang->set_gate(bitbang->addr);
  607. if (bit)
  608. bb_set(bitbang->addr, bitbang->mmd_msk);
  609. else
  610. bb_clr(bitbang->addr, bitbang->mmd_msk);
  611. }
  612. /* Set bit data*/
  613. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  614. {
  615. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  616. if (bitbang->set_gate)
  617. bitbang->set_gate(bitbang->addr);
  618. if (bit)
  619. bb_set(bitbang->addr, bitbang->mdo_msk);
  620. else
  621. bb_clr(bitbang->addr, bitbang->mdo_msk);
  622. }
  623. /* Get bit data*/
  624. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  625. {
  626. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  627. if (bitbang->set_gate)
  628. bitbang->set_gate(bitbang->addr);
  629. return bb_read(bitbang->addr, bitbang->mdi_msk);
  630. }
  631. /* MDC pin control */
  632. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  633. {
  634. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  635. if (bitbang->set_gate)
  636. bitbang->set_gate(bitbang->addr);
  637. if (bit)
  638. bb_set(bitbang->addr, bitbang->mdc_msk);
  639. else
  640. bb_clr(bitbang->addr, bitbang->mdc_msk);
  641. }
  642. /* mdio bus control struct */
  643. static struct mdiobb_ops bb_ops = {
  644. .owner = THIS_MODULE,
  645. .set_mdc = sh_mdc_ctrl,
  646. .set_mdio_dir = sh_mmd_ctrl,
  647. .set_mdio_data = sh_set_mdio,
  648. .get_mdio_data = sh_get_mdio,
  649. };
  650. /* free skb and descriptor buffer */
  651. static void sh_eth_ring_free(struct net_device *ndev)
  652. {
  653. struct sh_eth_private *mdp = netdev_priv(ndev);
  654. int i;
  655. /* Free Rx skb ringbuffer */
  656. if (mdp->rx_skbuff) {
  657. for (i = 0; i < RX_RING_SIZE; i++) {
  658. if (mdp->rx_skbuff[i])
  659. dev_kfree_skb(mdp->rx_skbuff[i]);
  660. }
  661. }
  662. kfree(mdp->rx_skbuff);
  663. /* Free Tx skb ringbuffer */
  664. if (mdp->tx_skbuff) {
  665. for (i = 0; i < TX_RING_SIZE; i++) {
  666. if (mdp->tx_skbuff[i])
  667. dev_kfree_skb(mdp->tx_skbuff[i]);
  668. }
  669. }
  670. kfree(mdp->tx_skbuff);
  671. }
  672. /* format skb and descriptor buffer */
  673. static void sh_eth_ring_format(struct net_device *ndev)
  674. {
  675. struct sh_eth_private *mdp = netdev_priv(ndev);
  676. int i;
  677. struct sk_buff *skb;
  678. struct sh_eth_rxdesc *rxdesc = NULL;
  679. struct sh_eth_txdesc *txdesc = NULL;
  680. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  681. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  682. mdp->cur_rx = mdp->cur_tx = 0;
  683. mdp->dirty_rx = mdp->dirty_tx = 0;
  684. memset(mdp->rx_ring, 0, rx_ringsize);
  685. /* build Rx ring buffer */
  686. for (i = 0; i < RX_RING_SIZE; i++) {
  687. /* skb */
  688. mdp->rx_skbuff[i] = NULL;
  689. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  690. mdp->rx_skbuff[i] = skb;
  691. if (skb == NULL)
  692. break;
  693. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  694. DMA_FROM_DEVICE);
  695. sh_eth_set_receive_align(skb);
  696. /* RX descriptor */
  697. rxdesc = &mdp->rx_ring[i];
  698. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  699. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  700. /* The size of the buffer is 16 byte boundary. */
  701. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  702. /* Rx descriptor address set */
  703. if (i == 0) {
  704. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  705. if (sh_eth_is_gether(mdp))
  706. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  707. }
  708. }
  709. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  710. /* Mark the last entry as wrapping the ring. */
  711. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  712. memset(mdp->tx_ring, 0, tx_ringsize);
  713. /* build Tx ring buffer */
  714. for (i = 0; i < TX_RING_SIZE; i++) {
  715. mdp->tx_skbuff[i] = NULL;
  716. txdesc = &mdp->tx_ring[i];
  717. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  718. txdesc->buffer_length = 0;
  719. if (i == 0) {
  720. /* Tx descriptor address set */
  721. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  722. if (sh_eth_is_gether(mdp))
  723. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  724. }
  725. }
  726. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  727. }
  728. /* Get skb and descriptor buffer */
  729. static int sh_eth_ring_init(struct net_device *ndev)
  730. {
  731. struct sh_eth_private *mdp = netdev_priv(ndev);
  732. int rx_ringsize, tx_ringsize, ret = 0;
  733. /*
  734. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  735. * card needs room to do 8 byte alignment, +2 so we can reserve
  736. * the first 2 bytes, and +16 gets room for the status word from the
  737. * card.
  738. */
  739. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  740. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  741. if (mdp->cd->rpadir)
  742. mdp->rx_buf_sz += NET_IP_ALIGN;
  743. /* Allocate RX and TX skb rings */
  744. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  745. GFP_KERNEL);
  746. if (!mdp->rx_skbuff) {
  747. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  748. ret = -ENOMEM;
  749. return ret;
  750. }
  751. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  752. GFP_KERNEL);
  753. if (!mdp->tx_skbuff) {
  754. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  755. ret = -ENOMEM;
  756. goto skb_ring_free;
  757. }
  758. /* Allocate all Rx descriptors. */
  759. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  760. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  761. GFP_KERNEL);
  762. if (!mdp->rx_ring) {
  763. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  764. rx_ringsize);
  765. ret = -ENOMEM;
  766. goto desc_ring_free;
  767. }
  768. mdp->dirty_rx = 0;
  769. /* Allocate all Tx descriptors. */
  770. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  771. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  772. GFP_KERNEL);
  773. if (!mdp->tx_ring) {
  774. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  775. tx_ringsize);
  776. ret = -ENOMEM;
  777. goto desc_ring_free;
  778. }
  779. return ret;
  780. desc_ring_free:
  781. /* free DMA buffer */
  782. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  783. skb_ring_free:
  784. /* Free Rx and Tx skb ring buffer */
  785. sh_eth_ring_free(ndev);
  786. return ret;
  787. }
  788. static int sh_eth_dev_init(struct net_device *ndev)
  789. {
  790. int ret = 0;
  791. struct sh_eth_private *mdp = netdev_priv(ndev);
  792. u_int32_t rx_int_var, tx_int_var;
  793. u32 val;
  794. /* Soft Reset */
  795. sh_eth_reset(ndev);
  796. /* Descriptor format */
  797. sh_eth_ring_format(ndev);
  798. if (mdp->cd->rpadir)
  799. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  800. /* all sh_eth int mask */
  801. sh_eth_write(ndev, 0, EESIPR);
  802. #if defined(__LITTLE_ENDIAN)
  803. if (mdp->cd->hw_swap)
  804. sh_eth_write(ndev, EDMR_EL, EDMR);
  805. else
  806. #endif
  807. sh_eth_write(ndev, 0, EDMR);
  808. /* FIFO size set */
  809. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  810. sh_eth_write(ndev, 0, TFTR);
  811. /* Frame recv control */
  812. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  813. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  814. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  815. sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
  816. if (mdp->cd->bculr)
  817. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  818. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  819. if (!mdp->cd->no_trimd)
  820. sh_eth_write(ndev, 0, TRIMD);
  821. /* Recv frame limit set register */
  822. sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
  823. RFLR);
  824. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  825. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  826. /* PAUSE Prohibition */
  827. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  828. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  829. sh_eth_write(ndev, val, ECMR);
  830. if (mdp->cd->set_rate)
  831. mdp->cd->set_rate(ndev);
  832. /* E-MAC Status Register clear */
  833. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  834. /* E-MAC Interrupt Enable register */
  835. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  836. /* Set MAC address */
  837. update_mac_address(ndev);
  838. /* mask reset */
  839. if (mdp->cd->apr)
  840. sh_eth_write(ndev, APR_AP, APR);
  841. if (mdp->cd->mpr)
  842. sh_eth_write(ndev, MPR_MP, MPR);
  843. if (mdp->cd->tpauser)
  844. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  845. /* Setting the Rx mode will start the Rx process. */
  846. sh_eth_write(ndev, EDRRR_R, EDRRR);
  847. netif_start_queue(ndev);
  848. return ret;
  849. }
  850. /* free Tx skb function */
  851. static int sh_eth_txfree(struct net_device *ndev)
  852. {
  853. struct sh_eth_private *mdp = netdev_priv(ndev);
  854. struct sh_eth_txdesc *txdesc;
  855. int freeNum = 0;
  856. int entry = 0;
  857. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  858. entry = mdp->dirty_tx % TX_RING_SIZE;
  859. txdesc = &mdp->tx_ring[entry];
  860. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  861. break;
  862. /* Free the original skb. */
  863. if (mdp->tx_skbuff[entry]) {
  864. dma_unmap_single(&ndev->dev, txdesc->addr,
  865. txdesc->buffer_length, DMA_TO_DEVICE);
  866. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  867. mdp->tx_skbuff[entry] = NULL;
  868. freeNum++;
  869. }
  870. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  871. if (entry >= TX_RING_SIZE - 1)
  872. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  873. ndev->stats.tx_packets++;
  874. ndev->stats.tx_bytes += txdesc->buffer_length;
  875. }
  876. return freeNum;
  877. }
  878. /* Packet receive function */
  879. static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
  880. {
  881. struct sh_eth_private *mdp = netdev_priv(ndev);
  882. struct sh_eth_rxdesc *rxdesc;
  883. int entry = mdp->cur_rx % RX_RING_SIZE;
  884. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  885. struct sk_buff *skb;
  886. u16 pkt_len = 0;
  887. u32 desc_status;
  888. rxdesc = &mdp->rx_ring[entry];
  889. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  890. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  891. pkt_len = rxdesc->frame_length;
  892. #if defined(CONFIG_ARCH_R8A7740)
  893. desc_status >>= 16;
  894. #endif
  895. if (--boguscnt < 0)
  896. break;
  897. if (!(desc_status & RDFEND))
  898. ndev->stats.rx_length_errors++;
  899. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  900. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  901. ndev->stats.rx_errors++;
  902. if (desc_status & RD_RFS1)
  903. ndev->stats.rx_crc_errors++;
  904. if (desc_status & RD_RFS2)
  905. ndev->stats.rx_frame_errors++;
  906. if (desc_status & RD_RFS3)
  907. ndev->stats.rx_length_errors++;
  908. if (desc_status & RD_RFS4)
  909. ndev->stats.rx_length_errors++;
  910. if (desc_status & RD_RFS6)
  911. ndev->stats.rx_missed_errors++;
  912. if (desc_status & RD_RFS10)
  913. ndev->stats.rx_over_errors++;
  914. } else {
  915. if (!mdp->cd->hw_swap)
  916. sh_eth_soft_swap(
  917. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  918. pkt_len + 2);
  919. skb = mdp->rx_skbuff[entry];
  920. mdp->rx_skbuff[entry] = NULL;
  921. if (mdp->cd->rpadir)
  922. skb_reserve(skb, NET_IP_ALIGN);
  923. skb_put(skb, pkt_len);
  924. skb->protocol = eth_type_trans(skb, ndev);
  925. netif_rx(skb);
  926. ndev->stats.rx_packets++;
  927. ndev->stats.rx_bytes += pkt_len;
  928. }
  929. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  930. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  931. rxdesc = &mdp->rx_ring[entry];
  932. }
  933. /* Refill the Rx ring buffers. */
  934. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  935. entry = mdp->dirty_rx % RX_RING_SIZE;
  936. rxdesc = &mdp->rx_ring[entry];
  937. /* The size of the buffer is 16 byte boundary. */
  938. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  939. if (mdp->rx_skbuff[entry] == NULL) {
  940. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  941. mdp->rx_skbuff[entry] = skb;
  942. if (skb == NULL)
  943. break; /* Better luck next round. */
  944. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  945. DMA_FROM_DEVICE);
  946. sh_eth_set_receive_align(skb);
  947. skb_checksum_none_assert(skb);
  948. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  949. }
  950. if (entry >= RX_RING_SIZE - 1)
  951. rxdesc->status |=
  952. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  953. else
  954. rxdesc->status |=
  955. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  956. }
  957. /* Restart Rx engine if stopped. */
  958. /* If we don't need to check status, don't. -KDU */
  959. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
  960. /* fix the values for the next receiving if RDE is set */
  961. if (intr_status & EESR_RDE)
  962. mdp->cur_rx = mdp->dirty_rx =
  963. (sh_eth_read(ndev, RDFAR) -
  964. sh_eth_read(ndev, RDLAR)) >> 4;
  965. sh_eth_write(ndev, EDRRR_R, EDRRR);
  966. }
  967. return 0;
  968. }
  969. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  970. {
  971. /* disable tx and rx */
  972. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  973. ~(ECMR_RE | ECMR_TE), ECMR);
  974. }
  975. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  976. {
  977. /* enable tx and rx */
  978. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  979. (ECMR_RE | ECMR_TE), ECMR);
  980. }
  981. /* error control function */
  982. static void sh_eth_error(struct net_device *ndev, int intr_status)
  983. {
  984. struct sh_eth_private *mdp = netdev_priv(ndev);
  985. u32 felic_stat;
  986. u32 link_stat;
  987. u32 mask;
  988. if (intr_status & EESR_ECI) {
  989. felic_stat = sh_eth_read(ndev, ECSR);
  990. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  991. if (felic_stat & ECSR_ICD)
  992. ndev->stats.tx_carrier_errors++;
  993. if (felic_stat & ECSR_LCHNG) {
  994. /* Link Changed */
  995. if (mdp->cd->no_psr || mdp->no_ether_link) {
  996. if (mdp->link == PHY_DOWN)
  997. link_stat = 0;
  998. else
  999. link_stat = PHY_ST_LINK;
  1000. } else {
  1001. link_stat = (sh_eth_read(ndev, PSR));
  1002. if (mdp->ether_link_active_low)
  1003. link_stat = ~link_stat;
  1004. }
  1005. if (!(link_stat & PHY_ST_LINK))
  1006. sh_eth_rcv_snd_disable(ndev);
  1007. else {
  1008. /* Link Up */
  1009. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  1010. ~DMAC_M_ECI, EESIPR);
  1011. /*clear int */
  1012. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  1013. ECSR);
  1014. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  1015. DMAC_M_ECI, EESIPR);
  1016. /* enable tx and rx */
  1017. sh_eth_rcv_snd_enable(ndev);
  1018. }
  1019. }
  1020. }
  1021. if (intr_status & EESR_TWB) {
  1022. /* Write buck end. unused write back interrupt */
  1023. if (intr_status & EESR_TABT) /* Transmit Abort int */
  1024. ndev->stats.tx_aborted_errors++;
  1025. if (netif_msg_tx_err(mdp))
  1026. dev_err(&ndev->dev, "Transmit Abort\n");
  1027. }
  1028. if (intr_status & EESR_RABT) {
  1029. /* Receive Abort int */
  1030. if (intr_status & EESR_RFRMER) {
  1031. /* Receive Frame Overflow int */
  1032. ndev->stats.rx_frame_errors++;
  1033. if (netif_msg_rx_err(mdp))
  1034. dev_err(&ndev->dev, "Receive Abort\n");
  1035. }
  1036. }
  1037. if (intr_status & EESR_TDE) {
  1038. /* Transmit Descriptor Empty int */
  1039. ndev->stats.tx_fifo_errors++;
  1040. if (netif_msg_tx_err(mdp))
  1041. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  1042. }
  1043. if (intr_status & EESR_TFE) {
  1044. /* FIFO under flow */
  1045. ndev->stats.tx_fifo_errors++;
  1046. if (netif_msg_tx_err(mdp))
  1047. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  1048. }
  1049. if (intr_status & EESR_RDE) {
  1050. /* Receive Descriptor Empty int */
  1051. ndev->stats.rx_over_errors++;
  1052. if (netif_msg_rx_err(mdp))
  1053. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  1054. }
  1055. if (intr_status & EESR_RFE) {
  1056. /* Receive FIFO Overflow int */
  1057. ndev->stats.rx_fifo_errors++;
  1058. if (netif_msg_rx_err(mdp))
  1059. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  1060. }
  1061. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  1062. /* Address Error */
  1063. ndev->stats.tx_fifo_errors++;
  1064. if (netif_msg_tx_err(mdp))
  1065. dev_err(&ndev->dev, "Address Error\n");
  1066. }
  1067. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  1068. if (mdp->cd->no_ade)
  1069. mask &= ~EESR_ADE;
  1070. if (intr_status & mask) {
  1071. /* Tx error */
  1072. u32 edtrr = sh_eth_read(ndev, EDTRR);
  1073. /* dmesg */
  1074. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  1075. intr_status, mdp->cur_tx);
  1076. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  1077. mdp->dirty_tx, (u32) ndev->state, edtrr);
  1078. /* dirty buffer free */
  1079. sh_eth_txfree(ndev);
  1080. /* SH7712 BUG */
  1081. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  1082. /* tx dma start */
  1083. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1084. }
  1085. /* wakeup */
  1086. netif_wake_queue(ndev);
  1087. }
  1088. }
  1089. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  1090. {
  1091. struct net_device *ndev = netdev;
  1092. struct sh_eth_private *mdp = netdev_priv(ndev);
  1093. struct sh_eth_cpu_data *cd = mdp->cd;
  1094. irqreturn_t ret = IRQ_NONE;
  1095. u32 intr_status = 0;
  1096. spin_lock(&mdp->lock);
  1097. /* Get interrpt stat */
  1098. intr_status = sh_eth_read(ndev, EESR);
  1099. /* Clear interrupt */
  1100. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  1101. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  1102. cd->tx_check | cd->eesr_err_check)) {
  1103. sh_eth_write(ndev, intr_status, EESR);
  1104. ret = IRQ_HANDLED;
  1105. } else
  1106. goto other_irq;
  1107. if (intr_status & (EESR_FRC | /* Frame recv*/
  1108. EESR_RMAF | /* Multi cast address recv*/
  1109. EESR_RRF | /* Bit frame recv */
  1110. EESR_RTLF | /* Long frame recv*/
  1111. EESR_RTSF | /* short frame recv */
  1112. EESR_PRE | /* PHY-LSI recv error */
  1113. EESR_CERF)){ /* recv frame CRC error */
  1114. sh_eth_rx(ndev, intr_status);
  1115. }
  1116. /* Tx Check */
  1117. if (intr_status & cd->tx_check) {
  1118. sh_eth_txfree(ndev);
  1119. netif_wake_queue(ndev);
  1120. }
  1121. if (intr_status & cd->eesr_err_check)
  1122. sh_eth_error(ndev, intr_status);
  1123. other_irq:
  1124. spin_unlock(&mdp->lock);
  1125. return ret;
  1126. }
  1127. static void sh_eth_timer(unsigned long data)
  1128. {
  1129. struct net_device *ndev = (struct net_device *)data;
  1130. struct sh_eth_private *mdp = netdev_priv(ndev);
  1131. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  1132. }
  1133. /* PHY state control function */
  1134. static void sh_eth_adjust_link(struct net_device *ndev)
  1135. {
  1136. struct sh_eth_private *mdp = netdev_priv(ndev);
  1137. struct phy_device *phydev = mdp->phydev;
  1138. int new_state = 0;
  1139. if (phydev->link != PHY_DOWN) {
  1140. if (phydev->duplex != mdp->duplex) {
  1141. new_state = 1;
  1142. mdp->duplex = phydev->duplex;
  1143. if (mdp->cd->set_duplex)
  1144. mdp->cd->set_duplex(ndev);
  1145. }
  1146. if (phydev->speed != mdp->speed) {
  1147. new_state = 1;
  1148. mdp->speed = phydev->speed;
  1149. if (mdp->cd->set_rate)
  1150. mdp->cd->set_rate(ndev);
  1151. }
  1152. if (mdp->link == PHY_DOWN) {
  1153. sh_eth_write(ndev,
  1154. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1155. new_state = 1;
  1156. mdp->link = phydev->link;
  1157. }
  1158. } else if (mdp->link) {
  1159. new_state = 1;
  1160. mdp->link = PHY_DOWN;
  1161. mdp->speed = 0;
  1162. mdp->duplex = -1;
  1163. }
  1164. if (new_state && netif_msg_link(mdp))
  1165. phy_print_status(phydev);
  1166. }
  1167. /* PHY init function */
  1168. static int sh_eth_phy_init(struct net_device *ndev)
  1169. {
  1170. struct sh_eth_private *mdp = netdev_priv(ndev);
  1171. char phy_id[MII_BUS_ID_SIZE + 3];
  1172. struct phy_device *phydev = NULL;
  1173. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1174. mdp->mii_bus->id , mdp->phy_id);
  1175. mdp->link = PHY_DOWN;
  1176. mdp->speed = 0;
  1177. mdp->duplex = -1;
  1178. /* Try connect to PHY */
  1179. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1180. 0, mdp->phy_interface);
  1181. if (IS_ERR(phydev)) {
  1182. dev_err(&ndev->dev, "phy_connect failed\n");
  1183. return PTR_ERR(phydev);
  1184. }
  1185. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1186. phydev->addr, phydev->drv->name);
  1187. mdp->phydev = phydev;
  1188. return 0;
  1189. }
  1190. /* PHY control start function */
  1191. static int sh_eth_phy_start(struct net_device *ndev)
  1192. {
  1193. struct sh_eth_private *mdp = netdev_priv(ndev);
  1194. int ret;
  1195. ret = sh_eth_phy_init(ndev);
  1196. if (ret)
  1197. return ret;
  1198. /* reset phy - this also wakes it from PDOWN */
  1199. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1200. phy_start(mdp->phydev);
  1201. return 0;
  1202. }
  1203. static int sh_eth_get_settings(struct net_device *ndev,
  1204. struct ethtool_cmd *ecmd)
  1205. {
  1206. struct sh_eth_private *mdp = netdev_priv(ndev);
  1207. unsigned long flags;
  1208. int ret;
  1209. spin_lock_irqsave(&mdp->lock, flags);
  1210. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1211. spin_unlock_irqrestore(&mdp->lock, flags);
  1212. return ret;
  1213. }
  1214. static int sh_eth_set_settings(struct net_device *ndev,
  1215. struct ethtool_cmd *ecmd)
  1216. {
  1217. struct sh_eth_private *mdp = netdev_priv(ndev);
  1218. unsigned long flags;
  1219. int ret;
  1220. spin_lock_irqsave(&mdp->lock, flags);
  1221. /* disable tx and rx */
  1222. sh_eth_rcv_snd_disable(ndev);
  1223. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1224. if (ret)
  1225. goto error_exit;
  1226. if (ecmd->duplex == DUPLEX_FULL)
  1227. mdp->duplex = 1;
  1228. else
  1229. mdp->duplex = 0;
  1230. if (mdp->cd->set_duplex)
  1231. mdp->cd->set_duplex(ndev);
  1232. error_exit:
  1233. mdelay(1);
  1234. /* enable tx and rx */
  1235. sh_eth_rcv_snd_enable(ndev);
  1236. spin_unlock_irqrestore(&mdp->lock, flags);
  1237. return ret;
  1238. }
  1239. static int sh_eth_nway_reset(struct net_device *ndev)
  1240. {
  1241. struct sh_eth_private *mdp = netdev_priv(ndev);
  1242. unsigned long flags;
  1243. int ret;
  1244. spin_lock_irqsave(&mdp->lock, flags);
  1245. ret = phy_start_aneg(mdp->phydev);
  1246. spin_unlock_irqrestore(&mdp->lock, flags);
  1247. return ret;
  1248. }
  1249. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1250. {
  1251. struct sh_eth_private *mdp = netdev_priv(ndev);
  1252. return mdp->msg_enable;
  1253. }
  1254. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1255. {
  1256. struct sh_eth_private *mdp = netdev_priv(ndev);
  1257. mdp->msg_enable = value;
  1258. }
  1259. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1260. "rx_current", "tx_current",
  1261. "rx_dirty", "tx_dirty",
  1262. };
  1263. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1264. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1265. {
  1266. switch (sset) {
  1267. case ETH_SS_STATS:
  1268. return SH_ETH_STATS_LEN;
  1269. default:
  1270. return -EOPNOTSUPP;
  1271. }
  1272. }
  1273. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1274. struct ethtool_stats *stats, u64 *data)
  1275. {
  1276. struct sh_eth_private *mdp = netdev_priv(ndev);
  1277. int i = 0;
  1278. /* device-specific stats */
  1279. data[i++] = mdp->cur_rx;
  1280. data[i++] = mdp->cur_tx;
  1281. data[i++] = mdp->dirty_rx;
  1282. data[i++] = mdp->dirty_tx;
  1283. }
  1284. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1285. {
  1286. switch (stringset) {
  1287. case ETH_SS_STATS:
  1288. memcpy(data, *sh_eth_gstrings_stats,
  1289. sizeof(sh_eth_gstrings_stats));
  1290. break;
  1291. }
  1292. }
  1293. static const struct ethtool_ops sh_eth_ethtool_ops = {
  1294. .get_settings = sh_eth_get_settings,
  1295. .set_settings = sh_eth_set_settings,
  1296. .nway_reset = sh_eth_nway_reset,
  1297. .get_msglevel = sh_eth_get_msglevel,
  1298. .set_msglevel = sh_eth_set_msglevel,
  1299. .get_link = ethtool_op_get_link,
  1300. .get_strings = sh_eth_get_strings,
  1301. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1302. .get_sset_count = sh_eth_get_sset_count,
  1303. };
  1304. /* network device open function */
  1305. static int sh_eth_open(struct net_device *ndev)
  1306. {
  1307. int ret = 0;
  1308. struct sh_eth_private *mdp = netdev_priv(ndev);
  1309. pm_runtime_get_sync(&mdp->pdev->dev);
  1310. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1311. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1312. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1313. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1314. IRQF_SHARED,
  1315. #else
  1316. 0,
  1317. #endif
  1318. ndev->name, ndev);
  1319. if (ret) {
  1320. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1321. return ret;
  1322. }
  1323. /* Descriptor set */
  1324. ret = sh_eth_ring_init(ndev);
  1325. if (ret)
  1326. goto out_free_irq;
  1327. /* device init */
  1328. ret = sh_eth_dev_init(ndev);
  1329. if (ret)
  1330. goto out_free_irq;
  1331. /* PHY control start*/
  1332. ret = sh_eth_phy_start(ndev);
  1333. if (ret)
  1334. goto out_free_irq;
  1335. /* Set the timer to check for link beat. */
  1336. init_timer(&mdp->timer);
  1337. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1338. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  1339. return ret;
  1340. out_free_irq:
  1341. free_irq(ndev->irq, ndev);
  1342. pm_runtime_put_sync(&mdp->pdev->dev);
  1343. return ret;
  1344. }
  1345. /* Timeout function */
  1346. static void sh_eth_tx_timeout(struct net_device *ndev)
  1347. {
  1348. struct sh_eth_private *mdp = netdev_priv(ndev);
  1349. struct sh_eth_rxdesc *rxdesc;
  1350. int i;
  1351. netif_stop_queue(ndev);
  1352. if (netif_msg_timer(mdp))
  1353. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1354. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1355. /* tx_errors count up */
  1356. ndev->stats.tx_errors++;
  1357. /* timer off */
  1358. del_timer_sync(&mdp->timer);
  1359. /* Free all the skbuffs in the Rx queue. */
  1360. for (i = 0; i < RX_RING_SIZE; i++) {
  1361. rxdesc = &mdp->rx_ring[i];
  1362. rxdesc->status = 0;
  1363. rxdesc->addr = 0xBADF00D0;
  1364. if (mdp->rx_skbuff[i])
  1365. dev_kfree_skb(mdp->rx_skbuff[i]);
  1366. mdp->rx_skbuff[i] = NULL;
  1367. }
  1368. for (i = 0; i < TX_RING_SIZE; i++) {
  1369. if (mdp->tx_skbuff[i])
  1370. dev_kfree_skb(mdp->tx_skbuff[i]);
  1371. mdp->tx_skbuff[i] = NULL;
  1372. }
  1373. /* device init */
  1374. sh_eth_dev_init(ndev);
  1375. /* timer on */
  1376. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1377. add_timer(&mdp->timer);
  1378. }
  1379. /* Packet transmit function */
  1380. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1381. {
  1382. struct sh_eth_private *mdp = netdev_priv(ndev);
  1383. struct sh_eth_txdesc *txdesc;
  1384. u32 entry;
  1385. unsigned long flags;
  1386. spin_lock_irqsave(&mdp->lock, flags);
  1387. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1388. if (!sh_eth_txfree(ndev)) {
  1389. if (netif_msg_tx_queued(mdp))
  1390. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1391. netif_stop_queue(ndev);
  1392. spin_unlock_irqrestore(&mdp->lock, flags);
  1393. return NETDEV_TX_BUSY;
  1394. }
  1395. }
  1396. spin_unlock_irqrestore(&mdp->lock, flags);
  1397. entry = mdp->cur_tx % TX_RING_SIZE;
  1398. mdp->tx_skbuff[entry] = skb;
  1399. txdesc = &mdp->tx_ring[entry];
  1400. /* soft swap. */
  1401. if (!mdp->cd->hw_swap)
  1402. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1403. skb->len + 2);
  1404. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1405. DMA_TO_DEVICE);
  1406. if (skb->len < ETHERSMALL)
  1407. txdesc->buffer_length = ETHERSMALL;
  1408. else
  1409. txdesc->buffer_length = skb->len;
  1410. if (entry >= TX_RING_SIZE - 1)
  1411. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1412. else
  1413. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1414. mdp->cur_tx++;
  1415. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1416. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1417. return NETDEV_TX_OK;
  1418. }
  1419. /* device close function */
  1420. static int sh_eth_close(struct net_device *ndev)
  1421. {
  1422. struct sh_eth_private *mdp = netdev_priv(ndev);
  1423. int ringsize;
  1424. netif_stop_queue(ndev);
  1425. /* Disable interrupts by clearing the interrupt mask. */
  1426. sh_eth_write(ndev, 0x0000, EESIPR);
  1427. /* Stop the chip's Tx and Rx processes. */
  1428. sh_eth_write(ndev, 0, EDTRR);
  1429. sh_eth_write(ndev, 0, EDRRR);
  1430. /* PHY Disconnect */
  1431. if (mdp->phydev) {
  1432. phy_stop(mdp->phydev);
  1433. phy_disconnect(mdp->phydev);
  1434. }
  1435. free_irq(ndev->irq, ndev);
  1436. del_timer_sync(&mdp->timer);
  1437. /* Free all the skbuffs in the Rx queue. */
  1438. sh_eth_ring_free(ndev);
  1439. /* free DMA buffer */
  1440. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1441. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1442. /* free DMA buffer */
  1443. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1444. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1445. pm_runtime_put_sync(&mdp->pdev->dev);
  1446. return 0;
  1447. }
  1448. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1449. {
  1450. struct sh_eth_private *mdp = netdev_priv(ndev);
  1451. pm_runtime_get_sync(&mdp->pdev->dev);
  1452. ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1453. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1454. ndev->stats.collisions += sh_eth_read(ndev, CDCR);
  1455. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1456. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1457. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1458. if (sh_eth_is_gether(mdp)) {
  1459. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1460. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1461. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1462. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1463. } else {
  1464. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1465. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1466. }
  1467. pm_runtime_put_sync(&mdp->pdev->dev);
  1468. return &ndev->stats;
  1469. }
  1470. /* ioctl to device function */
  1471. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1472. int cmd)
  1473. {
  1474. struct sh_eth_private *mdp = netdev_priv(ndev);
  1475. struct phy_device *phydev = mdp->phydev;
  1476. if (!netif_running(ndev))
  1477. return -EINVAL;
  1478. if (!phydev)
  1479. return -ENODEV;
  1480. return phy_mii_ioctl(phydev, rq, cmd);
  1481. }
  1482. #if defined(SH_ETH_HAS_TSU)
  1483. /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
  1484. static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
  1485. int entry)
  1486. {
  1487. return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
  1488. }
  1489. static u32 sh_eth_tsu_get_post_mask(int entry)
  1490. {
  1491. return 0x0f << (28 - ((entry % 8) * 4));
  1492. }
  1493. static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
  1494. {
  1495. return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
  1496. }
  1497. static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
  1498. int entry)
  1499. {
  1500. struct sh_eth_private *mdp = netdev_priv(ndev);
  1501. u32 tmp;
  1502. void *reg_offset;
  1503. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1504. tmp = ioread32(reg_offset);
  1505. iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
  1506. }
  1507. static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
  1508. int entry)
  1509. {
  1510. struct sh_eth_private *mdp = netdev_priv(ndev);
  1511. u32 post_mask, ref_mask, tmp;
  1512. void *reg_offset;
  1513. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1514. post_mask = sh_eth_tsu_get_post_mask(entry);
  1515. ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
  1516. tmp = ioread32(reg_offset);
  1517. iowrite32(tmp & ~post_mask, reg_offset);
  1518. /* If other port enables, the function returns "true" */
  1519. return tmp & ref_mask;
  1520. }
  1521. static int sh_eth_tsu_busy(struct net_device *ndev)
  1522. {
  1523. int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
  1524. struct sh_eth_private *mdp = netdev_priv(ndev);
  1525. while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
  1526. udelay(10);
  1527. timeout--;
  1528. if (timeout <= 0) {
  1529. dev_err(&ndev->dev, "%s: timeout\n", __func__);
  1530. return -ETIMEDOUT;
  1531. }
  1532. }
  1533. return 0;
  1534. }
  1535. static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
  1536. const u8 *addr)
  1537. {
  1538. u32 val;
  1539. val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
  1540. iowrite32(val, reg);
  1541. if (sh_eth_tsu_busy(ndev) < 0)
  1542. return -EBUSY;
  1543. val = addr[4] << 8 | addr[5];
  1544. iowrite32(val, reg + 4);
  1545. if (sh_eth_tsu_busy(ndev) < 0)
  1546. return -EBUSY;
  1547. return 0;
  1548. }
  1549. static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
  1550. {
  1551. u32 val;
  1552. val = ioread32(reg);
  1553. addr[0] = (val >> 24) & 0xff;
  1554. addr[1] = (val >> 16) & 0xff;
  1555. addr[2] = (val >> 8) & 0xff;
  1556. addr[3] = val & 0xff;
  1557. val = ioread32(reg + 4);
  1558. addr[4] = (val >> 8) & 0xff;
  1559. addr[5] = val & 0xff;
  1560. }
  1561. static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
  1562. {
  1563. struct sh_eth_private *mdp = netdev_priv(ndev);
  1564. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1565. int i;
  1566. u8 c_addr[ETH_ALEN];
  1567. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1568. sh_eth_tsu_read_entry(reg_offset, c_addr);
  1569. if (memcmp(addr, c_addr, ETH_ALEN) == 0)
  1570. return i;
  1571. }
  1572. return -ENOENT;
  1573. }
  1574. static int sh_eth_tsu_find_empty(struct net_device *ndev)
  1575. {
  1576. u8 blank[ETH_ALEN];
  1577. int entry;
  1578. memset(blank, 0, sizeof(blank));
  1579. entry = sh_eth_tsu_find_entry(ndev, blank);
  1580. return (entry < 0) ? -ENOMEM : entry;
  1581. }
  1582. static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
  1583. int entry)
  1584. {
  1585. struct sh_eth_private *mdp = netdev_priv(ndev);
  1586. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1587. int ret;
  1588. u8 blank[ETH_ALEN];
  1589. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
  1590. ~(1 << (31 - entry)), TSU_TEN);
  1591. memset(blank, 0, sizeof(blank));
  1592. ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
  1593. if (ret < 0)
  1594. return ret;
  1595. return 0;
  1596. }
  1597. static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
  1598. {
  1599. struct sh_eth_private *mdp = netdev_priv(ndev);
  1600. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1601. int i, ret;
  1602. if (!mdp->cd->tsu)
  1603. return 0;
  1604. i = sh_eth_tsu_find_entry(ndev, addr);
  1605. if (i < 0) {
  1606. /* No entry found, create one */
  1607. i = sh_eth_tsu_find_empty(ndev);
  1608. if (i < 0)
  1609. return -ENOMEM;
  1610. ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
  1611. if (ret < 0)
  1612. return ret;
  1613. /* Enable the entry */
  1614. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
  1615. (1 << (31 - i)), TSU_TEN);
  1616. }
  1617. /* Entry found or created, enable POST */
  1618. sh_eth_tsu_enable_cam_entry_post(ndev, i);
  1619. return 0;
  1620. }
  1621. static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
  1622. {
  1623. struct sh_eth_private *mdp = netdev_priv(ndev);
  1624. int i, ret;
  1625. if (!mdp->cd->tsu)
  1626. return 0;
  1627. i = sh_eth_tsu_find_entry(ndev, addr);
  1628. if (i) {
  1629. /* Entry found */
  1630. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1631. goto done;
  1632. /* Disable the entry if both ports was disabled */
  1633. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1634. if (ret < 0)
  1635. return ret;
  1636. }
  1637. done:
  1638. return 0;
  1639. }
  1640. static int sh_eth_tsu_purge_all(struct net_device *ndev)
  1641. {
  1642. struct sh_eth_private *mdp = netdev_priv(ndev);
  1643. int i, ret;
  1644. if (unlikely(!mdp->cd->tsu))
  1645. return 0;
  1646. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
  1647. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1648. continue;
  1649. /* Disable the entry if both ports was disabled */
  1650. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1651. if (ret < 0)
  1652. return ret;
  1653. }
  1654. return 0;
  1655. }
  1656. static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
  1657. {
  1658. struct sh_eth_private *mdp = netdev_priv(ndev);
  1659. u8 addr[ETH_ALEN];
  1660. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1661. int i;
  1662. if (unlikely(!mdp->cd->tsu))
  1663. return;
  1664. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1665. sh_eth_tsu_read_entry(reg_offset, addr);
  1666. if (is_multicast_ether_addr(addr))
  1667. sh_eth_tsu_del_entry(ndev, addr);
  1668. }
  1669. }
  1670. /* Multicast reception directions set */
  1671. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1672. {
  1673. struct sh_eth_private *mdp = netdev_priv(ndev);
  1674. u32 ecmr_bits;
  1675. int mcast_all = 0;
  1676. unsigned long flags;
  1677. spin_lock_irqsave(&mdp->lock, flags);
  1678. /*
  1679. * Initial condition is MCT = 1, PRM = 0.
  1680. * Depending on ndev->flags, set PRM or clear MCT
  1681. */
  1682. ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
  1683. if (!(ndev->flags & IFF_MULTICAST)) {
  1684. sh_eth_tsu_purge_mcast(ndev);
  1685. mcast_all = 1;
  1686. }
  1687. if (ndev->flags & IFF_ALLMULTI) {
  1688. sh_eth_tsu_purge_mcast(ndev);
  1689. ecmr_bits &= ~ECMR_MCT;
  1690. mcast_all = 1;
  1691. }
  1692. if (ndev->flags & IFF_PROMISC) {
  1693. sh_eth_tsu_purge_all(ndev);
  1694. ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
  1695. } else if (mdp->cd->tsu) {
  1696. struct netdev_hw_addr *ha;
  1697. netdev_for_each_mc_addr(ha, ndev) {
  1698. if (mcast_all && is_multicast_ether_addr(ha->addr))
  1699. continue;
  1700. if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
  1701. if (!mcast_all) {
  1702. sh_eth_tsu_purge_mcast(ndev);
  1703. ecmr_bits &= ~ECMR_MCT;
  1704. mcast_all = 1;
  1705. }
  1706. }
  1707. }
  1708. } else {
  1709. /* Normal, unicast/broadcast-only mode. */
  1710. ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
  1711. }
  1712. /* update the ethernet mode */
  1713. sh_eth_write(ndev, ecmr_bits, ECMR);
  1714. spin_unlock_irqrestore(&mdp->lock, flags);
  1715. }
  1716. static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
  1717. {
  1718. if (!mdp->port)
  1719. return TSU_VTAG0;
  1720. else
  1721. return TSU_VTAG1;
  1722. }
  1723. static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1724. {
  1725. struct sh_eth_private *mdp = netdev_priv(ndev);
  1726. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1727. if (unlikely(!mdp->cd->tsu))
  1728. return -EPERM;
  1729. /* No filtering if vid = 0 */
  1730. if (!vid)
  1731. return 0;
  1732. mdp->vlan_num_ids++;
  1733. /*
  1734. * The controller has one VLAN tag HW filter. So, if the filter is
  1735. * already enabled, the driver disables it and the filte
  1736. */
  1737. if (mdp->vlan_num_ids > 1) {
  1738. /* disable VLAN filter */
  1739. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1740. return 0;
  1741. }
  1742. sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
  1743. vtag_reg_index);
  1744. return 0;
  1745. }
  1746. static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1747. {
  1748. struct sh_eth_private *mdp = netdev_priv(ndev);
  1749. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1750. if (unlikely(!mdp->cd->tsu))
  1751. return -EPERM;
  1752. /* No filtering if vid = 0 */
  1753. if (!vid)
  1754. return 0;
  1755. mdp->vlan_num_ids--;
  1756. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1757. return 0;
  1758. }
  1759. #endif /* SH_ETH_HAS_TSU */
  1760. /* SuperH's TSU register init function */
  1761. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1762. {
  1763. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1764. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1765. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1766. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1767. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1768. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1769. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1770. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1771. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1772. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1773. if (sh_eth_is_gether(mdp)) {
  1774. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1775. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1776. } else {
  1777. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1778. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1779. }
  1780. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1781. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1782. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1783. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1784. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1785. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1786. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1787. }
  1788. /* MDIO bus release function */
  1789. static int sh_mdio_release(struct net_device *ndev)
  1790. {
  1791. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1792. /* unregister mdio bus */
  1793. mdiobus_unregister(bus);
  1794. /* remove mdio bus info from net_device */
  1795. dev_set_drvdata(&ndev->dev, NULL);
  1796. /* free interrupts memory */
  1797. kfree(bus->irq);
  1798. /* free bitbang info */
  1799. free_mdio_bitbang(bus);
  1800. return 0;
  1801. }
  1802. /* MDIO bus init function */
  1803. static int sh_mdio_init(struct net_device *ndev, int id,
  1804. struct sh_eth_plat_data *pd)
  1805. {
  1806. int ret, i;
  1807. struct bb_info *bitbang;
  1808. struct sh_eth_private *mdp = netdev_priv(ndev);
  1809. /* create bit control struct for PHY */
  1810. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1811. if (!bitbang) {
  1812. ret = -ENOMEM;
  1813. goto out;
  1814. }
  1815. /* bitbang init */
  1816. bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
  1817. bitbang->set_gate = pd->set_mdio_gate;
  1818. bitbang->mdi_msk = 0x08;
  1819. bitbang->mdo_msk = 0x04;
  1820. bitbang->mmd_msk = 0x02;/* MMD */
  1821. bitbang->mdc_msk = 0x01;
  1822. bitbang->ctrl.ops = &bb_ops;
  1823. /* MII controller setting */
  1824. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1825. if (!mdp->mii_bus) {
  1826. ret = -ENOMEM;
  1827. goto out_free_bitbang;
  1828. }
  1829. /* Hook up MII support for ethtool */
  1830. mdp->mii_bus->name = "sh_mii";
  1831. mdp->mii_bus->parent = &ndev->dev;
  1832. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1833. mdp->pdev->name, id);
  1834. /* PHY IRQ */
  1835. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1836. if (!mdp->mii_bus->irq) {
  1837. ret = -ENOMEM;
  1838. goto out_free_bus;
  1839. }
  1840. for (i = 0; i < PHY_MAX_ADDR; i++)
  1841. mdp->mii_bus->irq[i] = PHY_POLL;
  1842. /* regist mdio bus */
  1843. ret = mdiobus_register(mdp->mii_bus);
  1844. if (ret)
  1845. goto out_free_irq;
  1846. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1847. return 0;
  1848. out_free_irq:
  1849. kfree(mdp->mii_bus->irq);
  1850. out_free_bus:
  1851. free_mdio_bitbang(mdp->mii_bus);
  1852. out_free_bitbang:
  1853. kfree(bitbang);
  1854. out:
  1855. return ret;
  1856. }
  1857. static const u16 *sh_eth_get_register_offset(int register_type)
  1858. {
  1859. const u16 *reg_offset = NULL;
  1860. switch (register_type) {
  1861. case SH_ETH_REG_GIGABIT:
  1862. reg_offset = sh_eth_offset_gigabit;
  1863. break;
  1864. case SH_ETH_REG_FAST_SH4:
  1865. reg_offset = sh_eth_offset_fast_sh4;
  1866. break;
  1867. case SH_ETH_REG_FAST_SH3_SH2:
  1868. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1869. break;
  1870. default:
  1871. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1872. break;
  1873. }
  1874. return reg_offset;
  1875. }
  1876. static const struct net_device_ops sh_eth_netdev_ops = {
  1877. .ndo_open = sh_eth_open,
  1878. .ndo_stop = sh_eth_close,
  1879. .ndo_start_xmit = sh_eth_start_xmit,
  1880. .ndo_get_stats = sh_eth_get_stats,
  1881. #if defined(SH_ETH_HAS_TSU)
  1882. .ndo_set_rx_mode = sh_eth_set_multicast_list,
  1883. .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
  1884. .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
  1885. #endif
  1886. .ndo_tx_timeout = sh_eth_tx_timeout,
  1887. .ndo_do_ioctl = sh_eth_do_ioctl,
  1888. .ndo_validate_addr = eth_validate_addr,
  1889. .ndo_set_mac_address = eth_mac_addr,
  1890. .ndo_change_mtu = eth_change_mtu,
  1891. };
  1892. static int sh_eth_drv_probe(struct platform_device *pdev)
  1893. {
  1894. int ret, devno = 0;
  1895. struct resource *res;
  1896. struct net_device *ndev = NULL;
  1897. struct sh_eth_private *mdp = NULL;
  1898. struct sh_eth_plat_data *pd;
  1899. /* get base addr */
  1900. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1901. if (unlikely(res == NULL)) {
  1902. dev_err(&pdev->dev, "invalid resource\n");
  1903. ret = -EINVAL;
  1904. goto out;
  1905. }
  1906. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1907. if (!ndev) {
  1908. ret = -ENOMEM;
  1909. goto out;
  1910. }
  1911. /* The sh Ether-specific entries in the device structure. */
  1912. ndev->base_addr = res->start;
  1913. devno = pdev->id;
  1914. if (devno < 0)
  1915. devno = 0;
  1916. ndev->dma = -1;
  1917. ret = platform_get_irq(pdev, 0);
  1918. if (ret < 0) {
  1919. ret = -ENODEV;
  1920. goto out_release;
  1921. }
  1922. ndev->irq = ret;
  1923. SET_NETDEV_DEV(ndev, &pdev->dev);
  1924. /* Fill in the fields of the device structure with ethernet values. */
  1925. ether_setup(ndev);
  1926. mdp = netdev_priv(ndev);
  1927. mdp->addr = ioremap(res->start, resource_size(res));
  1928. if (mdp->addr == NULL) {
  1929. ret = -ENOMEM;
  1930. dev_err(&pdev->dev, "ioremap failed.\n");
  1931. goto out_release;
  1932. }
  1933. spin_lock_init(&mdp->lock);
  1934. mdp->pdev = pdev;
  1935. pm_runtime_enable(&pdev->dev);
  1936. pm_runtime_resume(&pdev->dev);
  1937. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1938. /* get PHY ID */
  1939. mdp->phy_id = pd->phy;
  1940. mdp->phy_interface = pd->phy_interface;
  1941. /* EDMAC endian */
  1942. mdp->edmac_endian = pd->edmac_endian;
  1943. mdp->no_ether_link = pd->no_ether_link;
  1944. mdp->ether_link_active_low = pd->ether_link_active_low;
  1945. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1946. /* set cpu data */
  1947. #if defined(SH_ETH_HAS_BOTH_MODULES)
  1948. mdp->cd = sh_eth_get_cpu_data(mdp);
  1949. #else
  1950. mdp->cd = &sh_eth_my_cpu_data;
  1951. #endif
  1952. sh_eth_set_default_cpu_data(mdp->cd);
  1953. /* set function */
  1954. ndev->netdev_ops = &sh_eth_netdev_ops;
  1955. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1956. ndev->watchdog_timeo = TX_TIMEOUT;
  1957. /* debug message level */
  1958. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1959. mdp->post_rx = POST_RX >> (devno << 1);
  1960. mdp->post_fw = POST_FW >> (devno << 1);
  1961. /* read and set MAC address */
  1962. read_mac_address(ndev, pd->mac_addr);
  1963. /* ioremap the TSU registers */
  1964. if (mdp->cd->tsu) {
  1965. struct resource *rtsu;
  1966. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1967. if (!rtsu) {
  1968. dev_err(&pdev->dev, "Not found TSU resource\n");
  1969. goto out_release;
  1970. }
  1971. mdp->tsu_addr = ioremap(rtsu->start,
  1972. resource_size(rtsu));
  1973. mdp->port = devno % 2;
  1974. ndev->features = NETIF_F_HW_VLAN_FILTER;
  1975. }
  1976. /* initialize first or needed device */
  1977. if (!devno || pd->needs_init) {
  1978. if (mdp->cd->chip_reset)
  1979. mdp->cd->chip_reset(ndev);
  1980. if (mdp->cd->tsu) {
  1981. /* TSU init (Init only)*/
  1982. sh_eth_tsu_init(mdp);
  1983. }
  1984. }
  1985. /* network device register */
  1986. ret = register_netdev(ndev);
  1987. if (ret)
  1988. goto out_release;
  1989. /* mdio bus init */
  1990. ret = sh_mdio_init(ndev, pdev->id, pd);
  1991. if (ret)
  1992. goto out_unregister;
  1993. /* print device information */
  1994. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1995. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1996. platform_set_drvdata(pdev, ndev);
  1997. return ret;
  1998. out_unregister:
  1999. unregister_netdev(ndev);
  2000. out_release:
  2001. /* net_dev free */
  2002. if (mdp && mdp->addr)
  2003. iounmap(mdp->addr);
  2004. if (mdp && mdp->tsu_addr)
  2005. iounmap(mdp->tsu_addr);
  2006. if (ndev)
  2007. free_netdev(ndev);
  2008. out:
  2009. return ret;
  2010. }
  2011. static int sh_eth_drv_remove(struct platform_device *pdev)
  2012. {
  2013. struct net_device *ndev = platform_get_drvdata(pdev);
  2014. struct sh_eth_private *mdp = netdev_priv(ndev);
  2015. if (mdp->cd->tsu)
  2016. iounmap(mdp->tsu_addr);
  2017. sh_mdio_release(ndev);
  2018. unregister_netdev(ndev);
  2019. pm_runtime_disable(&pdev->dev);
  2020. iounmap(mdp->addr);
  2021. free_netdev(ndev);
  2022. platform_set_drvdata(pdev, NULL);
  2023. return 0;
  2024. }
  2025. static int sh_eth_runtime_nop(struct device *dev)
  2026. {
  2027. /*
  2028. * Runtime PM callback shared between ->runtime_suspend()
  2029. * and ->runtime_resume(). Simply returns success.
  2030. *
  2031. * This driver re-initializes all registers after
  2032. * pm_runtime_get_sync() anyway so there is no need
  2033. * to save and restore registers here.
  2034. */
  2035. return 0;
  2036. }
  2037. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  2038. .runtime_suspend = sh_eth_runtime_nop,
  2039. .runtime_resume = sh_eth_runtime_nop,
  2040. };
  2041. static struct platform_driver sh_eth_driver = {
  2042. .probe = sh_eth_drv_probe,
  2043. .remove = sh_eth_drv_remove,
  2044. .driver = {
  2045. .name = CARDNAME,
  2046. .pm = &sh_eth_dev_pm_ops,
  2047. },
  2048. };
  2049. module_platform_driver(sh_eth_driver);
  2050. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  2051. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  2052. MODULE_LICENSE("GPL v2");