intel_display.c 294 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  50. int x, int y, struct drm_framebuffer *old_fb);
  51. typedef struct {
  52. int min, max;
  53. } intel_range_t;
  54. typedef struct {
  55. int dot_limit;
  56. int p2_slow, p2_fast;
  57. } intel_p2_t;
  58. typedef struct intel_limit intel_limit_t;
  59. struct intel_limit {
  60. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  61. intel_p2_t p2;
  62. };
  63. int
  64. intel_pch_rawclk(struct drm_device *dev)
  65. {
  66. struct drm_i915_private *dev_priv = dev->dev_private;
  67. WARN_ON(!HAS_PCH_SPLIT(dev));
  68. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  69. }
  70. static inline u32 /* units of 100MHz */
  71. intel_fdi_link_freq(struct drm_device *dev)
  72. {
  73. if (IS_GEN5(dev)) {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  76. } else
  77. return 27;
  78. }
  79. static const intel_limit_t intel_limits_i8xx_dac = {
  80. .dot = { .min = 25000, .max = 350000 },
  81. .vco = { .min = 930000, .max = 1400000 },
  82. .n = { .min = 3, .max = 16 },
  83. .m = { .min = 96, .max = 140 },
  84. .m1 = { .min = 18, .max = 26 },
  85. .m2 = { .min = 6, .max = 16 },
  86. .p = { .min = 4, .max = 128 },
  87. .p1 = { .min = 2, .max = 33 },
  88. .p2 = { .dot_limit = 165000,
  89. .p2_slow = 4, .p2_fast = 2 },
  90. };
  91. static const intel_limit_t intel_limits_i8xx_dvo = {
  92. .dot = { .min = 25000, .max = 350000 },
  93. .vco = { .min = 930000, .max = 1400000 },
  94. .n = { .min = 3, .max = 16 },
  95. .m = { .min = 96, .max = 140 },
  96. .m1 = { .min = 18, .max = 26 },
  97. .m2 = { .min = 6, .max = 16 },
  98. .p = { .min = 4, .max = 128 },
  99. .p1 = { .min = 2, .max = 33 },
  100. .p2 = { .dot_limit = 165000,
  101. .p2_slow = 4, .p2_fast = 4 },
  102. };
  103. static const intel_limit_t intel_limits_i8xx_lvds = {
  104. .dot = { .min = 25000, .max = 350000 },
  105. .vco = { .min = 930000, .max = 1400000 },
  106. .n = { .min = 3, .max = 16 },
  107. .m = { .min = 96, .max = 140 },
  108. .m1 = { .min = 18, .max = 26 },
  109. .m2 = { .min = 6, .max = 16 },
  110. .p = { .min = 4, .max = 128 },
  111. .p1 = { .min = 1, .max = 6 },
  112. .p2 = { .dot_limit = 165000,
  113. .p2_slow = 14, .p2_fast = 7 },
  114. };
  115. static const intel_limit_t intel_limits_i9xx_sdvo = {
  116. .dot = { .min = 20000, .max = 400000 },
  117. .vco = { .min = 1400000, .max = 2800000 },
  118. .n = { .min = 1, .max = 6 },
  119. .m = { .min = 70, .max = 120 },
  120. .m1 = { .min = 8, .max = 18 },
  121. .m2 = { .min = 3, .max = 7 },
  122. .p = { .min = 5, .max = 80 },
  123. .p1 = { .min = 1, .max = 8 },
  124. .p2 = { .dot_limit = 200000,
  125. .p2_slow = 10, .p2_fast = 5 },
  126. };
  127. static const intel_limit_t intel_limits_i9xx_lvds = {
  128. .dot = { .min = 20000, .max = 400000 },
  129. .vco = { .min = 1400000, .max = 2800000 },
  130. .n = { .min = 1, .max = 6 },
  131. .m = { .min = 70, .max = 120 },
  132. .m1 = { .min = 8, .max = 18 },
  133. .m2 = { .min = 3, .max = 7 },
  134. .p = { .min = 7, .max = 98 },
  135. .p1 = { .min = 1, .max = 8 },
  136. .p2 = { .dot_limit = 112000,
  137. .p2_slow = 14, .p2_fast = 7 },
  138. };
  139. static const intel_limit_t intel_limits_g4x_sdvo = {
  140. .dot = { .min = 25000, .max = 270000 },
  141. .vco = { .min = 1750000, .max = 3500000},
  142. .n = { .min = 1, .max = 4 },
  143. .m = { .min = 104, .max = 138 },
  144. .m1 = { .min = 17, .max = 23 },
  145. .m2 = { .min = 5, .max = 11 },
  146. .p = { .min = 10, .max = 30 },
  147. .p1 = { .min = 1, .max = 3},
  148. .p2 = { .dot_limit = 270000,
  149. .p2_slow = 10,
  150. .p2_fast = 10
  151. },
  152. };
  153. static const intel_limit_t intel_limits_g4x_hdmi = {
  154. .dot = { .min = 22000, .max = 400000 },
  155. .vco = { .min = 1750000, .max = 3500000},
  156. .n = { .min = 1, .max = 4 },
  157. .m = { .min = 104, .max = 138 },
  158. .m1 = { .min = 16, .max = 23 },
  159. .m2 = { .min = 5, .max = 11 },
  160. .p = { .min = 5, .max = 80 },
  161. .p1 = { .min = 1, .max = 8},
  162. .p2 = { .dot_limit = 165000,
  163. .p2_slow = 10, .p2_fast = 5 },
  164. };
  165. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  166. .dot = { .min = 20000, .max = 115000 },
  167. .vco = { .min = 1750000, .max = 3500000 },
  168. .n = { .min = 1, .max = 3 },
  169. .m = { .min = 104, .max = 138 },
  170. .m1 = { .min = 17, .max = 23 },
  171. .m2 = { .min = 5, .max = 11 },
  172. .p = { .min = 28, .max = 112 },
  173. .p1 = { .min = 2, .max = 8 },
  174. .p2 = { .dot_limit = 0,
  175. .p2_slow = 14, .p2_fast = 14
  176. },
  177. };
  178. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  179. .dot = { .min = 80000, .max = 224000 },
  180. .vco = { .min = 1750000, .max = 3500000 },
  181. .n = { .min = 1, .max = 3 },
  182. .m = { .min = 104, .max = 138 },
  183. .m1 = { .min = 17, .max = 23 },
  184. .m2 = { .min = 5, .max = 11 },
  185. .p = { .min = 14, .max = 42 },
  186. .p1 = { .min = 2, .max = 6 },
  187. .p2 = { .dot_limit = 0,
  188. .p2_slow = 7, .p2_fast = 7
  189. },
  190. };
  191. static const intel_limit_t intel_limits_pineview_sdvo = {
  192. .dot = { .min = 20000, .max = 400000},
  193. .vco = { .min = 1700000, .max = 3500000 },
  194. /* Pineview's Ncounter is a ring counter */
  195. .n = { .min = 3, .max = 6 },
  196. .m = { .min = 2, .max = 256 },
  197. /* Pineview only has one combined m divider, which we treat as m2. */
  198. .m1 = { .min = 0, .max = 0 },
  199. .m2 = { .min = 0, .max = 254 },
  200. .p = { .min = 5, .max = 80 },
  201. .p1 = { .min = 1, .max = 8 },
  202. .p2 = { .dot_limit = 200000,
  203. .p2_slow = 10, .p2_fast = 5 },
  204. };
  205. static const intel_limit_t intel_limits_pineview_lvds = {
  206. .dot = { .min = 20000, .max = 400000 },
  207. .vco = { .min = 1700000, .max = 3500000 },
  208. .n = { .min = 3, .max = 6 },
  209. .m = { .min = 2, .max = 256 },
  210. .m1 = { .min = 0, .max = 0 },
  211. .m2 = { .min = 0, .max = 254 },
  212. .p = { .min = 7, .max = 112 },
  213. .p1 = { .min = 1, .max = 8 },
  214. .p2 = { .dot_limit = 112000,
  215. .p2_slow = 14, .p2_fast = 14 },
  216. };
  217. /* Ironlake / Sandybridge
  218. *
  219. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  220. * the range value for them is (actual_value - 2).
  221. */
  222. static const intel_limit_t intel_limits_ironlake_dac = {
  223. .dot = { .min = 25000, .max = 350000 },
  224. .vco = { .min = 1760000, .max = 3510000 },
  225. .n = { .min = 1, .max = 5 },
  226. .m = { .min = 79, .max = 127 },
  227. .m1 = { .min = 12, .max = 22 },
  228. .m2 = { .min = 5, .max = 9 },
  229. .p = { .min = 5, .max = 80 },
  230. .p1 = { .min = 1, .max = 8 },
  231. .p2 = { .dot_limit = 225000,
  232. .p2_slow = 10, .p2_fast = 5 },
  233. };
  234. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  235. .dot = { .min = 25000, .max = 350000 },
  236. .vco = { .min = 1760000, .max = 3510000 },
  237. .n = { .min = 1, .max = 3 },
  238. .m = { .min = 79, .max = 118 },
  239. .m1 = { .min = 12, .max = 22 },
  240. .m2 = { .min = 5, .max = 9 },
  241. .p = { .min = 28, .max = 112 },
  242. .p1 = { .min = 2, .max = 8 },
  243. .p2 = { .dot_limit = 225000,
  244. .p2_slow = 14, .p2_fast = 14 },
  245. };
  246. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  247. .dot = { .min = 25000, .max = 350000 },
  248. .vco = { .min = 1760000, .max = 3510000 },
  249. .n = { .min = 1, .max = 3 },
  250. .m = { .min = 79, .max = 127 },
  251. .m1 = { .min = 12, .max = 22 },
  252. .m2 = { .min = 5, .max = 9 },
  253. .p = { .min = 14, .max = 56 },
  254. .p1 = { .min = 2, .max = 8 },
  255. .p2 = { .dot_limit = 225000,
  256. .p2_slow = 7, .p2_fast = 7 },
  257. };
  258. /* LVDS 100mhz refclk limits. */
  259. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  260. .dot = { .min = 25000, .max = 350000 },
  261. .vco = { .min = 1760000, .max = 3510000 },
  262. .n = { .min = 1, .max = 2 },
  263. .m = { .min = 79, .max = 126 },
  264. .m1 = { .min = 12, .max = 22 },
  265. .m2 = { .min = 5, .max = 9 },
  266. .p = { .min = 28, .max = 112 },
  267. .p1 = { .min = 2, .max = 8 },
  268. .p2 = { .dot_limit = 225000,
  269. .p2_slow = 14, .p2_fast = 14 },
  270. };
  271. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  272. .dot = { .min = 25000, .max = 350000 },
  273. .vco = { .min = 1760000, .max = 3510000 },
  274. .n = { .min = 1, .max = 3 },
  275. .m = { .min = 79, .max = 126 },
  276. .m1 = { .min = 12, .max = 22 },
  277. .m2 = { .min = 5, .max = 9 },
  278. .p = { .min = 14, .max = 42 },
  279. .p1 = { .min = 2, .max = 6 },
  280. .p2 = { .dot_limit = 225000,
  281. .p2_slow = 7, .p2_fast = 7 },
  282. };
  283. static const intel_limit_t intel_limits_vlv_dac = {
  284. .dot = { .min = 25000, .max = 270000 },
  285. .vco = { .min = 4000000, .max = 6000000 },
  286. .n = { .min = 1, .max = 7 },
  287. .m = { .min = 22, .max = 450 }, /* guess */
  288. .m1 = { .min = 2, .max = 3 },
  289. .m2 = { .min = 11, .max = 156 },
  290. .p = { .min = 10, .max = 30 },
  291. .p1 = { .min = 1, .max = 3 },
  292. .p2 = { .dot_limit = 270000,
  293. .p2_slow = 2, .p2_fast = 20 },
  294. };
  295. static const intel_limit_t intel_limits_vlv_hdmi = {
  296. .dot = { .min = 25000, .max = 270000 },
  297. .vco = { .min = 4000000, .max = 6000000 },
  298. .n = { .min = 1, .max = 7 },
  299. .m = { .min = 60, .max = 300 }, /* guess */
  300. .m1 = { .min = 2, .max = 3 },
  301. .m2 = { .min = 11, .max = 156 },
  302. .p = { .min = 10, .max = 30 },
  303. .p1 = { .min = 2, .max = 3 },
  304. .p2 = { .dot_limit = 270000,
  305. .p2_slow = 2, .p2_fast = 20 },
  306. };
  307. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  308. int refclk)
  309. {
  310. struct drm_device *dev = crtc->dev;
  311. const intel_limit_t *limit;
  312. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  313. if (intel_is_dual_link_lvds(dev)) {
  314. if (refclk == 100000)
  315. limit = &intel_limits_ironlake_dual_lvds_100m;
  316. else
  317. limit = &intel_limits_ironlake_dual_lvds;
  318. } else {
  319. if (refclk == 100000)
  320. limit = &intel_limits_ironlake_single_lvds_100m;
  321. else
  322. limit = &intel_limits_ironlake_single_lvds;
  323. }
  324. } else
  325. limit = &intel_limits_ironlake_dac;
  326. return limit;
  327. }
  328. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  329. {
  330. struct drm_device *dev = crtc->dev;
  331. const intel_limit_t *limit;
  332. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  333. if (intel_is_dual_link_lvds(dev))
  334. limit = &intel_limits_g4x_dual_channel_lvds;
  335. else
  336. limit = &intel_limits_g4x_single_channel_lvds;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  338. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  339. limit = &intel_limits_g4x_hdmi;
  340. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  341. limit = &intel_limits_g4x_sdvo;
  342. } else /* The option is for other outputs */
  343. limit = &intel_limits_i9xx_sdvo;
  344. return limit;
  345. }
  346. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  347. {
  348. struct drm_device *dev = crtc->dev;
  349. const intel_limit_t *limit;
  350. if (HAS_PCH_SPLIT(dev))
  351. limit = intel_ironlake_limit(crtc, refclk);
  352. else if (IS_G4X(dev)) {
  353. limit = intel_g4x_limit(crtc);
  354. } else if (IS_PINEVIEW(dev)) {
  355. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  356. limit = &intel_limits_pineview_lvds;
  357. else
  358. limit = &intel_limits_pineview_sdvo;
  359. } else if (IS_VALLEYVIEW(dev)) {
  360. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  361. limit = &intel_limits_vlv_dac;
  362. else
  363. limit = &intel_limits_vlv_hdmi;
  364. } else if (!IS_GEN2(dev)) {
  365. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  366. limit = &intel_limits_i9xx_lvds;
  367. else
  368. limit = &intel_limits_i9xx_sdvo;
  369. } else {
  370. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  371. limit = &intel_limits_i8xx_lvds;
  372. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  373. limit = &intel_limits_i8xx_dvo;
  374. else
  375. limit = &intel_limits_i8xx_dac;
  376. }
  377. return limit;
  378. }
  379. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  380. static void pineview_clock(int refclk, intel_clock_t *clock)
  381. {
  382. clock->m = clock->m2 + 2;
  383. clock->p = clock->p1 * clock->p2;
  384. clock->vco = refclk * clock->m / clock->n;
  385. clock->dot = clock->vco / clock->p;
  386. }
  387. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  388. {
  389. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  390. }
  391. static void i9xx_clock(int refclk, intel_clock_t *clock)
  392. {
  393. clock->m = i9xx_dpll_compute_m(clock);
  394. clock->p = clock->p1 * clock->p2;
  395. clock->vco = refclk * clock->m / (clock->n + 2);
  396. clock->dot = clock->vco / clock->p;
  397. }
  398. /**
  399. * Returns whether any output on the specified pipe is of the specified type
  400. */
  401. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  402. {
  403. struct drm_device *dev = crtc->dev;
  404. struct intel_encoder *encoder;
  405. for_each_encoder_on_crtc(dev, crtc, encoder)
  406. if (encoder->type == type)
  407. return true;
  408. return false;
  409. }
  410. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  411. /**
  412. * Returns whether the given set of divisors are valid for a given refclk with
  413. * the given connectors.
  414. */
  415. static bool intel_PLL_is_valid(struct drm_device *dev,
  416. const intel_limit_t *limit,
  417. const intel_clock_t *clock)
  418. {
  419. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  420. INTELPllInvalid("p1 out of range\n");
  421. if (clock->p < limit->p.min || limit->p.max < clock->p)
  422. INTELPllInvalid("p out of range\n");
  423. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  424. INTELPllInvalid("m2 out of range\n");
  425. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  426. INTELPllInvalid("m1 out of range\n");
  427. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  428. INTELPllInvalid("m1 <= m2\n");
  429. if (clock->m < limit->m.min || limit->m.max < clock->m)
  430. INTELPllInvalid("m out of range\n");
  431. if (clock->n < limit->n.min || limit->n.max < clock->n)
  432. INTELPllInvalid("n out of range\n");
  433. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  434. INTELPllInvalid("vco out of range\n");
  435. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  436. * connector, etc., rather than just a single range.
  437. */
  438. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  439. INTELPllInvalid("dot out of range\n");
  440. return true;
  441. }
  442. static bool
  443. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  444. int target, int refclk, intel_clock_t *match_clock,
  445. intel_clock_t *best_clock)
  446. {
  447. struct drm_device *dev = crtc->dev;
  448. intel_clock_t clock;
  449. int err = target;
  450. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  451. /*
  452. * For LVDS just rely on its current settings for dual-channel.
  453. * We haven't figured out how to reliably set up different
  454. * single/dual channel state, if we even can.
  455. */
  456. if (intel_is_dual_link_lvds(dev))
  457. clock.p2 = limit->p2.p2_fast;
  458. else
  459. clock.p2 = limit->p2.p2_slow;
  460. } else {
  461. if (target < limit->p2.dot_limit)
  462. clock.p2 = limit->p2.p2_slow;
  463. else
  464. clock.p2 = limit->p2.p2_fast;
  465. }
  466. memset(best_clock, 0, sizeof(*best_clock));
  467. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  468. clock.m1++) {
  469. for (clock.m2 = limit->m2.min;
  470. clock.m2 <= limit->m2.max; clock.m2++) {
  471. if (clock.m2 >= clock.m1)
  472. break;
  473. for (clock.n = limit->n.min;
  474. clock.n <= limit->n.max; clock.n++) {
  475. for (clock.p1 = limit->p1.min;
  476. clock.p1 <= limit->p1.max; clock.p1++) {
  477. int this_err;
  478. i9xx_clock(refclk, &clock);
  479. if (!intel_PLL_is_valid(dev, limit,
  480. &clock))
  481. continue;
  482. if (match_clock &&
  483. clock.p != match_clock->p)
  484. continue;
  485. this_err = abs(clock.dot - target);
  486. if (this_err < err) {
  487. *best_clock = clock;
  488. err = this_err;
  489. }
  490. }
  491. }
  492. }
  493. }
  494. return (err != target);
  495. }
  496. static bool
  497. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  498. int target, int refclk, intel_clock_t *match_clock,
  499. intel_clock_t *best_clock)
  500. {
  501. struct drm_device *dev = crtc->dev;
  502. intel_clock_t clock;
  503. int err = target;
  504. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  505. /*
  506. * For LVDS just rely on its current settings for dual-channel.
  507. * We haven't figured out how to reliably set up different
  508. * single/dual channel state, if we even can.
  509. */
  510. if (intel_is_dual_link_lvds(dev))
  511. clock.p2 = limit->p2.p2_fast;
  512. else
  513. clock.p2 = limit->p2.p2_slow;
  514. } else {
  515. if (target < limit->p2.dot_limit)
  516. clock.p2 = limit->p2.p2_slow;
  517. else
  518. clock.p2 = limit->p2.p2_fast;
  519. }
  520. memset(best_clock, 0, sizeof(*best_clock));
  521. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  522. clock.m1++) {
  523. for (clock.m2 = limit->m2.min;
  524. clock.m2 <= limit->m2.max; clock.m2++) {
  525. for (clock.n = limit->n.min;
  526. clock.n <= limit->n.max; clock.n++) {
  527. for (clock.p1 = limit->p1.min;
  528. clock.p1 <= limit->p1.max; clock.p1++) {
  529. int this_err;
  530. pineview_clock(refclk, &clock);
  531. if (!intel_PLL_is_valid(dev, limit,
  532. &clock))
  533. continue;
  534. if (match_clock &&
  535. clock.p != match_clock->p)
  536. continue;
  537. this_err = abs(clock.dot - target);
  538. if (this_err < err) {
  539. *best_clock = clock;
  540. err = this_err;
  541. }
  542. }
  543. }
  544. }
  545. }
  546. return (err != target);
  547. }
  548. static bool
  549. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  550. int target, int refclk, intel_clock_t *match_clock,
  551. intel_clock_t *best_clock)
  552. {
  553. struct drm_device *dev = crtc->dev;
  554. intel_clock_t clock;
  555. int max_n;
  556. bool found;
  557. /* approximately equals target * 0.00585 */
  558. int err_most = (target >> 8) + (target >> 9);
  559. found = false;
  560. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  561. if (intel_is_dual_link_lvds(dev))
  562. clock.p2 = limit->p2.p2_fast;
  563. else
  564. clock.p2 = limit->p2.p2_slow;
  565. } else {
  566. if (target < limit->p2.dot_limit)
  567. clock.p2 = limit->p2.p2_slow;
  568. else
  569. clock.p2 = limit->p2.p2_fast;
  570. }
  571. memset(best_clock, 0, sizeof(*best_clock));
  572. max_n = limit->n.max;
  573. /* based on hardware requirement, prefer smaller n to precision */
  574. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  575. /* based on hardware requirement, prefere larger m1,m2 */
  576. for (clock.m1 = limit->m1.max;
  577. clock.m1 >= limit->m1.min; clock.m1--) {
  578. for (clock.m2 = limit->m2.max;
  579. clock.m2 >= limit->m2.min; clock.m2--) {
  580. for (clock.p1 = limit->p1.max;
  581. clock.p1 >= limit->p1.min; clock.p1--) {
  582. int this_err;
  583. i9xx_clock(refclk, &clock);
  584. if (!intel_PLL_is_valid(dev, limit,
  585. &clock))
  586. continue;
  587. this_err = abs(clock.dot - target);
  588. if (this_err < err_most) {
  589. *best_clock = clock;
  590. err_most = this_err;
  591. max_n = clock.n;
  592. found = true;
  593. }
  594. }
  595. }
  596. }
  597. }
  598. return found;
  599. }
  600. static bool
  601. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  602. int target, int refclk, intel_clock_t *match_clock,
  603. intel_clock_t *best_clock)
  604. {
  605. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  606. u32 m, n, fastclk;
  607. u32 updrate, minupdate, p;
  608. unsigned long bestppm, ppm, absppm;
  609. int dotclk, flag;
  610. flag = 0;
  611. dotclk = target * 1000;
  612. bestppm = 1000000;
  613. ppm = absppm = 0;
  614. fastclk = dotclk / (2*100);
  615. updrate = 0;
  616. minupdate = 19200;
  617. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  618. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  619. /* based on hardware requirement, prefer smaller n to precision */
  620. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  621. updrate = refclk / n;
  622. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  623. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  624. if (p2 > 10)
  625. p2 = p2 - 1;
  626. p = p1 * p2;
  627. /* based on hardware requirement, prefer bigger m1,m2 values */
  628. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  629. m2 = (((2*(fastclk * p * n / m1 )) +
  630. refclk) / (2*refclk));
  631. m = m1 * m2;
  632. vco = updrate * m;
  633. if (vco >= limit->vco.min && vco < limit->vco.max) {
  634. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  635. absppm = (ppm > 0) ? ppm : (-ppm);
  636. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  637. bestppm = 0;
  638. flag = 1;
  639. }
  640. if (absppm < bestppm - 10) {
  641. bestppm = absppm;
  642. flag = 1;
  643. }
  644. if (flag) {
  645. bestn = n;
  646. bestm1 = m1;
  647. bestm2 = m2;
  648. bestp1 = p1;
  649. bestp2 = p2;
  650. flag = 0;
  651. }
  652. }
  653. }
  654. }
  655. }
  656. }
  657. best_clock->n = bestn;
  658. best_clock->m1 = bestm1;
  659. best_clock->m2 = bestm2;
  660. best_clock->p1 = bestp1;
  661. best_clock->p2 = bestp2;
  662. return true;
  663. }
  664. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  665. enum pipe pipe)
  666. {
  667. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  668. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  669. return intel_crtc->config.cpu_transcoder;
  670. }
  671. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  672. {
  673. struct drm_i915_private *dev_priv = dev->dev_private;
  674. u32 frame, frame_reg = PIPEFRAME(pipe);
  675. frame = I915_READ(frame_reg);
  676. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  677. DRM_DEBUG_KMS("vblank wait timed out\n");
  678. }
  679. /**
  680. * intel_wait_for_vblank - wait for vblank on a given pipe
  681. * @dev: drm device
  682. * @pipe: pipe to wait for
  683. *
  684. * Wait for vblank to occur on a given pipe. Needed for various bits of
  685. * mode setting code.
  686. */
  687. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  688. {
  689. struct drm_i915_private *dev_priv = dev->dev_private;
  690. int pipestat_reg = PIPESTAT(pipe);
  691. if (INTEL_INFO(dev)->gen >= 5) {
  692. ironlake_wait_for_vblank(dev, pipe);
  693. return;
  694. }
  695. /* Clear existing vblank status. Note this will clear any other
  696. * sticky status fields as well.
  697. *
  698. * This races with i915_driver_irq_handler() with the result
  699. * that either function could miss a vblank event. Here it is not
  700. * fatal, as we will either wait upon the next vblank interrupt or
  701. * timeout. Generally speaking intel_wait_for_vblank() is only
  702. * called during modeset at which time the GPU should be idle and
  703. * should *not* be performing page flips and thus not waiting on
  704. * vblanks...
  705. * Currently, the result of us stealing a vblank from the irq
  706. * handler is that a single frame will be skipped during swapbuffers.
  707. */
  708. I915_WRITE(pipestat_reg,
  709. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  710. /* Wait for vblank interrupt bit to set */
  711. if (wait_for(I915_READ(pipestat_reg) &
  712. PIPE_VBLANK_INTERRUPT_STATUS,
  713. 50))
  714. DRM_DEBUG_KMS("vblank wait timed out\n");
  715. }
  716. /*
  717. * intel_wait_for_pipe_off - wait for pipe to turn off
  718. * @dev: drm device
  719. * @pipe: pipe to wait for
  720. *
  721. * After disabling a pipe, we can't wait for vblank in the usual way,
  722. * spinning on the vblank interrupt status bit, since we won't actually
  723. * see an interrupt when the pipe is disabled.
  724. *
  725. * On Gen4 and above:
  726. * wait for the pipe register state bit to turn off
  727. *
  728. * Otherwise:
  729. * wait for the display line value to settle (it usually
  730. * ends up stopping at the start of the next frame).
  731. *
  732. */
  733. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  734. {
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  737. pipe);
  738. if (INTEL_INFO(dev)->gen >= 4) {
  739. int reg = PIPECONF(cpu_transcoder);
  740. /* Wait for the Pipe State to go off */
  741. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  742. 100))
  743. WARN(1, "pipe_off wait timed out\n");
  744. } else {
  745. u32 last_line, line_mask;
  746. int reg = PIPEDSL(pipe);
  747. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  748. if (IS_GEN2(dev))
  749. line_mask = DSL_LINEMASK_GEN2;
  750. else
  751. line_mask = DSL_LINEMASK_GEN3;
  752. /* Wait for the display line to settle */
  753. do {
  754. last_line = I915_READ(reg) & line_mask;
  755. mdelay(5);
  756. } while (((I915_READ(reg) & line_mask) != last_line) &&
  757. time_after(timeout, jiffies));
  758. if (time_after(jiffies, timeout))
  759. WARN(1, "pipe_off wait timed out\n");
  760. }
  761. }
  762. /*
  763. * ibx_digital_port_connected - is the specified port connected?
  764. * @dev_priv: i915 private structure
  765. * @port: the port to test
  766. *
  767. * Returns true if @port is connected, false otherwise.
  768. */
  769. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  770. struct intel_digital_port *port)
  771. {
  772. u32 bit;
  773. if (HAS_PCH_IBX(dev_priv->dev)) {
  774. switch(port->port) {
  775. case PORT_B:
  776. bit = SDE_PORTB_HOTPLUG;
  777. break;
  778. case PORT_C:
  779. bit = SDE_PORTC_HOTPLUG;
  780. break;
  781. case PORT_D:
  782. bit = SDE_PORTD_HOTPLUG;
  783. break;
  784. default:
  785. return true;
  786. }
  787. } else {
  788. switch(port->port) {
  789. case PORT_B:
  790. bit = SDE_PORTB_HOTPLUG_CPT;
  791. break;
  792. case PORT_C:
  793. bit = SDE_PORTC_HOTPLUG_CPT;
  794. break;
  795. case PORT_D:
  796. bit = SDE_PORTD_HOTPLUG_CPT;
  797. break;
  798. default:
  799. return true;
  800. }
  801. }
  802. return I915_READ(SDEISR) & bit;
  803. }
  804. static const char *state_string(bool enabled)
  805. {
  806. return enabled ? "on" : "off";
  807. }
  808. /* Only for pre-ILK configs */
  809. void assert_pll(struct drm_i915_private *dev_priv,
  810. enum pipe pipe, bool state)
  811. {
  812. int reg;
  813. u32 val;
  814. bool cur_state;
  815. reg = DPLL(pipe);
  816. val = I915_READ(reg);
  817. cur_state = !!(val & DPLL_VCO_ENABLE);
  818. WARN(cur_state != state,
  819. "PLL state assertion failure (expected %s, current %s)\n",
  820. state_string(state), state_string(cur_state));
  821. }
  822. /* XXX: the dsi pll is shared between MIPI DSI ports */
  823. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  824. {
  825. u32 val;
  826. bool cur_state;
  827. mutex_lock(&dev_priv->dpio_lock);
  828. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  829. mutex_unlock(&dev_priv->dpio_lock);
  830. cur_state = val & DSI_PLL_VCO_EN;
  831. WARN(cur_state != state,
  832. "DSI PLL state assertion failure (expected %s, current %s)\n",
  833. state_string(state), state_string(cur_state));
  834. }
  835. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  836. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  837. struct intel_shared_dpll *
  838. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  839. {
  840. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  841. if (crtc->config.shared_dpll < 0)
  842. return NULL;
  843. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  844. }
  845. /* For ILK+ */
  846. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  847. struct intel_shared_dpll *pll,
  848. bool state)
  849. {
  850. bool cur_state;
  851. struct intel_dpll_hw_state hw_state;
  852. if (HAS_PCH_LPT(dev_priv->dev)) {
  853. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  854. return;
  855. }
  856. if (WARN (!pll,
  857. "asserting DPLL %s with no DPLL\n", state_string(state)))
  858. return;
  859. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  860. WARN(cur_state != state,
  861. "%s assertion failure (expected %s, current %s)\n",
  862. pll->name, state_string(state), state_string(cur_state));
  863. }
  864. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  865. enum pipe pipe, bool state)
  866. {
  867. int reg;
  868. u32 val;
  869. bool cur_state;
  870. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  871. pipe);
  872. if (HAS_DDI(dev_priv->dev)) {
  873. /* DDI does not have a specific FDI_TX register */
  874. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  875. val = I915_READ(reg);
  876. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  877. } else {
  878. reg = FDI_TX_CTL(pipe);
  879. val = I915_READ(reg);
  880. cur_state = !!(val & FDI_TX_ENABLE);
  881. }
  882. WARN(cur_state != state,
  883. "FDI TX state assertion failure (expected %s, current %s)\n",
  884. state_string(state), state_string(cur_state));
  885. }
  886. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  887. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  888. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  889. enum pipe pipe, bool state)
  890. {
  891. int reg;
  892. u32 val;
  893. bool cur_state;
  894. reg = FDI_RX_CTL(pipe);
  895. val = I915_READ(reg);
  896. cur_state = !!(val & FDI_RX_ENABLE);
  897. WARN(cur_state != state,
  898. "FDI RX state assertion failure (expected %s, current %s)\n",
  899. state_string(state), state_string(cur_state));
  900. }
  901. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  902. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  903. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  904. enum pipe pipe)
  905. {
  906. int reg;
  907. u32 val;
  908. /* ILK FDI PLL is always enabled */
  909. if (dev_priv->info->gen == 5)
  910. return;
  911. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  912. if (HAS_DDI(dev_priv->dev))
  913. return;
  914. reg = FDI_TX_CTL(pipe);
  915. val = I915_READ(reg);
  916. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  917. }
  918. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  919. enum pipe pipe, bool state)
  920. {
  921. int reg;
  922. u32 val;
  923. bool cur_state;
  924. reg = FDI_RX_CTL(pipe);
  925. val = I915_READ(reg);
  926. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  927. WARN(cur_state != state,
  928. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  929. state_string(state), state_string(cur_state));
  930. }
  931. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  932. enum pipe pipe)
  933. {
  934. int pp_reg, lvds_reg;
  935. u32 val;
  936. enum pipe panel_pipe = PIPE_A;
  937. bool locked = true;
  938. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  939. pp_reg = PCH_PP_CONTROL;
  940. lvds_reg = PCH_LVDS;
  941. } else {
  942. pp_reg = PP_CONTROL;
  943. lvds_reg = LVDS;
  944. }
  945. val = I915_READ(pp_reg);
  946. if (!(val & PANEL_POWER_ON) ||
  947. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  948. locked = false;
  949. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  950. panel_pipe = PIPE_B;
  951. WARN(panel_pipe == pipe && locked,
  952. "panel assertion failure, pipe %c regs locked\n",
  953. pipe_name(pipe));
  954. }
  955. void assert_pipe(struct drm_i915_private *dev_priv,
  956. enum pipe pipe, bool state)
  957. {
  958. int reg;
  959. u32 val;
  960. bool cur_state;
  961. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  962. pipe);
  963. /* if we need the pipe A quirk it must be always on */
  964. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  965. state = true;
  966. if (!intel_display_power_enabled(dev_priv->dev,
  967. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  968. cur_state = false;
  969. } else {
  970. reg = PIPECONF(cpu_transcoder);
  971. val = I915_READ(reg);
  972. cur_state = !!(val & PIPECONF_ENABLE);
  973. }
  974. WARN(cur_state != state,
  975. "pipe %c assertion failure (expected %s, current %s)\n",
  976. pipe_name(pipe), state_string(state), state_string(cur_state));
  977. }
  978. static void assert_plane(struct drm_i915_private *dev_priv,
  979. enum plane plane, bool state)
  980. {
  981. int reg;
  982. u32 val;
  983. bool cur_state;
  984. reg = DSPCNTR(plane);
  985. val = I915_READ(reg);
  986. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  987. WARN(cur_state != state,
  988. "plane %c assertion failure (expected %s, current %s)\n",
  989. plane_name(plane), state_string(state), state_string(cur_state));
  990. }
  991. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  992. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  993. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  994. enum pipe pipe)
  995. {
  996. struct drm_device *dev = dev_priv->dev;
  997. int reg, i;
  998. u32 val;
  999. int cur_pipe;
  1000. /* Primary planes are fixed to pipes on gen4+ */
  1001. if (INTEL_INFO(dev)->gen >= 4) {
  1002. reg = DSPCNTR(pipe);
  1003. val = I915_READ(reg);
  1004. WARN((val & DISPLAY_PLANE_ENABLE),
  1005. "plane %c assertion failure, should be disabled but not\n",
  1006. plane_name(pipe));
  1007. return;
  1008. }
  1009. /* Need to check both planes against the pipe */
  1010. for_each_pipe(i) {
  1011. reg = DSPCNTR(i);
  1012. val = I915_READ(reg);
  1013. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1014. DISPPLANE_SEL_PIPE_SHIFT;
  1015. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1016. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1017. plane_name(i), pipe_name(pipe));
  1018. }
  1019. }
  1020. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1021. enum pipe pipe)
  1022. {
  1023. struct drm_device *dev = dev_priv->dev;
  1024. int reg, i;
  1025. u32 val;
  1026. if (IS_VALLEYVIEW(dev)) {
  1027. for (i = 0; i < dev_priv->num_plane; i++) {
  1028. reg = SPCNTR(pipe, i);
  1029. val = I915_READ(reg);
  1030. WARN((val & SP_ENABLE),
  1031. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1032. sprite_name(pipe, i), pipe_name(pipe));
  1033. }
  1034. } else if (INTEL_INFO(dev)->gen >= 7) {
  1035. reg = SPRCTL(pipe);
  1036. val = I915_READ(reg);
  1037. WARN((val & SPRITE_ENABLE),
  1038. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1039. plane_name(pipe), pipe_name(pipe));
  1040. } else if (INTEL_INFO(dev)->gen >= 5) {
  1041. reg = DVSCNTR(pipe);
  1042. val = I915_READ(reg);
  1043. WARN((val & DVS_ENABLE),
  1044. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1045. plane_name(pipe), pipe_name(pipe));
  1046. }
  1047. }
  1048. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1049. {
  1050. u32 val;
  1051. bool enabled;
  1052. if (HAS_PCH_LPT(dev_priv->dev)) {
  1053. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1054. return;
  1055. }
  1056. val = I915_READ(PCH_DREF_CONTROL);
  1057. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1058. DREF_SUPERSPREAD_SOURCE_MASK));
  1059. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1060. }
  1061. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1062. enum pipe pipe)
  1063. {
  1064. int reg;
  1065. u32 val;
  1066. bool enabled;
  1067. reg = PCH_TRANSCONF(pipe);
  1068. val = I915_READ(reg);
  1069. enabled = !!(val & TRANS_ENABLE);
  1070. WARN(enabled,
  1071. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1072. pipe_name(pipe));
  1073. }
  1074. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1075. enum pipe pipe, u32 port_sel, u32 val)
  1076. {
  1077. if ((val & DP_PORT_EN) == 0)
  1078. return false;
  1079. if (HAS_PCH_CPT(dev_priv->dev)) {
  1080. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1081. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1082. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1083. return false;
  1084. } else {
  1085. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1086. return false;
  1087. }
  1088. return true;
  1089. }
  1090. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1091. enum pipe pipe, u32 val)
  1092. {
  1093. if ((val & SDVO_ENABLE) == 0)
  1094. return false;
  1095. if (HAS_PCH_CPT(dev_priv->dev)) {
  1096. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1097. return false;
  1098. } else {
  1099. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1100. return false;
  1101. }
  1102. return true;
  1103. }
  1104. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1105. enum pipe pipe, u32 val)
  1106. {
  1107. if ((val & LVDS_PORT_EN) == 0)
  1108. return false;
  1109. if (HAS_PCH_CPT(dev_priv->dev)) {
  1110. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1111. return false;
  1112. } else {
  1113. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1114. return false;
  1115. }
  1116. return true;
  1117. }
  1118. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1119. enum pipe pipe, u32 val)
  1120. {
  1121. if ((val & ADPA_DAC_ENABLE) == 0)
  1122. return false;
  1123. if (HAS_PCH_CPT(dev_priv->dev)) {
  1124. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1125. return false;
  1126. } else {
  1127. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1128. return false;
  1129. }
  1130. return true;
  1131. }
  1132. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1133. enum pipe pipe, int reg, u32 port_sel)
  1134. {
  1135. u32 val = I915_READ(reg);
  1136. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1137. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1138. reg, pipe_name(pipe));
  1139. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1140. && (val & DP_PIPEB_SELECT),
  1141. "IBX PCH dp port still using transcoder B\n");
  1142. }
  1143. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1144. enum pipe pipe, int reg)
  1145. {
  1146. u32 val = I915_READ(reg);
  1147. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1148. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1149. reg, pipe_name(pipe));
  1150. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1151. && (val & SDVO_PIPE_B_SELECT),
  1152. "IBX PCH hdmi port still using transcoder B\n");
  1153. }
  1154. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1155. enum pipe pipe)
  1156. {
  1157. int reg;
  1158. u32 val;
  1159. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1160. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1161. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1162. reg = PCH_ADPA;
  1163. val = I915_READ(reg);
  1164. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1165. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1166. pipe_name(pipe));
  1167. reg = PCH_LVDS;
  1168. val = I915_READ(reg);
  1169. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1170. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1171. pipe_name(pipe));
  1172. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1173. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1174. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1175. }
  1176. static void vlv_enable_pll(struct intel_crtc *crtc)
  1177. {
  1178. struct drm_device *dev = crtc->base.dev;
  1179. struct drm_i915_private *dev_priv = dev->dev_private;
  1180. int reg = DPLL(crtc->pipe);
  1181. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1182. assert_pipe_disabled(dev_priv, crtc->pipe);
  1183. /* No really, not for ILK+ */
  1184. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1185. /* PLL is protected by panel, make sure we can write it */
  1186. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1187. assert_panel_unlocked(dev_priv, crtc->pipe);
  1188. I915_WRITE(reg, dpll);
  1189. POSTING_READ(reg);
  1190. udelay(150);
  1191. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1192. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1193. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1194. POSTING_READ(DPLL_MD(crtc->pipe));
  1195. /* We do this three times for luck */
  1196. I915_WRITE(reg, dpll);
  1197. POSTING_READ(reg);
  1198. udelay(150); /* wait for warmup */
  1199. I915_WRITE(reg, dpll);
  1200. POSTING_READ(reg);
  1201. udelay(150); /* wait for warmup */
  1202. I915_WRITE(reg, dpll);
  1203. POSTING_READ(reg);
  1204. udelay(150); /* wait for warmup */
  1205. }
  1206. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1207. {
  1208. struct drm_device *dev = crtc->base.dev;
  1209. struct drm_i915_private *dev_priv = dev->dev_private;
  1210. int reg = DPLL(crtc->pipe);
  1211. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1212. assert_pipe_disabled(dev_priv, crtc->pipe);
  1213. /* No really, not for ILK+ */
  1214. BUG_ON(dev_priv->info->gen >= 5);
  1215. /* PLL is protected by panel, make sure we can write it */
  1216. if (IS_MOBILE(dev) && !IS_I830(dev))
  1217. assert_panel_unlocked(dev_priv, crtc->pipe);
  1218. I915_WRITE(reg, dpll);
  1219. /* Wait for the clocks to stabilize. */
  1220. POSTING_READ(reg);
  1221. udelay(150);
  1222. if (INTEL_INFO(dev)->gen >= 4) {
  1223. I915_WRITE(DPLL_MD(crtc->pipe),
  1224. crtc->config.dpll_hw_state.dpll_md);
  1225. } else {
  1226. /* The pixel multiplier can only be updated once the
  1227. * DPLL is enabled and the clocks are stable.
  1228. *
  1229. * So write it again.
  1230. */
  1231. I915_WRITE(reg, dpll);
  1232. }
  1233. /* We do this three times for luck */
  1234. I915_WRITE(reg, dpll);
  1235. POSTING_READ(reg);
  1236. udelay(150); /* wait for warmup */
  1237. I915_WRITE(reg, dpll);
  1238. POSTING_READ(reg);
  1239. udelay(150); /* wait for warmup */
  1240. I915_WRITE(reg, dpll);
  1241. POSTING_READ(reg);
  1242. udelay(150); /* wait for warmup */
  1243. }
  1244. /**
  1245. * i9xx_disable_pll - disable a PLL
  1246. * @dev_priv: i915 private structure
  1247. * @pipe: pipe PLL to disable
  1248. *
  1249. * Disable the PLL for @pipe, making sure the pipe is off first.
  1250. *
  1251. * Note! This is for pre-ILK only.
  1252. */
  1253. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1254. {
  1255. /* Don't disable pipe A or pipe A PLLs if needed */
  1256. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1257. return;
  1258. /* Make sure the pipe isn't still relying on us */
  1259. assert_pipe_disabled(dev_priv, pipe);
  1260. I915_WRITE(DPLL(pipe), 0);
  1261. POSTING_READ(DPLL(pipe));
  1262. }
  1263. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1264. {
  1265. u32 port_mask;
  1266. if (!port)
  1267. port_mask = DPLL_PORTB_READY_MASK;
  1268. else
  1269. port_mask = DPLL_PORTC_READY_MASK;
  1270. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1271. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1272. 'B' + port, I915_READ(DPLL(0)));
  1273. }
  1274. /**
  1275. * ironlake_enable_shared_dpll - enable PCH PLL
  1276. * @dev_priv: i915 private structure
  1277. * @pipe: pipe PLL to enable
  1278. *
  1279. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1280. * drives the transcoder clock.
  1281. */
  1282. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1283. {
  1284. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1285. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1286. /* PCH PLLs only available on ILK, SNB and IVB */
  1287. BUG_ON(dev_priv->info->gen < 5);
  1288. if (WARN_ON(pll == NULL))
  1289. return;
  1290. if (WARN_ON(pll->refcount == 0))
  1291. return;
  1292. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1293. pll->name, pll->active, pll->on,
  1294. crtc->base.base.id);
  1295. if (pll->active++) {
  1296. WARN_ON(!pll->on);
  1297. assert_shared_dpll_enabled(dev_priv, pll);
  1298. return;
  1299. }
  1300. WARN_ON(pll->on);
  1301. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1302. pll->enable(dev_priv, pll);
  1303. pll->on = true;
  1304. }
  1305. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1306. {
  1307. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1308. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1309. /* PCH only available on ILK+ */
  1310. BUG_ON(dev_priv->info->gen < 5);
  1311. if (WARN_ON(pll == NULL))
  1312. return;
  1313. if (WARN_ON(pll->refcount == 0))
  1314. return;
  1315. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1316. pll->name, pll->active, pll->on,
  1317. crtc->base.base.id);
  1318. if (WARN_ON(pll->active == 0)) {
  1319. assert_shared_dpll_disabled(dev_priv, pll);
  1320. return;
  1321. }
  1322. assert_shared_dpll_enabled(dev_priv, pll);
  1323. WARN_ON(!pll->on);
  1324. if (--pll->active)
  1325. return;
  1326. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1327. pll->disable(dev_priv, pll);
  1328. pll->on = false;
  1329. }
  1330. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1331. enum pipe pipe)
  1332. {
  1333. struct drm_device *dev = dev_priv->dev;
  1334. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1335. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1336. uint32_t reg, val, pipeconf_val;
  1337. /* PCH only available on ILK+ */
  1338. BUG_ON(dev_priv->info->gen < 5);
  1339. /* Make sure PCH DPLL is enabled */
  1340. assert_shared_dpll_enabled(dev_priv,
  1341. intel_crtc_to_shared_dpll(intel_crtc));
  1342. /* FDI must be feeding us bits for PCH ports */
  1343. assert_fdi_tx_enabled(dev_priv, pipe);
  1344. assert_fdi_rx_enabled(dev_priv, pipe);
  1345. if (HAS_PCH_CPT(dev)) {
  1346. /* Workaround: Set the timing override bit before enabling the
  1347. * pch transcoder. */
  1348. reg = TRANS_CHICKEN2(pipe);
  1349. val = I915_READ(reg);
  1350. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1351. I915_WRITE(reg, val);
  1352. }
  1353. reg = PCH_TRANSCONF(pipe);
  1354. val = I915_READ(reg);
  1355. pipeconf_val = I915_READ(PIPECONF(pipe));
  1356. if (HAS_PCH_IBX(dev_priv->dev)) {
  1357. /*
  1358. * make the BPC in transcoder be consistent with
  1359. * that in pipeconf reg.
  1360. */
  1361. val &= ~PIPECONF_BPC_MASK;
  1362. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1363. }
  1364. val &= ~TRANS_INTERLACE_MASK;
  1365. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1366. if (HAS_PCH_IBX(dev_priv->dev) &&
  1367. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1368. val |= TRANS_LEGACY_INTERLACED_ILK;
  1369. else
  1370. val |= TRANS_INTERLACED;
  1371. else
  1372. val |= TRANS_PROGRESSIVE;
  1373. I915_WRITE(reg, val | TRANS_ENABLE);
  1374. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1375. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1376. }
  1377. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1378. enum transcoder cpu_transcoder)
  1379. {
  1380. u32 val, pipeconf_val;
  1381. /* PCH only available on ILK+ */
  1382. BUG_ON(dev_priv->info->gen < 5);
  1383. /* FDI must be feeding us bits for PCH ports */
  1384. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1385. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1386. /* Workaround: set timing override bit. */
  1387. val = I915_READ(_TRANSA_CHICKEN2);
  1388. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1389. I915_WRITE(_TRANSA_CHICKEN2, val);
  1390. val = TRANS_ENABLE;
  1391. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1392. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1393. PIPECONF_INTERLACED_ILK)
  1394. val |= TRANS_INTERLACED;
  1395. else
  1396. val |= TRANS_PROGRESSIVE;
  1397. I915_WRITE(LPT_TRANSCONF, val);
  1398. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1399. DRM_ERROR("Failed to enable PCH transcoder\n");
  1400. }
  1401. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1402. enum pipe pipe)
  1403. {
  1404. struct drm_device *dev = dev_priv->dev;
  1405. uint32_t reg, val;
  1406. /* FDI relies on the transcoder */
  1407. assert_fdi_tx_disabled(dev_priv, pipe);
  1408. assert_fdi_rx_disabled(dev_priv, pipe);
  1409. /* Ports must be off as well */
  1410. assert_pch_ports_disabled(dev_priv, pipe);
  1411. reg = PCH_TRANSCONF(pipe);
  1412. val = I915_READ(reg);
  1413. val &= ~TRANS_ENABLE;
  1414. I915_WRITE(reg, val);
  1415. /* wait for PCH transcoder off, transcoder state */
  1416. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1417. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1418. if (!HAS_PCH_IBX(dev)) {
  1419. /* Workaround: Clear the timing override chicken bit again. */
  1420. reg = TRANS_CHICKEN2(pipe);
  1421. val = I915_READ(reg);
  1422. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1423. I915_WRITE(reg, val);
  1424. }
  1425. }
  1426. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1427. {
  1428. u32 val;
  1429. val = I915_READ(LPT_TRANSCONF);
  1430. val &= ~TRANS_ENABLE;
  1431. I915_WRITE(LPT_TRANSCONF, val);
  1432. /* wait for PCH transcoder off, transcoder state */
  1433. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1434. DRM_ERROR("Failed to disable PCH transcoder\n");
  1435. /* Workaround: clear timing override bit. */
  1436. val = I915_READ(_TRANSA_CHICKEN2);
  1437. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1438. I915_WRITE(_TRANSA_CHICKEN2, val);
  1439. }
  1440. /**
  1441. * intel_enable_pipe - enable a pipe, asserting requirements
  1442. * @dev_priv: i915 private structure
  1443. * @pipe: pipe to enable
  1444. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1445. *
  1446. * Enable @pipe, making sure that various hardware specific requirements
  1447. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1448. *
  1449. * @pipe should be %PIPE_A or %PIPE_B.
  1450. *
  1451. * Will wait until the pipe is actually running (i.e. first vblank) before
  1452. * returning.
  1453. */
  1454. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1455. bool pch_port, bool dsi)
  1456. {
  1457. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1458. pipe);
  1459. enum pipe pch_transcoder;
  1460. int reg;
  1461. u32 val;
  1462. assert_planes_disabled(dev_priv, pipe);
  1463. assert_sprites_disabled(dev_priv, pipe);
  1464. if (HAS_PCH_LPT(dev_priv->dev))
  1465. pch_transcoder = TRANSCODER_A;
  1466. else
  1467. pch_transcoder = pipe;
  1468. /*
  1469. * A pipe without a PLL won't actually be able to drive bits from
  1470. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1471. * need the check.
  1472. */
  1473. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1474. if (dsi)
  1475. assert_dsi_pll_enabled(dev_priv);
  1476. else
  1477. assert_pll_enabled(dev_priv, pipe);
  1478. else {
  1479. if (pch_port) {
  1480. /* if driving the PCH, we need FDI enabled */
  1481. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1482. assert_fdi_tx_pll_enabled(dev_priv,
  1483. (enum pipe) cpu_transcoder);
  1484. }
  1485. /* FIXME: assert CPU port conditions for SNB+ */
  1486. }
  1487. reg = PIPECONF(cpu_transcoder);
  1488. val = I915_READ(reg);
  1489. if (val & PIPECONF_ENABLE)
  1490. return;
  1491. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1492. intel_wait_for_vblank(dev_priv->dev, pipe);
  1493. }
  1494. /**
  1495. * intel_disable_pipe - disable a pipe, asserting requirements
  1496. * @dev_priv: i915 private structure
  1497. * @pipe: pipe to disable
  1498. *
  1499. * Disable @pipe, making sure that various hardware specific requirements
  1500. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1501. *
  1502. * @pipe should be %PIPE_A or %PIPE_B.
  1503. *
  1504. * Will wait until the pipe has shut down before returning.
  1505. */
  1506. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1507. enum pipe pipe)
  1508. {
  1509. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1510. pipe);
  1511. int reg;
  1512. u32 val;
  1513. /*
  1514. * Make sure planes won't keep trying to pump pixels to us,
  1515. * or we might hang the display.
  1516. */
  1517. assert_planes_disabled(dev_priv, pipe);
  1518. assert_sprites_disabled(dev_priv, pipe);
  1519. /* Don't disable pipe A or pipe A PLLs if needed */
  1520. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1521. return;
  1522. reg = PIPECONF(cpu_transcoder);
  1523. val = I915_READ(reg);
  1524. if ((val & PIPECONF_ENABLE) == 0)
  1525. return;
  1526. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1527. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1528. }
  1529. /*
  1530. * Plane regs are double buffered, going from enabled->disabled needs a
  1531. * trigger in order to latch. The display address reg provides this.
  1532. */
  1533. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1534. enum plane plane)
  1535. {
  1536. if (dev_priv->info->gen >= 4)
  1537. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1538. else
  1539. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1540. }
  1541. /**
  1542. * intel_enable_plane - enable a display plane on a given pipe
  1543. * @dev_priv: i915 private structure
  1544. * @plane: plane to enable
  1545. * @pipe: pipe being fed
  1546. *
  1547. * Enable @plane on @pipe, making sure that @pipe is running first.
  1548. */
  1549. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1550. enum plane plane, enum pipe pipe)
  1551. {
  1552. int reg;
  1553. u32 val;
  1554. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1555. assert_pipe_enabled(dev_priv, pipe);
  1556. reg = DSPCNTR(plane);
  1557. val = I915_READ(reg);
  1558. if (val & DISPLAY_PLANE_ENABLE)
  1559. return;
  1560. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1561. intel_flush_display_plane(dev_priv, plane);
  1562. intel_wait_for_vblank(dev_priv->dev, pipe);
  1563. }
  1564. /**
  1565. * intel_disable_plane - disable a display plane
  1566. * @dev_priv: i915 private structure
  1567. * @plane: plane to disable
  1568. * @pipe: pipe consuming the data
  1569. *
  1570. * Disable @plane; should be an independent operation.
  1571. */
  1572. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1573. enum plane plane, enum pipe pipe)
  1574. {
  1575. int reg;
  1576. u32 val;
  1577. reg = DSPCNTR(plane);
  1578. val = I915_READ(reg);
  1579. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1580. return;
  1581. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1582. intel_flush_display_plane(dev_priv, plane);
  1583. intel_wait_for_vblank(dev_priv->dev, pipe);
  1584. }
  1585. static bool need_vtd_wa(struct drm_device *dev)
  1586. {
  1587. #ifdef CONFIG_INTEL_IOMMU
  1588. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1589. return true;
  1590. #endif
  1591. return false;
  1592. }
  1593. int
  1594. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1595. struct drm_i915_gem_object *obj,
  1596. struct intel_ring_buffer *pipelined)
  1597. {
  1598. struct drm_i915_private *dev_priv = dev->dev_private;
  1599. u32 alignment;
  1600. int ret;
  1601. switch (obj->tiling_mode) {
  1602. case I915_TILING_NONE:
  1603. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1604. alignment = 128 * 1024;
  1605. else if (INTEL_INFO(dev)->gen >= 4)
  1606. alignment = 4 * 1024;
  1607. else
  1608. alignment = 64 * 1024;
  1609. break;
  1610. case I915_TILING_X:
  1611. /* pin() will align the object as required by fence */
  1612. alignment = 0;
  1613. break;
  1614. case I915_TILING_Y:
  1615. /* Despite that we check this in framebuffer_init userspace can
  1616. * screw us over and change the tiling after the fact. Only
  1617. * pinned buffers can't change their tiling. */
  1618. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1619. return -EINVAL;
  1620. default:
  1621. BUG();
  1622. }
  1623. /* Note that the w/a also requires 64 PTE of padding following the
  1624. * bo. We currently fill all unused PTE with the shadow page and so
  1625. * we should always have valid PTE following the scanout preventing
  1626. * the VT-d warning.
  1627. */
  1628. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1629. alignment = 256 * 1024;
  1630. dev_priv->mm.interruptible = false;
  1631. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1632. if (ret)
  1633. goto err_interruptible;
  1634. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1635. * fence, whereas 965+ only requires a fence if using
  1636. * framebuffer compression. For simplicity, we always install
  1637. * a fence as the cost is not that onerous.
  1638. */
  1639. ret = i915_gem_object_get_fence(obj);
  1640. if (ret)
  1641. goto err_unpin;
  1642. i915_gem_object_pin_fence(obj);
  1643. dev_priv->mm.interruptible = true;
  1644. return 0;
  1645. err_unpin:
  1646. i915_gem_object_unpin_from_display_plane(obj);
  1647. err_interruptible:
  1648. dev_priv->mm.interruptible = true;
  1649. return ret;
  1650. }
  1651. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1652. {
  1653. i915_gem_object_unpin_fence(obj);
  1654. i915_gem_object_unpin_from_display_plane(obj);
  1655. }
  1656. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1657. * is assumed to be a power-of-two. */
  1658. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1659. unsigned int tiling_mode,
  1660. unsigned int cpp,
  1661. unsigned int pitch)
  1662. {
  1663. if (tiling_mode != I915_TILING_NONE) {
  1664. unsigned int tile_rows, tiles;
  1665. tile_rows = *y / 8;
  1666. *y %= 8;
  1667. tiles = *x / (512/cpp);
  1668. *x %= 512/cpp;
  1669. return tile_rows * pitch * 8 + tiles * 4096;
  1670. } else {
  1671. unsigned int offset;
  1672. offset = *y * pitch + *x * cpp;
  1673. *y = 0;
  1674. *x = (offset & 4095) / cpp;
  1675. return offset & -4096;
  1676. }
  1677. }
  1678. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1679. int x, int y)
  1680. {
  1681. struct drm_device *dev = crtc->dev;
  1682. struct drm_i915_private *dev_priv = dev->dev_private;
  1683. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1684. struct intel_framebuffer *intel_fb;
  1685. struct drm_i915_gem_object *obj;
  1686. int plane = intel_crtc->plane;
  1687. unsigned long linear_offset;
  1688. u32 dspcntr;
  1689. u32 reg;
  1690. switch (plane) {
  1691. case 0:
  1692. case 1:
  1693. break;
  1694. default:
  1695. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1696. return -EINVAL;
  1697. }
  1698. intel_fb = to_intel_framebuffer(fb);
  1699. obj = intel_fb->obj;
  1700. reg = DSPCNTR(plane);
  1701. dspcntr = I915_READ(reg);
  1702. /* Mask out pixel format bits in case we change it */
  1703. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1704. switch (fb->pixel_format) {
  1705. case DRM_FORMAT_C8:
  1706. dspcntr |= DISPPLANE_8BPP;
  1707. break;
  1708. case DRM_FORMAT_XRGB1555:
  1709. case DRM_FORMAT_ARGB1555:
  1710. dspcntr |= DISPPLANE_BGRX555;
  1711. break;
  1712. case DRM_FORMAT_RGB565:
  1713. dspcntr |= DISPPLANE_BGRX565;
  1714. break;
  1715. case DRM_FORMAT_XRGB8888:
  1716. case DRM_FORMAT_ARGB8888:
  1717. dspcntr |= DISPPLANE_BGRX888;
  1718. break;
  1719. case DRM_FORMAT_XBGR8888:
  1720. case DRM_FORMAT_ABGR8888:
  1721. dspcntr |= DISPPLANE_RGBX888;
  1722. break;
  1723. case DRM_FORMAT_XRGB2101010:
  1724. case DRM_FORMAT_ARGB2101010:
  1725. dspcntr |= DISPPLANE_BGRX101010;
  1726. break;
  1727. case DRM_FORMAT_XBGR2101010:
  1728. case DRM_FORMAT_ABGR2101010:
  1729. dspcntr |= DISPPLANE_RGBX101010;
  1730. break;
  1731. default:
  1732. BUG();
  1733. }
  1734. if (INTEL_INFO(dev)->gen >= 4) {
  1735. if (obj->tiling_mode != I915_TILING_NONE)
  1736. dspcntr |= DISPPLANE_TILED;
  1737. else
  1738. dspcntr &= ~DISPPLANE_TILED;
  1739. }
  1740. if (IS_G4X(dev))
  1741. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1742. I915_WRITE(reg, dspcntr);
  1743. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1744. if (INTEL_INFO(dev)->gen >= 4) {
  1745. intel_crtc->dspaddr_offset =
  1746. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1747. fb->bits_per_pixel / 8,
  1748. fb->pitches[0]);
  1749. linear_offset -= intel_crtc->dspaddr_offset;
  1750. } else {
  1751. intel_crtc->dspaddr_offset = linear_offset;
  1752. }
  1753. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1754. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1755. fb->pitches[0]);
  1756. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1757. if (INTEL_INFO(dev)->gen >= 4) {
  1758. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1759. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1760. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1761. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1762. } else
  1763. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1764. POSTING_READ(reg);
  1765. return 0;
  1766. }
  1767. static int ironlake_update_plane(struct drm_crtc *crtc,
  1768. struct drm_framebuffer *fb, int x, int y)
  1769. {
  1770. struct drm_device *dev = crtc->dev;
  1771. struct drm_i915_private *dev_priv = dev->dev_private;
  1772. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1773. struct intel_framebuffer *intel_fb;
  1774. struct drm_i915_gem_object *obj;
  1775. int plane = intel_crtc->plane;
  1776. unsigned long linear_offset;
  1777. u32 dspcntr;
  1778. u32 reg;
  1779. switch (plane) {
  1780. case 0:
  1781. case 1:
  1782. case 2:
  1783. break;
  1784. default:
  1785. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1786. return -EINVAL;
  1787. }
  1788. intel_fb = to_intel_framebuffer(fb);
  1789. obj = intel_fb->obj;
  1790. reg = DSPCNTR(plane);
  1791. dspcntr = I915_READ(reg);
  1792. /* Mask out pixel format bits in case we change it */
  1793. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1794. switch (fb->pixel_format) {
  1795. case DRM_FORMAT_C8:
  1796. dspcntr |= DISPPLANE_8BPP;
  1797. break;
  1798. case DRM_FORMAT_RGB565:
  1799. dspcntr |= DISPPLANE_BGRX565;
  1800. break;
  1801. case DRM_FORMAT_XRGB8888:
  1802. case DRM_FORMAT_ARGB8888:
  1803. dspcntr |= DISPPLANE_BGRX888;
  1804. break;
  1805. case DRM_FORMAT_XBGR8888:
  1806. case DRM_FORMAT_ABGR8888:
  1807. dspcntr |= DISPPLANE_RGBX888;
  1808. break;
  1809. case DRM_FORMAT_XRGB2101010:
  1810. case DRM_FORMAT_ARGB2101010:
  1811. dspcntr |= DISPPLANE_BGRX101010;
  1812. break;
  1813. case DRM_FORMAT_XBGR2101010:
  1814. case DRM_FORMAT_ABGR2101010:
  1815. dspcntr |= DISPPLANE_RGBX101010;
  1816. break;
  1817. default:
  1818. BUG();
  1819. }
  1820. if (obj->tiling_mode != I915_TILING_NONE)
  1821. dspcntr |= DISPPLANE_TILED;
  1822. else
  1823. dspcntr &= ~DISPPLANE_TILED;
  1824. if (IS_HASWELL(dev))
  1825. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1826. else
  1827. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1828. I915_WRITE(reg, dspcntr);
  1829. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1830. intel_crtc->dspaddr_offset =
  1831. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1832. fb->bits_per_pixel / 8,
  1833. fb->pitches[0]);
  1834. linear_offset -= intel_crtc->dspaddr_offset;
  1835. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1836. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1837. fb->pitches[0]);
  1838. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1839. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1840. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1841. if (IS_HASWELL(dev)) {
  1842. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1843. } else {
  1844. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1845. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1846. }
  1847. POSTING_READ(reg);
  1848. return 0;
  1849. }
  1850. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1851. static int
  1852. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1853. int x, int y, enum mode_set_atomic state)
  1854. {
  1855. struct drm_device *dev = crtc->dev;
  1856. struct drm_i915_private *dev_priv = dev->dev_private;
  1857. if (dev_priv->display.disable_fbc)
  1858. dev_priv->display.disable_fbc(dev);
  1859. intel_increase_pllclock(crtc);
  1860. return dev_priv->display.update_plane(crtc, fb, x, y);
  1861. }
  1862. void intel_display_handle_reset(struct drm_device *dev)
  1863. {
  1864. struct drm_i915_private *dev_priv = dev->dev_private;
  1865. struct drm_crtc *crtc;
  1866. /*
  1867. * Flips in the rings have been nuked by the reset,
  1868. * so complete all pending flips so that user space
  1869. * will get its events and not get stuck.
  1870. *
  1871. * Also update the base address of all primary
  1872. * planes to the the last fb to make sure we're
  1873. * showing the correct fb after a reset.
  1874. *
  1875. * Need to make two loops over the crtcs so that we
  1876. * don't try to grab a crtc mutex before the
  1877. * pending_flip_queue really got woken up.
  1878. */
  1879. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1880. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1881. enum plane plane = intel_crtc->plane;
  1882. intel_prepare_page_flip(dev, plane);
  1883. intel_finish_page_flip_plane(dev, plane);
  1884. }
  1885. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1886. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1887. mutex_lock(&crtc->mutex);
  1888. if (intel_crtc->active)
  1889. dev_priv->display.update_plane(crtc, crtc->fb,
  1890. crtc->x, crtc->y);
  1891. mutex_unlock(&crtc->mutex);
  1892. }
  1893. }
  1894. static int
  1895. intel_finish_fb(struct drm_framebuffer *old_fb)
  1896. {
  1897. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1898. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1899. bool was_interruptible = dev_priv->mm.interruptible;
  1900. int ret;
  1901. /* Big Hammer, we also need to ensure that any pending
  1902. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1903. * current scanout is retired before unpinning the old
  1904. * framebuffer.
  1905. *
  1906. * This should only fail upon a hung GPU, in which case we
  1907. * can safely continue.
  1908. */
  1909. dev_priv->mm.interruptible = false;
  1910. ret = i915_gem_object_finish_gpu(obj);
  1911. dev_priv->mm.interruptible = was_interruptible;
  1912. return ret;
  1913. }
  1914. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1915. {
  1916. struct drm_device *dev = crtc->dev;
  1917. struct drm_i915_master_private *master_priv;
  1918. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1919. if (!dev->primary->master)
  1920. return;
  1921. master_priv = dev->primary->master->driver_priv;
  1922. if (!master_priv->sarea_priv)
  1923. return;
  1924. switch (intel_crtc->pipe) {
  1925. case 0:
  1926. master_priv->sarea_priv->pipeA_x = x;
  1927. master_priv->sarea_priv->pipeA_y = y;
  1928. break;
  1929. case 1:
  1930. master_priv->sarea_priv->pipeB_x = x;
  1931. master_priv->sarea_priv->pipeB_y = y;
  1932. break;
  1933. default:
  1934. break;
  1935. }
  1936. }
  1937. static int
  1938. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1939. struct drm_framebuffer *fb)
  1940. {
  1941. struct drm_device *dev = crtc->dev;
  1942. struct drm_i915_private *dev_priv = dev->dev_private;
  1943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1944. struct drm_framebuffer *old_fb;
  1945. int ret;
  1946. /* no fb bound */
  1947. if (!fb) {
  1948. DRM_ERROR("No FB bound\n");
  1949. return 0;
  1950. }
  1951. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1952. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1953. plane_name(intel_crtc->plane),
  1954. INTEL_INFO(dev)->num_pipes);
  1955. return -EINVAL;
  1956. }
  1957. mutex_lock(&dev->struct_mutex);
  1958. ret = intel_pin_and_fence_fb_obj(dev,
  1959. to_intel_framebuffer(fb)->obj,
  1960. NULL);
  1961. if (ret != 0) {
  1962. mutex_unlock(&dev->struct_mutex);
  1963. DRM_ERROR("pin & fence failed\n");
  1964. return ret;
  1965. }
  1966. /* Update pipe size and adjust fitter if needed */
  1967. if (i915_fastboot) {
  1968. I915_WRITE(PIPESRC(intel_crtc->pipe),
  1969. ((crtc->mode.hdisplay - 1) << 16) |
  1970. (crtc->mode.vdisplay - 1));
  1971. if (!intel_crtc->config.pch_pfit.size &&
  1972. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  1973. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  1974. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  1975. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  1976. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  1977. }
  1978. }
  1979. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1980. if (ret) {
  1981. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1982. mutex_unlock(&dev->struct_mutex);
  1983. DRM_ERROR("failed to update base address\n");
  1984. return ret;
  1985. }
  1986. old_fb = crtc->fb;
  1987. crtc->fb = fb;
  1988. crtc->x = x;
  1989. crtc->y = y;
  1990. if (old_fb) {
  1991. if (intel_crtc->active && old_fb != fb)
  1992. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1993. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1994. }
  1995. intel_update_fbc(dev);
  1996. intel_edp_psr_update(dev);
  1997. mutex_unlock(&dev->struct_mutex);
  1998. intel_crtc_update_sarea_pos(crtc, x, y);
  1999. return 0;
  2000. }
  2001. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2002. {
  2003. struct drm_device *dev = crtc->dev;
  2004. struct drm_i915_private *dev_priv = dev->dev_private;
  2005. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2006. int pipe = intel_crtc->pipe;
  2007. u32 reg, temp;
  2008. /* enable normal train */
  2009. reg = FDI_TX_CTL(pipe);
  2010. temp = I915_READ(reg);
  2011. if (IS_IVYBRIDGE(dev)) {
  2012. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2013. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2014. } else {
  2015. temp &= ~FDI_LINK_TRAIN_NONE;
  2016. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2017. }
  2018. I915_WRITE(reg, temp);
  2019. reg = FDI_RX_CTL(pipe);
  2020. temp = I915_READ(reg);
  2021. if (HAS_PCH_CPT(dev)) {
  2022. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2023. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2024. } else {
  2025. temp &= ~FDI_LINK_TRAIN_NONE;
  2026. temp |= FDI_LINK_TRAIN_NONE;
  2027. }
  2028. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2029. /* wait one idle pattern time */
  2030. POSTING_READ(reg);
  2031. udelay(1000);
  2032. /* IVB wants error correction enabled */
  2033. if (IS_IVYBRIDGE(dev))
  2034. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2035. FDI_FE_ERRC_ENABLE);
  2036. }
  2037. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2038. {
  2039. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2040. }
  2041. static void ivb_modeset_global_resources(struct drm_device *dev)
  2042. {
  2043. struct drm_i915_private *dev_priv = dev->dev_private;
  2044. struct intel_crtc *pipe_B_crtc =
  2045. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2046. struct intel_crtc *pipe_C_crtc =
  2047. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2048. uint32_t temp;
  2049. /*
  2050. * When everything is off disable fdi C so that we could enable fdi B
  2051. * with all lanes. Note that we don't care about enabled pipes without
  2052. * an enabled pch encoder.
  2053. */
  2054. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2055. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2056. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2057. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2058. temp = I915_READ(SOUTH_CHICKEN1);
  2059. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2060. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2061. I915_WRITE(SOUTH_CHICKEN1, temp);
  2062. }
  2063. }
  2064. /* The FDI link training functions for ILK/Ibexpeak. */
  2065. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2066. {
  2067. struct drm_device *dev = crtc->dev;
  2068. struct drm_i915_private *dev_priv = dev->dev_private;
  2069. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2070. int pipe = intel_crtc->pipe;
  2071. int plane = intel_crtc->plane;
  2072. u32 reg, temp, tries;
  2073. /* FDI needs bits from pipe & plane first */
  2074. assert_pipe_enabled(dev_priv, pipe);
  2075. assert_plane_enabled(dev_priv, plane);
  2076. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2077. for train result */
  2078. reg = FDI_RX_IMR(pipe);
  2079. temp = I915_READ(reg);
  2080. temp &= ~FDI_RX_SYMBOL_LOCK;
  2081. temp &= ~FDI_RX_BIT_LOCK;
  2082. I915_WRITE(reg, temp);
  2083. I915_READ(reg);
  2084. udelay(150);
  2085. /* enable CPU FDI TX and PCH FDI RX */
  2086. reg = FDI_TX_CTL(pipe);
  2087. temp = I915_READ(reg);
  2088. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2089. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2090. temp &= ~FDI_LINK_TRAIN_NONE;
  2091. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2092. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2093. reg = FDI_RX_CTL(pipe);
  2094. temp = I915_READ(reg);
  2095. temp &= ~FDI_LINK_TRAIN_NONE;
  2096. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2097. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2098. POSTING_READ(reg);
  2099. udelay(150);
  2100. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2101. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2102. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2103. FDI_RX_PHASE_SYNC_POINTER_EN);
  2104. reg = FDI_RX_IIR(pipe);
  2105. for (tries = 0; tries < 5; tries++) {
  2106. temp = I915_READ(reg);
  2107. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2108. if ((temp & FDI_RX_BIT_LOCK)) {
  2109. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2110. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2111. break;
  2112. }
  2113. }
  2114. if (tries == 5)
  2115. DRM_ERROR("FDI train 1 fail!\n");
  2116. /* Train 2 */
  2117. reg = FDI_TX_CTL(pipe);
  2118. temp = I915_READ(reg);
  2119. temp &= ~FDI_LINK_TRAIN_NONE;
  2120. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2121. I915_WRITE(reg, temp);
  2122. reg = FDI_RX_CTL(pipe);
  2123. temp = I915_READ(reg);
  2124. temp &= ~FDI_LINK_TRAIN_NONE;
  2125. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2126. I915_WRITE(reg, temp);
  2127. POSTING_READ(reg);
  2128. udelay(150);
  2129. reg = FDI_RX_IIR(pipe);
  2130. for (tries = 0; tries < 5; tries++) {
  2131. temp = I915_READ(reg);
  2132. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2133. if (temp & FDI_RX_SYMBOL_LOCK) {
  2134. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2135. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2136. break;
  2137. }
  2138. }
  2139. if (tries == 5)
  2140. DRM_ERROR("FDI train 2 fail!\n");
  2141. DRM_DEBUG_KMS("FDI train done\n");
  2142. }
  2143. static const int snb_b_fdi_train_param[] = {
  2144. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2145. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2146. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2147. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2148. };
  2149. /* The FDI link training functions for SNB/Cougarpoint. */
  2150. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2151. {
  2152. struct drm_device *dev = crtc->dev;
  2153. struct drm_i915_private *dev_priv = dev->dev_private;
  2154. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2155. int pipe = intel_crtc->pipe;
  2156. u32 reg, temp, i, retry;
  2157. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2158. for train result */
  2159. reg = FDI_RX_IMR(pipe);
  2160. temp = I915_READ(reg);
  2161. temp &= ~FDI_RX_SYMBOL_LOCK;
  2162. temp &= ~FDI_RX_BIT_LOCK;
  2163. I915_WRITE(reg, temp);
  2164. POSTING_READ(reg);
  2165. udelay(150);
  2166. /* enable CPU FDI TX and PCH FDI RX */
  2167. reg = FDI_TX_CTL(pipe);
  2168. temp = I915_READ(reg);
  2169. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2170. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2171. temp &= ~FDI_LINK_TRAIN_NONE;
  2172. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2173. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2174. /* SNB-B */
  2175. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2176. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2177. I915_WRITE(FDI_RX_MISC(pipe),
  2178. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2179. reg = FDI_RX_CTL(pipe);
  2180. temp = I915_READ(reg);
  2181. if (HAS_PCH_CPT(dev)) {
  2182. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2183. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2184. } else {
  2185. temp &= ~FDI_LINK_TRAIN_NONE;
  2186. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2187. }
  2188. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2189. POSTING_READ(reg);
  2190. udelay(150);
  2191. for (i = 0; i < 4; i++) {
  2192. reg = FDI_TX_CTL(pipe);
  2193. temp = I915_READ(reg);
  2194. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2195. temp |= snb_b_fdi_train_param[i];
  2196. I915_WRITE(reg, temp);
  2197. POSTING_READ(reg);
  2198. udelay(500);
  2199. for (retry = 0; retry < 5; retry++) {
  2200. reg = FDI_RX_IIR(pipe);
  2201. temp = I915_READ(reg);
  2202. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2203. if (temp & FDI_RX_BIT_LOCK) {
  2204. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2205. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2206. break;
  2207. }
  2208. udelay(50);
  2209. }
  2210. if (retry < 5)
  2211. break;
  2212. }
  2213. if (i == 4)
  2214. DRM_ERROR("FDI train 1 fail!\n");
  2215. /* Train 2 */
  2216. reg = FDI_TX_CTL(pipe);
  2217. temp = I915_READ(reg);
  2218. temp &= ~FDI_LINK_TRAIN_NONE;
  2219. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2220. if (IS_GEN6(dev)) {
  2221. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2222. /* SNB-B */
  2223. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2224. }
  2225. I915_WRITE(reg, temp);
  2226. reg = FDI_RX_CTL(pipe);
  2227. temp = I915_READ(reg);
  2228. if (HAS_PCH_CPT(dev)) {
  2229. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2230. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2231. } else {
  2232. temp &= ~FDI_LINK_TRAIN_NONE;
  2233. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2234. }
  2235. I915_WRITE(reg, temp);
  2236. POSTING_READ(reg);
  2237. udelay(150);
  2238. for (i = 0; i < 4; i++) {
  2239. reg = FDI_TX_CTL(pipe);
  2240. temp = I915_READ(reg);
  2241. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2242. temp |= snb_b_fdi_train_param[i];
  2243. I915_WRITE(reg, temp);
  2244. POSTING_READ(reg);
  2245. udelay(500);
  2246. for (retry = 0; retry < 5; retry++) {
  2247. reg = FDI_RX_IIR(pipe);
  2248. temp = I915_READ(reg);
  2249. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2250. if (temp & FDI_RX_SYMBOL_LOCK) {
  2251. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2252. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2253. break;
  2254. }
  2255. udelay(50);
  2256. }
  2257. if (retry < 5)
  2258. break;
  2259. }
  2260. if (i == 4)
  2261. DRM_ERROR("FDI train 2 fail!\n");
  2262. DRM_DEBUG_KMS("FDI train done.\n");
  2263. }
  2264. /* Manual link training for Ivy Bridge A0 parts */
  2265. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2266. {
  2267. struct drm_device *dev = crtc->dev;
  2268. struct drm_i915_private *dev_priv = dev->dev_private;
  2269. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2270. int pipe = intel_crtc->pipe;
  2271. u32 reg, temp, i, j;
  2272. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2273. for train result */
  2274. reg = FDI_RX_IMR(pipe);
  2275. temp = I915_READ(reg);
  2276. temp &= ~FDI_RX_SYMBOL_LOCK;
  2277. temp &= ~FDI_RX_BIT_LOCK;
  2278. I915_WRITE(reg, temp);
  2279. POSTING_READ(reg);
  2280. udelay(150);
  2281. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2282. I915_READ(FDI_RX_IIR(pipe)));
  2283. /* Try each vswing and preemphasis setting twice before moving on */
  2284. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2285. /* disable first in case we need to retry */
  2286. reg = FDI_TX_CTL(pipe);
  2287. temp = I915_READ(reg);
  2288. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2289. temp &= ~FDI_TX_ENABLE;
  2290. I915_WRITE(reg, temp);
  2291. reg = FDI_RX_CTL(pipe);
  2292. temp = I915_READ(reg);
  2293. temp &= ~FDI_LINK_TRAIN_AUTO;
  2294. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2295. temp &= ~FDI_RX_ENABLE;
  2296. I915_WRITE(reg, temp);
  2297. /* enable CPU FDI TX and PCH FDI RX */
  2298. reg = FDI_TX_CTL(pipe);
  2299. temp = I915_READ(reg);
  2300. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2301. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2302. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2303. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2304. temp |= snb_b_fdi_train_param[j/2];
  2305. temp |= FDI_COMPOSITE_SYNC;
  2306. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2307. I915_WRITE(FDI_RX_MISC(pipe),
  2308. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2309. reg = FDI_RX_CTL(pipe);
  2310. temp = I915_READ(reg);
  2311. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2312. temp |= FDI_COMPOSITE_SYNC;
  2313. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2314. POSTING_READ(reg);
  2315. udelay(1); /* should be 0.5us */
  2316. for (i = 0; i < 4; i++) {
  2317. reg = FDI_RX_IIR(pipe);
  2318. temp = I915_READ(reg);
  2319. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2320. if (temp & FDI_RX_BIT_LOCK ||
  2321. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2322. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2323. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2324. i);
  2325. break;
  2326. }
  2327. udelay(1); /* should be 0.5us */
  2328. }
  2329. if (i == 4) {
  2330. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2331. continue;
  2332. }
  2333. /* Train 2 */
  2334. reg = FDI_TX_CTL(pipe);
  2335. temp = I915_READ(reg);
  2336. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2337. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2338. I915_WRITE(reg, temp);
  2339. reg = FDI_RX_CTL(pipe);
  2340. temp = I915_READ(reg);
  2341. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2342. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2343. I915_WRITE(reg, temp);
  2344. POSTING_READ(reg);
  2345. udelay(2); /* should be 1.5us */
  2346. for (i = 0; i < 4; i++) {
  2347. reg = FDI_RX_IIR(pipe);
  2348. temp = I915_READ(reg);
  2349. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2350. if (temp & FDI_RX_SYMBOL_LOCK ||
  2351. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2352. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2353. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2354. i);
  2355. goto train_done;
  2356. }
  2357. udelay(2); /* should be 1.5us */
  2358. }
  2359. if (i == 4)
  2360. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2361. }
  2362. train_done:
  2363. DRM_DEBUG_KMS("FDI train done.\n");
  2364. }
  2365. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2366. {
  2367. struct drm_device *dev = intel_crtc->base.dev;
  2368. struct drm_i915_private *dev_priv = dev->dev_private;
  2369. int pipe = intel_crtc->pipe;
  2370. u32 reg, temp;
  2371. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2372. reg = FDI_RX_CTL(pipe);
  2373. temp = I915_READ(reg);
  2374. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2375. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2376. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2377. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2378. POSTING_READ(reg);
  2379. udelay(200);
  2380. /* Switch from Rawclk to PCDclk */
  2381. temp = I915_READ(reg);
  2382. I915_WRITE(reg, temp | FDI_PCDCLK);
  2383. POSTING_READ(reg);
  2384. udelay(200);
  2385. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2386. reg = FDI_TX_CTL(pipe);
  2387. temp = I915_READ(reg);
  2388. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2389. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2390. POSTING_READ(reg);
  2391. udelay(100);
  2392. }
  2393. }
  2394. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2395. {
  2396. struct drm_device *dev = intel_crtc->base.dev;
  2397. struct drm_i915_private *dev_priv = dev->dev_private;
  2398. int pipe = intel_crtc->pipe;
  2399. u32 reg, temp;
  2400. /* Switch from PCDclk to Rawclk */
  2401. reg = FDI_RX_CTL(pipe);
  2402. temp = I915_READ(reg);
  2403. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2404. /* Disable CPU FDI TX PLL */
  2405. reg = FDI_TX_CTL(pipe);
  2406. temp = I915_READ(reg);
  2407. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2408. POSTING_READ(reg);
  2409. udelay(100);
  2410. reg = FDI_RX_CTL(pipe);
  2411. temp = I915_READ(reg);
  2412. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2413. /* Wait for the clocks to turn off. */
  2414. POSTING_READ(reg);
  2415. udelay(100);
  2416. }
  2417. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2418. {
  2419. struct drm_device *dev = crtc->dev;
  2420. struct drm_i915_private *dev_priv = dev->dev_private;
  2421. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2422. int pipe = intel_crtc->pipe;
  2423. u32 reg, temp;
  2424. /* disable CPU FDI tx and PCH FDI rx */
  2425. reg = FDI_TX_CTL(pipe);
  2426. temp = I915_READ(reg);
  2427. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2428. POSTING_READ(reg);
  2429. reg = FDI_RX_CTL(pipe);
  2430. temp = I915_READ(reg);
  2431. temp &= ~(0x7 << 16);
  2432. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2433. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2434. POSTING_READ(reg);
  2435. udelay(100);
  2436. /* Ironlake workaround, disable clock pointer after downing FDI */
  2437. if (HAS_PCH_IBX(dev)) {
  2438. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2439. }
  2440. /* still set train pattern 1 */
  2441. reg = FDI_TX_CTL(pipe);
  2442. temp = I915_READ(reg);
  2443. temp &= ~FDI_LINK_TRAIN_NONE;
  2444. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2445. I915_WRITE(reg, temp);
  2446. reg = FDI_RX_CTL(pipe);
  2447. temp = I915_READ(reg);
  2448. if (HAS_PCH_CPT(dev)) {
  2449. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2450. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2451. } else {
  2452. temp &= ~FDI_LINK_TRAIN_NONE;
  2453. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2454. }
  2455. /* BPC in FDI rx is consistent with that in PIPECONF */
  2456. temp &= ~(0x07 << 16);
  2457. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2458. I915_WRITE(reg, temp);
  2459. POSTING_READ(reg);
  2460. udelay(100);
  2461. }
  2462. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2463. {
  2464. struct drm_device *dev = crtc->dev;
  2465. struct drm_i915_private *dev_priv = dev->dev_private;
  2466. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2467. unsigned long flags;
  2468. bool pending;
  2469. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2470. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2471. return false;
  2472. spin_lock_irqsave(&dev->event_lock, flags);
  2473. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2474. spin_unlock_irqrestore(&dev->event_lock, flags);
  2475. return pending;
  2476. }
  2477. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2478. {
  2479. struct drm_device *dev = crtc->dev;
  2480. struct drm_i915_private *dev_priv = dev->dev_private;
  2481. if (crtc->fb == NULL)
  2482. return;
  2483. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2484. wait_event(dev_priv->pending_flip_queue,
  2485. !intel_crtc_has_pending_flip(crtc));
  2486. mutex_lock(&dev->struct_mutex);
  2487. intel_finish_fb(crtc->fb);
  2488. mutex_unlock(&dev->struct_mutex);
  2489. }
  2490. /* Program iCLKIP clock to the desired frequency */
  2491. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2492. {
  2493. struct drm_device *dev = crtc->dev;
  2494. struct drm_i915_private *dev_priv = dev->dev_private;
  2495. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2496. u32 temp;
  2497. mutex_lock(&dev_priv->dpio_lock);
  2498. /* It is necessary to ungate the pixclk gate prior to programming
  2499. * the divisors, and gate it back when it is done.
  2500. */
  2501. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2502. /* Disable SSCCTL */
  2503. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2504. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2505. SBI_SSCCTL_DISABLE,
  2506. SBI_ICLK);
  2507. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2508. if (crtc->mode.clock == 20000) {
  2509. auxdiv = 1;
  2510. divsel = 0x41;
  2511. phaseinc = 0x20;
  2512. } else {
  2513. /* The iCLK virtual clock root frequency is in MHz,
  2514. * but the crtc->mode.clock in in KHz. To get the divisors,
  2515. * it is necessary to divide one by another, so we
  2516. * convert the virtual clock precision to KHz here for higher
  2517. * precision.
  2518. */
  2519. u32 iclk_virtual_root_freq = 172800 * 1000;
  2520. u32 iclk_pi_range = 64;
  2521. u32 desired_divisor, msb_divisor_value, pi_value;
  2522. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2523. msb_divisor_value = desired_divisor / iclk_pi_range;
  2524. pi_value = desired_divisor % iclk_pi_range;
  2525. auxdiv = 0;
  2526. divsel = msb_divisor_value - 2;
  2527. phaseinc = pi_value;
  2528. }
  2529. /* This should not happen with any sane values */
  2530. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2531. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2532. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2533. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2534. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2535. crtc->mode.clock,
  2536. auxdiv,
  2537. divsel,
  2538. phasedir,
  2539. phaseinc);
  2540. /* Program SSCDIVINTPHASE6 */
  2541. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2542. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2543. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2544. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2545. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2546. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2547. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2548. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2549. /* Program SSCAUXDIV */
  2550. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2551. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2552. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2553. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2554. /* Enable modulator and associated divider */
  2555. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2556. temp &= ~SBI_SSCCTL_DISABLE;
  2557. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2558. /* Wait for initialization time */
  2559. udelay(24);
  2560. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2561. mutex_unlock(&dev_priv->dpio_lock);
  2562. }
  2563. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2564. enum pipe pch_transcoder)
  2565. {
  2566. struct drm_device *dev = crtc->base.dev;
  2567. struct drm_i915_private *dev_priv = dev->dev_private;
  2568. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2569. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2570. I915_READ(HTOTAL(cpu_transcoder)));
  2571. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2572. I915_READ(HBLANK(cpu_transcoder)));
  2573. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2574. I915_READ(HSYNC(cpu_transcoder)));
  2575. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2576. I915_READ(VTOTAL(cpu_transcoder)));
  2577. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2578. I915_READ(VBLANK(cpu_transcoder)));
  2579. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2580. I915_READ(VSYNC(cpu_transcoder)));
  2581. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2582. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2583. }
  2584. /*
  2585. * Enable PCH resources required for PCH ports:
  2586. * - PCH PLLs
  2587. * - FDI training & RX/TX
  2588. * - update transcoder timings
  2589. * - DP transcoding bits
  2590. * - transcoder
  2591. */
  2592. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2593. {
  2594. struct drm_device *dev = crtc->dev;
  2595. struct drm_i915_private *dev_priv = dev->dev_private;
  2596. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2597. int pipe = intel_crtc->pipe;
  2598. u32 reg, temp;
  2599. assert_pch_transcoder_disabled(dev_priv, pipe);
  2600. /* Write the TU size bits before fdi link training, so that error
  2601. * detection works. */
  2602. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2603. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2604. /* For PCH output, training FDI link */
  2605. dev_priv->display.fdi_link_train(crtc);
  2606. /* We need to program the right clock selection before writing the pixel
  2607. * mutliplier into the DPLL. */
  2608. if (HAS_PCH_CPT(dev)) {
  2609. u32 sel;
  2610. temp = I915_READ(PCH_DPLL_SEL);
  2611. temp |= TRANS_DPLL_ENABLE(pipe);
  2612. sel = TRANS_DPLLB_SEL(pipe);
  2613. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2614. temp |= sel;
  2615. else
  2616. temp &= ~sel;
  2617. I915_WRITE(PCH_DPLL_SEL, temp);
  2618. }
  2619. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2620. * transcoder, and we actually should do this to not upset any PCH
  2621. * transcoder that already use the clock when we share it.
  2622. *
  2623. * Note that enable_shared_dpll tries to do the right thing, but
  2624. * get_shared_dpll unconditionally resets the pll - we need that to have
  2625. * the right LVDS enable sequence. */
  2626. ironlake_enable_shared_dpll(intel_crtc);
  2627. /* set transcoder timing, panel must allow it */
  2628. assert_panel_unlocked(dev_priv, pipe);
  2629. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2630. intel_fdi_normal_train(crtc);
  2631. /* For PCH DP, enable TRANS_DP_CTL */
  2632. if (HAS_PCH_CPT(dev) &&
  2633. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2634. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2635. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2636. reg = TRANS_DP_CTL(pipe);
  2637. temp = I915_READ(reg);
  2638. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2639. TRANS_DP_SYNC_MASK |
  2640. TRANS_DP_BPC_MASK);
  2641. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2642. TRANS_DP_ENH_FRAMING);
  2643. temp |= bpc << 9; /* same format but at 11:9 */
  2644. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2645. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2646. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2647. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2648. switch (intel_trans_dp_port_sel(crtc)) {
  2649. case PCH_DP_B:
  2650. temp |= TRANS_DP_PORT_SEL_B;
  2651. break;
  2652. case PCH_DP_C:
  2653. temp |= TRANS_DP_PORT_SEL_C;
  2654. break;
  2655. case PCH_DP_D:
  2656. temp |= TRANS_DP_PORT_SEL_D;
  2657. break;
  2658. default:
  2659. BUG();
  2660. }
  2661. I915_WRITE(reg, temp);
  2662. }
  2663. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2664. }
  2665. static void lpt_pch_enable(struct drm_crtc *crtc)
  2666. {
  2667. struct drm_device *dev = crtc->dev;
  2668. struct drm_i915_private *dev_priv = dev->dev_private;
  2669. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2670. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2671. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2672. lpt_program_iclkip(crtc);
  2673. /* Set transcoder timing. */
  2674. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2675. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2676. }
  2677. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2678. {
  2679. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2680. if (pll == NULL)
  2681. return;
  2682. if (pll->refcount == 0) {
  2683. WARN(1, "bad %s refcount\n", pll->name);
  2684. return;
  2685. }
  2686. if (--pll->refcount == 0) {
  2687. WARN_ON(pll->on);
  2688. WARN_ON(pll->active);
  2689. }
  2690. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2691. }
  2692. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2693. {
  2694. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2695. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2696. enum intel_dpll_id i;
  2697. if (pll) {
  2698. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2699. crtc->base.base.id, pll->name);
  2700. intel_put_shared_dpll(crtc);
  2701. }
  2702. if (HAS_PCH_IBX(dev_priv->dev)) {
  2703. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2704. i = (enum intel_dpll_id) crtc->pipe;
  2705. pll = &dev_priv->shared_dplls[i];
  2706. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2707. crtc->base.base.id, pll->name);
  2708. goto found;
  2709. }
  2710. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2711. pll = &dev_priv->shared_dplls[i];
  2712. /* Only want to check enabled timings first */
  2713. if (pll->refcount == 0)
  2714. continue;
  2715. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2716. sizeof(pll->hw_state)) == 0) {
  2717. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2718. crtc->base.base.id,
  2719. pll->name, pll->refcount, pll->active);
  2720. goto found;
  2721. }
  2722. }
  2723. /* Ok no matching timings, maybe there's a free one? */
  2724. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2725. pll = &dev_priv->shared_dplls[i];
  2726. if (pll->refcount == 0) {
  2727. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2728. crtc->base.base.id, pll->name);
  2729. goto found;
  2730. }
  2731. }
  2732. return NULL;
  2733. found:
  2734. crtc->config.shared_dpll = i;
  2735. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2736. pipe_name(crtc->pipe));
  2737. if (pll->active == 0) {
  2738. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2739. sizeof(pll->hw_state));
  2740. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2741. WARN_ON(pll->on);
  2742. assert_shared_dpll_disabled(dev_priv, pll);
  2743. pll->mode_set(dev_priv, pll);
  2744. }
  2745. pll->refcount++;
  2746. return pll;
  2747. }
  2748. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2749. {
  2750. struct drm_i915_private *dev_priv = dev->dev_private;
  2751. int dslreg = PIPEDSL(pipe);
  2752. u32 temp;
  2753. temp = I915_READ(dslreg);
  2754. udelay(500);
  2755. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2756. if (wait_for(I915_READ(dslreg) != temp, 5))
  2757. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2758. }
  2759. }
  2760. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2761. {
  2762. struct drm_device *dev = crtc->base.dev;
  2763. struct drm_i915_private *dev_priv = dev->dev_private;
  2764. int pipe = crtc->pipe;
  2765. if (crtc->config.pch_pfit.size) {
  2766. /* Force use of hard-coded filter coefficients
  2767. * as some pre-programmed values are broken,
  2768. * e.g. x201.
  2769. */
  2770. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2771. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2772. PF_PIPE_SEL_IVB(pipe));
  2773. else
  2774. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2775. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2776. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2777. }
  2778. }
  2779. static void intel_enable_planes(struct drm_crtc *crtc)
  2780. {
  2781. struct drm_device *dev = crtc->dev;
  2782. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2783. struct intel_plane *intel_plane;
  2784. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2785. if (intel_plane->pipe == pipe)
  2786. intel_plane_restore(&intel_plane->base);
  2787. }
  2788. static void intel_disable_planes(struct drm_crtc *crtc)
  2789. {
  2790. struct drm_device *dev = crtc->dev;
  2791. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2792. struct intel_plane *intel_plane;
  2793. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2794. if (intel_plane->pipe == pipe)
  2795. intel_plane_disable(&intel_plane->base);
  2796. }
  2797. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2798. {
  2799. struct drm_device *dev = crtc->dev;
  2800. struct drm_i915_private *dev_priv = dev->dev_private;
  2801. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2802. struct intel_encoder *encoder;
  2803. int pipe = intel_crtc->pipe;
  2804. int plane = intel_crtc->plane;
  2805. WARN_ON(!crtc->enabled);
  2806. if (intel_crtc->active)
  2807. return;
  2808. intel_crtc->active = true;
  2809. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2810. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2811. intel_update_watermarks(dev);
  2812. for_each_encoder_on_crtc(dev, crtc, encoder)
  2813. if (encoder->pre_enable)
  2814. encoder->pre_enable(encoder);
  2815. if (intel_crtc->config.has_pch_encoder) {
  2816. /* Note: FDI PLL enabling _must_ be done before we enable the
  2817. * cpu pipes, hence this is separate from all the other fdi/pch
  2818. * enabling. */
  2819. ironlake_fdi_pll_enable(intel_crtc);
  2820. } else {
  2821. assert_fdi_tx_disabled(dev_priv, pipe);
  2822. assert_fdi_rx_disabled(dev_priv, pipe);
  2823. }
  2824. ironlake_pfit_enable(intel_crtc);
  2825. /*
  2826. * On ILK+ LUT must be loaded before the pipe is running but with
  2827. * clocks enabled
  2828. */
  2829. intel_crtc_load_lut(crtc);
  2830. intel_enable_pipe(dev_priv, pipe,
  2831. intel_crtc->config.has_pch_encoder, false);
  2832. intel_enable_plane(dev_priv, plane, pipe);
  2833. intel_enable_planes(crtc);
  2834. intel_crtc_update_cursor(crtc, true);
  2835. if (intel_crtc->config.has_pch_encoder)
  2836. ironlake_pch_enable(crtc);
  2837. mutex_lock(&dev->struct_mutex);
  2838. intel_update_fbc(dev);
  2839. mutex_unlock(&dev->struct_mutex);
  2840. for_each_encoder_on_crtc(dev, crtc, encoder)
  2841. encoder->enable(encoder);
  2842. if (HAS_PCH_CPT(dev))
  2843. cpt_verify_modeset(dev, intel_crtc->pipe);
  2844. /*
  2845. * There seems to be a race in PCH platform hw (at least on some
  2846. * outputs) where an enabled pipe still completes any pageflip right
  2847. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2848. * as the first vblank happend, everything works as expected. Hence just
  2849. * wait for one vblank before returning to avoid strange things
  2850. * happening.
  2851. */
  2852. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2853. }
  2854. /* IPS only exists on ULT machines and is tied to pipe A. */
  2855. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2856. {
  2857. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2858. }
  2859. static void hsw_enable_ips(struct intel_crtc *crtc)
  2860. {
  2861. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2862. if (!crtc->config.ips_enabled)
  2863. return;
  2864. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2865. * We guarantee that the plane is enabled by calling intel_enable_ips
  2866. * only after intel_enable_plane. And intel_enable_plane already waits
  2867. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2868. assert_plane_enabled(dev_priv, crtc->plane);
  2869. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2870. }
  2871. static void hsw_disable_ips(struct intel_crtc *crtc)
  2872. {
  2873. struct drm_device *dev = crtc->base.dev;
  2874. struct drm_i915_private *dev_priv = dev->dev_private;
  2875. if (!crtc->config.ips_enabled)
  2876. return;
  2877. assert_plane_enabled(dev_priv, crtc->plane);
  2878. I915_WRITE(IPS_CTL, 0);
  2879. /* We need to wait for a vblank before we can disable the plane. */
  2880. intel_wait_for_vblank(dev, crtc->pipe);
  2881. }
  2882. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2883. {
  2884. struct drm_device *dev = crtc->dev;
  2885. struct drm_i915_private *dev_priv = dev->dev_private;
  2886. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2887. struct intel_encoder *encoder;
  2888. int pipe = intel_crtc->pipe;
  2889. int plane = intel_crtc->plane;
  2890. WARN_ON(!crtc->enabled);
  2891. if (intel_crtc->active)
  2892. return;
  2893. intel_crtc->active = true;
  2894. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2895. if (intel_crtc->config.has_pch_encoder)
  2896. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2897. intel_update_watermarks(dev);
  2898. if (intel_crtc->config.has_pch_encoder)
  2899. dev_priv->display.fdi_link_train(crtc);
  2900. for_each_encoder_on_crtc(dev, crtc, encoder)
  2901. if (encoder->pre_enable)
  2902. encoder->pre_enable(encoder);
  2903. intel_ddi_enable_pipe_clock(intel_crtc);
  2904. ironlake_pfit_enable(intel_crtc);
  2905. /*
  2906. * On ILK+ LUT must be loaded before the pipe is running but with
  2907. * clocks enabled
  2908. */
  2909. intel_crtc_load_lut(crtc);
  2910. intel_ddi_set_pipe_settings(crtc);
  2911. intel_ddi_enable_transcoder_func(crtc);
  2912. intel_enable_pipe(dev_priv, pipe,
  2913. intel_crtc->config.has_pch_encoder, false);
  2914. intel_enable_plane(dev_priv, plane, pipe);
  2915. intel_enable_planes(crtc);
  2916. intel_crtc_update_cursor(crtc, true);
  2917. hsw_enable_ips(intel_crtc);
  2918. if (intel_crtc->config.has_pch_encoder)
  2919. lpt_pch_enable(crtc);
  2920. mutex_lock(&dev->struct_mutex);
  2921. intel_update_fbc(dev);
  2922. mutex_unlock(&dev->struct_mutex);
  2923. for_each_encoder_on_crtc(dev, crtc, encoder) {
  2924. encoder->enable(encoder);
  2925. intel_opregion_notify_encoder(encoder, true);
  2926. }
  2927. /*
  2928. * There seems to be a race in PCH platform hw (at least on some
  2929. * outputs) where an enabled pipe still completes any pageflip right
  2930. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2931. * as the first vblank happend, everything works as expected. Hence just
  2932. * wait for one vblank before returning to avoid strange things
  2933. * happening.
  2934. */
  2935. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2936. }
  2937. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2938. {
  2939. struct drm_device *dev = crtc->base.dev;
  2940. struct drm_i915_private *dev_priv = dev->dev_private;
  2941. int pipe = crtc->pipe;
  2942. /* To avoid upsetting the power well on haswell only disable the pfit if
  2943. * it's in use. The hw state code will make sure we get this right. */
  2944. if (crtc->config.pch_pfit.size) {
  2945. I915_WRITE(PF_CTL(pipe), 0);
  2946. I915_WRITE(PF_WIN_POS(pipe), 0);
  2947. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2948. }
  2949. }
  2950. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2951. {
  2952. struct drm_device *dev = crtc->dev;
  2953. struct drm_i915_private *dev_priv = dev->dev_private;
  2954. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2955. struct intel_encoder *encoder;
  2956. int pipe = intel_crtc->pipe;
  2957. int plane = intel_crtc->plane;
  2958. u32 reg, temp;
  2959. if (!intel_crtc->active)
  2960. return;
  2961. for_each_encoder_on_crtc(dev, crtc, encoder)
  2962. encoder->disable(encoder);
  2963. intel_crtc_wait_for_pending_flips(crtc);
  2964. drm_vblank_off(dev, pipe);
  2965. if (dev_priv->fbc.plane == plane)
  2966. intel_disable_fbc(dev);
  2967. intel_crtc_update_cursor(crtc, false);
  2968. intel_disable_planes(crtc);
  2969. intel_disable_plane(dev_priv, plane, pipe);
  2970. if (intel_crtc->config.has_pch_encoder)
  2971. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2972. intel_disable_pipe(dev_priv, pipe);
  2973. ironlake_pfit_disable(intel_crtc);
  2974. for_each_encoder_on_crtc(dev, crtc, encoder)
  2975. if (encoder->post_disable)
  2976. encoder->post_disable(encoder);
  2977. if (intel_crtc->config.has_pch_encoder) {
  2978. ironlake_fdi_disable(crtc);
  2979. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2980. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2981. if (HAS_PCH_CPT(dev)) {
  2982. /* disable TRANS_DP_CTL */
  2983. reg = TRANS_DP_CTL(pipe);
  2984. temp = I915_READ(reg);
  2985. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2986. TRANS_DP_PORT_SEL_MASK);
  2987. temp |= TRANS_DP_PORT_SEL_NONE;
  2988. I915_WRITE(reg, temp);
  2989. /* disable DPLL_SEL */
  2990. temp = I915_READ(PCH_DPLL_SEL);
  2991. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2992. I915_WRITE(PCH_DPLL_SEL, temp);
  2993. }
  2994. /* disable PCH DPLL */
  2995. intel_disable_shared_dpll(intel_crtc);
  2996. ironlake_fdi_pll_disable(intel_crtc);
  2997. }
  2998. intel_crtc->active = false;
  2999. intel_update_watermarks(dev);
  3000. mutex_lock(&dev->struct_mutex);
  3001. intel_update_fbc(dev);
  3002. mutex_unlock(&dev->struct_mutex);
  3003. }
  3004. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3005. {
  3006. struct drm_device *dev = crtc->dev;
  3007. struct drm_i915_private *dev_priv = dev->dev_private;
  3008. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3009. struct intel_encoder *encoder;
  3010. int pipe = intel_crtc->pipe;
  3011. int plane = intel_crtc->plane;
  3012. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3013. if (!intel_crtc->active)
  3014. return;
  3015. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3016. intel_opregion_notify_encoder(encoder, false);
  3017. encoder->disable(encoder);
  3018. }
  3019. intel_crtc_wait_for_pending_flips(crtc);
  3020. drm_vblank_off(dev, pipe);
  3021. /* FBC must be disabled before disabling the plane on HSW. */
  3022. if (dev_priv->fbc.plane == plane)
  3023. intel_disable_fbc(dev);
  3024. hsw_disable_ips(intel_crtc);
  3025. intel_crtc_update_cursor(crtc, false);
  3026. intel_disable_planes(crtc);
  3027. intel_disable_plane(dev_priv, plane, pipe);
  3028. if (intel_crtc->config.has_pch_encoder)
  3029. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3030. intel_disable_pipe(dev_priv, pipe);
  3031. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3032. ironlake_pfit_disable(intel_crtc);
  3033. intel_ddi_disable_pipe_clock(intel_crtc);
  3034. for_each_encoder_on_crtc(dev, crtc, encoder)
  3035. if (encoder->post_disable)
  3036. encoder->post_disable(encoder);
  3037. if (intel_crtc->config.has_pch_encoder) {
  3038. lpt_disable_pch_transcoder(dev_priv);
  3039. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3040. intel_ddi_fdi_disable(crtc);
  3041. }
  3042. intel_crtc->active = false;
  3043. intel_update_watermarks(dev);
  3044. mutex_lock(&dev->struct_mutex);
  3045. intel_update_fbc(dev);
  3046. mutex_unlock(&dev->struct_mutex);
  3047. }
  3048. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3049. {
  3050. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3051. intel_put_shared_dpll(intel_crtc);
  3052. }
  3053. static void haswell_crtc_off(struct drm_crtc *crtc)
  3054. {
  3055. intel_ddi_put_crtc_pll(crtc);
  3056. }
  3057. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3058. {
  3059. if (!enable && intel_crtc->overlay) {
  3060. struct drm_device *dev = intel_crtc->base.dev;
  3061. struct drm_i915_private *dev_priv = dev->dev_private;
  3062. mutex_lock(&dev->struct_mutex);
  3063. dev_priv->mm.interruptible = false;
  3064. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3065. dev_priv->mm.interruptible = true;
  3066. mutex_unlock(&dev->struct_mutex);
  3067. }
  3068. /* Let userspace switch the overlay on again. In most cases userspace
  3069. * has to recompute where to put it anyway.
  3070. */
  3071. }
  3072. /**
  3073. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3074. * cursor plane briefly if not already running after enabling the display
  3075. * plane.
  3076. * This workaround avoids occasional blank screens when self refresh is
  3077. * enabled.
  3078. */
  3079. static void
  3080. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3081. {
  3082. u32 cntl = I915_READ(CURCNTR(pipe));
  3083. if ((cntl & CURSOR_MODE) == 0) {
  3084. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3085. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3086. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3087. intel_wait_for_vblank(dev_priv->dev, pipe);
  3088. I915_WRITE(CURCNTR(pipe), cntl);
  3089. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3090. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3091. }
  3092. }
  3093. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3094. {
  3095. struct drm_device *dev = crtc->base.dev;
  3096. struct drm_i915_private *dev_priv = dev->dev_private;
  3097. struct intel_crtc_config *pipe_config = &crtc->config;
  3098. if (!crtc->config.gmch_pfit.control)
  3099. return;
  3100. /*
  3101. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3102. * according to register description and PRM.
  3103. */
  3104. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3105. assert_pipe_disabled(dev_priv, crtc->pipe);
  3106. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3107. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3108. /* Border color in case we don't scale up to the full screen. Black by
  3109. * default, change to something else for debugging. */
  3110. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3111. }
  3112. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3113. {
  3114. struct drm_device *dev = crtc->dev;
  3115. struct drm_i915_private *dev_priv = dev->dev_private;
  3116. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3117. struct intel_encoder *encoder;
  3118. int pipe = intel_crtc->pipe;
  3119. int plane = intel_crtc->plane;
  3120. bool is_dsi;
  3121. WARN_ON(!crtc->enabled);
  3122. if (intel_crtc->active)
  3123. return;
  3124. intel_crtc->active = true;
  3125. intel_update_watermarks(dev);
  3126. for_each_encoder_on_crtc(dev, crtc, encoder)
  3127. if (encoder->pre_pll_enable)
  3128. encoder->pre_pll_enable(encoder);
  3129. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3130. if (!is_dsi)
  3131. vlv_enable_pll(intel_crtc);
  3132. for_each_encoder_on_crtc(dev, crtc, encoder)
  3133. if (encoder->pre_enable)
  3134. encoder->pre_enable(encoder);
  3135. i9xx_pfit_enable(intel_crtc);
  3136. intel_crtc_load_lut(crtc);
  3137. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3138. intel_enable_plane(dev_priv, plane, pipe);
  3139. intel_enable_planes(crtc);
  3140. intel_crtc_update_cursor(crtc, true);
  3141. intel_update_fbc(dev);
  3142. for_each_encoder_on_crtc(dev, crtc, encoder)
  3143. encoder->enable(encoder);
  3144. }
  3145. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3146. {
  3147. struct drm_device *dev = crtc->dev;
  3148. struct drm_i915_private *dev_priv = dev->dev_private;
  3149. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3150. struct intel_encoder *encoder;
  3151. int pipe = intel_crtc->pipe;
  3152. int plane = intel_crtc->plane;
  3153. WARN_ON(!crtc->enabled);
  3154. if (intel_crtc->active)
  3155. return;
  3156. intel_crtc->active = true;
  3157. intel_update_watermarks(dev);
  3158. for_each_encoder_on_crtc(dev, crtc, encoder)
  3159. if (encoder->pre_enable)
  3160. encoder->pre_enable(encoder);
  3161. i9xx_enable_pll(intel_crtc);
  3162. i9xx_pfit_enable(intel_crtc);
  3163. intel_crtc_load_lut(crtc);
  3164. intel_enable_pipe(dev_priv, pipe, false, false);
  3165. intel_enable_plane(dev_priv, plane, pipe);
  3166. intel_enable_planes(crtc);
  3167. /* The fixup needs to happen before cursor is enabled */
  3168. if (IS_G4X(dev))
  3169. g4x_fixup_plane(dev_priv, pipe);
  3170. intel_crtc_update_cursor(crtc, true);
  3171. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3172. intel_crtc_dpms_overlay(intel_crtc, true);
  3173. intel_update_fbc(dev);
  3174. for_each_encoder_on_crtc(dev, crtc, encoder)
  3175. encoder->enable(encoder);
  3176. }
  3177. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3178. {
  3179. struct drm_device *dev = crtc->base.dev;
  3180. struct drm_i915_private *dev_priv = dev->dev_private;
  3181. if (!crtc->config.gmch_pfit.control)
  3182. return;
  3183. assert_pipe_disabled(dev_priv, crtc->pipe);
  3184. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3185. I915_READ(PFIT_CONTROL));
  3186. I915_WRITE(PFIT_CONTROL, 0);
  3187. }
  3188. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3189. {
  3190. struct drm_device *dev = crtc->dev;
  3191. struct drm_i915_private *dev_priv = dev->dev_private;
  3192. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3193. struct intel_encoder *encoder;
  3194. int pipe = intel_crtc->pipe;
  3195. int plane = intel_crtc->plane;
  3196. if (!intel_crtc->active)
  3197. return;
  3198. for_each_encoder_on_crtc(dev, crtc, encoder)
  3199. encoder->disable(encoder);
  3200. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3201. intel_crtc_wait_for_pending_flips(crtc);
  3202. drm_vblank_off(dev, pipe);
  3203. if (dev_priv->fbc.plane == plane)
  3204. intel_disable_fbc(dev);
  3205. intel_crtc_dpms_overlay(intel_crtc, false);
  3206. intel_crtc_update_cursor(crtc, false);
  3207. intel_disable_planes(crtc);
  3208. intel_disable_plane(dev_priv, plane, pipe);
  3209. intel_disable_pipe(dev_priv, pipe);
  3210. i9xx_pfit_disable(intel_crtc);
  3211. for_each_encoder_on_crtc(dev, crtc, encoder)
  3212. if (encoder->post_disable)
  3213. encoder->post_disable(encoder);
  3214. if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3215. i9xx_disable_pll(dev_priv, pipe);
  3216. intel_crtc->active = false;
  3217. intel_update_fbc(dev);
  3218. intel_update_watermarks(dev);
  3219. }
  3220. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3221. {
  3222. }
  3223. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3224. bool enabled)
  3225. {
  3226. struct drm_device *dev = crtc->dev;
  3227. struct drm_i915_master_private *master_priv;
  3228. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3229. int pipe = intel_crtc->pipe;
  3230. if (!dev->primary->master)
  3231. return;
  3232. master_priv = dev->primary->master->driver_priv;
  3233. if (!master_priv->sarea_priv)
  3234. return;
  3235. switch (pipe) {
  3236. case 0:
  3237. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3238. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3239. break;
  3240. case 1:
  3241. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3242. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3243. break;
  3244. default:
  3245. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3246. break;
  3247. }
  3248. }
  3249. /**
  3250. * Sets the power management mode of the pipe and plane.
  3251. */
  3252. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3253. {
  3254. struct drm_device *dev = crtc->dev;
  3255. struct drm_i915_private *dev_priv = dev->dev_private;
  3256. struct intel_encoder *intel_encoder;
  3257. bool enable = false;
  3258. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3259. enable |= intel_encoder->connectors_active;
  3260. if (enable)
  3261. dev_priv->display.crtc_enable(crtc);
  3262. else
  3263. dev_priv->display.crtc_disable(crtc);
  3264. intel_crtc_update_sarea(crtc, enable);
  3265. }
  3266. static void intel_crtc_disable(struct drm_crtc *crtc)
  3267. {
  3268. struct drm_device *dev = crtc->dev;
  3269. struct drm_connector *connector;
  3270. struct drm_i915_private *dev_priv = dev->dev_private;
  3271. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3272. /* crtc should still be enabled when we disable it. */
  3273. WARN_ON(!crtc->enabled);
  3274. dev_priv->display.crtc_disable(crtc);
  3275. intel_crtc->eld_vld = false;
  3276. intel_crtc_update_sarea(crtc, false);
  3277. dev_priv->display.off(crtc);
  3278. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3279. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3280. if (crtc->fb) {
  3281. mutex_lock(&dev->struct_mutex);
  3282. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3283. mutex_unlock(&dev->struct_mutex);
  3284. crtc->fb = NULL;
  3285. }
  3286. /* Update computed state. */
  3287. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3288. if (!connector->encoder || !connector->encoder->crtc)
  3289. continue;
  3290. if (connector->encoder->crtc != crtc)
  3291. continue;
  3292. connector->dpms = DRM_MODE_DPMS_OFF;
  3293. to_intel_encoder(connector->encoder)->connectors_active = false;
  3294. }
  3295. }
  3296. void intel_encoder_destroy(struct drm_encoder *encoder)
  3297. {
  3298. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3299. drm_encoder_cleanup(encoder);
  3300. kfree(intel_encoder);
  3301. }
  3302. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3303. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3304. * state of the entire output pipe. */
  3305. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3306. {
  3307. if (mode == DRM_MODE_DPMS_ON) {
  3308. encoder->connectors_active = true;
  3309. intel_crtc_update_dpms(encoder->base.crtc);
  3310. } else {
  3311. encoder->connectors_active = false;
  3312. intel_crtc_update_dpms(encoder->base.crtc);
  3313. }
  3314. }
  3315. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3316. * internal consistency). */
  3317. static void intel_connector_check_state(struct intel_connector *connector)
  3318. {
  3319. if (connector->get_hw_state(connector)) {
  3320. struct intel_encoder *encoder = connector->encoder;
  3321. struct drm_crtc *crtc;
  3322. bool encoder_enabled;
  3323. enum pipe pipe;
  3324. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3325. connector->base.base.id,
  3326. drm_get_connector_name(&connector->base));
  3327. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3328. "wrong connector dpms state\n");
  3329. WARN(connector->base.encoder != &encoder->base,
  3330. "active connector not linked to encoder\n");
  3331. WARN(!encoder->connectors_active,
  3332. "encoder->connectors_active not set\n");
  3333. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3334. WARN(!encoder_enabled, "encoder not enabled\n");
  3335. if (WARN_ON(!encoder->base.crtc))
  3336. return;
  3337. crtc = encoder->base.crtc;
  3338. WARN(!crtc->enabled, "crtc not enabled\n");
  3339. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3340. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3341. "encoder active on the wrong pipe\n");
  3342. }
  3343. }
  3344. /* Even simpler default implementation, if there's really no special case to
  3345. * consider. */
  3346. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3347. {
  3348. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3349. /* All the simple cases only support two dpms states. */
  3350. if (mode != DRM_MODE_DPMS_ON)
  3351. mode = DRM_MODE_DPMS_OFF;
  3352. if (mode == connector->dpms)
  3353. return;
  3354. connector->dpms = mode;
  3355. /* Only need to change hw state when actually enabled */
  3356. if (encoder->base.crtc)
  3357. intel_encoder_dpms(encoder, mode);
  3358. else
  3359. WARN_ON(encoder->connectors_active != false);
  3360. intel_modeset_check_state(connector->dev);
  3361. }
  3362. /* Simple connector->get_hw_state implementation for encoders that support only
  3363. * one connector and no cloning and hence the encoder state determines the state
  3364. * of the connector. */
  3365. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3366. {
  3367. enum pipe pipe = 0;
  3368. struct intel_encoder *encoder = connector->encoder;
  3369. return encoder->get_hw_state(encoder, &pipe);
  3370. }
  3371. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3372. struct intel_crtc_config *pipe_config)
  3373. {
  3374. struct drm_i915_private *dev_priv = dev->dev_private;
  3375. struct intel_crtc *pipe_B_crtc =
  3376. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3377. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3378. pipe_name(pipe), pipe_config->fdi_lanes);
  3379. if (pipe_config->fdi_lanes > 4) {
  3380. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3381. pipe_name(pipe), pipe_config->fdi_lanes);
  3382. return false;
  3383. }
  3384. if (IS_HASWELL(dev)) {
  3385. if (pipe_config->fdi_lanes > 2) {
  3386. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3387. pipe_config->fdi_lanes);
  3388. return false;
  3389. } else {
  3390. return true;
  3391. }
  3392. }
  3393. if (INTEL_INFO(dev)->num_pipes == 2)
  3394. return true;
  3395. /* Ivybridge 3 pipe is really complicated */
  3396. switch (pipe) {
  3397. case PIPE_A:
  3398. return true;
  3399. case PIPE_B:
  3400. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3401. pipe_config->fdi_lanes > 2) {
  3402. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3403. pipe_name(pipe), pipe_config->fdi_lanes);
  3404. return false;
  3405. }
  3406. return true;
  3407. case PIPE_C:
  3408. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3409. pipe_B_crtc->config.fdi_lanes <= 2) {
  3410. if (pipe_config->fdi_lanes > 2) {
  3411. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3412. pipe_name(pipe), pipe_config->fdi_lanes);
  3413. return false;
  3414. }
  3415. } else {
  3416. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3417. return false;
  3418. }
  3419. return true;
  3420. default:
  3421. BUG();
  3422. }
  3423. }
  3424. #define RETRY 1
  3425. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3426. struct intel_crtc_config *pipe_config)
  3427. {
  3428. struct drm_device *dev = intel_crtc->base.dev;
  3429. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3430. int lane, link_bw, fdi_dotclock;
  3431. bool setup_ok, needs_recompute = false;
  3432. retry:
  3433. /* FDI is a binary signal running at ~2.7GHz, encoding
  3434. * each output octet as 10 bits. The actual frequency
  3435. * is stored as a divider into a 100MHz clock, and the
  3436. * mode pixel clock is stored in units of 1KHz.
  3437. * Hence the bw of each lane in terms of the mode signal
  3438. * is:
  3439. */
  3440. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3441. fdi_dotclock = adjusted_mode->clock;
  3442. fdi_dotclock /= pipe_config->pixel_multiplier;
  3443. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3444. pipe_config->pipe_bpp);
  3445. pipe_config->fdi_lanes = lane;
  3446. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3447. link_bw, &pipe_config->fdi_m_n);
  3448. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3449. intel_crtc->pipe, pipe_config);
  3450. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3451. pipe_config->pipe_bpp -= 2*3;
  3452. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3453. pipe_config->pipe_bpp);
  3454. needs_recompute = true;
  3455. pipe_config->bw_constrained = true;
  3456. goto retry;
  3457. }
  3458. if (needs_recompute)
  3459. return RETRY;
  3460. return setup_ok ? 0 : -EINVAL;
  3461. }
  3462. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3463. struct intel_crtc_config *pipe_config)
  3464. {
  3465. pipe_config->ips_enabled = i915_enable_ips &&
  3466. hsw_crtc_supports_ips(crtc) &&
  3467. pipe_config->pipe_bpp <= 24;
  3468. }
  3469. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3470. struct intel_crtc_config *pipe_config)
  3471. {
  3472. struct drm_device *dev = crtc->base.dev;
  3473. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3474. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3475. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3476. */
  3477. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3478. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3479. return -EINVAL;
  3480. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3481. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3482. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3483. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3484. * for lvds. */
  3485. pipe_config->pipe_bpp = 8*3;
  3486. }
  3487. if (HAS_IPS(dev))
  3488. hsw_compute_ips_config(crtc, pipe_config);
  3489. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3490. * clock survives for now. */
  3491. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3492. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3493. if (pipe_config->has_pch_encoder)
  3494. return ironlake_fdi_compute_config(crtc, pipe_config);
  3495. return 0;
  3496. }
  3497. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3498. {
  3499. return 400000; /* FIXME */
  3500. }
  3501. static int i945_get_display_clock_speed(struct drm_device *dev)
  3502. {
  3503. return 400000;
  3504. }
  3505. static int i915_get_display_clock_speed(struct drm_device *dev)
  3506. {
  3507. return 333000;
  3508. }
  3509. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3510. {
  3511. return 200000;
  3512. }
  3513. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3514. {
  3515. u16 gcfgc = 0;
  3516. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3517. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3518. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3519. return 267000;
  3520. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3521. return 333000;
  3522. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3523. return 444000;
  3524. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3525. return 200000;
  3526. default:
  3527. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3528. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3529. return 133000;
  3530. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3531. return 167000;
  3532. }
  3533. }
  3534. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3535. {
  3536. u16 gcfgc = 0;
  3537. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3538. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3539. return 133000;
  3540. else {
  3541. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3542. case GC_DISPLAY_CLOCK_333_MHZ:
  3543. return 333000;
  3544. default:
  3545. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3546. return 190000;
  3547. }
  3548. }
  3549. }
  3550. static int i865_get_display_clock_speed(struct drm_device *dev)
  3551. {
  3552. return 266000;
  3553. }
  3554. static int i855_get_display_clock_speed(struct drm_device *dev)
  3555. {
  3556. u16 hpllcc = 0;
  3557. /* Assume that the hardware is in the high speed state. This
  3558. * should be the default.
  3559. */
  3560. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3561. case GC_CLOCK_133_200:
  3562. case GC_CLOCK_100_200:
  3563. return 200000;
  3564. case GC_CLOCK_166_250:
  3565. return 250000;
  3566. case GC_CLOCK_100_133:
  3567. return 133000;
  3568. }
  3569. /* Shouldn't happen */
  3570. return 0;
  3571. }
  3572. static int i830_get_display_clock_speed(struct drm_device *dev)
  3573. {
  3574. return 133000;
  3575. }
  3576. static void
  3577. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3578. {
  3579. while (*num > DATA_LINK_M_N_MASK ||
  3580. *den > DATA_LINK_M_N_MASK) {
  3581. *num >>= 1;
  3582. *den >>= 1;
  3583. }
  3584. }
  3585. static void compute_m_n(unsigned int m, unsigned int n,
  3586. uint32_t *ret_m, uint32_t *ret_n)
  3587. {
  3588. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3589. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3590. intel_reduce_m_n_ratio(ret_m, ret_n);
  3591. }
  3592. void
  3593. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3594. int pixel_clock, int link_clock,
  3595. struct intel_link_m_n *m_n)
  3596. {
  3597. m_n->tu = 64;
  3598. compute_m_n(bits_per_pixel * pixel_clock,
  3599. link_clock * nlanes * 8,
  3600. &m_n->gmch_m, &m_n->gmch_n);
  3601. compute_m_n(pixel_clock, link_clock,
  3602. &m_n->link_m, &m_n->link_n);
  3603. }
  3604. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3605. {
  3606. if (i915_panel_use_ssc >= 0)
  3607. return i915_panel_use_ssc != 0;
  3608. return dev_priv->vbt.lvds_use_ssc
  3609. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3610. }
  3611. static int vlv_get_refclk(struct drm_crtc *crtc)
  3612. {
  3613. struct drm_device *dev = crtc->dev;
  3614. struct drm_i915_private *dev_priv = dev->dev_private;
  3615. int refclk = 27000; /* for DP & HDMI */
  3616. return 100000; /* only one validated so far */
  3617. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3618. refclk = 96000;
  3619. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3620. if (intel_panel_use_ssc(dev_priv))
  3621. refclk = 100000;
  3622. else
  3623. refclk = 96000;
  3624. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3625. refclk = 100000;
  3626. }
  3627. return refclk;
  3628. }
  3629. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3630. {
  3631. struct drm_device *dev = crtc->dev;
  3632. struct drm_i915_private *dev_priv = dev->dev_private;
  3633. int refclk;
  3634. if (IS_VALLEYVIEW(dev)) {
  3635. refclk = vlv_get_refclk(crtc);
  3636. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3637. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3638. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3639. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3640. refclk / 1000);
  3641. } else if (!IS_GEN2(dev)) {
  3642. refclk = 96000;
  3643. } else {
  3644. refclk = 48000;
  3645. }
  3646. return refclk;
  3647. }
  3648. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3649. {
  3650. return (1 << dpll->n) << 16 | dpll->m2;
  3651. }
  3652. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3653. {
  3654. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3655. }
  3656. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3657. intel_clock_t *reduced_clock)
  3658. {
  3659. struct drm_device *dev = crtc->base.dev;
  3660. struct drm_i915_private *dev_priv = dev->dev_private;
  3661. int pipe = crtc->pipe;
  3662. u32 fp, fp2 = 0;
  3663. if (IS_PINEVIEW(dev)) {
  3664. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3665. if (reduced_clock)
  3666. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3667. } else {
  3668. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3669. if (reduced_clock)
  3670. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3671. }
  3672. I915_WRITE(FP0(pipe), fp);
  3673. crtc->config.dpll_hw_state.fp0 = fp;
  3674. crtc->lowfreq_avail = false;
  3675. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3676. reduced_clock && i915_powersave) {
  3677. I915_WRITE(FP1(pipe), fp2);
  3678. crtc->config.dpll_hw_state.fp1 = fp2;
  3679. crtc->lowfreq_avail = true;
  3680. } else {
  3681. I915_WRITE(FP1(pipe), fp);
  3682. crtc->config.dpll_hw_state.fp1 = fp;
  3683. }
  3684. }
  3685. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3686. pipe)
  3687. {
  3688. u32 reg_val;
  3689. /*
  3690. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3691. * and set it to a reasonable value instead.
  3692. */
  3693. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3694. reg_val &= 0xffffff00;
  3695. reg_val |= 0x00000030;
  3696. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3697. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3698. reg_val &= 0x8cffffff;
  3699. reg_val = 0x8c000000;
  3700. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3701. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3702. reg_val &= 0xffffff00;
  3703. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3704. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3705. reg_val &= 0x00ffffff;
  3706. reg_val |= 0xb0000000;
  3707. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3708. }
  3709. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3710. struct intel_link_m_n *m_n)
  3711. {
  3712. struct drm_device *dev = crtc->base.dev;
  3713. struct drm_i915_private *dev_priv = dev->dev_private;
  3714. int pipe = crtc->pipe;
  3715. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3716. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3717. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3718. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3719. }
  3720. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3721. struct intel_link_m_n *m_n)
  3722. {
  3723. struct drm_device *dev = crtc->base.dev;
  3724. struct drm_i915_private *dev_priv = dev->dev_private;
  3725. int pipe = crtc->pipe;
  3726. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3727. if (INTEL_INFO(dev)->gen >= 5) {
  3728. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3729. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3730. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3731. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3732. } else {
  3733. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3734. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3735. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3736. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3737. }
  3738. }
  3739. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3740. {
  3741. if (crtc->config.has_pch_encoder)
  3742. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3743. else
  3744. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3745. }
  3746. static void vlv_update_pll(struct intel_crtc *crtc)
  3747. {
  3748. struct drm_device *dev = crtc->base.dev;
  3749. struct drm_i915_private *dev_priv = dev->dev_private;
  3750. int pipe = crtc->pipe;
  3751. u32 dpll, mdiv;
  3752. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3753. u32 coreclk, reg_val, dpll_md;
  3754. mutex_lock(&dev_priv->dpio_lock);
  3755. bestn = crtc->config.dpll.n;
  3756. bestm1 = crtc->config.dpll.m1;
  3757. bestm2 = crtc->config.dpll.m2;
  3758. bestp1 = crtc->config.dpll.p1;
  3759. bestp2 = crtc->config.dpll.p2;
  3760. /* See eDP HDMI DPIO driver vbios notes doc */
  3761. /* PLL B needs special handling */
  3762. if (pipe)
  3763. vlv_pllb_recal_opamp(dev_priv, pipe);
  3764. /* Set up Tx target for periodic Rcomp update */
  3765. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3766. /* Disable target IRef on PLL */
  3767. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3768. reg_val &= 0x00ffffff;
  3769. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3770. /* Disable fast lock */
  3771. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3772. /* Set idtafcrecal before PLL is enabled */
  3773. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3774. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3775. mdiv |= ((bestn << DPIO_N_SHIFT));
  3776. mdiv |= (1 << DPIO_K_SHIFT);
  3777. /*
  3778. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3779. * but we don't support that).
  3780. * Note: don't use the DAC post divider as it seems unstable.
  3781. */
  3782. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3783. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3784. mdiv |= DPIO_ENABLE_CALIBRATION;
  3785. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3786. /* Set HBR and RBR LPF coefficients */
  3787. if (crtc->config.port_clock == 162000 ||
  3788. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3789. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3790. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3791. 0x009f0003);
  3792. else
  3793. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3794. 0x00d0000f);
  3795. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3796. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3797. /* Use SSC source */
  3798. if (!pipe)
  3799. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3800. 0x0df40000);
  3801. else
  3802. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3803. 0x0df70000);
  3804. } else { /* HDMI or VGA */
  3805. /* Use bend source */
  3806. if (!pipe)
  3807. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3808. 0x0df70000);
  3809. else
  3810. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3811. 0x0df40000);
  3812. }
  3813. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  3814. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3815. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3816. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3817. coreclk |= 0x01000000;
  3818. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  3819. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  3820. /* Enable DPIO clock input */
  3821. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3822. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3823. if (pipe)
  3824. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3825. dpll |= DPLL_VCO_ENABLE;
  3826. crtc->config.dpll_hw_state.dpll = dpll;
  3827. dpll_md = (crtc->config.pixel_multiplier - 1)
  3828. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3829. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3830. if (crtc->config.has_dp_encoder)
  3831. intel_dp_set_m_n(crtc);
  3832. mutex_unlock(&dev_priv->dpio_lock);
  3833. }
  3834. static void i9xx_update_pll(struct intel_crtc *crtc,
  3835. intel_clock_t *reduced_clock,
  3836. int num_connectors)
  3837. {
  3838. struct drm_device *dev = crtc->base.dev;
  3839. struct drm_i915_private *dev_priv = dev->dev_private;
  3840. u32 dpll;
  3841. bool is_sdvo;
  3842. struct dpll *clock = &crtc->config.dpll;
  3843. i9xx_update_pll_dividers(crtc, reduced_clock);
  3844. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3845. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3846. dpll = DPLL_VGA_MODE_DIS;
  3847. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3848. dpll |= DPLLB_MODE_LVDS;
  3849. else
  3850. dpll |= DPLLB_MODE_DAC_SERIAL;
  3851. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3852. dpll |= (crtc->config.pixel_multiplier - 1)
  3853. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3854. }
  3855. if (is_sdvo)
  3856. dpll |= DPLL_SDVO_HIGH_SPEED;
  3857. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3858. dpll |= DPLL_SDVO_HIGH_SPEED;
  3859. /* compute bitmask from p1 value */
  3860. if (IS_PINEVIEW(dev))
  3861. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3862. else {
  3863. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3864. if (IS_G4X(dev) && reduced_clock)
  3865. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3866. }
  3867. switch (clock->p2) {
  3868. case 5:
  3869. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3870. break;
  3871. case 7:
  3872. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3873. break;
  3874. case 10:
  3875. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3876. break;
  3877. case 14:
  3878. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3879. break;
  3880. }
  3881. if (INTEL_INFO(dev)->gen >= 4)
  3882. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3883. if (crtc->config.sdvo_tv_clock)
  3884. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3885. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3886. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3887. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3888. else
  3889. dpll |= PLL_REF_INPUT_DREFCLK;
  3890. dpll |= DPLL_VCO_ENABLE;
  3891. crtc->config.dpll_hw_state.dpll = dpll;
  3892. if (INTEL_INFO(dev)->gen >= 4) {
  3893. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3894. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3895. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3896. }
  3897. if (crtc->config.has_dp_encoder)
  3898. intel_dp_set_m_n(crtc);
  3899. }
  3900. static void i8xx_update_pll(struct intel_crtc *crtc,
  3901. intel_clock_t *reduced_clock,
  3902. int num_connectors)
  3903. {
  3904. struct drm_device *dev = crtc->base.dev;
  3905. struct drm_i915_private *dev_priv = dev->dev_private;
  3906. u32 dpll;
  3907. struct dpll *clock = &crtc->config.dpll;
  3908. i9xx_update_pll_dividers(crtc, reduced_clock);
  3909. dpll = DPLL_VGA_MODE_DIS;
  3910. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3911. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3912. } else {
  3913. if (clock->p1 == 2)
  3914. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3915. else
  3916. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3917. if (clock->p2 == 4)
  3918. dpll |= PLL_P2_DIVIDE_BY_4;
  3919. }
  3920. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  3921. dpll |= DPLL_DVO_2X_MODE;
  3922. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3923. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3924. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3925. else
  3926. dpll |= PLL_REF_INPUT_DREFCLK;
  3927. dpll |= DPLL_VCO_ENABLE;
  3928. crtc->config.dpll_hw_state.dpll = dpll;
  3929. }
  3930. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3931. {
  3932. struct drm_device *dev = intel_crtc->base.dev;
  3933. struct drm_i915_private *dev_priv = dev->dev_private;
  3934. enum pipe pipe = intel_crtc->pipe;
  3935. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3936. struct drm_display_mode *adjusted_mode =
  3937. &intel_crtc->config.adjusted_mode;
  3938. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3939. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3940. /* We need to be careful not to changed the adjusted mode, for otherwise
  3941. * the hw state checker will get angry at the mismatch. */
  3942. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3943. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3944. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3945. /* the chip adds 2 halflines automatically */
  3946. crtc_vtotal -= 1;
  3947. crtc_vblank_end -= 1;
  3948. vsyncshift = adjusted_mode->crtc_hsync_start
  3949. - adjusted_mode->crtc_htotal / 2;
  3950. } else {
  3951. vsyncshift = 0;
  3952. }
  3953. if (INTEL_INFO(dev)->gen > 3)
  3954. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3955. I915_WRITE(HTOTAL(cpu_transcoder),
  3956. (adjusted_mode->crtc_hdisplay - 1) |
  3957. ((adjusted_mode->crtc_htotal - 1) << 16));
  3958. I915_WRITE(HBLANK(cpu_transcoder),
  3959. (adjusted_mode->crtc_hblank_start - 1) |
  3960. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3961. I915_WRITE(HSYNC(cpu_transcoder),
  3962. (adjusted_mode->crtc_hsync_start - 1) |
  3963. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3964. I915_WRITE(VTOTAL(cpu_transcoder),
  3965. (adjusted_mode->crtc_vdisplay - 1) |
  3966. ((crtc_vtotal - 1) << 16));
  3967. I915_WRITE(VBLANK(cpu_transcoder),
  3968. (adjusted_mode->crtc_vblank_start - 1) |
  3969. ((crtc_vblank_end - 1) << 16));
  3970. I915_WRITE(VSYNC(cpu_transcoder),
  3971. (adjusted_mode->crtc_vsync_start - 1) |
  3972. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3973. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3974. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3975. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3976. * bits. */
  3977. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3978. (pipe == PIPE_B || pipe == PIPE_C))
  3979. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3980. /* pipesrc controls the size that is scaled from, which should
  3981. * always be the user's requested size.
  3982. */
  3983. I915_WRITE(PIPESRC(pipe),
  3984. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3985. }
  3986. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3987. struct intel_crtc_config *pipe_config)
  3988. {
  3989. struct drm_device *dev = crtc->base.dev;
  3990. struct drm_i915_private *dev_priv = dev->dev_private;
  3991. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3992. uint32_t tmp;
  3993. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3994. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3995. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3996. tmp = I915_READ(HBLANK(cpu_transcoder));
  3997. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3998. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3999. tmp = I915_READ(HSYNC(cpu_transcoder));
  4000. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4001. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4002. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4003. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4004. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4005. tmp = I915_READ(VBLANK(cpu_transcoder));
  4006. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4007. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4008. tmp = I915_READ(VSYNC(cpu_transcoder));
  4009. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4010. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4011. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4012. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4013. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4014. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4015. }
  4016. tmp = I915_READ(PIPESRC(crtc->pipe));
  4017. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4018. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4019. }
  4020. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4021. struct intel_crtc_config *pipe_config)
  4022. {
  4023. struct drm_crtc *crtc = &intel_crtc->base;
  4024. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4025. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4026. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4027. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4028. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4029. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4030. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4031. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4032. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4033. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4034. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4035. }
  4036. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4037. {
  4038. struct drm_device *dev = intel_crtc->base.dev;
  4039. struct drm_i915_private *dev_priv = dev->dev_private;
  4040. uint32_t pipeconf;
  4041. pipeconf = 0;
  4042. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4043. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4044. * core speed.
  4045. *
  4046. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4047. * pipe == 0 check?
  4048. */
  4049. if (intel_crtc->config.requested_mode.clock >
  4050. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4051. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4052. }
  4053. /* only g4x and later have fancy bpc/dither controls */
  4054. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4055. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4056. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4057. pipeconf |= PIPECONF_DITHER_EN |
  4058. PIPECONF_DITHER_TYPE_SP;
  4059. switch (intel_crtc->config.pipe_bpp) {
  4060. case 18:
  4061. pipeconf |= PIPECONF_6BPC;
  4062. break;
  4063. case 24:
  4064. pipeconf |= PIPECONF_8BPC;
  4065. break;
  4066. case 30:
  4067. pipeconf |= PIPECONF_10BPC;
  4068. break;
  4069. default:
  4070. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4071. BUG();
  4072. }
  4073. }
  4074. if (HAS_PIPE_CXSR(dev)) {
  4075. if (intel_crtc->lowfreq_avail) {
  4076. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4077. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4078. } else {
  4079. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4080. }
  4081. }
  4082. if (!IS_GEN2(dev) &&
  4083. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4084. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4085. else
  4086. pipeconf |= PIPECONF_PROGRESSIVE;
  4087. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4088. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4089. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4090. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4091. }
  4092. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4093. int x, int y,
  4094. struct drm_framebuffer *fb)
  4095. {
  4096. struct drm_device *dev = crtc->dev;
  4097. struct drm_i915_private *dev_priv = dev->dev_private;
  4098. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4099. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4100. int pipe = intel_crtc->pipe;
  4101. int plane = intel_crtc->plane;
  4102. int refclk, num_connectors = 0;
  4103. intel_clock_t clock, reduced_clock;
  4104. u32 dspcntr;
  4105. bool ok, has_reduced_clock = false;
  4106. bool is_lvds = false, is_dsi = false;
  4107. struct intel_encoder *encoder;
  4108. const intel_limit_t *limit;
  4109. int ret;
  4110. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4111. switch (encoder->type) {
  4112. case INTEL_OUTPUT_LVDS:
  4113. is_lvds = true;
  4114. break;
  4115. case INTEL_OUTPUT_DSI:
  4116. is_dsi = true;
  4117. break;
  4118. }
  4119. num_connectors++;
  4120. }
  4121. refclk = i9xx_get_refclk(crtc, num_connectors);
  4122. if (!is_dsi && !intel_crtc->config.clock_set) {
  4123. /*
  4124. * Returns a set of divisors for the desired target clock with
  4125. * the given refclk, or FALSE. The returned values represent
  4126. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4127. * 2) / p1 / p2.
  4128. */
  4129. limit = intel_limit(crtc, refclk);
  4130. ok = dev_priv->display.find_dpll(limit, crtc,
  4131. intel_crtc->config.port_clock,
  4132. refclk, NULL, &clock);
  4133. if (!ok && !intel_crtc->config.clock_set) {
  4134. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4135. return -EINVAL;
  4136. }
  4137. }
  4138. /* Ensure that the cursor is valid for the new mode before changing... */
  4139. intel_crtc_update_cursor(crtc, true);
  4140. if (!is_dsi && is_lvds && dev_priv->lvds_downclock_avail) {
  4141. /*
  4142. * Ensure we match the reduced clock's P to the target clock.
  4143. * If the clocks don't match, we can't switch the display clock
  4144. * by using the FP0/FP1. In such case we will disable the LVDS
  4145. * downclock feature.
  4146. */
  4147. limit = intel_limit(crtc, refclk);
  4148. has_reduced_clock =
  4149. dev_priv->display.find_dpll(limit, crtc,
  4150. dev_priv->lvds_downclock,
  4151. refclk, &clock,
  4152. &reduced_clock);
  4153. }
  4154. /* Compat-code for transition, will disappear. */
  4155. if (!intel_crtc->config.clock_set) {
  4156. intel_crtc->config.dpll.n = clock.n;
  4157. intel_crtc->config.dpll.m1 = clock.m1;
  4158. intel_crtc->config.dpll.m2 = clock.m2;
  4159. intel_crtc->config.dpll.p1 = clock.p1;
  4160. intel_crtc->config.dpll.p2 = clock.p2;
  4161. }
  4162. if (IS_GEN2(dev)) {
  4163. i8xx_update_pll(intel_crtc,
  4164. has_reduced_clock ? &reduced_clock : NULL,
  4165. num_connectors);
  4166. } else if (IS_VALLEYVIEW(dev)) {
  4167. if (!is_dsi)
  4168. vlv_update_pll(intel_crtc);
  4169. } else {
  4170. i9xx_update_pll(intel_crtc,
  4171. has_reduced_clock ? &reduced_clock : NULL,
  4172. num_connectors);
  4173. }
  4174. /* Set up the display plane register */
  4175. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4176. if (!IS_VALLEYVIEW(dev)) {
  4177. if (pipe == 0)
  4178. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4179. else
  4180. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4181. }
  4182. intel_set_pipe_timings(intel_crtc);
  4183. /* pipesrc and dspsize control the size that is scaled from,
  4184. * which should always be the user's requested size.
  4185. */
  4186. I915_WRITE(DSPSIZE(plane),
  4187. ((mode->vdisplay - 1) << 16) |
  4188. (mode->hdisplay - 1));
  4189. I915_WRITE(DSPPOS(plane), 0);
  4190. i9xx_set_pipeconf(intel_crtc);
  4191. I915_WRITE(DSPCNTR(plane), dspcntr);
  4192. POSTING_READ(DSPCNTR(plane));
  4193. ret = intel_pipe_set_base(crtc, x, y, fb);
  4194. intel_update_watermarks(dev);
  4195. return ret;
  4196. }
  4197. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4198. struct intel_crtc_config *pipe_config)
  4199. {
  4200. struct drm_device *dev = crtc->base.dev;
  4201. struct drm_i915_private *dev_priv = dev->dev_private;
  4202. uint32_t tmp;
  4203. tmp = I915_READ(PFIT_CONTROL);
  4204. if (!(tmp & PFIT_ENABLE))
  4205. return;
  4206. /* Check whether the pfit is attached to our pipe. */
  4207. if (INTEL_INFO(dev)->gen < 4) {
  4208. if (crtc->pipe != PIPE_B)
  4209. return;
  4210. } else {
  4211. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4212. return;
  4213. }
  4214. pipe_config->gmch_pfit.control = tmp;
  4215. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4216. if (INTEL_INFO(dev)->gen < 5)
  4217. pipe_config->gmch_pfit.lvds_border_bits =
  4218. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4219. }
  4220. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4221. struct intel_crtc_config *pipe_config)
  4222. {
  4223. struct drm_device *dev = crtc->base.dev;
  4224. struct drm_i915_private *dev_priv = dev->dev_private;
  4225. uint32_t tmp;
  4226. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4227. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4228. tmp = I915_READ(PIPECONF(crtc->pipe));
  4229. if (!(tmp & PIPECONF_ENABLE))
  4230. return false;
  4231. intel_get_pipe_timings(crtc, pipe_config);
  4232. i9xx_get_pfit_config(crtc, pipe_config);
  4233. if (INTEL_INFO(dev)->gen >= 4) {
  4234. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4235. pipe_config->pixel_multiplier =
  4236. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4237. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4238. pipe_config->dpll_hw_state.dpll_md = tmp;
  4239. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4240. tmp = I915_READ(DPLL(crtc->pipe));
  4241. pipe_config->pixel_multiplier =
  4242. ((tmp & SDVO_MULTIPLIER_MASK)
  4243. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4244. } else {
  4245. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4246. * port and will be fixed up in the encoder->get_config
  4247. * function. */
  4248. pipe_config->pixel_multiplier = 1;
  4249. }
  4250. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4251. if (!IS_VALLEYVIEW(dev)) {
  4252. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4253. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4254. } else {
  4255. /* Mask out read-only status bits. */
  4256. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4257. DPLL_PORTC_READY_MASK |
  4258. DPLL_PORTB_READY_MASK);
  4259. }
  4260. return true;
  4261. }
  4262. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4263. {
  4264. struct drm_i915_private *dev_priv = dev->dev_private;
  4265. struct drm_mode_config *mode_config = &dev->mode_config;
  4266. struct intel_encoder *encoder;
  4267. u32 val, final;
  4268. bool has_lvds = false;
  4269. bool has_cpu_edp = false;
  4270. bool has_panel = false;
  4271. bool has_ck505 = false;
  4272. bool can_ssc = false;
  4273. /* We need to take the global config into account */
  4274. list_for_each_entry(encoder, &mode_config->encoder_list,
  4275. base.head) {
  4276. switch (encoder->type) {
  4277. case INTEL_OUTPUT_LVDS:
  4278. has_panel = true;
  4279. has_lvds = true;
  4280. break;
  4281. case INTEL_OUTPUT_EDP:
  4282. has_panel = true;
  4283. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4284. has_cpu_edp = true;
  4285. break;
  4286. }
  4287. }
  4288. if (HAS_PCH_IBX(dev)) {
  4289. has_ck505 = dev_priv->vbt.display_clock_mode;
  4290. can_ssc = has_ck505;
  4291. } else {
  4292. has_ck505 = false;
  4293. can_ssc = true;
  4294. }
  4295. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4296. has_panel, has_lvds, has_ck505);
  4297. /* Ironlake: try to setup display ref clock before DPLL
  4298. * enabling. This is only under driver's control after
  4299. * PCH B stepping, previous chipset stepping should be
  4300. * ignoring this setting.
  4301. */
  4302. val = I915_READ(PCH_DREF_CONTROL);
  4303. /* As we must carefully and slowly disable/enable each source in turn,
  4304. * compute the final state we want first and check if we need to
  4305. * make any changes at all.
  4306. */
  4307. final = val;
  4308. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4309. if (has_ck505)
  4310. final |= DREF_NONSPREAD_CK505_ENABLE;
  4311. else
  4312. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4313. final &= ~DREF_SSC_SOURCE_MASK;
  4314. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4315. final &= ~DREF_SSC1_ENABLE;
  4316. if (has_panel) {
  4317. final |= DREF_SSC_SOURCE_ENABLE;
  4318. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4319. final |= DREF_SSC1_ENABLE;
  4320. if (has_cpu_edp) {
  4321. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4322. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4323. else
  4324. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4325. } else
  4326. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4327. } else {
  4328. final |= DREF_SSC_SOURCE_DISABLE;
  4329. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4330. }
  4331. if (final == val)
  4332. return;
  4333. /* Always enable nonspread source */
  4334. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4335. if (has_ck505)
  4336. val |= DREF_NONSPREAD_CK505_ENABLE;
  4337. else
  4338. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4339. if (has_panel) {
  4340. val &= ~DREF_SSC_SOURCE_MASK;
  4341. val |= DREF_SSC_SOURCE_ENABLE;
  4342. /* SSC must be turned on before enabling the CPU output */
  4343. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4344. DRM_DEBUG_KMS("Using SSC on panel\n");
  4345. val |= DREF_SSC1_ENABLE;
  4346. } else
  4347. val &= ~DREF_SSC1_ENABLE;
  4348. /* Get SSC going before enabling the outputs */
  4349. I915_WRITE(PCH_DREF_CONTROL, val);
  4350. POSTING_READ(PCH_DREF_CONTROL);
  4351. udelay(200);
  4352. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4353. /* Enable CPU source on CPU attached eDP */
  4354. if (has_cpu_edp) {
  4355. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4356. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4357. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4358. }
  4359. else
  4360. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4361. } else
  4362. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4363. I915_WRITE(PCH_DREF_CONTROL, val);
  4364. POSTING_READ(PCH_DREF_CONTROL);
  4365. udelay(200);
  4366. } else {
  4367. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4368. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4369. /* Turn off CPU output */
  4370. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4371. I915_WRITE(PCH_DREF_CONTROL, val);
  4372. POSTING_READ(PCH_DREF_CONTROL);
  4373. udelay(200);
  4374. /* Turn off the SSC source */
  4375. val &= ~DREF_SSC_SOURCE_MASK;
  4376. val |= DREF_SSC_SOURCE_DISABLE;
  4377. /* Turn off SSC1 */
  4378. val &= ~DREF_SSC1_ENABLE;
  4379. I915_WRITE(PCH_DREF_CONTROL, val);
  4380. POSTING_READ(PCH_DREF_CONTROL);
  4381. udelay(200);
  4382. }
  4383. BUG_ON(val != final);
  4384. }
  4385. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4386. {
  4387. uint32_t tmp;
  4388. tmp = I915_READ(SOUTH_CHICKEN2);
  4389. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4390. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4391. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4392. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4393. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4394. tmp = I915_READ(SOUTH_CHICKEN2);
  4395. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4396. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4397. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4398. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4399. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4400. }
  4401. /* WaMPhyProgramming:hsw */
  4402. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4403. {
  4404. uint32_t tmp;
  4405. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4406. tmp &= ~(0xFF << 24);
  4407. tmp |= (0x12 << 24);
  4408. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4409. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4410. tmp |= (1 << 11);
  4411. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4412. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4413. tmp |= (1 << 11);
  4414. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4415. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4416. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4417. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4418. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4419. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4420. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4421. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4422. tmp &= ~(7 << 13);
  4423. tmp |= (5 << 13);
  4424. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4425. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4426. tmp &= ~(7 << 13);
  4427. tmp |= (5 << 13);
  4428. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4429. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4430. tmp &= ~0xFF;
  4431. tmp |= 0x1C;
  4432. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4433. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4434. tmp &= ~0xFF;
  4435. tmp |= 0x1C;
  4436. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4437. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4438. tmp &= ~(0xFF << 16);
  4439. tmp |= (0x1C << 16);
  4440. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4441. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4442. tmp &= ~(0xFF << 16);
  4443. tmp |= (0x1C << 16);
  4444. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4445. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4446. tmp |= (1 << 27);
  4447. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4448. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4449. tmp |= (1 << 27);
  4450. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4451. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4452. tmp &= ~(0xF << 28);
  4453. tmp |= (4 << 28);
  4454. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4455. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4456. tmp &= ~(0xF << 28);
  4457. tmp |= (4 << 28);
  4458. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4459. }
  4460. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4461. * Programming" based on the parameters passed:
  4462. * - Sequence to enable CLKOUT_DP
  4463. * - Sequence to enable CLKOUT_DP without spread
  4464. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4465. */
  4466. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4467. bool with_fdi)
  4468. {
  4469. struct drm_i915_private *dev_priv = dev->dev_private;
  4470. uint32_t reg, tmp;
  4471. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4472. with_spread = true;
  4473. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4474. with_fdi, "LP PCH doesn't have FDI\n"))
  4475. with_fdi = false;
  4476. mutex_lock(&dev_priv->dpio_lock);
  4477. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4478. tmp &= ~SBI_SSCCTL_DISABLE;
  4479. tmp |= SBI_SSCCTL_PATHALT;
  4480. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4481. udelay(24);
  4482. if (with_spread) {
  4483. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4484. tmp &= ~SBI_SSCCTL_PATHALT;
  4485. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4486. if (with_fdi) {
  4487. lpt_reset_fdi_mphy(dev_priv);
  4488. lpt_program_fdi_mphy(dev_priv);
  4489. }
  4490. }
  4491. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4492. SBI_GEN0 : SBI_DBUFF0;
  4493. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4494. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4495. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4496. mutex_unlock(&dev_priv->dpio_lock);
  4497. }
  4498. /* Sequence to disable CLKOUT_DP */
  4499. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4500. {
  4501. struct drm_i915_private *dev_priv = dev->dev_private;
  4502. uint32_t reg, tmp;
  4503. mutex_lock(&dev_priv->dpio_lock);
  4504. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4505. SBI_GEN0 : SBI_DBUFF0;
  4506. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4507. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4508. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4509. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4510. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4511. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4512. tmp |= SBI_SSCCTL_PATHALT;
  4513. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4514. udelay(32);
  4515. }
  4516. tmp |= SBI_SSCCTL_DISABLE;
  4517. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4518. }
  4519. mutex_unlock(&dev_priv->dpio_lock);
  4520. }
  4521. static void lpt_init_pch_refclk(struct drm_device *dev)
  4522. {
  4523. struct drm_mode_config *mode_config = &dev->mode_config;
  4524. struct intel_encoder *encoder;
  4525. bool has_vga = false;
  4526. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4527. switch (encoder->type) {
  4528. case INTEL_OUTPUT_ANALOG:
  4529. has_vga = true;
  4530. break;
  4531. }
  4532. }
  4533. if (has_vga)
  4534. lpt_enable_clkout_dp(dev, true, true);
  4535. else
  4536. lpt_disable_clkout_dp(dev);
  4537. }
  4538. /*
  4539. * Initialize reference clocks when the driver loads
  4540. */
  4541. void intel_init_pch_refclk(struct drm_device *dev)
  4542. {
  4543. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4544. ironlake_init_pch_refclk(dev);
  4545. else if (HAS_PCH_LPT(dev))
  4546. lpt_init_pch_refclk(dev);
  4547. }
  4548. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4549. {
  4550. struct drm_device *dev = crtc->dev;
  4551. struct drm_i915_private *dev_priv = dev->dev_private;
  4552. struct intel_encoder *encoder;
  4553. int num_connectors = 0;
  4554. bool is_lvds = false;
  4555. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4556. switch (encoder->type) {
  4557. case INTEL_OUTPUT_LVDS:
  4558. is_lvds = true;
  4559. break;
  4560. }
  4561. num_connectors++;
  4562. }
  4563. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4564. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4565. dev_priv->vbt.lvds_ssc_freq);
  4566. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4567. }
  4568. return 120000;
  4569. }
  4570. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4571. {
  4572. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4573. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4574. int pipe = intel_crtc->pipe;
  4575. uint32_t val;
  4576. val = 0;
  4577. switch (intel_crtc->config.pipe_bpp) {
  4578. case 18:
  4579. val |= PIPECONF_6BPC;
  4580. break;
  4581. case 24:
  4582. val |= PIPECONF_8BPC;
  4583. break;
  4584. case 30:
  4585. val |= PIPECONF_10BPC;
  4586. break;
  4587. case 36:
  4588. val |= PIPECONF_12BPC;
  4589. break;
  4590. default:
  4591. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4592. BUG();
  4593. }
  4594. if (intel_crtc->config.dither)
  4595. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4596. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4597. val |= PIPECONF_INTERLACED_ILK;
  4598. else
  4599. val |= PIPECONF_PROGRESSIVE;
  4600. if (intel_crtc->config.limited_color_range)
  4601. val |= PIPECONF_COLOR_RANGE_SELECT;
  4602. I915_WRITE(PIPECONF(pipe), val);
  4603. POSTING_READ(PIPECONF(pipe));
  4604. }
  4605. /*
  4606. * Set up the pipe CSC unit.
  4607. *
  4608. * Currently only full range RGB to limited range RGB conversion
  4609. * is supported, but eventually this should handle various
  4610. * RGB<->YCbCr scenarios as well.
  4611. */
  4612. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4613. {
  4614. struct drm_device *dev = crtc->dev;
  4615. struct drm_i915_private *dev_priv = dev->dev_private;
  4616. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4617. int pipe = intel_crtc->pipe;
  4618. uint16_t coeff = 0x7800; /* 1.0 */
  4619. /*
  4620. * TODO: Check what kind of values actually come out of the pipe
  4621. * with these coeff/postoff values and adjust to get the best
  4622. * accuracy. Perhaps we even need to take the bpc value into
  4623. * consideration.
  4624. */
  4625. if (intel_crtc->config.limited_color_range)
  4626. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4627. /*
  4628. * GY/GU and RY/RU should be the other way around according
  4629. * to BSpec, but reality doesn't agree. Just set them up in
  4630. * a way that results in the correct picture.
  4631. */
  4632. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4633. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4634. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4635. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4636. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4637. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4638. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4639. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4640. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4641. if (INTEL_INFO(dev)->gen > 6) {
  4642. uint16_t postoff = 0;
  4643. if (intel_crtc->config.limited_color_range)
  4644. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4645. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4646. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4647. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4648. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4649. } else {
  4650. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4651. if (intel_crtc->config.limited_color_range)
  4652. mode |= CSC_BLACK_SCREEN_OFFSET;
  4653. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4654. }
  4655. }
  4656. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4657. {
  4658. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4659. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4660. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4661. uint32_t val;
  4662. val = 0;
  4663. if (intel_crtc->config.dither)
  4664. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4665. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4666. val |= PIPECONF_INTERLACED_ILK;
  4667. else
  4668. val |= PIPECONF_PROGRESSIVE;
  4669. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4670. POSTING_READ(PIPECONF(cpu_transcoder));
  4671. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4672. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4673. }
  4674. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4675. intel_clock_t *clock,
  4676. bool *has_reduced_clock,
  4677. intel_clock_t *reduced_clock)
  4678. {
  4679. struct drm_device *dev = crtc->dev;
  4680. struct drm_i915_private *dev_priv = dev->dev_private;
  4681. struct intel_encoder *intel_encoder;
  4682. int refclk;
  4683. const intel_limit_t *limit;
  4684. bool ret, is_lvds = false;
  4685. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4686. switch (intel_encoder->type) {
  4687. case INTEL_OUTPUT_LVDS:
  4688. is_lvds = true;
  4689. break;
  4690. }
  4691. }
  4692. refclk = ironlake_get_refclk(crtc);
  4693. /*
  4694. * Returns a set of divisors for the desired target clock with the given
  4695. * refclk, or FALSE. The returned values represent the clock equation:
  4696. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4697. */
  4698. limit = intel_limit(crtc, refclk);
  4699. ret = dev_priv->display.find_dpll(limit, crtc,
  4700. to_intel_crtc(crtc)->config.port_clock,
  4701. refclk, NULL, clock);
  4702. if (!ret)
  4703. return false;
  4704. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4705. /*
  4706. * Ensure we match the reduced clock's P to the target clock.
  4707. * If the clocks don't match, we can't switch the display clock
  4708. * by using the FP0/FP1. In such case we will disable the LVDS
  4709. * downclock feature.
  4710. */
  4711. *has_reduced_clock =
  4712. dev_priv->display.find_dpll(limit, crtc,
  4713. dev_priv->lvds_downclock,
  4714. refclk, clock,
  4715. reduced_clock);
  4716. }
  4717. return true;
  4718. }
  4719. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4720. {
  4721. struct drm_i915_private *dev_priv = dev->dev_private;
  4722. uint32_t temp;
  4723. temp = I915_READ(SOUTH_CHICKEN1);
  4724. if (temp & FDI_BC_BIFURCATION_SELECT)
  4725. return;
  4726. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4727. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4728. temp |= FDI_BC_BIFURCATION_SELECT;
  4729. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4730. I915_WRITE(SOUTH_CHICKEN1, temp);
  4731. POSTING_READ(SOUTH_CHICKEN1);
  4732. }
  4733. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4734. {
  4735. struct drm_device *dev = intel_crtc->base.dev;
  4736. struct drm_i915_private *dev_priv = dev->dev_private;
  4737. switch (intel_crtc->pipe) {
  4738. case PIPE_A:
  4739. break;
  4740. case PIPE_B:
  4741. if (intel_crtc->config.fdi_lanes > 2)
  4742. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4743. else
  4744. cpt_enable_fdi_bc_bifurcation(dev);
  4745. break;
  4746. case PIPE_C:
  4747. cpt_enable_fdi_bc_bifurcation(dev);
  4748. break;
  4749. default:
  4750. BUG();
  4751. }
  4752. }
  4753. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4754. {
  4755. /*
  4756. * Account for spread spectrum to avoid
  4757. * oversubscribing the link. Max center spread
  4758. * is 2.5%; use 5% for safety's sake.
  4759. */
  4760. u32 bps = target_clock * bpp * 21 / 20;
  4761. return bps / (link_bw * 8) + 1;
  4762. }
  4763. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4764. {
  4765. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4766. }
  4767. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4768. u32 *fp,
  4769. intel_clock_t *reduced_clock, u32 *fp2)
  4770. {
  4771. struct drm_crtc *crtc = &intel_crtc->base;
  4772. struct drm_device *dev = crtc->dev;
  4773. struct drm_i915_private *dev_priv = dev->dev_private;
  4774. struct intel_encoder *intel_encoder;
  4775. uint32_t dpll;
  4776. int factor, num_connectors = 0;
  4777. bool is_lvds = false, is_sdvo = false;
  4778. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4779. switch (intel_encoder->type) {
  4780. case INTEL_OUTPUT_LVDS:
  4781. is_lvds = true;
  4782. break;
  4783. case INTEL_OUTPUT_SDVO:
  4784. case INTEL_OUTPUT_HDMI:
  4785. is_sdvo = true;
  4786. break;
  4787. }
  4788. num_connectors++;
  4789. }
  4790. /* Enable autotuning of the PLL clock (if permissible) */
  4791. factor = 21;
  4792. if (is_lvds) {
  4793. if ((intel_panel_use_ssc(dev_priv) &&
  4794. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4795. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4796. factor = 25;
  4797. } else if (intel_crtc->config.sdvo_tv_clock)
  4798. factor = 20;
  4799. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4800. *fp |= FP_CB_TUNE;
  4801. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4802. *fp2 |= FP_CB_TUNE;
  4803. dpll = 0;
  4804. if (is_lvds)
  4805. dpll |= DPLLB_MODE_LVDS;
  4806. else
  4807. dpll |= DPLLB_MODE_DAC_SERIAL;
  4808. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4809. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4810. if (is_sdvo)
  4811. dpll |= DPLL_SDVO_HIGH_SPEED;
  4812. if (intel_crtc->config.has_dp_encoder)
  4813. dpll |= DPLL_SDVO_HIGH_SPEED;
  4814. /* compute bitmask from p1 value */
  4815. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4816. /* also FPA1 */
  4817. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4818. switch (intel_crtc->config.dpll.p2) {
  4819. case 5:
  4820. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4821. break;
  4822. case 7:
  4823. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4824. break;
  4825. case 10:
  4826. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4827. break;
  4828. case 14:
  4829. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4830. break;
  4831. }
  4832. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4833. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4834. else
  4835. dpll |= PLL_REF_INPUT_DREFCLK;
  4836. return dpll | DPLL_VCO_ENABLE;
  4837. }
  4838. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4839. int x, int y,
  4840. struct drm_framebuffer *fb)
  4841. {
  4842. struct drm_device *dev = crtc->dev;
  4843. struct drm_i915_private *dev_priv = dev->dev_private;
  4844. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4845. int pipe = intel_crtc->pipe;
  4846. int plane = intel_crtc->plane;
  4847. int num_connectors = 0;
  4848. intel_clock_t clock, reduced_clock;
  4849. u32 dpll = 0, fp = 0, fp2 = 0;
  4850. bool ok, has_reduced_clock = false;
  4851. bool is_lvds = false;
  4852. struct intel_encoder *encoder;
  4853. struct intel_shared_dpll *pll;
  4854. int ret;
  4855. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4856. switch (encoder->type) {
  4857. case INTEL_OUTPUT_LVDS:
  4858. is_lvds = true;
  4859. break;
  4860. }
  4861. num_connectors++;
  4862. }
  4863. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4864. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4865. ok = ironlake_compute_clocks(crtc, &clock,
  4866. &has_reduced_clock, &reduced_clock);
  4867. if (!ok && !intel_crtc->config.clock_set) {
  4868. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4869. return -EINVAL;
  4870. }
  4871. /* Compat-code for transition, will disappear. */
  4872. if (!intel_crtc->config.clock_set) {
  4873. intel_crtc->config.dpll.n = clock.n;
  4874. intel_crtc->config.dpll.m1 = clock.m1;
  4875. intel_crtc->config.dpll.m2 = clock.m2;
  4876. intel_crtc->config.dpll.p1 = clock.p1;
  4877. intel_crtc->config.dpll.p2 = clock.p2;
  4878. }
  4879. /* Ensure that the cursor is valid for the new mode before changing... */
  4880. intel_crtc_update_cursor(crtc, true);
  4881. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4882. if (intel_crtc->config.has_pch_encoder) {
  4883. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4884. if (has_reduced_clock)
  4885. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4886. dpll = ironlake_compute_dpll(intel_crtc,
  4887. &fp, &reduced_clock,
  4888. has_reduced_clock ? &fp2 : NULL);
  4889. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4890. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4891. if (has_reduced_clock)
  4892. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4893. else
  4894. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4895. pll = intel_get_shared_dpll(intel_crtc);
  4896. if (pll == NULL) {
  4897. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4898. pipe_name(pipe));
  4899. return -EINVAL;
  4900. }
  4901. } else
  4902. intel_put_shared_dpll(intel_crtc);
  4903. if (intel_crtc->config.has_dp_encoder)
  4904. intel_dp_set_m_n(intel_crtc);
  4905. if (is_lvds && has_reduced_clock && i915_powersave)
  4906. intel_crtc->lowfreq_avail = true;
  4907. else
  4908. intel_crtc->lowfreq_avail = false;
  4909. if (intel_crtc->config.has_pch_encoder) {
  4910. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4911. }
  4912. intel_set_pipe_timings(intel_crtc);
  4913. if (intel_crtc->config.has_pch_encoder) {
  4914. intel_cpu_transcoder_set_m_n(intel_crtc,
  4915. &intel_crtc->config.fdi_m_n);
  4916. }
  4917. if (IS_IVYBRIDGE(dev))
  4918. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4919. ironlake_set_pipeconf(crtc);
  4920. /* Set up the display plane register */
  4921. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4922. POSTING_READ(DSPCNTR(plane));
  4923. ret = intel_pipe_set_base(crtc, x, y, fb);
  4924. intel_update_watermarks(dev);
  4925. return ret;
  4926. }
  4927. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4928. struct intel_crtc_config *pipe_config)
  4929. {
  4930. struct drm_device *dev = crtc->base.dev;
  4931. struct drm_i915_private *dev_priv = dev->dev_private;
  4932. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4933. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4934. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4935. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4936. & ~TU_SIZE_MASK;
  4937. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4938. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4939. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4940. }
  4941. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4942. struct intel_crtc_config *pipe_config)
  4943. {
  4944. struct drm_device *dev = crtc->base.dev;
  4945. struct drm_i915_private *dev_priv = dev->dev_private;
  4946. uint32_t tmp;
  4947. tmp = I915_READ(PF_CTL(crtc->pipe));
  4948. if (tmp & PF_ENABLE) {
  4949. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4950. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4951. /* We currently do not free assignements of panel fitters on
  4952. * ivb/hsw (since we don't use the higher upscaling modes which
  4953. * differentiates them) so just WARN about this case for now. */
  4954. if (IS_GEN7(dev)) {
  4955. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4956. PF_PIPE_SEL_IVB(crtc->pipe));
  4957. }
  4958. }
  4959. }
  4960. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4961. struct intel_crtc_config *pipe_config)
  4962. {
  4963. struct drm_device *dev = crtc->base.dev;
  4964. struct drm_i915_private *dev_priv = dev->dev_private;
  4965. uint32_t tmp;
  4966. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4967. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4968. tmp = I915_READ(PIPECONF(crtc->pipe));
  4969. if (!(tmp & PIPECONF_ENABLE))
  4970. return false;
  4971. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4972. struct intel_shared_dpll *pll;
  4973. pipe_config->has_pch_encoder = true;
  4974. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4975. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4976. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4977. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4978. if (HAS_PCH_IBX(dev_priv->dev)) {
  4979. pipe_config->shared_dpll =
  4980. (enum intel_dpll_id) crtc->pipe;
  4981. } else {
  4982. tmp = I915_READ(PCH_DPLL_SEL);
  4983. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  4984. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  4985. else
  4986. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  4987. }
  4988. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  4989. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  4990. &pipe_config->dpll_hw_state));
  4991. tmp = pipe_config->dpll_hw_state.dpll;
  4992. pipe_config->pixel_multiplier =
  4993. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  4994. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  4995. } else {
  4996. pipe_config->pixel_multiplier = 1;
  4997. }
  4998. intel_get_pipe_timings(crtc, pipe_config);
  4999. ironlake_get_pfit_config(crtc, pipe_config);
  5000. return true;
  5001. }
  5002. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5003. {
  5004. struct drm_device *dev = dev_priv->dev;
  5005. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5006. struct intel_crtc *crtc;
  5007. unsigned long irqflags;
  5008. uint32_t val;
  5009. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5010. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5011. pipe_name(crtc->pipe));
  5012. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5013. WARN(plls->spll_refcount, "SPLL enabled\n");
  5014. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5015. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5016. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5017. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5018. "CPU PWM1 enabled\n");
  5019. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5020. "CPU PWM2 enabled\n");
  5021. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5022. "PCH PWM1 enabled\n");
  5023. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5024. "Utility pin enabled\n");
  5025. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5026. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5027. val = I915_READ(DEIMR);
  5028. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5029. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5030. val = I915_READ(SDEIMR);
  5031. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5032. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5033. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5034. }
  5035. /*
  5036. * This function implements pieces of two sequences from BSpec:
  5037. * - Sequence for display software to disable LCPLL
  5038. * - Sequence for display software to allow package C8+
  5039. * The steps implemented here are just the steps that actually touch the LCPLL
  5040. * register. Callers should take care of disabling all the display engine
  5041. * functions, doing the mode unset, fixing interrupts, etc.
  5042. */
  5043. void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5044. bool switch_to_fclk, bool allow_power_down)
  5045. {
  5046. uint32_t val;
  5047. assert_can_disable_lcpll(dev_priv);
  5048. val = I915_READ(LCPLL_CTL);
  5049. if (switch_to_fclk) {
  5050. val |= LCPLL_CD_SOURCE_FCLK;
  5051. I915_WRITE(LCPLL_CTL, val);
  5052. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5053. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5054. DRM_ERROR("Switching to FCLK failed\n");
  5055. val = I915_READ(LCPLL_CTL);
  5056. }
  5057. val |= LCPLL_PLL_DISABLE;
  5058. I915_WRITE(LCPLL_CTL, val);
  5059. POSTING_READ(LCPLL_CTL);
  5060. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5061. DRM_ERROR("LCPLL still locked\n");
  5062. val = I915_READ(D_COMP);
  5063. val |= D_COMP_COMP_DISABLE;
  5064. I915_WRITE(D_COMP, val);
  5065. POSTING_READ(D_COMP);
  5066. ndelay(100);
  5067. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5068. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5069. if (allow_power_down) {
  5070. val = I915_READ(LCPLL_CTL);
  5071. val |= LCPLL_POWER_DOWN_ALLOW;
  5072. I915_WRITE(LCPLL_CTL, val);
  5073. POSTING_READ(LCPLL_CTL);
  5074. }
  5075. }
  5076. /*
  5077. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5078. * source.
  5079. */
  5080. void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5081. {
  5082. uint32_t val;
  5083. val = I915_READ(LCPLL_CTL);
  5084. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5085. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5086. return;
  5087. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5088. * we'll hang the machine! */
  5089. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5090. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5091. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5092. I915_WRITE(LCPLL_CTL, val);
  5093. POSTING_READ(LCPLL_CTL);
  5094. }
  5095. val = I915_READ(D_COMP);
  5096. val |= D_COMP_COMP_FORCE;
  5097. val &= ~D_COMP_COMP_DISABLE;
  5098. I915_WRITE(D_COMP, val);
  5099. POSTING_READ(D_COMP);
  5100. val = I915_READ(LCPLL_CTL);
  5101. val &= ~LCPLL_PLL_DISABLE;
  5102. I915_WRITE(LCPLL_CTL, val);
  5103. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5104. DRM_ERROR("LCPLL not locked yet\n");
  5105. if (val & LCPLL_CD_SOURCE_FCLK) {
  5106. val = I915_READ(LCPLL_CTL);
  5107. val &= ~LCPLL_CD_SOURCE_FCLK;
  5108. I915_WRITE(LCPLL_CTL, val);
  5109. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5110. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5111. DRM_ERROR("Switching back to LCPLL failed\n");
  5112. }
  5113. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5114. }
  5115. void hsw_enable_pc8_work(struct work_struct *__work)
  5116. {
  5117. struct drm_i915_private *dev_priv =
  5118. container_of(to_delayed_work(__work), struct drm_i915_private,
  5119. pc8.enable_work);
  5120. struct drm_device *dev = dev_priv->dev;
  5121. uint32_t val;
  5122. if (dev_priv->pc8.enabled)
  5123. return;
  5124. DRM_DEBUG_KMS("Enabling package C8+\n");
  5125. dev_priv->pc8.enabled = true;
  5126. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5127. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5128. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5129. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5130. }
  5131. lpt_disable_clkout_dp(dev);
  5132. hsw_pc8_disable_interrupts(dev);
  5133. hsw_disable_lcpll(dev_priv, true, true);
  5134. }
  5135. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5136. {
  5137. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5138. WARN(dev_priv->pc8.disable_count < 1,
  5139. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5140. dev_priv->pc8.disable_count--;
  5141. if (dev_priv->pc8.disable_count != 0)
  5142. return;
  5143. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5144. msecs_to_jiffies(i915_pc8_timeout));
  5145. }
  5146. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5147. {
  5148. struct drm_device *dev = dev_priv->dev;
  5149. uint32_t val;
  5150. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5151. WARN(dev_priv->pc8.disable_count < 0,
  5152. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5153. dev_priv->pc8.disable_count++;
  5154. if (dev_priv->pc8.disable_count != 1)
  5155. return;
  5156. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5157. if (!dev_priv->pc8.enabled)
  5158. return;
  5159. DRM_DEBUG_KMS("Disabling package C8+\n");
  5160. hsw_restore_lcpll(dev_priv);
  5161. hsw_pc8_restore_interrupts(dev);
  5162. lpt_init_pch_refclk(dev);
  5163. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5164. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5165. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5166. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5167. }
  5168. intel_prepare_ddi(dev);
  5169. i915_gem_init_swizzling(dev);
  5170. mutex_lock(&dev_priv->rps.hw_lock);
  5171. gen6_update_ring_freq(dev);
  5172. mutex_unlock(&dev_priv->rps.hw_lock);
  5173. dev_priv->pc8.enabled = false;
  5174. }
  5175. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5176. {
  5177. mutex_lock(&dev_priv->pc8.lock);
  5178. __hsw_enable_package_c8(dev_priv);
  5179. mutex_unlock(&dev_priv->pc8.lock);
  5180. }
  5181. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5182. {
  5183. mutex_lock(&dev_priv->pc8.lock);
  5184. __hsw_disable_package_c8(dev_priv);
  5185. mutex_unlock(&dev_priv->pc8.lock);
  5186. }
  5187. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5188. {
  5189. struct drm_device *dev = dev_priv->dev;
  5190. struct intel_crtc *crtc;
  5191. uint32_t val;
  5192. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5193. if (crtc->base.enabled)
  5194. return false;
  5195. /* This case is still possible since we have the i915.disable_power_well
  5196. * parameter and also the KVMr or something else might be requesting the
  5197. * power well. */
  5198. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5199. if (val != 0) {
  5200. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5201. return false;
  5202. }
  5203. return true;
  5204. }
  5205. /* Since we're called from modeset_global_resources there's no way to
  5206. * symmetrically increase and decrease the refcount, so we use
  5207. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5208. * or not.
  5209. */
  5210. static void hsw_update_package_c8(struct drm_device *dev)
  5211. {
  5212. struct drm_i915_private *dev_priv = dev->dev_private;
  5213. bool allow;
  5214. if (!i915_enable_pc8)
  5215. return;
  5216. mutex_lock(&dev_priv->pc8.lock);
  5217. allow = hsw_can_enable_package_c8(dev_priv);
  5218. if (allow == dev_priv->pc8.requirements_met)
  5219. goto done;
  5220. dev_priv->pc8.requirements_met = allow;
  5221. if (allow)
  5222. __hsw_enable_package_c8(dev_priv);
  5223. else
  5224. __hsw_disable_package_c8(dev_priv);
  5225. done:
  5226. mutex_unlock(&dev_priv->pc8.lock);
  5227. }
  5228. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5229. {
  5230. if (!dev_priv->pc8.gpu_idle) {
  5231. dev_priv->pc8.gpu_idle = true;
  5232. hsw_enable_package_c8(dev_priv);
  5233. }
  5234. }
  5235. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5236. {
  5237. if (dev_priv->pc8.gpu_idle) {
  5238. dev_priv->pc8.gpu_idle = false;
  5239. hsw_disable_package_c8(dev_priv);
  5240. }
  5241. }
  5242. static void haswell_modeset_global_resources(struct drm_device *dev)
  5243. {
  5244. bool enable = false;
  5245. struct intel_crtc *crtc;
  5246. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5247. if (!crtc->base.enabled)
  5248. continue;
  5249. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  5250. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5251. enable = true;
  5252. }
  5253. intel_set_power_well(dev, enable);
  5254. hsw_update_package_c8(dev);
  5255. }
  5256. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5257. int x, int y,
  5258. struct drm_framebuffer *fb)
  5259. {
  5260. struct drm_device *dev = crtc->dev;
  5261. struct drm_i915_private *dev_priv = dev->dev_private;
  5262. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5263. int plane = intel_crtc->plane;
  5264. int ret;
  5265. if (!intel_ddi_pll_mode_set(crtc))
  5266. return -EINVAL;
  5267. /* Ensure that the cursor is valid for the new mode before changing... */
  5268. intel_crtc_update_cursor(crtc, true);
  5269. if (intel_crtc->config.has_dp_encoder)
  5270. intel_dp_set_m_n(intel_crtc);
  5271. intel_crtc->lowfreq_avail = false;
  5272. intel_set_pipe_timings(intel_crtc);
  5273. if (intel_crtc->config.has_pch_encoder) {
  5274. intel_cpu_transcoder_set_m_n(intel_crtc,
  5275. &intel_crtc->config.fdi_m_n);
  5276. }
  5277. haswell_set_pipeconf(crtc);
  5278. intel_set_pipe_csc(crtc);
  5279. /* Set up the display plane register */
  5280. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5281. POSTING_READ(DSPCNTR(plane));
  5282. ret = intel_pipe_set_base(crtc, x, y, fb);
  5283. intel_update_watermarks(dev);
  5284. return ret;
  5285. }
  5286. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5287. struct intel_crtc_config *pipe_config)
  5288. {
  5289. struct drm_device *dev = crtc->base.dev;
  5290. struct drm_i915_private *dev_priv = dev->dev_private;
  5291. enum intel_display_power_domain pfit_domain;
  5292. uint32_t tmp;
  5293. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5294. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5295. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5296. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5297. enum pipe trans_edp_pipe;
  5298. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5299. default:
  5300. WARN(1, "unknown pipe linked to edp transcoder\n");
  5301. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5302. case TRANS_DDI_EDP_INPUT_A_ON:
  5303. trans_edp_pipe = PIPE_A;
  5304. break;
  5305. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5306. trans_edp_pipe = PIPE_B;
  5307. break;
  5308. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5309. trans_edp_pipe = PIPE_C;
  5310. break;
  5311. }
  5312. if (trans_edp_pipe == crtc->pipe)
  5313. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5314. }
  5315. if (!intel_display_power_enabled(dev,
  5316. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5317. return false;
  5318. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5319. if (!(tmp & PIPECONF_ENABLE))
  5320. return false;
  5321. /*
  5322. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5323. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5324. * the PCH transcoder is on.
  5325. */
  5326. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5327. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5328. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5329. pipe_config->has_pch_encoder = true;
  5330. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5331. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5332. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5333. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5334. }
  5335. intel_get_pipe_timings(crtc, pipe_config);
  5336. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5337. if (intel_display_power_enabled(dev, pfit_domain))
  5338. ironlake_get_pfit_config(crtc, pipe_config);
  5339. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5340. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5341. pipe_config->pixel_multiplier = 1;
  5342. return true;
  5343. }
  5344. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5345. int x, int y,
  5346. struct drm_framebuffer *fb)
  5347. {
  5348. struct drm_device *dev = crtc->dev;
  5349. struct drm_i915_private *dev_priv = dev->dev_private;
  5350. struct intel_encoder *encoder;
  5351. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5352. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5353. int pipe = intel_crtc->pipe;
  5354. int ret;
  5355. drm_vblank_pre_modeset(dev, pipe);
  5356. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5357. drm_vblank_post_modeset(dev, pipe);
  5358. if (ret != 0)
  5359. return ret;
  5360. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5361. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5362. encoder->base.base.id,
  5363. drm_get_encoder_name(&encoder->base),
  5364. mode->base.id, mode->name);
  5365. encoder->mode_set(encoder);
  5366. }
  5367. return 0;
  5368. }
  5369. static bool intel_eld_uptodate(struct drm_connector *connector,
  5370. int reg_eldv, uint32_t bits_eldv,
  5371. int reg_elda, uint32_t bits_elda,
  5372. int reg_edid)
  5373. {
  5374. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5375. uint8_t *eld = connector->eld;
  5376. uint32_t i;
  5377. i = I915_READ(reg_eldv);
  5378. i &= bits_eldv;
  5379. if (!eld[0])
  5380. return !i;
  5381. if (!i)
  5382. return false;
  5383. i = I915_READ(reg_elda);
  5384. i &= ~bits_elda;
  5385. I915_WRITE(reg_elda, i);
  5386. for (i = 0; i < eld[2]; i++)
  5387. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5388. return false;
  5389. return true;
  5390. }
  5391. static void g4x_write_eld(struct drm_connector *connector,
  5392. struct drm_crtc *crtc)
  5393. {
  5394. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5395. uint8_t *eld = connector->eld;
  5396. uint32_t eldv;
  5397. uint32_t len;
  5398. uint32_t i;
  5399. i = I915_READ(G4X_AUD_VID_DID);
  5400. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5401. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5402. else
  5403. eldv = G4X_ELDV_DEVCTG;
  5404. if (intel_eld_uptodate(connector,
  5405. G4X_AUD_CNTL_ST, eldv,
  5406. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5407. G4X_HDMIW_HDMIEDID))
  5408. return;
  5409. i = I915_READ(G4X_AUD_CNTL_ST);
  5410. i &= ~(eldv | G4X_ELD_ADDR);
  5411. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5412. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5413. if (!eld[0])
  5414. return;
  5415. len = min_t(uint8_t, eld[2], len);
  5416. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5417. for (i = 0; i < len; i++)
  5418. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5419. i = I915_READ(G4X_AUD_CNTL_ST);
  5420. i |= eldv;
  5421. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5422. }
  5423. static void haswell_write_eld(struct drm_connector *connector,
  5424. struct drm_crtc *crtc)
  5425. {
  5426. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5427. uint8_t *eld = connector->eld;
  5428. struct drm_device *dev = crtc->dev;
  5429. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5430. uint32_t eldv;
  5431. uint32_t i;
  5432. int len;
  5433. int pipe = to_intel_crtc(crtc)->pipe;
  5434. int tmp;
  5435. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5436. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5437. int aud_config = HSW_AUD_CFG(pipe);
  5438. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5439. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5440. /* Audio output enable */
  5441. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5442. tmp = I915_READ(aud_cntrl_st2);
  5443. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5444. I915_WRITE(aud_cntrl_st2, tmp);
  5445. /* Wait for 1 vertical blank */
  5446. intel_wait_for_vblank(dev, pipe);
  5447. /* Set ELD valid state */
  5448. tmp = I915_READ(aud_cntrl_st2);
  5449. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5450. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5451. I915_WRITE(aud_cntrl_st2, tmp);
  5452. tmp = I915_READ(aud_cntrl_st2);
  5453. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5454. /* Enable HDMI mode */
  5455. tmp = I915_READ(aud_config);
  5456. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5457. /* clear N_programing_enable and N_value_index */
  5458. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5459. I915_WRITE(aud_config, tmp);
  5460. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5461. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5462. intel_crtc->eld_vld = true;
  5463. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5464. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5465. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5466. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5467. } else
  5468. I915_WRITE(aud_config, 0);
  5469. if (intel_eld_uptodate(connector,
  5470. aud_cntrl_st2, eldv,
  5471. aud_cntl_st, IBX_ELD_ADDRESS,
  5472. hdmiw_hdmiedid))
  5473. return;
  5474. i = I915_READ(aud_cntrl_st2);
  5475. i &= ~eldv;
  5476. I915_WRITE(aud_cntrl_st2, i);
  5477. if (!eld[0])
  5478. return;
  5479. i = I915_READ(aud_cntl_st);
  5480. i &= ~IBX_ELD_ADDRESS;
  5481. I915_WRITE(aud_cntl_st, i);
  5482. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5483. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5484. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5485. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5486. for (i = 0; i < len; i++)
  5487. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5488. i = I915_READ(aud_cntrl_st2);
  5489. i |= eldv;
  5490. I915_WRITE(aud_cntrl_st2, i);
  5491. }
  5492. static void ironlake_write_eld(struct drm_connector *connector,
  5493. struct drm_crtc *crtc)
  5494. {
  5495. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5496. uint8_t *eld = connector->eld;
  5497. uint32_t eldv;
  5498. uint32_t i;
  5499. int len;
  5500. int hdmiw_hdmiedid;
  5501. int aud_config;
  5502. int aud_cntl_st;
  5503. int aud_cntrl_st2;
  5504. int pipe = to_intel_crtc(crtc)->pipe;
  5505. if (HAS_PCH_IBX(connector->dev)) {
  5506. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5507. aud_config = IBX_AUD_CFG(pipe);
  5508. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5509. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5510. } else {
  5511. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5512. aud_config = CPT_AUD_CFG(pipe);
  5513. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5514. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5515. }
  5516. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5517. i = I915_READ(aud_cntl_st);
  5518. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5519. if (!i) {
  5520. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5521. /* operate blindly on all ports */
  5522. eldv = IBX_ELD_VALIDB;
  5523. eldv |= IBX_ELD_VALIDB << 4;
  5524. eldv |= IBX_ELD_VALIDB << 8;
  5525. } else {
  5526. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5527. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5528. }
  5529. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5530. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5531. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5532. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5533. } else
  5534. I915_WRITE(aud_config, 0);
  5535. if (intel_eld_uptodate(connector,
  5536. aud_cntrl_st2, eldv,
  5537. aud_cntl_st, IBX_ELD_ADDRESS,
  5538. hdmiw_hdmiedid))
  5539. return;
  5540. i = I915_READ(aud_cntrl_st2);
  5541. i &= ~eldv;
  5542. I915_WRITE(aud_cntrl_st2, i);
  5543. if (!eld[0])
  5544. return;
  5545. i = I915_READ(aud_cntl_st);
  5546. i &= ~IBX_ELD_ADDRESS;
  5547. I915_WRITE(aud_cntl_st, i);
  5548. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5549. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5550. for (i = 0; i < len; i++)
  5551. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5552. i = I915_READ(aud_cntrl_st2);
  5553. i |= eldv;
  5554. I915_WRITE(aud_cntrl_st2, i);
  5555. }
  5556. void intel_write_eld(struct drm_encoder *encoder,
  5557. struct drm_display_mode *mode)
  5558. {
  5559. struct drm_crtc *crtc = encoder->crtc;
  5560. struct drm_connector *connector;
  5561. struct drm_device *dev = encoder->dev;
  5562. struct drm_i915_private *dev_priv = dev->dev_private;
  5563. connector = drm_select_eld(encoder, mode);
  5564. if (!connector)
  5565. return;
  5566. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5567. connector->base.id,
  5568. drm_get_connector_name(connector),
  5569. connector->encoder->base.id,
  5570. drm_get_encoder_name(connector->encoder));
  5571. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5572. if (dev_priv->display.write_eld)
  5573. dev_priv->display.write_eld(connector, crtc);
  5574. }
  5575. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5576. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5577. {
  5578. struct drm_device *dev = crtc->dev;
  5579. struct drm_i915_private *dev_priv = dev->dev_private;
  5580. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5581. enum pipe pipe = intel_crtc->pipe;
  5582. int palreg = PALETTE(pipe);
  5583. int i;
  5584. bool reenable_ips = false;
  5585. /* The clocks have to be on to load the palette. */
  5586. if (!crtc->enabled || !intel_crtc->active)
  5587. return;
  5588. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  5589. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  5590. assert_dsi_pll_enabled(dev_priv);
  5591. else
  5592. assert_pll_enabled(dev_priv, pipe);
  5593. }
  5594. /* use legacy palette for Ironlake */
  5595. if (HAS_PCH_SPLIT(dev))
  5596. palreg = LGC_PALETTE(pipe);
  5597. /* Workaround : Do not read or write the pipe palette/gamma data while
  5598. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5599. */
  5600. if (intel_crtc->config.ips_enabled &&
  5601. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5602. GAMMA_MODE_MODE_SPLIT)) {
  5603. hsw_disable_ips(intel_crtc);
  5604. reenable_ips = true;
  5605. }
  5606. for (i = 0; i < 256; i++) {
  5607. I915_WRITE(palreg + 4 * i,
  5608. (intel_crtc->lut_r[i] << 16) |
  5609. (intel_crtc->lut_g[i] << 8) |
  5610. intel_crtc->lut_b[i]);
  5611. }
  5612. if (reenable_ips)
  5613. hsw_enable_ips(intel_crtc);
  5614. }
  5615. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5616. {
  5617. struct drm_device *dev = crtc->dev;
  5618. struct drm_i915_private *dev_priv = dev->dev_private;
  5619. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5620. bool visible = base != 0;
  5621. u32 cntl;
  5622. if (intel_crtc->cursor_visible == visible)
  5623. return;
  5624. cntl = I915_READ(_CURACNTR);
  5625. if (visible) {
  5626. /* On these chipsets we can only modify the base whilst
  5627. * the cursor is disabled.
  5628. */
  5629. I915_WRITE(_CURABASE, base);
  5630. cntl &= ~(CURSOR_FORMAT_MASK);
  5631. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5632. cntl |= CURSOR_ENABLE |
  5633. CURSOR_GAMMA_ENABLE |
  5634. CURSOR_FORMAT_ARGB;
  5635. } else
  5636. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5637. I915_WRITE(_CURACNTR, cntl);
  5638. intel_crtc->cursor_visible = visible;
  5639. }
  5640. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5641. {
  5642. struct drm_device *dev = crtc->dev;
  5643. struct drm_i915_private *dev_priv = dev->dev_private;
  5644. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5645. int pipe = intel_crtc->pipe;
  5646. bool visible = base != 0;
  5647. if (intel_crtc->cursor_visible != visible) {
  5648. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5649. if (base) {
  5650. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5651. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5652. cntl |= pipe << 28; /* Connect to correct pipe */
  5653. } else {
  5654. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5655. cntl |= CURSOR_MODE_DISABLE;
  5656. }
  5657. I915_WRITE(CURCNTR(pipe), cntl);
  5658. intel_crtc->cursor_visible = visible;
  5659. }
  5660. /* and commit changes on next vblank */
  5661. I915_WRITE(CURBASE(pipe), base);
  5662. }
  5663. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5664. {
  5665. struct drm_device *dev = crtc->dev;
  5666. struct drm_i915_private *dev_priv = dev->dev_private;
  5667. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5668. int pipe = intel_crtc->pipe;
  5669. bool visible = base != 0;
  5670. if (intel_crtc->cursor_visible != visible) {
  5671. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5672. if (base) {
  5673. cntl &= ~CURSOR_MODE;
  5674. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5675. } else {
  5676. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5677. cntl |= CURSOR_MODE_DISABLE;
  5678. }
  5679. if (IS_HASWELL(dev)) {
  5680. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5681. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5682. }
  5683. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5684. intel_crtc->cursor_visible = visible;
  5685. }
  5686. /* and commit changes on next vblank */
  5687. I915_WRITE(CURBASE_IVB(pipe), base);
  5688. }
  5689. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5690. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5691. bool on)
  5692. {
  5693. struct drm_device *dev = crtc->dev;
  5694. struct drm_i915_private *dev_priv = dev->dev_private;
  5695. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5696. int pipe = intel_crtc->pipe;
  5697. int x = intel_crtc->cursor_x;
  5698. int y = intel_crtc->cursor_y;
  5699. u32 base, pos;
  5700. bool visible;
  5701. pos = 0;
  5702. if (on && crtc->enabled && crtc->fb) {
  5703. base = intel_crtc->cursor_addr;
  5704. if (x > (int) crtc->fb->width)
  5705. base = 0;
  5706. if (y > (int) crtc->fb->height)
  5707. base = 0;
  5708. } else
  5709. base = 0;
  5710. if (x < 0) {
  5711. if (x + intel_crtc->cursor_width < 0)
  5712. base = 0;
  5713. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5714. x = -x;
  5715. }
  5716. pos |= x << CURSOR_X_SHIFT;
  5717. if (y < 0) {
  5718. if (y + intel_crtc->cursor_height < 0)
  5719. base = 0;
  5720. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5721. y = -y;
  5722. }
  5723. pos |= y << CURSOR_Y_SHIFT;
  5724. visible = base != 0;
  5725. if (!visible && !intel_crtc->cursor_visible)
  5726. return;
  5727. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5728. I915_WRITE(CURPOS_IVB(pipe), pos);
  5729. ivb_update_cursor(crtc, base);
  5730. } else {
  5731. I915_WRITE(CURPOS(pipe), pos);
  5732. if (IS_845G(dev) || IS_I865G(dev))
  5733. i845_update_cursor(crtc, base);
  5734. else
  5735. i9xx_update_cursor(crtc, base);
  5736. }
  5737. }
  5738. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5739. struct drm_file *file,
  5740. uint32_t handle,
  5741. uint32_t width, uint32_t height)
  5742. {
  5743. struct drm_device *dev = crtc->dev;
  5744. struct drm_i915_private *dev_priv = dev->dev_private;
  5745. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5746. struct drm_i915_gem_object *obj;
  5747. uint32_t addr;
  5748. int ret;
  5749. /* if we want to turn off the cursor ignore width and height */
  5750. if (!handle) {
  5751. DRM_DEBUG_KMS("cursor off\n");
  5752. addr = 0;
  5753. obj = NULL;
  5754. mutex_lock(&dev->struct_mutex);
  5755. goto finish;
  5756. }
  5757. /* Currently we only support 64x64 cursors */
  5758. if (width != 64 || height != 64) {
  5759. DRM_ERROR("we currently only support 64x64 cursors\n");
  5760. return -EINVAL;
  5761. }
  5762. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5763. if (&obj->base == NULL)
  5764. return -ENOENT;
  5765. if (obj->base.size < width * height * 4) {
  5766. DRM_ERROR("buffer is to small\n");
  5767. ret = -ENOMEM;
  5768. goto fail;
  5769. }
  5770. /* we only need to pin inside GTT if cursor is non-phy */
  5771. mutex_lock(&dev->struct_mutex);
  5772. if (!dev_priv->info->cursor_needs_physical) {
  5773. unsigned alignment;
  5774. if (obj->tiling_mode) {
  5775. DRM_ERROR("cursor cannot be tiled\n");
  5776. ret = -EINVAL;
  5777. goto fail_locked;
  5778. }
  5779. /* Note that the w/a also requires 2 PTE of padding following
  5780. * the bo. We currently fill all unused PTE with the shadow
  5781. * page and so we should always have valid PTE following the
  5782. * cursor preventing the VT-d warning.
  5783. */
  5784. alignment = 0;
  5785. if (need_vtd_wa(dev))
  5786. alignment = 64*1024;
  5787. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5788. if (ret) {
  5789. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5790. goto fail_locked;
  5791. }
  5792. ret = i915_gem_object_put_fence(obj);
  5793. if (ret) {
  5794. DRM_ERROR("failed to release fence for cursor");
  5795. goto fail_unpin;
  5796. }
  5797. addr = i915_gem_obj_ggtt_offset(obj);
  5798. } else {
  5799. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5800. ret = i915_gem_attach_phys_object(dev, obj,
  5801. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5802. align);
  5803. if (ret) {
  5804. DRM_ERROR("failed to attach phys object\n");
  5805. goto fail_locked;
  5806. }
  5807. addr = obj->phys_obj->handle->busaddr;
  5808. }
  5809. if (IS_GEN2(dev))
  5810. I915_WRITE(CURSIZE, (height << 12) | width);
  5811. finish:
  5812. if (intel_crtc->cursor_bo) {
  5813. if (dev_priv->info->cursor_needs_physical) {
  5814. if (intel_crtc->cursor_bo != obj)
  5815. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5816. } else
  5817. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  5818. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5819. }
  5820. mutex_unlock(&dev->struct_mutex);
  5821. intel_crtc->cursor_addr = addr;
  5822. intel_crtc->cursor_bo = obj;
  5823. intel_crtc->cursor_width = width;
  5824. intel_crtc->cursor_height = height;
  5825. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5826. return 0;
  5827. fail_unpin:
  5828. i915_gem_object_unpin_from_display_plane(obj);
  5829. fail_locked:
  5830. mutex_unlock(&dev->struct_mutex);
  5831. fail:
  5832. drm_gem_object_unreference_unlocked(&obj->base);
  5833. return ret;
  5834. }
  5835. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5836. {
  5837. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5838. intel_crtc->cursor_x = x;
  5839. intel_crtc->cursor_y = y;
  5840. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5841. return 0;
  5842. }
  5843. /** Sets the color ramps on behalf of RandR */
  5844. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5845. u16 blue, int regno)
  5846. {
  5847. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5848. intel_crtc->lut_r[regno] = red >> 8;
  5849. intel_crtc->lut_g[regno] = green >> 8;
  5850. intel_crtc->lut_b[regno] = blue >> 8;
  5851. }
  5852. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5853. u16 *blue, int regno)
  5854. {
  5855. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5856. *red = intel_crtc->lut_r[regno] << 8;
  5857. *green = intel_crtc->lut_g[regno] << 8;
  5858. *blue = intel_crtc->lut_b[regno] << 8;
  5859. }
  5860. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5861. u16 *blue, uint32_t start, uint32_t size)
  5862. {
  5863. int end = (start + size > 256) ? 256 : start + size, i;
  5864. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5865. for (i = start; i < end; i++) {
  5866. intel_crtc->lut_r[i] = red[i] >> 8;
  5867. intel_crtc->lut_g[i] = green[i] >> 8;
  5868. intel_crtc->lut_b[i] = blue[i] >> 8;
  5869. }
  5870. intel_crtc_load_lut(crtc);
  5871. }
  5872. /* VESA 640x480x72Hz mode to set on the pipe */
  5873. static struct drm_display_mode load_detect_mode = {
  5874. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5875. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5876. };
  5877. static struct drm_framebuffer *
  5878. intel_framebuffer_create(struct drm_device *dev,
  5879. struct drm_mode_fb_cmd2 *mode_cmd,
  5880. struct drm_i915_gem_object *obj)
  5881. {
  5882. struct intel_framebuffer *intel_fb;
  5883. int ret;
  5884. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5885. if (!intel_fb) {
  5886. drm_gem_object_unreference_unlocked(&obj->base);
  5887. return ERR_PTR(-ENOMEM);
  5888. }
  5889. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5890. if (ret) {
  5891. drm_gem_object_unreference_unlocked(&obj->base);
  5892. kfree(intel_fb);
  5893. return ERR_PTR(ret);
  5894. }
  5895. return &intel_fb->base;
  5896. }
  5897. static u32
  5898. intel_framebuffer_pitch_for_width(int width, int bpp)
  5899. {
  5900. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5901. return ALIGN(pitch, 64);
  5902. }
  5903. static u32
  5904. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5905. {
  5906. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5907. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5908. }
  5909. static struct drm_framebuffer *
  5910. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5911. struct drm_display_mode *mode,
  5912. int depth, int bpp)
  5913. {
  5914. struct drm_i915_gem_object *obj;
  5915. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5916. obj = i915_gem_alloc_object(dev,
  5917. intel_framebuffer_size_for_mode(mode, bpp));
  5918. if (obj == NULL)
  5919. return ERR_PTR(-ENOMEM);
  5920. mode_cmd.width = mode->hdisplay;
  5921. mode_cmd.height = mode->vdisplay;
  5922. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5923. bpp);
  5924. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5925. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5926. }
  5927. static struct drm_framebuffer *
  5928. mode_fits_in_fbdev(struct drm_device *dev,
  5929. struct drm_display_mode *mode)
  5930. {
  5931. struct drm_i915_private *dev_priv = dev->dev_private;
  5932. struct drm_i915_gem_object *obj;
  5933. struct drm_framebuffer *fb;
  5934. if (dev_priv->fbdev == NULL)
  5935. return NULL;
  5936. obj = dev_priv->fbdev->ifb.obj;
  5937. if (obj == NULL)
  5938. return NULL;
  5939. fb = &dev_priv->fbdev->ifb.base;
  5940. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5941. fb->bits_per_pixel))
  5942. return NULL;
  5943. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5944. return NULL;
  5945. return fb;
  5946. }
  5947. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5948. struct drm_display_mode *mode,
  5949. struct intel_load_detect_pipe *old)
  5950. {
  5951. struct intel_crtc *intel_crtc;
  5952. struct intel_encoder *intel_encoder =
  5953. intel_attached_encoder(connector);
  5954. struct drm_crtc *possible_crtc;
  5955. struct drm_encoder *encoder = &intel_encoder->base;
  5956. struct drm_crtc *crtc = NULL;
  5957. struct drm_device *dev = encoder->dev;
  5958. struct drm_framebuffer *fb;
  5959. int i = -1;
  5960. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5961. connector->base.id, drm_get_connector_name(connector),
  5962. encoder->base.id, drm_get_encoder_name(encoder));
  5963. /*
  5964. * Algorithm gets a little messy:
  5965. *
  5966. * - if the connector already has an assigned crtc, use it (but make
  5967. * sure it's on first)
  5968. *
  5969. * - try to find the first unused crtc that can drive this connector,
  5970. * and use that if we find one
  5971. */
  5972. /* See if we already have a CRTC for this connector */
  5973. if (encoder->crtc) {
  5974. crtc = encoder->crtc;
  5975. mutex_lock(&crtc->mutex);
  5976. old->dpms_mode = connector->dpms;
  5977. old->load_detect_temp = false;
  5978. /* Make sure the crtc and connector are running */
  5979. if (connector->dpms != DRM_MODE_DPMS_ON)
  5980. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5981. return true;
  5982. }
  5983. /* Find an unused one (if possible) */
  5984. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5985. i++;
  5986. if (!(encoder->possible_crtcs & (1 << i)))
  5987. continue;
  5988. if (!possible_crtc->enabled) {
  5989. crtc = possible_crtc;
  5990. break;
  5991. }
  5992. }
  5993. /*
  5994. * If we didn't find an unused CRTC, don't use any.
  5995. */
  5996. if (!crtc) {
  5997. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5998. return false;
  5999. }
  6000. mutex_lock(&crtc->mutex);
  6001. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6002. to_intel_connector(connector)->new_encoder = intel_encoder;
  6003. intel_crtc = to_intel_crtc(crtc);
  6004. old->dpms_mode = connector->dpms;
  6005. old->load_detect_temp = true;
  6006. old->release_fb = NULL;
  6007. if (!mode)
  6008. mode = &load_detect_mode;
  6009. /* We need a framebuffer large enough to accommodate all accesses
  6010. * that the plane may generate whilst we perform load detection.
  6011. * We can not rely on the fbcon either being present (we get called
  6012. * during its initialisation to detect all boot displays, or it may
  6013. * not even exist) or that it is large enough to satisfy the
  6014. * requested mode.
  6015. */
  6016. fb = mode_fits_in_fbdev(dev, mode);
  6017. if (fb == NULL) {
  6018. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6019. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6020. old->release_fb = fb;
  6021. } else
  6022. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6023. if (IS_ERR(fb)) {
  6024. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6025. mutex_unlock(&crtc->mutex);
  6026. return false;
  6027. }
  6028. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6029. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6030. if (old->release_fb)
  6031. old->release_fb->funcs->destroy(old->release_fb);
  6032. mutex_unlock(&crtc->mutex);
  6033. return false;
  6034. }
  6035. /* let the connector get through one full cycle before testing */
  6036. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6037. return true;
  6038. }
  6039. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6040. struct intel_load_detect_pipe *old)
  6041. {
  6042. struct intel_encoder *intel_encoder =
  6043. intel_attached_encoder(connector);
  6044. struct drm_encoder *encoder = &intel_encoder->base;
  6045. struct drm_crtc *crtc = encoder->crtc;
  6046. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6047. connector->base.id, drm_get_connector_name(connector),
  6048. encoder->base.id, drm_get_encoder_name(encoder));
  6049. if (old->load_detect_temp) {
  6050. to_intel_connector(connector)->new_encoder = NULL;
  6051. intel_encoder->new_crtc = NULL;
  6052. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6053. if (old->release_fb) {
  6054. drm_framebuffer_unregister_private(old->release_fb);
  6055. drm_framebuffer_unreference(old->release_fb);
  6056. }
  6057. mutex_unlock(&crtc->mutex);
  6058. return;
  6059. }
  6060. /* Switch crtc and encoder back off if necessary */
  6061. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6062. connector->funcs->dpms(connector, old->dpms_mode);
  6063. mutex_unlock(&crtc->mutex);
  6064. }
  6065. /* Returns the clock of the currently programmed mode of the given pipe. */
  6066. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6067. struct intel_crtc_config *pipe_config)
  6068. {
  6069. struct drm_device *dev = crtc->base.dev;
  6070. struct drm_i915_private *dev_priv = dev->dev_private;
  6071. int pipe = pipe_config->cpu_transcoder;
  6072. u32 dpll = I915_READ(DPLL(pipe));
  6073. u32 fp;
  6074. intel_clock_t clock;
  6075. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6076. fp = I915_READ(FP0(pipe));
  6077. else
  6078. fp = I915_READ(FP1(pipe));
  6079. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6080. if (IS_PINEVIEW(dev)) {
  6081. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6082. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6083. } else {
  6084. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6085. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6086. }
  6087. if (!IS_GEN2(dev)) {
  6088. if (IS_PINEVIEW(dev))
  6089. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6090. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6091. else
  6092. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6093. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6094. switch (dpll & DPLL_MODE_MASK) {
  6095. case DPLLB_MODE_DAC_SERIAL:
  6096. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6097. 5 : 10;
  6098. break;
  6099. case DPLLB_MODE_LVDS:
  6100. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6101. 7 : 14;
  6102. break;
  6103. default:
  6104. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6105. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6106. pipe_config->adjusted_mode.clock = 0;
  6107. return;
  6108. }
  6109. if (IS_PINEVIEW(dev))
  6110. pineview_clock(96000, &clock);
  6111. else
  6112. i9xx_clock(96000, &clock);
  6113. } else {
  6114. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6115. if (is_lvds) {
  6116. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6117. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6118. clock.p2 = 14;
  6119. if ((dpll & PLL_REF_INPUT_MASK) ==
  6120. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  6121. /* XXX: might not be 66MHz */
  6122. i9xx_clock(66000, &clock);
  6123. } else
  6124. i9xx_clock(48000, &clock);
  6125. } else {
  6126. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6127. clock.p1 = 2;
  6128. else {
  6129. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6130. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6131. }
  6132. if (dpll & PLL_P2_DIVIDE_BY_4)
  6133. clock.p2 = 4;
  6134. else
  6135. clock.p2 = 2;
  6136. i9xx_clock(48000, &clock);
  6137. }
  6138. }
  6139. pipe_config->adjusted_mode.clock = clock.dot;
  6140. }
  6141. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  6142. struct intel_crtc_config *pipe_config)
  6143. {
  6144. struct drm_device *dev = crtc->base.dev;
  6145. struct drm_i915_private *dev_priv = dev->dev_private;
  6146. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  6147. int link_freq, repeat;
  6148. u64 clock;
  6149. u32 link_m, link_n;
  6150. repeat = pipe_config->pixel_multiplier;
  6151. /*
  6152. * The calculation for the data clock is:
  6153. * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
  6154. * But we want to avoid losing precison if possible, so:
  6155. * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
  6156. *
  6157. * and the link clock is simpler:
  6158. * link_clock = (m * link_clock * repeat) / n
  6159. */
  6160. /*
  6161. * We need to get the FDI or DP link clock here to derive
  6162. * the M/N dividers.
  6163. *
  6164. * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
  6165. * For DP, it's either 1.62GHz or 2.7GHz.
  6166. * We do our calculations in 10*MHz since we don't need much precison.
  6167. */
  6168. if (pipe_config->has_pch_encoder)
  6169. link_freq = intel_fdi_link_freq(dev) * 10000;
  6170. else
  6171. link_freq = pipe_config->port_clock;
  6172. link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
  6173. link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
  6174. if (!link_m || !link_n)
  6175. return;
  6176. clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
  6177. do_div(clock, link_n);
  6178. pipe_config->adjusted_mode.clock = clock;
  6179. }
  6180. /** Returns the currently programmed mode of the given pipe. */
  6181. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6182. struct drm_crtc *crtc)
  6183. {
  6184. struct drm_i915_private *dev_priv = dev->dev_private;
  6185. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6186. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6187. struct drm_display_mode *mode;
  6188. struct intel_crtc_config pipe_config;
  6189. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6190. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6191. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6192. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6193. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6194. if (!mode)
  6195. return NULL;
  6196. /*
  6197. * Construct a pipe_config sufficient for getting the clock info
  6198. * back out of crtc_clock_get.
  6199. *
  6200. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6201. * to use a real value here instead.
  6202. */
  6203. pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  6204. pipe_config.pixel_multiplier = 1;
  6205. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6206. mode->clock = pipe_config.adjusted_mode.clock;
  6207. mode->hdisplay = (htot & 0xffff) + 1;
  6208. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6209. mode->hsync_start = (hsync & 0xffff) + 1;
  6210. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6211. mode->vdisplay = (vtot & 0xffff) + 1;
  6212. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6213. mode->vsync_start = (vsync & 0xffff) + 1;
  6214. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6215. drm_mode_set_name(mode);
  6216. return mode;
  6217. }
  6218. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6219. {
  6220. struct drm_device *dev = crtc->dev;
  6221. drm_i915_private_t *dev_priv = dev->dev_private;
  6222. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6223. int pipe = intel_crtc->pipe;
  6224. int dpll_reg = DPLL(pipe);
  6225. int dpll;
  6226. if (HAS_PCH_SPLIT(dev))
  6227. return;
  6228. if (!dev_priv->lvds_downclock_avail)
  6229. return;
  6230. dpll = I915_READ(dpll_reg);
  6231. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6232. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6233. assert_panel_unlocked(dev_priv, pipe);
  6234. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6235. I915_WRITE(dpll_reg, dpll);
  6236. intel_wait_for_vblank(dev, pipe);
  6237. dpll = I915_READ(dpll_reg);
  6238. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6239. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6240. }
  6241. }
  6242. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6243. {
  6244. struct drm_device *dev = crtc->dev;
  6245. drm_i915_private_t *dev_priv = dev->dev_private;
  6246. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6247. if (HAS_PCH_SPLIT(dev))
  6248. return;
  6249. if (!dev_priv->lvds_downclock_avail)
  6250. return;
  6251. /*
  6252. * Since this is called by a timer, we should never get here in
  6253. * the manual case.
  6254. */
  6255. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6256. int pipe = intel_crtc->pipe;
  6257. int dpll_reg = DPLL(pipe);
  6258. int dpll;
  6259. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6260. assert_panel_unlocked(dev_priv, pipe);
  6261. dpll = I915_READ(dpll_reg);
  6262. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6263. I915_WRITE(dpll_reg, dpll);
  6264. intel_wait_for_vblank(dev, pipe);
  6265. dpll = I915_READ(dpll_reg);
  6266. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6267. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6268. }
  6269. }
  6270. void intel_mark_busy(struct drm_device *dev)
  6271. {
  6272. struct drm_i915_private *dev_priv = dev->dev_private;
  6273. hsw_package_c8_gpu_busy(dev_priv);
  6274. i915_update_gfx_val(dev_priv);
  6275. }
  6276. void intel_mark_idle(struct drm_device *dev)
  6277. {
  6278. struct drm_i915_private *dev_priv = dev->dev_private;
  6279. struct drm_crtc *crtc;
  6280. hsw_package_c8_gpu_idle(dev_priv);
  6281. if (!i915_powersave)
  6282. return;
  6283. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6284. if (!crtc->fb)
  6285. continue;
  6286. intel_decrease_pllclock(crtc);
  6287. }
  6288. }
  6289. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6290. struct intel_ring_buffer *ring)
  6291. {
  6292. struct drm_device *dev = obj->base.dev;
  6293. struct drm_crtc *crtc;
  6294. if (!i915_powersave)
  6295. return;
  6296. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6297. if (!crtc->fb)
  6298. continue;
  6299. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6300. continue;
  6301. intel_increase_pllclock(crtc);
  6302. if (ring && intel_fbc_enabled(dev))
  6303. ring->fbc_dirty = true;
  6304. }
  6305. }
  6306. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6307. {
  6308. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6309. struct drm_device *dev = crtc->dev;
  6310. struct intel_unpin_work *work;
  6311. unsigned long flags;
  6312. spin_lock_irqsave(&dev->event_lock, flags);
  6313. work = intel_crtc->unpin_work;
  6314. intel_crtc->unpin_work = NULL;
  6315. spin_unlock_irqrestore(&dev->event_lock, flags);
  6316. if (work) {
  6317. cancel_work_sync(&work->work);
  6318. kfree(work);
  6319. }
  6320. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6321. drm_crtc_cleanup(crtc);
  6322. kfree(intel_crtc);
  6323. }
  6324. static void intel_unpin_work_fn(struct work_struct *__work)
  6325. {
  6326. struct intel_unpin_work *work =
  6327. container_of(__work, struct intel_unpin_work, work);
  6328. struct drm_device *dev = work->crtc->dev;
  6329. mutex_lock(&dev->struct_mutex);
  6330. intel_unpin_fb_obj(work->old_fb_obj);
  6331. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6332. drm_gem_object_unreference(&work->old_fb_obj->base);
  6333. intel_update_fbc(dev);
  6334. mutex_unlock(&dev->struct_mutex);
  6335. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6336. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6337. kfree(work);
  6338. }
  6339. static void do_intel_finish_page_flip(struct drm_device *dev,
  6340. struct drm_crtc *crtc)
  6341. {
  6342. drm_i915_private_t *dev_priv = dev->dev_private;
  6343. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6344. struct intel_unpin_work *work;
  6345. unsigned long flags;
  6346. /* Ignore early vblank irqs */
  6347. if (intel_crtc == NULL)
  6348. return;
  6349. spin_lock_irqsave(&dev->event_lock, flags);
  6350. work = intel_crtc->unpin_work;
  6351. /* Ensure we don't miss a work->pending update ... */
  6352. smp_rmb();
  6353. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6354. spin_unlock_irqrestore(&dev->event_lock, flags);
  6355. return;
  6356. }
  6357. /* and that the unpin work is consistent wrt ->pending. */
  6358. smp_rmb();
  6359. intel_crtc->unpin_work = NULL;
  6360. if (work->event)
  6361. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6362. drm_vblank_put(dev, intel_crtc->pipe);
  6363. spin_unlock_irqrestore(&dev->event_lock, flags);
  6364. wake_up_all(&dev_priv->pending_flip_queue);
  6365. queue_work(dev_priv->wq, &work->work);
  6366. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6367. }
  6368. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6369. {
  6370. drm_i915_private_t *dev_priv = dev->dev_private;
  6371. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6372. do_intel_finish_page_flip(dev, crtc);
  6373. }
  6374. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6375. {
  6376. drm_i915_private_t *dev_priv = dev->dev_private;
  6377. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6378. do_intel_finish_page_flip(dev, crtc);
  6379. }
  6380. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6381. {
  6382. drm_i915_private_t *dev_priv = dev->dev_private;
  6383. struct intel_crtc *intel_crtc =
  6384. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6385. unsigned long flags;
  6386. /* NB: An MMIO update of the plane base pointer will also
  6387. * generate a page-flip completion irq, i.e. every modeset
  6388. * is also accompanied by a spurious intel_prepare_page_flip().
  6389. */
  6390. spin_lock_irqsave(&dev->event_lock, flags);
  6391. if (intel_crtc->unpin_work)
  6392. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6393. spin_unlock_irqrestore(&dev->event_lock, flags);
  6394. }
  6395. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6396. {
  6397. /* Ensure that the work item is consistent when activating it ... */
  6398. smp_wmb();
  6399. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6400. /* and that it is marked active as soon as the irq could fire. */
  6401. smp_wmb();
  6402. }
  6403. static int intel_gen2_queue_flip(struct drm_device *dev,
  6404. struct drm_crtc *crtc,
  6405. struct drm_framebuffer *fb,
  6406. struct drm_i915_gem_object *obj,
  6407. uint32_t flags)
  6408. {
  6409. struct drm_i915_private *dev_priv = dev->dev_private;
  6410. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6411. u32 flip_mask;
  6412. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6413. int ret;
  6414. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6415. if (ret)
  6416. goto err;
  6417. ret = intel_ring_begin(ring, 6);
  6418. if (ret)
  6419. goto err_unpin;
  6420. /* Can't queue multiple flips, so wait for the previous
  6421. * one to finish before executing the next.
  6422. */
  6423. if (intel_crtc->plane)
  6424. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6425. else
  6426. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6427. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6428. intel_ring_emit(ring, MI_NOOP);
  6429. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6430. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6431. intel_ring_emit(ring, fb->pitches[0]);
  6432. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6433. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6434. intel_mark_page_flip_active(intel_crtc);
  6435. intel_ring_advance(ring);
  6436. return 0;
  6437. err_unpin:
  6438. intel_unpin_fb_obj(obj);
  6439. err:
  6440. return ret;
  6441. }
  6442. static int intel_gen3_queue_flip(struct drm_device *dev,
  6443. struct drm_crtc *crtc,
  6444. struct drm_framebuffer *fb,
  6445. struct drm_i915_gem_object *obj,
  6446. uint32_t flags)
  6447. {
  6448. struct drm_i915_private *dev_priv = dev->dev_private;
  6449. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6450. u32 flip_mask;
  6451. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6452. int ret;
  6453. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6454. if (ret)
  6455. goto err;
  6456. ret = intel_ring_begin(ring, 6);
  6457. if (ret)
  6458. goto err_unpin;
  6459. if (intel_crtc->plane)
  6460. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6461. else
  6462. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6463. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6464. intel_ring_emit(ring, MI_NOOP);
  6465. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6466. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6467. intel_ring_emit(ring, fb->pitches[0]);
  6468. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6469. intel_ring_emit(ring, MI_NOOP);
  6470. intel_mark_page_flip_active(intel_crtc);
  6471. intel_ring_advance(ring);
  6472. return 0;
  6473. err_unpin:
  6474. intel_unpin_fb_obj(obj);
  6475. err:
  6476. return ret;
  6477. }
  6478. static int intel_gen4_queue_flip(struct drm_device *dev,
  6479. struct drm_crtc *crtc,
  6480. struct drm_framebuffer *fb,
  6481. struct drm_i915_gem_object *obj,
  6482. uint32_t flags)
  6483. {
  6484. struct drm_i915_private *dev_priv = dev->dev_private;
  6485. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6486. uint32_t pf, pipesrc;
  6487. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6488. int ret;
  6489. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6490. if (ret)
  6491. goto err;
  6492. ret = intel_ring_begin(ring, 4);
  6493. if (ret)
  6494. goto err_unpin;
  6495. /* i965+ uses the linear or tiled offsets from the
  6496. * Display Registers (which do not change across a page-flip)
  6497. * so we need only reprogram the base address.
  6498. */
  6499. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6500. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6501. intel_ring_emit(ring, fb->pitches[0]);
  6502. intel_ring_emit(ring,
  6503. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6504. obj->tiling_mode);
  6505. /* XXX Enabling the panel-fitter across page-flip is so far
  6506. * untested on non-native modes, so ignore it for now.
  6507. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6508. */
  6509. pf = 0;
  6510. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6511. intel_ring_emit(ring, pf | pipesrc);
  6512. intel_mark_page_flip_active(intel_crtc);
  6513. intel_ring_advance(ring);
  6514. return 0;
  6515. err_unpin:
  6516. intel_unpin_fb_obj(obj);
  6517. err:
  6518. return ret;
  6519. }
  6520. static int intel_gen6_queue_flip(struct drm_device *dev,
  6521. struct drm_crtc *crtc,
  6522. struct drm_framebuffer *fb,
  6523. struct drm_i915_gem_object *obj,
  6524. uint32_t flags)
  6525. {
  6526. struct drm_i915_private *dev_priv = dev->dev_private;
  6527. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6528. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6529. uint32_t pf, pipesrc;
  6530. int ret;
  6531. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6532. if (ret)
  6533. goto err;
  6534. ret = intel_ring_begin(ring, 4);
  6535. if (ret)
  6536. goto err_unpin;
  6537. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6538. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6539. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6540. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6541. /* Contrary to the suggestions in the documentation,
  6542. * "Enable Panel Fitter" does not seem to be required when page
  6543. * flipping with a non-native mode, and worse causes a normal
  6544. * modeset to fail.
  6545. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6546. */
  6547. pf = 0;
  6548. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6549. intel_ring_emit(ring, pf | pipesrc);
  6550. intel_mark_page_flip_active(intel_crtc);
  6551. intel_ring_advance(ring);
  6552. return 0;
  6553. err_unpin:
  6554. intel_unpin_fb_obj(obj);
  6555. err:
  6556. return ret;
  6557. }
  6558. static int intel_gen7_queue_flip(struct drm_device *dev,
  6559. struct drm_crtc *crtc,
  6560. struct drm_framebuffer *fb,
  6561. struct drm_i915_gem_object *obj,
  6562. uint32_t flags)
  6563. {
  6564. struct drm_i915_private *dev_priv = dev->dev_private;
  6565. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6566. struct intel_ring_buffer *ring;
  6567. uint32_t plane_bit = 0;
  6568. int len, ret;
  6569. ring = obj->ring;
  6570. if (ring == NULL || ring->id != RCS)
  6571. ring = &dev_priv->ring[BCS];
  6572. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6573. if (ret)
  6574. goto err;
  6575. switch(intel_crtc->plane) {
  6576. case PLANE_A:
  6577. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6578. break;
  6579. case PLANE_B:
  6580. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6581. break;
  6582. case PLANE_C:
  6583. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6584. break;
  6585. default:
  6586. WARN_ONCE(1, "unknown plane in flip command\n");
  6587. ret = -ENODEV;
  6588. goto err_unpin;
  6589. }
  6590. len = 4;
  6591. if (ring->id == RCS)
  6592. len += 6;
  6593. ret = intel_ring_begin(ring, len);
  6594. if (ret)
  6595. goto err_unpin;
  6596. /* Unmask the flip-done completion message. Note that the bspec says that
  6597. * we should do this for both the BCS and RCS, and that we must not unmask
  6598. * more than one flip event at any time (or ensure that one flip message
  6599. * can be sent by waiting for flip-done prior to queueing new flips).
  6600. * Experimentation says that BCS works despite DERRMR masking all
  6601. * flip-done completion events and that unmasking all planes at once
  6602. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6603. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6604. */
  6605. if (ring->id == RCS) {
  6606. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6607. intel_ring_emit(ring, DERRMR);
  6608. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6609. DERRMR_PIPEB_PRI_FLIP_DONE |
  6610. DERRMR_PIPEC_PRI_FLIP_DONE));
  6611. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6612. intel_ring_emit(ring, DERRMR);
  6613. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6614. }
  6615. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6616. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6617. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6618. intel_ring_emit(ring, (MI_NOOP));
  6619. intel_mark_page_flip_active(intel_crtc);
  6620. intel_ring_advance(ring);
  6621. return 0;
  6622. err_unpin:
  6623. intel_unpin_fb_obj(obj);
  6624. err:
  6625. return ret;
  6626. }
  6627. static int intel_default_queue_flip(struct drm_device *dev,
  6628. struct drm_crtc *crtc,
  6629. struct drm_framebuffer *fb,
  6630. struct drm_i915_gem_object *obj,
  6631. uint32_t flags)
  6632. {
  6633. return -ENODEV;
  6634. }
  6635. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6636. struct drm_framebuffer *fb,
  6637. struct drm_pending_vblank_event *event,
  6638. uint32_t page_flip_flags)
  6639. {
  6640. struct drm_device *dev = crtc->dev;
  6641. struct drm_i915_private *dev_priv = dev->dev_private;
  6642. struct drm_framebuffer *old_fb = crtc->fb;
  6643. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6644. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6645. struct intel_unpin_work *work;
  6646. unsigned long flags;
  6647. int ret;
  6648. /* Can't change pixel format via MI display flips. */
  6649. if (fb->pixel_format != crtc->fb->pixel_format)
  6650. return -EINVAL;
  6651. /*
  6652. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6653. * Note that pitch changes could also affect these register.
  6654. */
  6655. if (INTEL_INFO(dev)->gen > 3 &&
  6656. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6657. fb->pitches[0] != crtc->fb->pitches[0]))
  6658. return -EINVAL;
  6659. work = kzalloc(sizeof *work, GFP_KERNEL);
  6660. if (work == NULL)
  6661. return -ENOMEM;
  6662. work->event = event;
  6663. work->crtc = crtc;
  6664. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6665. INIT_WORK(&work->work, intel_unpin_work_fn);
  6666. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6667. if (ret)
  6668. goto free_work;
  6669. /* We borrow the event spin lock for protecting unpin_work */
  6670. spin_lock_irqsave(&dev->event_lock, flags);
  6671. if (intel_crtc->unpin_work) {
  6672. spin_unlock_irqrestore(&dev->event_lock, flags);
  6673. kfree(work);
  6674. drm_vblank_put(dev, intel_crtc->pipe);
  6675. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6676. return -EBUSY;
  6677. }
  6678. intel_crtc->unpin_work = work;
  6679. spin_unlock_irqrestore(&dev->event_lock, flags);
  6680. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6681. flush_workqueue(dev_priv->wq);
  6682. ret = i915_mutex_lock_interruptible(dev);
  6683. if (ret)
  6684. goto cleanup;
  6685. /* Reference the objects for the scheduled work. */
  6686. drm_gem_object_reference(&work->old_fb_obj->base);
  6687. drm_gem_object_reference(&obj->base);
  6688. crtc->fb = fb;
  6689. work->pending_flip_obj = obj;
  6690. work->enable_stall_check = true;
  6691. atomic_inc(&intel_crtc->unpin_work_count);
  6692. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6693. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6694. if (ret)
  6695. goto cleanup_pending;
  6696. intel_disable_fbc(dev);
  6697. intel_mark_fb_busy(obj, NULL);
  6698. mutex_unlock(&dev->struct_mutex);
  6699. trace_i915_flip_request(intel_crtc->plane, obj);
  6700. return 0;
  6701. cleanup_pending:
  6702. atomic_dec(&intel_crtc->unpin_work_count);
  6703. crtc->fb = old_fb;
  6704. drm_gem_object_unreference(&work->old_fb_obj->base);
  6705. drm_gem_object_unreference(&obj->base);
  6706. mutex_unlock(&dev->struct_mutex);
  6707. cleanup:
  6708. spin_lock_irqsave(&dev->event_lock, flags);
  6709. intel_crtc->unpin_work = NULL;
  6710. spin_unlock_irqrestore(&dev->event_lock, flags);
  6711. drm_vblank_put(dev, intel_crtc->pipe);
  6712. free_work:
  6713. kfree(work);
  6714. return ret;
  6715. }
  6716. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6717. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6718. .load_lut = intel_crtc_load_lut,
  6719. };
  6720. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6721. struct drm_crtc *crtc)
  6722. {
  6723. struct drm_device *dev;
  6724. struct drm_crtc *tmp;
  6725. int crtc_mask = 1;
  6726. WARN(!crtc, "checking null crtc?\n");
  6727. dev = crtc->dev;
  6728. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6729. if (tmp == crtc)
  6730. break;
  6731. crtc_mask <<= 1;
  6732. }
  6733. if (encoder->possible_crtcs & crtc_mask)
  6734. return true;
  6735. return false;
  6736. }
  6737. /**
  6738. * intel_modeset_update_staged_output_state
  6739. *
  6740. * Updates the staged output configuration state, e.g. after we've read out the
  6741. * current hw state.
  6742. */
  6743. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6744. {
  6745. struct intel_encoder *encoder;
  6746. struct intel_connector *connector;
  6747. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6748. base.head) {
  6749. connector->new_encoder =
  6750. to_intel_encoder(connector->base.encoder);
  6751. }
  6752. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6753. base.head) {
  6754. encoder->new_crtc =
  6755. to_intel_crtc(encoder->base.crtc);
  6756. }
  6757. }
  6758. /**
  6759. * intel_modeset_commit_output_state
  6760. *
  6761. * This function copies the stage display pipe configuration to the real one.
  6762. */
  6763. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6764. {
  6765. struct intel_encoder *encoder;
  6766. struct intel_connector *connector;
  6767. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6768. base.head) {
  6769. connector->base.encoder = &connector->new_encoder->base;
  6770. }
  6771. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6772. base.head) {
  6773. encoder->base.crtc = &encoder->new_crtc->base;
  6774. }
  6775. }
  6776. static void
  6777. connected_sink_compute_bpp(struct intel_connector * connector,
  6778. struct intel_crtc_config *pipe_config)
  6779. {
  6780. int bpp = pipe_config->pipe_bpp;
  6781. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6782. connector->base.base.id,
  6783. drm_get_connector_name(&connector->base));
  6784. /* Don't use an invalid EDID bpc value */
  6785. if (connector->base.display_info.bpc &&
  6786. connector->base.display_info.bpc * 3 < bpp) {
  6787. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6788. bpp, connector->base.display_info.bpc*3);
  6789. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6790. }
  6791. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6792. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6793. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6794. bpp);
  6795. pipe_config->pipe_bpp = 24;
  6796. }
  6797. }
  6798. static int
  6799. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6800. struct drm_framebuffer *fb,
  6801. struct intel_crtc_config *pipe_config)
  6802. {
  6803. struct drm_device *dev = crtc->base.dev;
  6804. struct intel_connector *connector;
  6805. int bpp;
  6806. switch (fb->pixel_format) {
  6807. case DRM_FORMAT_C8:
  6808. bpp = 8*3; /* since we go through a colormap */
  6809. break;
  6810. case DRM_FORMAT_XRGB1555:
  6811. case DRM_FORMAT_ARGB1555:
  6812. /* checked in intel_framebuffer_init already */
  6813. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6814. return -EINVAL;
  6815. case DRM_FORMAT_RGB565:
  6816. bpp = 6*3; /* min is 18bpp */
  6817. break;
  6818. case DRM_FORMAT_XBGR8888:
  6819. case DRM_FORMAT_ABGR8888:
  6820. /* checked in intel_framebuffer_init already */
  6821. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6822. return -EINVAL;
  6823. case DRM_FORMAT_XRGB8888:
  6824. case DRM_FORMAT_ARGB8888:
  6825. bpp = 8*3;
  6826. break;
  6827. case DRM_FORMAT_XRGB2101010:
  6828. case DRM_FORMAT_ARGB2101010:
  6829. case DRM_FORMAT_XBGR2101010:
  6830. case DRM_FORMAT_ABGR2101010:
  6831. /* checked in intel_framebuffer_init already */
  6832. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6833. return -EINVAL;
  6834. bpp = 10*3;
  6835. break;
  6836. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6837. default:
  6838. DRM_DEBUG_KMS("unsupported depth\n");
  6839. return -EINVAL;
  6840. }
  6841. pipe_config->pipe_bpp = bpp;
  6842. /* Clamp display bpp to EDID value */
  6843. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6844. base.head) {
  6845. if (!connector->new_encoder ||
  6846. connector->new_encoder->new_crtc != crtc)
  6847. continue;
  6848. connected_sink_compute_bpp(connector, pipe_config);
  6849. }
  6850. return bpp;
  6851. }
  6852. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6853. struct intel_crtc_config *pipe_config,
  6854. const char *context)
  6855. {
  6856. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6857. context, pipe_name(crtc->pipe));
  6858. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6859. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6860. pipe_config->pipe_bpp, pipe_config->dither);
  6861. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6862. pipe_config->has_pch_encoder,
  6863. pipe_config->fdi_lanes,
  6864. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6865. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6866. pipe_config->fdi_m_n.tu);
  6867. DRM_DEBUG_KMS("requested mode:\n");
  6868. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6869. DRM_DEBUG_KMS("adjusted mode:\n");
  6870. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6871. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6872. pipe_config->gmch_pfit.control,
  6873. pipe_config->gmch_pfit.pgm_ratios,
  6874. pipe_config->gmch_pfit.lvds_border_bits);
  6875. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6876. pipe_config->pch_pfit.pos,
  6877. pipe_config->pch_pfit.size);
  6878. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6879. }
  6880. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6881. {
  6882. int num_encoders = 0;
  6883. bool uncloneable_encoders = false;
  6884. struct intel_encoder *encoder;
  6885. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6886. base.head) {
  6887. if (&encoder->new_crtc->base != crtc)
  6888. continue;
  6889. num_encoders++;
  6890. if (!encoder->cloneable)
  6891. uncloneable_encoders = true;
  6892. }
  6893. return !(num_encoders > 1 && uncloneable_encoders);
  6894. }
  6895. static struct intel_crtc_config *
  6896. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6897. struct drm_framebuffer *fb,
  6898. struct drm_display_mode *mode)
  6899. {
  6900. struct drm_device *dev = crtc->dev;
  6901. struct intel_encoder *encoder;
  6902. struct intel_crtc_config *pipe_config;
  6903. int plane_bpp, ret = -EINVAL;
  6904. bool retry = true;
  6905. if (!check_encoder_cloning(crtc)) {
  6906. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6907. return ERR_PTR(-EINVAL);
  6908. }
  6909. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6910. if (!pipe_config)
  6911. return ERR_PTR(-ENOMEM);
  6912. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6913. drm_mode_copy(&pipe_config->requested_mode, mode);
  6914. pipe_config->cpu_transcoder =
  6915. (enum transcoder) to_intel_crtc(crtc)->pipe;
  6916. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6917. /*
  6918. * Sanitize sync polarity flags based on requested ones. If neither
  6919. * positive or negative polarity is requested, treat this as meaning
  6920. * negative polarity.
  6921. */
  6922. if (!(pipe_config->adjusted_mode.flags &
  6923. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  6924. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  6925. if (!(pipe_config->adjusted_mode.flags &
  6926. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  6927. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  6928. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6929. * plane pixel format and any sink constraints into account. Returns the
  6930. * source plane bpp so that dithering can be selected on mismatches
  6931. * after encoders and crtc also have had their say. */
  6932. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6933. fb, pipe_config);
  6934. if (plane_bpp < 0)
  6935. goto fail;
  6936. encoder_retry:
  6937. /* Ensure the port clock defaults are reset when retrying. */
  6938. pipe_config->port_clock = 0;
  6939. pipe_config->pixel_multiplier = 1;
  6940. /* Fill in default crtc timings, allow encoders to overwrite them. */
  6941. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  6942. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6943. * adjust it according to limitations or connector properties, and also
  6944. * a chance to reject the mode entirely.
  6945. */
  6946. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6947. base.head) {
  6948. if (&encoder->new_crtc->base != crtc)
  6949. continue;
  6950. if (!(encoder->compute_config(encoder, pipe_config))) {
  6951. DRM_DEBUG_KMS("Encoder config failure\n");
  6952. goto fail;
  6953. }
  6954. }
  6955. /* Set default port clock if not overwritten by the encoder. Needs to be
  6956. * done afterwards in case the encoder adjusts the mode. */
  6957. if (!pipe_config->port_clock)
  6958. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6959. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6960. if (ret < 0) {
  6961. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6962. goto fail;
  6963. }
  6964. if (ret == RETRY) {
  6965. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6966. ret = -EINVAL;
  6967. goto fail;
  6968. }
  6969. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6970. retry = false;
  6971. goto encoder_retry;
  6972. }
  6973. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6974. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6975. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6976. return pipe_config;
  6977. fail:
  6978. kfree(pipe_config);
  6979. return ERR_PTR(ret);
  6980. }
  6981. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6982. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6983. static void
  6984. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6985. unsigned *prepare_pipes, unsigned *disable_pipes)
  6986. {
  6987. struct intel_crtc *intel_crtc;
  6988. struct drm_device *dev = crtc->dev;
  6989. struct intel_encoder *encoder;
  6990. struct intel_connector *connector;
  6991. struct drm_crtc *tmp_crtc;
  6992. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6993. /* Check which crtcs have changed outputs connected to them, these need
  6994. * to be part of the prepare_pipes mask. We don't (yet) support global
  6995. * modeset across multiple crtcs, so modeset_pipes will only have one
  6996. * bit set at most. */
  6997. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6998. base.head) {
  6999. if (connector->base.encoder == &connector->new_encoder->base)
  7000. continue;
  7001. if (connector->base.encoder) {
  7002. tmp_crtc = connector->base.encoder->crtc;
  7003. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7004. }
  7005. if (connector->new_encoder)
  7006. *prepare_pipes |=
  7007. 1 << connector->new_encoder->new_crtc->pipe;
  7008. }
  7009. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7010. base.head) {
  7011. if (encoder->base.crtc == &encoder->new_crtc->base)
  7012. continue;
  7013. if (encoder->base.crtc) {
  7014. tmp_crtc = encoder->base.crtc;
  7015. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7016. }
  7017. if (encoder->new_crtc)
  7018. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7019. }
  7020. /* Check for any pipes that will be fully disabled ... */
  7021. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7022. base.head) {
  7023. bool used = false;
  7024. /* Don't try to disable disabled crtcs. */
  7025. if (!intel_crtc->base.enabled)
  7026. continue;
  7027. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7028. base.head) {
  7029. if (encoder->new_crtc == intel_crtc)
  7030. used = true;
  7031. }
  7032. if (!used)
  7033. *disable_pipes |= 1 << intel_crtc->pipe;
  7034. }
  7035. /* set_mode is also used to update properties on life display pipes. */
  7036. intel_crtc = to_intel_crtc(crtc);
  7037. if (crtc->enabled)
  7038. *prepare_pipes |= 1 << intel_crtc->pipe;
  7039. /*
  7040. * For simplicity do a full modeset on any pipe where the output routing
  7041. * changed. We could be more clever, but that would require us to be
  7042. * more careful with calling the relevant encoder->mode_set functions.
  7043. */
  7044. if (*prepare_pipes)
  7045. *modeset_pipes = *prepare_pipes;
  7046. /* ... and mask these out. */
  7047. *modeset_pipes &= ~(*disable_pipes);
  7048. *prepare_pipes &= ~(*disable_pipes);
  7049. /*
  7050. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7051. * obies this rule, but the modeset restore mode of
  7052. * intel_modeset_setup_hw_state does not.
  7053. */
  7054. *modeset_pipes &= 1 << intel_crtc->pipe;
  7055. *prepare_pipes &= 1 << intel_crtc->pipe;
  7056. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7057. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7058. }
  7059. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7060. {
  7061. struct drm_encoder *encoder;
  7062. struct drm_device *dev = crtc->dev;
  7063. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7064. if (encoder->crtc == crtc)
  7065. return true;
  7066. return false;
  7067. }
  7068. static void
  7069. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7070. {
  7071. struct intel_encoder *intel_encoder;
  7072. struct intel_crtc *intel_crtc;
  7073. struct drm_connector *connector;
  7074. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7075. base.head) {
  7076. if (!intel_encoder->base.crtc)
  7077. continue;
  7078. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7079. if (prepare_pipes & (1 << intel_crtc->pipe))
  7080. intel_encoder->connectors_active = false;
  7081. }
  7082. intel_modeset_commit_output_state(dev);
  7083. /* Update computed state. */
  7084. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7085. base.head) {
  7086. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7087. }
  7088. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7089. if (!connector->encoder || !connector->encoder->crtc)
  7090. continue;
  7091. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7092. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7093. struct drm_property *dpms_property =
  7094. dev->mode_config.dpms_property;
  7095. connector->dpms = DRM_MODE_DPMS_ON;
  7096. drm_object_property_set_value(&connector->base,
  7097. dpms_property,
  7098. DRM_MODE_DPMS_ON);
  7099. intel_encoder = to_intel_encoder(connector->encoder);
  7100. intel_encoder->connectors_active = true;
  7101. }
  7102. }
  7103. }
  7104. static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
  7105. struct intel_crtc_config *new)
  7106. {
  7107. int clock1, clock2, diff;
  7108. clock1 = cur->adjusted_mode.clock;
  7109. clock2 = new->adjusted_mode.clock;
  7110. if (clock1 == clock2)
  7111. return true;
  7112. if (!clock1 || !clock2)
  7113. return false;
  7114. diff = abs(clock1 - clock2);
  7115. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7116. return true;
  7117. return false;
  7118. }
  7119. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7120. list_for_each_entry((intel_crtc), \
  7121. &(dev)->mode_config.crtc_list, \
  7122. base.head) \
  7123. if (mask & (1 <<(intel_crtc)->pipe))
  7124. static bool
  7125. intel_pipe_config_compare(struct drm_device *dev,
  7126. struct intel_crtc_config *current_config,
  7127. struct intel_crtc_config *pipe_config)
  7128. {
  7129. #define PIPE_CONF_CHECK_X(name) \
  7130. if (current_config->name != pipe_config->name) { \
  7131. DRM_ERROR("mismatch in " #name " " \
  7132. "(expected 0x%08x, found 0x%08x)\n", \
  7133. current_config->name, \
  7134. pipe_config->name); \
  7135. return false; \
  7136. }
  7137. #define PIPE_CONF_CHECK_I(name) \
  7138. if (current_config->name != pipe_config->name) { \
  7139. DRM_ERROR("mismatch in " #name " " \
  7140. "(expected %i, found %i)\n", \
  7141. current_config->name, \
  7142. pipe_config->name); \
  7143. return false; \
  7144. }
  7145. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7146. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7147. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7148. "(expected %i, found %i)\n", \
  7149. current_config->name & (mask), \
  7150. pipe_config->name & (mask)); \
  7151. return false; \
  7152. }
  7153. #define PIPE_CONF_QUIRK(quirk) \
  7154. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7155. PIPE_CONF_CHECK_I(cpu_transcoder);
  7156. PIPE_CONF_CHECK_I(has_pch_encoder);
  7157. PIPE_CONF_CHECK_I(fdi_lanes);
  7158. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7159. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7160. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7161. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7162. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7163. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7164. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7165. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7166. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7167. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7168. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7169. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7170. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7171. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7172. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7173. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7174. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7175. PIPE_CONF_CHECK_I(pixel_multiplier);
  7176. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7177. DRM_MODE_FLAG_INTERLACE);
  7178. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7179. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7180. DRM_MODE_FLAG_PHSYNC);
  7181. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7182. DRM_MODE_FLAG_NHSYNC);
  7183. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7184. DRM_MODE_FLAG_PVSYNC);
  7185. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7186. DRM_MODE_FLAG_NVSYNC);
  7187. }
  7188. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  7189. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  7190. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7191. /* pfit ratios are autocomputed by the hw on gen4+ */
  7192. if (INTEL_INFO(dev)->gen < 4)
  7193. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7194. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7195. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7196. PIPE_CONF_CHECK_I(pch_pfit.size);
  7197. PIPE_CONF_CHECK_I(ips_enabled);
  7198. PIPE_CONF_CHECK_I(shared_dpll);
  7199. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7200. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7201. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7202. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7203. #undef PIPE_CONF_CHECK_X
  7204. #undef PIPE_CONF_CHECK_I
  7205. #undef PIPE_CONF_CHECK_FLAGS
  7206. #undef PIPE_CONF_QUIRK
  7207. if (!IS_HASWELL(dev)) {
  7208. if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
  7209. DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
  7210. current_config->adjusted_mode.clock,
  7211. pipe_config->adjusted_mode.clock);
  7212. return false;
  7213. }
  7214. }
  7215. return true;
  7216. }
  7217. static void
  7218. check_connector_state(struct drm_device *dev)
  7219. {
  7220. struct intel_connector *connector;
  7221. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7222. base.head) {
  7223. /* This also checks the encoder/connector hw state with the
  7224. * ->get_hw_state callbacks. */
  7225. intel_connector_check_state(connector);
  7226. WARN(&connector->new_encoder->base != connector->base.encoder,
  7227. "connector's staged encoder doesn't match current encoder\n");
  7228. }
  7229. }
  7230. static void
  7231. check_encoder_state(struct drm_device *dev)
  7232. {
  7233. struct intel_encoder *encoder;
  7234. struct intel_connector *connector;
  7235. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7236. base.head) {
  7237. bool enabled = false;
  7238. bool active = false;
  7239. enum pipe pipe, tracked_pipe;
  7240. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7241. encoder->base.base.id,
  7242. drm_get_encoder_name(&encoder->base));
  7243. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7244. "encoder's stage crtc doesn't match current crtc\n");
  7245. WARN(encoder->connectors_active && !encoder->base.crtc,
  7246. "encoder's active_connectors set, but no crtc\n");
  7247. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7248. base.head) {
  7249. if (connector->base.encoder != &encoder->base)
  7250. continue;
  7251. enabled = true;
  7252. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7253. active = true;
  7254. }
  7255. WARN(!!encoder->base.crtc != enabled,
  7256. "encoder's enabled state mismatch "
  7257. "(expected %i, found %i)\n",
  7258. !!encoder->base.crtc, enabled);
  7259. WARN(active && !encoder->base.crtc,
  7260. "active encoder with no crtc\n");
  7261. WARN(encoder->connectors_active != active,
  7262. "encoder's computed active state doesn't match tracked active state "
  7263. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7264. active = encoder->get_hw_state(encoder, &pipe);
  7265. WARN(active != encoder->connectors_active,
  7266. "encoder's hw state doesn't match sw tracking "
  7267. "(expected %i, found %i)\n",
  7268. encoder->connectors_active, active);
  7269. if (!encoder->base.crtc)
  7270. continue;
  7271. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7272. WARN(active && pipe != tracked_pipe,
  7273. "active encoder's pipe doesn't match"
  7274. "(expected %i, found %i)\n",
  7275. tracked_pipe, pipe);
  7276. }
  7277. }
  7278. static void
  7279. check_crtc_state(struct drm_device *dev)
  7280. {
  7281. drm_i915_private_t *dev_priv = dev->dev_private;
  7282. struct intel_crtc *crtc;
  7283. struct intel_encoder *encoder;
  7284. struct intel_crtc_config pipe_config;
  7285. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7286. base.head) {
  7287. bool enabled = false;
  7288. bool active = false;
  7289. memset(&pipe_config, 0, sizeof(pipe_config));
  7290. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7291. crtc->base.base.id);
  7292. WARN(crtc->active && !crtc->base.enabled,
  7293. "active crtc, but not enabled in sw tracking\n");
  7294. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7295. base.head) {
  7296. if (encoder->base.crtc != &crtc->base)
  7297. continue;
  7298. enabled = true;
  7299. if (encoder->connectors_active)
  7300. active = true;
  7301. }
  7302. WARN(active != crtc->active,
  7303. "crtc's computed active state doesn't match tracked active state "
  7304. "(expected %i, found %i)\n", active, crtc->active);
  7305. WARN(enabled != crtc->base.enabled,
  7306. "crtc's computed enabled state doesn't match tracked enabled state "
  7307. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7308. active = dev_priv->display.get_pipe_config(crtc,
  7309. &pipe_config);
  7310. /* hw state is inconsistent with the pipe A quirk */
  7311. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7312. active = crtc->active;
  7313. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7314. base.head) {
  7315. enum pipe pipe;
  7316. if (encoder->base.crtc != &crtc->base)
  7317. continue;
  7318. if (encoder->get_config &&
  7319. encoder->get_hw_state(encoder, &pipe))
  7320. encoder->get_config(encoder, &pipe_config);
  7321. }
  7322. if (dev_priv->display.get_clock)
  7323. dev_priv->display.get_clock(crtc, &pipe_config);
  7324. WARN(crtc->active != active,
  7325. "crtc active state doesn't match with hw state "
  7326. "(expected %i, found %i)\n", crtc->active, active);
  7327. if (active &&
  7328. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7329. WARN(1, "pipe state doesn't match!\n");
  7330. intel_dump_pipe_config(crtc, &pipe_config,
  7331. "[hw state]");
  7332. intel_dump_pipe_config(crtc, &crtc->config,
  7333. "[sw state]");
  7334. }
  7335. }
  7336. }
  7337. static void
  7338. check_shared_dpll_state(struct drm_device *dev)
  7339. {
  7340. drm_i915_private_t *dev_priv = dev->dev_private;
  7341. struct intel_crtc *crtc;
  7342. struct intel_dpll_hw_state dpll_hw_state;
  7343. int i;
  7344. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7345. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7346. int enabled_crtcs = 0, active_crtcs = 0;
  7347. bool active;
  7348. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7349. DRM_DEBUG_KMS("%s\n", pll->name);
  7350. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7351. WARN(pll->active > pll->refcount,
  7352. "more active pll users than references: %i vs %i\n",
  7353. pll->active, pll->refcount);
  7354. WARN(pll->active && !pll->on,
  7355. "pll in active use but not on in sw tracking\n");
  7356. WARN(pll->on && !pll->active,
  7357. "pll in on but not on in use in sw tracking\n");
  7358. WARN(pll->on != active,
  7359. "pll on state mismatch (expected %i, found %i)\n",
  7360. pll->on, active);
  7361. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7362. base.head) {
  7363. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7364. enabled_crtcs++;
  7365. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7366. active_crtcs++;
  7367. }
  7368. WARN(pll->active != active_crtcs,
  7369. "pll active crtcs mismatch (expected %i, found %i)\n",
  7370. pll->active, active_crtcs);
  7371. WARN(pll->refcount != enabled_crtcs,
  7372. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7373. pll->refcount, enabled_crtcs);
  7374. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7375. sizeof(dpll_hw_state)),
  7376. "pll hw state mismatch\n");
  7377. }
  7378. }
  7379. void
  7380. intel_modeset_check_state(struct drm_device *dev)
  7381. {
  7382. check_connector_state(dev);
  7383. check_encoder_state(dev);
  7384. check_crtc_state(dev);
  7385. check_shared_dpll_state(dev);
  7386. }
  7387. static int __intel_set_mode(struct drm_crtc *crtc,
  7388. struct drm_display_mode *mode,
  7389. int x, int y, struct drm_framebuffer *fb)
  7390. {
  7391. struct drm_device *dev = crtc->dev;
  7392. drm_i915_private_t *dev_priv = dev->dev_private;
  7393. struct drm_display_mode *saved_mode, *saved_hwmode;
  7394. struct intel_crtc_config *pipe_config = NULL;
  7395. struct intel_crtc *intel_crtc;
  7396. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7397. int ret = 0;
  7398. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7399. if (!saved_mode)
  7400. return -ENOMEM;
  7401. saved_hwmode = saved_mode + 1;
  7402. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7403. &prepare_pipes, &disable_pipes);
  7404. *saved_hwmode = crtc->hwmode;
  7405. *saved_mode = crtc->mode;
  7406. /* Hack: Because we don't (yet) support global modeset on multiple
  7407. * crtcs, we don't keep track of the new mode for more than one crtc.
  7408. * Hence simply check whether any bit is set in modeset_pipes in all the
  7409. * pieces of code that are not yet converted to deal with mutliple crtcs
  7410. * changing their mode at the same time. */
  7411. if (modeset_pipes) {
  7412. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7413. if (IS_ERR(pipe_config)) {
  7414. ret = PTR_ERR(pipe_config);
  7415. pipe_config = NULL;
  7416. goto out;
  7417. }
  7418. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7419. "[modeset]");
  7420. }
  7421. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7422. intel_crtc_disable(&intel_crtc->base);
  7423. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7424. if (intel_crtc->base.enabled)
  7425. dev_priv->display.crtc_disable(&intel_crtc->base);
  7426. }
  7427. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7428. * to set it here already despite that we pass it down the callchain.
  7429. */
  7430. if (modeset_pipes) {
  7431. crtc->mode = *mode;
  7432. /* mode_set/enable/disable functions rely on a correct pipe
  7433. * config. */
  7434. to_intel_crtc(crtc)->config = *pipe_config;
  7435. }
  7436. /* Only after disabling all output pipelines that will be changed can we
  7437. * update the the output configuration. */
  7438. intel_modeset_update_state(dev, prepare_pipes);
  7439. if (dev_priv->display.modeset_global_resources)
  7440. dev_priv->display.modeset_global_resources(dev);
  7441. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7442. * on the DPLL.
  7443. */
  7444. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7445. ret = intel_crtc_mode_set(&intel_crtc->base,
  7446. x, y, fb);
  7447. if (ret)
  7448. goto done;
  7449. }
  7450. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7451. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7452. dev_priv->display.crtc_enable(&intel_crtc->base);
  7453. if (modeset_pipes) {
  7454. /* Store real post-adjustment hardware mode. */
  7455. crtc->hwmode = pipe_config->adjusted_mode;
  7456. /* Calculate and store various constants which
  7457. * are later needed by vblank and swap-completion
  7458. * timestamping. They are derived from true hwmode.
  7459. */
  7460. drm_calc_timestamping_constants(crtc);
  7461. }
  7462. /* FIXME: add subpixel order */
  7463. done:
  7464. if (ret && crtc->enabled) {
  7465. crtc->hwmode = *saved_hwmode;
  7466. crtc->mode = *saved_mode;
  7467. }
  7468. out:
  7469. kfree(pipe_config);
  7470. kfree(saved_mode);
  7471. return ret;
  7472. }
  7473. static int intel_set_mode(struct drm_crtc *crtc,
  7474. struct drm_display_mode *mode,
  7475. int x, int y, struct drm_framebuffer *fb)
  7476. {
  7477. int ret;
  7478. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7479. if (ret == 0)
  7480. intel_modeset_check_state(crtc->dev);
  7481. return ret;
  7482. }
  7483. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7484. {
  7485. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7486. }
  7487. #undef for_each_intel_crtc_masked
  7488. static void intel_set_config_free(struct intel_set_config *config)
  7489. {
  7490. if (!config)
  7491. return;
  7492. kfree(config->save_connector_encoders);
  7493. kfree(config->save_encoder_crtcs);
  7494. kfree(config);
  7495. }
  7496. static int intel_set_config_save_state(struct drm_device *dev,
  7497. struct intel_set_config *config)
  7498. {
  7499. struct drm_encoder *encoder;
  7500. struct drm_connector *connector;
  7501. int count;
  7502. config->save_encoder_crtcs =
  7503. kcalloc(dev->mode_config.num_encoder,
  7504. sizeof(struct drm_crtc *), GFP_KERNEL);
  7505. if (!config->save_encoder_crtcs)
  7506. return -ENOMEM;
  7507. config->save_connector_encoders =
  7508. kcalloc(dev->mode_config.num_connector,
  7509. sizeof(struct drm_encoder *), GFP_KERNEL);
  7510. if (!config->save_connector_encoders)
  7511. return -ENOMEM;
  7512. /* Copy data. Note that driver private data is not affected.
  7513. * Should anything bad happen only the expected state is
  7514. * restored, not the drivers personal bookkeeping.
  7515. */
  7516. count = 0;
  7517. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7518. config->save_encoder_crtcs[count++] = encoder->crtc;
  7519. }
  7520. count = 0;
  7521. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7522. config->save_connector_encoders[count++] = connector->encoder;
  7523. }
  7524. return 0;
  7525. }
  7526. static void intel_set_config_restore_state(struct drm_device *dev,
  7527. struct intel_set_config *config)
  7528. {
  7529. struct intel_encoder *encoder;
  7530. struct intel_connector *connector;
  7531. int count;
  7532. count = 0;
  7533. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7534. encoder->new_crtc =
  7535. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7536. }
  7537. count = 0;
  7538. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7539. connector->new_encoder =
  7540. to_intel_encoder(config->save_connector_encoders[count++]);
  7541. }
  7542. }
  7543. static bool
  7544. is_crtc_connector_off(struct drm_mode_set *set)
  7545. {
  7546. int i;
  7547. if (set->num_connectors == 0)
  7548. return false;
  7549. if (WARN_ON(set->connectors == NULL))
  7550. return false;
  7551. for (i = 0; i < set->num_connectors; i++)
  7552. if (set->connectors[i]->encoder &&
  7553. set->connectors[i]->encoder->crtc == set->crtc &&
  7554. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7555. return true;
  7556. return false;
  7557. }
  7558. static void
  7559. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7560. struct intel_set_config *config)
  7561. {
  7562. /* We should be able to check here if the fb has the same properties
  7563. * and then just flip_or_move it */
  7564. if (is_crtc_connector_off(set)) {
  7565. config->mode_changed = true;
  7566. } else if (set->crtc->fb != set->fb) {
  7567. /* If we have no fb then treat it as a full mode set */
  7568. if (set->crtc->fb == NULL) {
  7569. struct intel_crtc *intel_crtc =
  7570. to_intel_crtc(set->crtc);
  7571. if (intel_crtc->active && i915_fastboot) {
  7572. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7573. config->fb_changed = true;
  7574. } else {
  7575. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7576. config->mode_changed = true;
  7577. }
  7578. } else if (set->fb == NULL) {
  7579. config->mode_changed = true;
  7580. } else if (set->fb->pixel_format !=
  7581. set->crtc->fb->pixel_format) {
  7582. config->mode_changed = true;
  7583. } else {
  7584. config->fb_changed = true;
  7585. }
  7586. }
  7587. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7588. config->fb_changed = true;
  7589. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7590. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7591. drm_mode_debug_printmodeline(&set->crtc->mode);
  7592. drm_mode_debug_printmodeline(set->mode);
  7593. config->mode_changed = true;
  7594. }
  7595. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7596. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7597. }
  7598. static int
  7599. intel_modeset_stage_output_state(struct drm_device *dev,
  7600. struct drm_mode_set *set,
  7601. struct intel_set_config *config)
  7602. {
  7603. struct drm_crtc *new_crtc;
  7604. struct intel_connector *connector;
  7605. struct intel_encoder *encoder;
  7606. int ro;
  7607. /* The upper layers ensure that we either disable a crtc or have a list
  7608. * of connectors. For paranoia, double-check this. */
  7609. WARN_ON(!set->fb && (set->num_connectors != 0));
  7610. WARN_ON(set->fb && (set->num_connectors == 0));
  7611. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7612. base.head) {
  7613. /* Otherwise traverse passed in connector list and get encoders
  7614. * for them. */
  7615. for (ro = 0; ro < set->num_connectors; ro++) {
  7616. if (set->connectors[ro] == &connector->base) {
  7617. connector->new_encoder = connector->encoder;
  7618. break;
  7619. }
  7620. }
  7621. /* If we disable the crtc, disable all its connectors. Also, if
  7622. * the connector is on the changing crtc but not on the new
  7623. * connector list, disable it. */
  7624. if ((!set->fb || ro == set->num_connectors) &&
  7625. connector->base.encoder &&
  7626. connector->base.encoder->crtc == set->crtc) {
  7627. connector->new_encoder = NULL;
  7628. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7629. connector->base.base.id,
  7630. drm_get_connector_name(&connector->base));
  7631. }
  7632. if (&connector->new_encoder->base != connector->base.encoder) {
  7633. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7634. config->mode_changed = true;
  7635. }
  7636. }
  7637. /* connector->new_encoder is now updated for all connectors. */
  7638. /* Update crtc of enabled connectors. */
  7639. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7640. base.head) {
  7641. if (!connector->new_encoder)
  7642. continue;
  7643. new_crtc = connector->new_encoder->base.crtc;
  7644. for (ro = 0; ro < set->num_connectors; ro++) {
  7645. if (set->connectors[ro] == &connector->base)
  7646. new_crtc = set->crtc;
  7647. }
  7648. /* Make sure the new CRTC will work with the encoder */
  7649. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7650. new_crtc)) {
  7651. return -EINVAL;
  7652. }
  7653. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7654. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7655. connector->base.base.id,
  7656. drm_get_connector_name(&connector->base),
  7657. new_crtc->base.id);
  7658. }
  7659. /* Check for any encoders that needs to be disabled. */
  7660. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7661. base.head) {
  7662. list_for_each_entry(connector,
  7663. &dev->mode_config.connector_list,
  7664. base.head) {
  7665. if (connector->new_encoder == encoder) {
  7666. WARN_ON(!connector->new_encoder->new_crtc);
  7667. goto next_encoder;
  7668. }
  7669. }
  7670. encoder->new_crtc = NULL;
  7671. next_encoder:
  7672. /* Only now check for crtc changes so we don't miss encoders
  7673. * that will be disabled. */
  7674. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7675. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7676. config->mode_changed = true;
  7677. }
  7678. }
  7679. /* Now we've also updated encoder->new_crtc for all encoders. */
  7680. return 0;
  7681. }
  7682. static int intel_crtc_set_config(struct drm_mode_set *set)
  7683. {
  7684. struct drm_device *dev;
  7685. struct drm_mode_set save_set;
  7686. struct intel_set_config *config;
  7687. int ret;
  7688. BUG_ON(!set);
  7689. BUG_ON(!set->crtc);
  7690. BUG_ON(!set->crtc->helper_private);
  7691. /* Enforce sane interface api - has been abused by the fb helper. */
  7692. BUG_ON(!set->mode && set->fb);
  7693. BUG_ON(set->fb && set->num_connectors == 0);
  7694. if (set->fb) {
  7695. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7696. set->crtc->base.id, set->fb->base.id,
  7697. (int)set->num_connectors, set->x, set->y);
  7698. } else {
  7699. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7700. }
  7701. dev = set->crtc->dev;
  7702. ret = -ENOMEM;
  7703. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7704. if (!config)
  7705. goto out_config;
  7706. ret = intel_set_config_save_state(dev, config);
  7707. if (ret)
  7708. goto out_config;
  7709. save_set.crtc = set->crtc;
  7710. save_set.mode = &set->crtc->mode;
  7711. save_set.x = set->crtc->x;
  7712. save_set.y = set->crtc->y;
  7713. save_set.fb = set->crtc->fb;
  7714. /* Compute whether we need a full modeset, only an fb base update or no
  7715. * change at all. In the future we might also check whether only the
  7716. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7717. * such cases. */
  7718. intel_set_config_compute_mode_changes(set, config);
  7719. ret = intel_modeset_stage_output_state(dev, set, config);
  7720. if (ret)
  7721. goto fail;
  7722. if (config->mode_changed) {
  7723. ret = intel_set_mode(set->crtc, set->mode,
  7724. set->x, set->y, set->fb);
  7725. } else if (config->fb_changed) {
  7726. intel_crtc_wait_for_pending_flips(set->crtc);
  7727. ret = intel_pipe_set_base(set->crtc,
  7728. set->x, set->y, set->fb);
  7729. }
  7730. if (ret) {
  7731. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7732. set->crtc->base.id, ret);
  7733. fail:
  7734. intel_set_config_restore_state(dev, config);
  7735. /* Try to restore the config */
  7736. if (config->mode_changed &&
  7737. intel_set_mode(save_set.crtc, save_set.mode,
  7738. save_set.x, save_set.y, save_set.fb))
  7739. DRM_ERROR("failed to restore config after modeset failure\n");
  7740. }
  7741. out_config:
  7742. intel_set_config_free(config);
  7743. return ret;
  7744. }
  7745. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7746. .cursor_set = intel_crtc_cursor_set,
  7747. .cursor_move = intel_crtc_cursor_move,
  7748. .gamma_set = intel_crtc_gamma_set,
  7749. .set_config = intel_crtc_set_config,
  7750. .destroy = intel_crtc_destroy,
  7751. .page_flip = intel_crtc_page_flip,
  7752. };
  7753. static void intel_cpu_pll_init(struct drm_device *dev)
  7754. {
  7755. if (HAS_DDI(dev))
  7756. intel_ddi_pll_init(dev);
  7757. }
  7758. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7759. struct intel_shared_dpll *pll,
  7760. struct intel_dpll_hw_state *hw_state)
  7761. {
  7762. uint32_t val;
  7763. val = I915_READ(PCH_DPLL(pll->id));
  7764. hw_state->dpll = val;
  7765. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7766. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7767. return val & DPLL_VCO_ENABLE;
  7768. }
  7769. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7770. struct intel_shared_dpll *pll)
  7771. {
  7772. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7773. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7774. }
  7775. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7776. struct intel_shared_dpll *pll)
  7777. {
  7778. /* PCH refclock must be enabled first */
  7779. assert_pch_refclk_enabled(dev_priv);
  7780. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7781. /* Wait for the clocks to stabilize. */
  7782. POSTING_READ(PCH_DPLL(pll->id));
  7783. udelay(150);
  7784. /* The pixel multiplier can only be updated once the
  7785. * DPLL is enabled and the clocks are stable.
  7786. *
  7787. * So write it again.
  7788. */
  7789. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7790. POSTING_READ(PCH_DPLL(pll->id));
  7791. udelay(200);
  7792. }
  7793. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7794. struct intel_shared_dpll *pll)
  7795. {
  7796. struct drm_device *dev = dev_priv->dev;
  7797. struct intel_crtc *crtc;
  7798. /* Make sure no transcoder isn't still depending on us. */
  7799. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7800. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7801. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7802. }
  7803. I915_WRITE(PCH_DPLL(pll->id), 0);
  7804. POSTING_READ(PCH_DPLL(pll->id));
  7805. udelay(200);
  7806. }
  7807. static char *ibx_pch_dpll_names[] = {
  7808. "PCH DPLL A",
  7809. "PCH DPLL B",
  7810. };
  7811. static void ibx_pch_dpll_init(struct drm_device *dev)
  7812. {
  7813. struct drm_i915_private *dev_priv = dev->dev_private;
  7814. int i;
  7815. dev_priv->num_shared_dpll = 2;
  7816. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7817. dev_priv->shared_dplls[i].id = i;
  7818. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7819. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7820. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7821. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7822. dev_priv->shared_dplls[i].get_hw_state =
  7823. ibx_pch_dpll_get_hw_state;
  7824. }
  7825. }
  7826. static void intel_shared_dpll_init(struct drm_device *dev)
  7827. {
  7828. struct drm_i915_private *dev_priv = dev->dev_private;
  7829. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7830. ibx_pch_dpll_init(dev);
  7831. else
  7832. dev_priv->num_shared_dpll = 0;
  7833. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7834. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7835. dev_priv->num_shared_dpll);
  7836. }
  7837. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7838. {
  7839. drm_i915_private_t *dev_priv = dev->dev_private;
  7840. struct intel_crtc *intel_crtc;
  7841. int i;
  7842. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7843. if (intel_crtc == NULL)
  7844. return;
  7845. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7846. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7847. for (i = 0; i < 256; i++) {
  7848. intel_crtc->lut_r[i] = i;
  7849. intel_crtc->lut_g[i] = i;
  7850. intel_crtc->lut_b[i] = i;
  7851. }
  7852. /* Swap pipes & planes for FBC on pre-965 */
  7853. intel_crtc->pipe = pipe;
  7854. intel_crtc->plane = pipe;
  7855. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7856. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7857. intel_crtc->plane = !pipe;
  7858. }
  7859. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7860. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7861. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7862. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7863. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7864. }
  7865. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7866. struct drm_file *file)
  7867. {
  7868. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7869. struct drm_mode_object *drmmode_obj;
  7870. struct intel_crtc *crtc;
  7871. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7872. return -ENODEV;
  7873. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7874. DRM_MODE_OBJECT_CRTC);
  7875. if (!drmmode_obj) {
  7876. DRM_ERROR("no such CRTC id\n");
  7877. return -EINVAL;
  7878. }
  7879. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7880. pipe_from_crtc_id->pipe = crtc->pipe;
  7881. return 0;
  7882. }
  7883. static int intel_encoder_clones(struct intel_encoder *encoder)
  7884. {
  7885. struct drm_device *dev = encoder->base.dev;
  7886. struct intel_encoder *source_encoder;
  7887. int index_mask = 0;
  7888. int entry = 0;
  7889. list_for_each_entry(source_encoder,
  7890. &dev->mode_config.encoder_list, base.head) {
  7891. if (encoder == source_encoder)
  7892. index_mask |= (1 << entry);
  7893. /* Intel hw has only one MUX where enocoders could be cloned. */
  7894. if (encoder->cloneable && source_encoder->cloneable)
  7895. index_mask |= (1 << entry);
  7896. entry++;
  7897. }
  7898. return index_mask;
  7899. }
  7900. static bool has_edp_a(struct drm_device *dev)
  7901. {
  7902. struct drm_i915_private *dev_priv = dev->dev_private;
  7903. if (!IS_MOBILE(dev))
  7904. return false;
  7905. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7906. return false;
  7907. if (IS_GEN5(dev) &&
  7908. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7909. return false;
  7910. return true;
  7911. }
  7912. static void intel_setup_outputs(struct drm_device *dev)
  7913. {
  7914. struct drm_i915_private *dev_priv = dev->dev_private;
  7915. struct intel_encoder *encoder;
  7916. bool dpd_is_edp = false;
  7917. intel_lvds_init(dev);
  7918. if (!IS_ULT(dev))
  7919. intel_crt_init(dev);
  7920. if (HAS_DDI(dev)) {
  7921. int found;
  7922. /* Haswell uses DDI functions to detect digital outputs */
  7923. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7924. /* DDI A only supports eDP */
  7925. if (found)
  7926. intel_ddi_init(dev, PORT_A);
  7927. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7928. * register */
  7929. found = I915_READ(SFUSE_STRAP);
  7930. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7931. intel_ddi_init(dev, PORT_B);
  7932. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7933. intel_ddi_init(dev, PORT_C);
  7934. if (found & SFUSE_STRAP_DDID_DETECTED)
  7935. intel_ddi_init(dev, PORT_D);
  7936. } else if (HAS_PCH_SPLIT(dev)) {
  7937. int found;
  7938. dpd_is_edp = intel_dpd_is_edp(dev);
  7939. if (has_edp_a(dev))
  7940. intel_dp_init(dev, DP_A, PORT_A);
  7941. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7942. /* PCH SDVOB multiplex with HDMIB */
  7943. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7944. if (!found)
  7945. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7946. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7947. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7948. }
  7949. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7950. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7951. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7952. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7953. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7954. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7955. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7956. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7957. } else if (IS_VALLEYVIEW(dev)) {
  7958. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7959. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  7960. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  7961. PORT_C);
  7962. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7963. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  7964. PORT_C);
  7965. }
  7966. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7967. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7968. PORT_B);
  7969. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7970. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7971. }
  7972. intel_dsi_init(dev);
  7973. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7974. bool found = false;
  7975. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7976. DRM_DEBUG_KMS("probing SDVOB\n");
  7977. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7978. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7979. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7980. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7981. }
  7982. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7983. intel_dp_init(dev, DP_B, PORT_B);
  7984. }
  7985. /* Before G4X SDVOC doesn't have its own detect register */
  7986. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7987. DRM_DEBUG_KMS("probing SDVOC\n");
  7988. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7989. }
  7990. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7991. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7992. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7993. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7994. }
  7995. if (SUPPORTS_INTEGRATED_DP(dev))
  7996. intel_dp_init(dev, DP_C, PORT_C);
  7997. }
  7998. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7999. (I915_READ(DP_D) & DP_DETECTED))
  8000. intel_dp_init(dev, DP_D, PORT_D);
  8001. } else if (IS_GEN2(dev))
  8002. intel_dvo_init(dev);
  8003. if (SUPPORTS_TV(dev))
  8004. intel_tv_init(dev);
  8005. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8006. encoder->base.possible_crtcs = encoder->crtc_mask;
  8007. encoder->base.possible_clones =
  8008. intel_encoder_clones(encoder);
  8009. }
  8010. intel_init_pch_refclk(dev);
  8011. drm_helper_move_panel_connectors_to_head(dev);
  8012. }
  8013. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8014. {
  8015. drm_framebuffer_cleanup(&fb->base);
  8016. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8017. }
  8018. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8019. {
  8020. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8021. intel_framebuffer_fini(intel_fb);
  8022. kfree(intel_fb);
  8023. }
  8024. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8025. struct drm_file *file,
  8026. unsigned int *handle)
  8027. {
  8028. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8029. struct drm_i915_gem_object *obj = intel_fb->obj;
  8030. return drm_gem_handle_create(file, &obj->base, handle);
  8031. }
  8032. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8033. .destroy = intel_user_framebuffer_destroy,
  8034. .create_handle = intel_user_framebuffer_create_handle,
  8035. };
  8036. int intel_framebuffer_init(struct drm_device *dev,
  8037. struct intel_framebuffer *intel_fb,
  8038. struct drm_mode_fb_cmd2 *mode_cmd,
  8039. struct drm_i915_gem_object *obj)
  8040. {
  8041. int pitch_limit;
  8042. int ret;
  8043. if (obj->tiling_mode == I915_TILING_Y) {
  8044. DRM_DEBUG("hardware does not support tiling Y\n");
  8045. return -EINVAL;
  8046. }
  8047. if (mode_cmd->pitches[0] & 63) {
  8048. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8049. mode_cmd->pitches[0]);
  8050. return -EINVAL;
  8051. }
  8052. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8053. pitch_limit = 32*1024;
  8054. } else if (INTEL_INFO(dev)->gen >= 4) {
  8055. if (obj->tiling_mode)
  8056. pitch_limit = 16*1024;
  8057. else
  8058. pitch_limit = 32*1024;
  8059. } else if (INTEL_INFO(dev)->gen >= 3) {
  8060. if (obj->tiling_mode)
  8061. pitch_limit = 8*1024;
  8062. else
  8063. pitch_limit = 16*1024;
  8064. } else
  8065. /* XXX DSPC is limited to 4k tiled */
  8066. pitch_limit = 8*1024;
  8067. if (mode_cmd->pitches[0] > pitch_limit) {
  8068. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8069. obj->tiling_mode ? "tiled" : "linear",
  8070. mode_cmd->pitches[0], pitch_limit);
  8071. return -EINVAL;
  8072. }
  8073. if (obj->tiling_mode != I915_TILING_NONE &&
  8074. mode_cmd->pitches[0] != obj->stride) {
  8075. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8076. mode_cmd->pitches[0], obj->stride);
  8077. return -EINVAL;
  8078. }
  8079. /* Reject formats not supported by any plane early. */
  8080. switch (mode_cmd->pixel_format) {
  8081. case DRM_FORMAT_C8:
  8082. case DRM_FORMAT_RGB565:
  8083. case DRM_FORMAT_XRGB8888:
  8084. case DRM_FORMAT_ARGB8888:
  8085. break;
  8086. case DRM_FORMAT_XRGB1555:
  8087. case DRM_FORMAT_ARGB1555:
  8088. if (INTEL_INFO(dev)->gen > 3) {
  8089. DRM_DEBUG("unsupported pixel format: %s\n",
  8090. drm_get_format_name(mode_cmd->pixel_format));
  8091. return -EINVAL;
  8092. }
  8093. break;
  8094. case DRM_FORMAT_XBGR8888:
  8095. case DRM_FORMAT_ABGR8888:
  8096. case DRM_FORMAT_XRGB2101010:
  8097. case DRM_FORMAT_ARGB2101010:
  8098. case DRM_FORMAT_XBGR2101010:
  8099. case DRM_FORMAT_ABGR2101010:
  8100. if (INTEL_INFO(dev)->gen < 4) {
  8101. DRM_DEBUG("unsupported pixel format: %s\n",
  8102. drm_get_format_name(mode_cmd->pixel_format));
  8103. return -EINVAL;
  8104. }
  8105. break;
  8106. case DRM_FORMAT_YUYV:
  8107. case DRM_FORMAT_UYVY:
  8108. case DRM_FORMAT_YVYU:
  8109. case DRM_FORMAT_VYUY:
  8110. if (INTEL_INFO(dev)->gen < 5) {
  8111. DRM_DEBUG("unsupported pixel format: %s\n",
  8112. drm_get_format_name(mode_cmd->pixel_format));
  8113. return -EINVAL;
  8114. }
  8115. break;
  8116. default:
  8117. DRM_DEBUG("unsupported pixel format: %s\n",
  8118. drm_get_format_name(mode_cmd->pixel_format));
  8119. return -EINVAL;
  8120. }
  8121. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8122. if (mode_cmd->offsets[0] != 0)
  8123. return -EINVAL;
  8124. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8125. intel_fb->obj = obj;
  8126. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8127. if (ret) {
  8128. DRM_ERROR("framebuffer init failed %d\n", ret);
  8129. return ret;
  8130. }
  8131. return 0;
  8132. }
  8133. static struct drm_framebuffer *
  8134. intel_user_framebuffer_create(struct drm_device *dev,
  8135. struct drm_file *filp,
  8136. struct drm_mode_fb_cmd2 *mode_cmd)
  8137. {
  8138. struct drm_i915_gem_object *obj;
  8139. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8140. mode_cmd->handles[0]));
  8141. if (&obj->base == NULL)
  8142. return ERR_PTR(-ENOENT);
  8143. return intel_framebuffer_create(dev, mode_cmd, obj);
  8144. }
  8145. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8146. .fb_create = intel_user_framebuffer_create,
  8147. .output_poll_changed = intel_fb_output_poll_changed,
  8148. };
  8149. /* Set up chip specific display functions */
  8150. static void intel_init_display(struct drm_device *dev)
  8151. {
  8152. struct drm_i915_private *dev_priv = dev->dev_private;
  8153. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8154. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8155. else if (IS_VALLEYVIEW(dev))
  8156. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8157. else if (IS_PINEVIEW(dev))
  8158. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8159. else
  8160. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8161. if (HAS_DDI(dev)) {
  8162. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8163. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8164. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8165. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8166. dev_priv->display.off = haswell_crtc_off;
  8167. dev_priv->display.update_plane = ironlake_update_plane;
  8168. } else if (HAS_PCH_SPLIT(dev)) {
  8169. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8170. dev_priv->display.get_clock = ironlake_crtc_clock_get;
  8171. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8172. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8173. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8174. dev_priv->display.off = ironlake_crtc_off;
  8175. dev_priv->display.update_plane = ironlake_update_plane;
  8176. } else if (IS_VALLEYVIEW(dev)) {
  8177. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8178. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8179. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8180. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8181. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8182. dev_priv->display.off = i9xx_crtc_off;
  8183. dev_priv->display.update_plane = i9xx_update_plane;
  8184. } else {
  8185. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8186. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8187. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8188. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8189. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8190. dev_priv->display.off = i9xx_crtc_off;
  8191. dev_priv->display.update_plane = i9xx_update_plane;
  8192. }
  8193. /* Returns the core display clock speed */
  8194. if (IS_VALLEYVIEW(dev))
  8195. dev_priv->display.get_display_clock_speed =
  8196. valleyview_get_display_clock_speed;
  8197. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8198. dev_priv->display.get_display_clock_speed =
  8199. i945_get_display_clock_speed;
  8200. else if (IS_I915G(dev))
  8201. dev_priv->display.get_display_clock_speed =
  8202. i915_get_display_clock_speed;
  8203. else if (IS_I945GM(dev) || IS_845G(dev))
  8204. dev_priv->display.get_display_clock_speed =
  8205. i9xx_misc_get_display_clock_speed;
  8206. else if (IS_PINEVIEW(dev))
  8207. dev_priv->display.get_display_clock_speed =
  8208. pnv_get_display_clock_speed;
  8209. else if (IS_I915GM(dev))
  8210. dev_priv->display.get_display_clock_speed =
  8211. i915gm_get_display_clock_speed;
  8212. else if (IS_I865G(dev))
  8213. dev_priv->display.get_display_clock_speed =
  8214. i865_get_display_clock_speed;
  8215. else if (IS_I85X(dev))
  8216. dev_priv->display.get_display_clock_speed =
  8217. i855_get_display_clock_speed;
  8218. else /* 852, 830 */
  8219. dev_priv->display.get_display_clock_speed =
  8220. i830_get_display_clock_speed;
  8221. if (HAS_PCH_SPLIT(dev)) {
  8222. if (IS_GEN5(dev)) {
  8223. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8224. dev_priv->display.write_eld = ironlake_write_eld;
  8225. } else if (IS_GEN6(dev)) {
  8226. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8227. dev_priv->display.write_eld = ironlake_write_eld;
  8228. } else if (IS_IVYBRIDGE(dev)) {
  8229. /* FIXME: detect B0+ stepping and use auto training */
  8230. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8231. dev_priv->display.write_eld = ironlake_write_eld;
  8232. dev_priv->display.modeset_global_resources =
  8233. ivb_modeset_global_resources;
  8234. } else if (IS_HASWELL(dev)) {
  8235. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8236. dev_priv->display.write_eld = haswell_write_eld;
  8237. dev_priv->display.modeset_global_resources =
  8238. haswell_modeset_global_resources;
  8239. }
  8240. } else if (IS_G4X(dev)) {
  8241. dev_priv->display.write_eld = g4x_write_eld;
  8242. }
  8243. /* Default just returns -ENODEV to indicate unsupported */
  8244. dev_priv->display.queue_flip = intel_default_queue_flip;
  8245. switch (INTEL_INFO(dev)->gen) {
  8246. case 2:
  8247. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8248. break;
  8249. case 3:
  8250. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8251. break;
  8252. case 4:
  8253. case 5:
  8254. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8255. break;
  8256. case 6:
  8257. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8258. break;
  8259. case 7:
  8260. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8261. break;
  8262. }
  8263. }
  8264. /*
  8265. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8266. * resume, or other times. This quirk makes sure that's the case for
  8267. * affected systems.
  8268. */
  8269. static void quirk_pipea_force(struct drm_device *dev)
  8270. {
  8271. struct drm_i915_private *dev_priv = dev->dev_private;
  8272. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8273. DRM_INFO("applying pipe a force quirk\n");
  8274. }
  8275. /*
  8276. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8277. */
  8278. static void quirk_ssc_force_disable(struct drm_device *dev)
  8279. {
  8280. struct drm_i915_private *dev_priv = dev->dev_private;
  8281. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8282. DRM_INFO("applying lvds SSC disable quirk\n");
  8283. }
  8284. /*
  8285. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8286. * brightness value
  8287. */
  8288. static void quirk_invert_brightness(struct drm_device *dev)
  8289. {
  8290. struct drm_i915_private *dev_priv = dev->dev_private;
  8291. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8292. DRM_INFO("applying inverted panel brightness quirk\n");
  8293. }
  8294. /*
  8295. * Some machines (Dell XPS13) suffer broken backlight controls if
  8296. * BLM_PCH_PWM_ENABLE is set.
  8297. */
  8298. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8299. {
  8300. struct drm_i915_private *dev_priv = dev->dev_private;
  8301. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8302. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8303. }
  8304. struct intel_quirk {
  8305. int device;
  8306. int subsystem_vendor;
  8307. int subsystem_device;
  8308. void (*hook)(struct drm_device *dev);
  8309. };
  8310. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8311. struct intel_dmi_quirk {
  8312. void (*hook)(struct drm_device *dev);
  8313. const struct dmi_system_id (*dmi_id_list)[];
  8314. };
  8315. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8316. {
  8317. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8318. return 1;
  8319. }
  8320. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8321. {
  8322. .dmi_id_list = &(const struct dmi_system_id[]) {
  8323. {
  8324. .callback = intel_dmi_reverse_brightness,
  8325. .ident = "NCR Corporation",
  8326. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8327. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8328. },
  8329. },
  8330. { } /* terminating entry */
  8331. },
  8332. .hook = quirk_invert_brightness,
  8333. },
  8334. };
  8335. static struct intel_quirk intel_quirks[] = {
  8336. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8337. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8338. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8339. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8340. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8341. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8342. /* 830/845 need to leave pipe A & dpll A up */
  8343. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8344. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8345. /* Lenovo U160 cannot use SSC on LVDS */
  8346. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8347. /* Sony Vaio Y cannot use SSC on LVDS */
  8348. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8349. /* Acer Aspire 5734Z must invert backlight brightness */
  8350. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8351. /* Acer/eMachines G725 */
  8352. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  8353. /* Acer/eMachines e725 */
  8354. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8355. /* Acer/Packard Bell NCL20 */
  8356. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8357. /* Acer Aspire 4736Z */
  8358. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8359. /* Dell XPS13 HD Sandy Bridge */
  8360. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8361. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8362. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8363. };
  8364. static void intel_init_quirks(struct drm_device *dev)
  8365. {
  8366. struct pci_dev *d = dev->pdev;
  8367. int i;
  8368. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8369. struct intel_quirk *q = &intel_quirks[i];
  8370. if (d->device == q->device &&
  8371. (d->subsystem_vendor == q->subsystem_vendor ||
  8372. q->subsystem_vendor == PCI_ANY_ID) &&
  8373. (d->subsystem_device == q->subsystem_device ||
  8374. q->subsystem_device == PCI_ANY_ID))
  8375. q->hook(dev);
  8376. }
  8377. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8378. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8379. intel_dmi_quirks[i].hook(dev);
  8380. }
  8381. }
  8382. /* Disable the VGA plane that we never use */
  8383. static void i915_disable_vga(struct drm_device *dev)
  8384. {
  8385. struct drm_i915_private *dev_priv = dev->dev_private;
  8386. u8 sr1;
  8387. u32 vga_reg = i915_vgacntrl_reg(dev);
  8388. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8389. outb(SR01, VGA_SR_INDEX);
  8390. sr1 = inb(VGA_SR_DATA);
  8391. outb(sr1 | 1<<5, VGA_SR_DATA);
  8392. /* Disable VGA memory on Intel HD */
  8393. if (HAS_PCH_SPLIT(dev)) {
  8394. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8395. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8396. VGA_RSRC_NORMAL_IO |
  8397. VGA_RSRC_NORMAL_MEM);
  8398. }
  8399. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8400. udelay(300);
  8401. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8402. POSTING_READ(vga_reg);
  8403. }
  8404. static void i915_enable_vga(struct drm_device *dev)
  8405. {
  8406. /* Enable VGA memory on Intel HD */
  8407. if (HAS_PCH_SPLIT(dev)) {
  8408. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8409. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8410. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8411. VGA_RSRC_LEGACY_MEM |
  8412. VGA_RSRC_NORMAL_IO |
  8413. VGA_RSRC_NORMAL_MEM);
  8414. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8415. }
  8416. }
  8417. void intel_modeset_init_hw(struct drm_device *dev)
  8418. {
  8419. intel_init_power_well(dev);
  8420. intel_prepare_ddi(dev);
  8421. intel_init_clock_gating(dev);
  8422. mutex_lock(&dev->struct_mutex);
  8423. intel_enable_gt_powersave(dev);
  8424. mutex_unlock(&dev->struct_mutex);
  8425. }
  8426. void intel_modeset_suspend_hw(struct drm_device *dev)
  8427. {
  8428. intel_suspend_hw(dev);
  8429. }
  8430. void intel_modeset_init(struct drm_device *dev)
  8431. {
  8432. struct drm_i915_private *dev_priv = dev->dev_private;
  8433. int i, j, ret;
  8434. drm_mode_config_init(dev);
  8435. dev->mode_config.min_width = 0;
  8436. dev->mode_config.min_height = 0;
  8437. dev->mode_config.preferred_depth = 24;
  8438. dev->mode_config.prefer_shadow = 1;
  8439. dev->mode_config.funcs = &intel_mode_funcs;
  8440. intel_init_quirks(dev);
  8441. intel_init_pm(dev);
  8442. if (INTEL_INFO(dev)->num_pipes == 0)
  8443. return;
  8444. intel_init_display(dev);
  8445. if (IS_GEN2(dev)) {
  8446. dev->mode_config.max_width = 2048;
  8447. dev->mode_config.max_height = 2048;
  8448. } else if (IS_GEN3(dev)) {
  8449. dev->mode_config.max_width = 4096;
  8450. dev->mode_config.max_height = 4096;
  8451. } else {
  8452. dev->mode_config.max_width = 8192;
  8453. dev->mode_config.max_height = 8192;
  8454. }
  8455. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8456. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8457. INTEL_INFO(dev)->num_pipes,
  8458. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8459. for_each_pipe(i) {
  8460. intel_crtc_init(dev, i);
  8461. for (j = 0; j < dev_priv->num_plane; j++) {
  8462. ret = intel_plane_init(dev, i, j);
  8463. if (ret)
  8464. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8465. pipe_name(i), sprite_name(i, j), ret);
  8466. }
  8467. }
  8468. intel_cpu_pll_init(dev);
  8469. intel_shared_dpll_init(dev);
  8470. /* Just disable it once at startup */
  8471. i915_disable_vga(dev);
  8472. intel_setup_outputs(dev);
  8473. /* Just in case the BIOS is doing something questionable. */
  8474. intel_disable_fbc(dev);
  8475. }
  8476. static void
  8477. intel_connector_break_all_links(struct intel_connector *connector)
  8478. {
  8479. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8480. connector->base.encoder = NULL;
  8481. connector->encoder->connectors_active = false;
  8482. connector->encoder->base.crtc = NULL;
  8483. }
  8484. static void intel_enable_pipe_a(struct drm_device *dev)
  8485. {
  8486. struct intel_connector *connector;
  8487. struct drm_connector *crt = NULL;
  8488. struct intel_load_detect_pipe load_detect_temp;
  8489. /* We can't just switch on the pipe A, we need to set things up with a
  8490. * proper mode and output configuration. As a gross hack, enable pipe A
  8491. * by enabling the load detect pipe once. */
  8492. list_for_each_entry(connector,
  8493. &dev->mode_config.connector_list,
  8494. base.head) {
  8495. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8496. crt = &connector->base;
  8497. break;
  8498. }
  8499. }
  8500. if (!crt)
  8501. return;
  8502. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8503. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8504. }
  8505. static bool
  8506. intel_check_plane_mapping(struct intel_crtc *crtc)
  8507. {
  8508. struct drm_device *dev = crtc->base.dev;
  8509. struct drm_i915_private *dev_priv = dev->dev_private;
  8510. u32 reg, val;
  8511. if (INTEL_INFO(dev)->num_pipes == 1)
  8512. return true;
  8513. reg = DSPCNTR(!crtc->plane);
  8514. val = I915_READ(reg);
  8515. if ((val & DISPLAY_PLANE_ENABLE) &&
  8516. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8517. return false;
  8518. return true;
  8519. }
  8520. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8521. {
  8522. struct drm_device *dev = crtc->base.dev;
  8523. struct drm_i915_private *dev_priv = dev->dev_private;
  8524. u32 reg;
  8525. /* Clear any frame start delays used for debugging left by the BIOS */
  8526. reg = PIPECONF(crtc->config.cpu_transcoder);
  8527. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8528. /* We need to sanitize the plane -> pipe mapping first because this will
  8529. * disable the crtc (and hence change the state) if it is wrong. Note
  8530. * that gen4+ has a fixed plane -> pipe mapping. */
  8531. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8532. struct intel_connector *connector;
  8533. bool plane;
  8534. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8535. crtc->base.base.id);
  8536. /* Pipe has the wrong plane attached and the plane is active.
  8537. * Temporarily change the plane mapping and disable everything
  8538. * ... */
  8539. plane = crtc->plane;
  8540. crtc->plane = !plane;
  8541. dev_priv->display.crtc_disable(&crtc->base);
  8542. crtc->plane = plane;
  8543. /* ... and break all links. */
  8544. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8545. base.head) {
  8546. if (connector->encoder->base.crtc != &crtc->base)
  8547. continue;
  8548. intel_connector_break_all_links(connector);
  8549. }
  8550. WARN_ON(crtc->active);
  8551. crtc->base.enabled = false;
  8552. }
  8553. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8554. crtc->pipe == PIPE_A && !crtc->active) {
  8555. /* BIOS forgot to enable pipe A, this mostly happens after
  8556. * resume. Force-enable the pipe to fix this, the update_dpms
  8557. * call below we restore the pipe to the right state, but leave
  8558. * the required bits on. */
  8559. intel_enable_pipe_a(dev);
  8560. }
  8561. /* Adjust the state of the output pipe according to whether we
  8562. * have active connectors/encoders. */
  8563. intel_crtc_update_dpms(&crtc->base);
  8564. if (crtc->active != crtc->base.enabled) {
  8565. struct intel_encoder *encoder;
  8566. /* This can happen either due to bugs in the get_hw_state
  8567. * functions or because the pipe is force-enabled due to the
  8568. * pipe A quirk. */
  8569. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8570. crtc->base.base.id,
  8571. crtc->base.enabled ? "enabled" : "disabled",
  8572. crtc->active ? "enabled" : "disabled");
  8573. crtc->base.enabled = crtc->active;
  8574. /* Because we only establish the connector -> encoder ->
  8575. * crtc links if something is active, this means the
  8576. * crtc is now deactivated. Break the links. connector
  8577. * -> encoder links are only establish when things are
  8578. * actually up, hence no need to break them. */
  8579. WARN_ON(crtc->active);
  8580. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8581. WARN_ON(encoder->connectors_active);
  8582. encoder->base.crtc = NULL;
  8583. }
  8584. }
  8585. }
  8586. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8587. {
  8588. struct intel_connector *connector;
  8589. struct drm_device *dev = encoder->base.dev;
  8590. /* We need to check both for a crtc link (meaning that the
  8591. * encoder is active and trying to read from a pipe) and the
  8592. * pipe itself being active. */
  8593. bool has_active_crtc = encoder->base.crtc &&
  8594. to_intel_crtc(encoder->base.crtc)->active;
  8595. if (encoder->connectors_active && !has_active_crtc) {
  8596. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8597. encoder->base.base.id,
  8598. drm_get_encoder_name(&encoder->base));
  8599. /* Connector is active, but has no active pipe. This is
  8600. * fallout from our resume register restoring. Disable
  8601. * the encoder manually again. */
  8602. if (encoder->base.crtc) {
  8603. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8604. encoder->base.base.id,
  8605. drm_get_encoder_name(&encoder->base));
  8606. encoder->disable(encoder);
  8607. }
  8608. /* Inconsistent output/port/pipe state happens presumably due to
  8609. * a bug in one of the get_hw_state functions. Or someplace else
  8610. * in our code, like the register restore mess on resume. Clamp
  8611. * things to off as a safer default. */
  8612. list_for_each_entry(connector,
  8613. &dev->mode_config.connector_list,
  8614. base.head) {
  8615. if (connector->encoder != encoder)
  8616. continue;
  8617. intel_connector_break_all_links(connector);
  8618. }
  8619. }
  8620. /* Enabled encoders without active connectors will be fixed in
  8621. * the crtc fixup. */
  8622. }
  8623. void i915_redisable_vga(struct drm_device *dev)
  8624. {
  8625. struct drm_i915_private *dev_priv = dev->dev_private;
  8626. u32 vga_reg = i915_vgacntrl_reg(dev);
  8627. /* This function can be called both from intel_modeset_setup_hw_state or
  8628. * at a very early point in our resume sequence, where the power well
  8629. * structures are not yet restored. Since this function is at a very
  8630. * paranoid "someone might have enabled VGA while we were not looking"
  8631. * level, just check if the power well is enabled instead of trying to
  8632. * follow the "don't touch the power well if we don't need it" policy
  8633. * the rest of the driver uses. */
  8634. if (HAS_POWER_WELL(dev) &&
  8635. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8636. return;
  8637. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8638. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8639. i915_disable_vga(dev);
  8640. }
  8641. }
  8642. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8643. {
  8644. struct drm_i915_private *dev_priv = dev->dev_private;
  8645. enum pipe pipe;
  8646. struct intel_crtc *crtc;
  8647. struct intel_encoder *encoder;
  8648. struct intel_connector *connector;
  8649. int i;
  8650. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8651. base.head) {
  8652. memset(&crtc->config, 0, sizeof(crtc->config));
  8653. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8654. &crtc->config);
  8655. crtc->base.enabled = crtc->active;
  8656. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8657. crtc->base.base.id,
  8658. crtc->active ? "enabled" : "disabled");
  8659. }
  8660. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8661. if (HAS_DDI(dev))
  8662. intel_ddi_setup_hw_pll_state(dev);
  8663. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8664. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8665. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8666. pll->active = 0;
  8667. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8668. base.head) {
  8669. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8670. pll->active++;
  8671. }
  8672. pll->refcount = pll->active;
  8673. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8674. pll->name, pll->refcount, pll->on);
  8675. }
  8676. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8677. base.head) {
  8678. pipe = 0;
  8679. if (encoder->get_hw_state(encoder, &pipe)) {
  8680. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8681. encoder->base.crtc = &crtc->base;
  8682. if (encoder->get_config)
  8683. encoder->get_config(encoder, &crtc->config);
  8684. } else {
  8685. encoder->base.crtc = NULL;
  8686. }
  8687. encoder->connectors_active = false;
  8688. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8689. encoder->base.base.id,
  8690. drm_get_encoder_name(&encoder->base),
  8691. encoder->base.crtc ? "enabled" : "disabled",
  8692. pipe);
  8693. }
  8694. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8695. base.head) {
  8696. if (!crtc->active)
  8697. continue;
  8698. if (dev_priv->display.get_clock)
  8699. dev_priv->display.get_clock(crtc,
  8700. &crtc->config);
  8701. }
  8702. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8703. base.head) {
  8704. if (connector->get_hw_state(connector)) {
  8705. connector->base.dpms = DRM_MODE_DPMS_ON;
  8706. connector->encoder->connectors_active = true;
  8707. connector->base.encoder = &connector->encoder->base;
  8708. } else {
  8709. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8710. connector->base.encoder = NULL;
  8711. }
  8712. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8713. connector->base.base.id,
  8714. drm_get_connector_name(&connector->base),
  8715. connector->base.encoder ? "enabled" : "disabled");
  8716. }
  8717. }
  8718. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8719. * and i915 state tracking structures. */
  8720. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8721. bool force_restore)
  8722. {
  8723. struct drm_i915_private *dev_priv = dev->dev_private;
  8724. enum pipe pipe;
  8725. struct drm_plane *plane;
  8726. struct intel_crtc *crtc;
  8727. struct intel_encoder *encoder;
  8728. int i;
  8729. intel_modeset_readout_hw_state(dev);
  8730. /*
  8731. * Now that we have the config, copy it to each CRTC struct
  8732. * Note that this could go away if we move to using crtc_config
  8733. * checking everywhere.
  8734. */
  8735. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8736. base.head) {
  8737. if (crtc->active && i915_fastboot) {
  8738. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8739. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8740. crtc->base.base.id);
  8741. drm_mode_debug_printmodeline(&crtc->base.mode);
  8742. }
  8743. }
  8744. /* HW state is read out, now we need to sanitize this mess. */
  8745. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8746. base.head) {
  8747. intel_sanitize_encoder(encoder);
  8748. }
  8749. for_each_pipe(pipe) {
  8750. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8751. intel_sanitize_crtc(crtc);
  8752. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8753. }
  8754. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8755. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8756. if (!pll->on || pll->active)
  8757. continue;
  8758. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  8759. pll->disable(dev_priv, pll);
  8760. pll->on = false;
  8761. }
  8762. if (force_restore) {
  8763. /*
  8764. * We need to use raw interfaces for restoring state to avoid
  8765. * checking (bogus) intermediate states.
  8766. */
  8767. for_each_pipe(pipe) {
  8768. struct drm_crtc *crtc =
  8769. dev_priv->pipe_to_crtc_mapping[pipe];
  8770. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8771. crtc->fb);
  8772. }
  8773. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8774. intel_plane_restore(plane);
  8775. i915_redisable_vga(dev);
  8776. } else {
  8777. intel_modeset_update_staged_output_state(dev);
  8778. }
  8779. intel_modeset_check_state(dev);
  8780. drm_mode_config_reset(dev);
  8781. }
  8782. void intel_modeset_gem_init(struct drm_device *dev)
  8783. {
  8784. intel_modeset_init_hw(dev);
  8785. intel_setup_overlay(dev);
  8786. intel_modeset_setup_hw_state(dev, false);
  8787. }
  8788. void intel_modeset_cleanup(struct drm_device *dev)
  8789. {
  8790. struct drm_i915_private *dev_priv = dev->dev_private;
  8791. struct drm_crtc *crtc;
  8792. /*
  8793. * Interrupts and polling as the first thing to avoid creating havoc.
  8794. * Too much stuff here (turning of rps, connectors, ...) would
  8795. * experience fancy races otherwise.
  8796. */
  8797. drm_irq_uninstall(dev);
  8798. cancel_work_sync(&dev_priv->hotplug_work);
  8799. /*
  8800. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8801. * poll handlers. Hence disable polling after hpd handling is shut down.
  8802. */
  8803. drm_kms_helper_poll_fini(dev);
  8804. mutex_lock(&dev->struct_mutex);
  8805. intel_unregister_dsm_handler();
  8806. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8807. /* Skip inactive CRTCs */
  8808. if (!crtc->fb)
  8809. continue;
  8810. intel_increase_pllclock(crtc);
  8811. }
  8812. intel_disable_fbc(dev);
  8813. i915_enable_vga(dev);
  8814. intel_disable_gt_powersave(dev);
  8815. ironlake_teardown_rc6(dev);
  8816. mutex_unlock(&dev->struct_mutex);
  8817. /* flush any delayed tasks or pending work */
  8818. flush_scheduled_work();
  8819. /* destroy backlight, if any, before the connectors */
  8820. intel_panel_destroy_backlight(dev);
  8821. drm_mode_config_cleanup(dev);
  8822. intel_cleanup_overlay(dev);
  8823. }
  8824. /*
  8825. * Return which encoder is currently attached for connector.
  8826. */
  8827. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8828. {
  8829. return &intel_attached_encoder(connector)->base;
  8830. }
  8831. void intel_connector_attach_encoder(struct intel_connector *connector,
  8832. struct intel_encoder *encoder)
  8833. {
  8834. connector->encoder = encoder;
  8835. drm_mode_connector_attach_encoder(&connector->base,
  8836. &encoder->base);
  8837. }
  8838. /*
  8839. * set vga decode state - true == enable VGA decode
  8840. */
  8841. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8842. {
  8843. struct drm_i915_private *dev_priv = dev->dev_private;
  8844. u16 gmch_ctrl;
  8845. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8846. if (state)
  8847. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8848. else
  8849. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8850. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8851. return 0;
  8852. }
  8853. struct intel_display_error_state {
  8854. u32 power_well_driver;
  8855. int num_transcoders;
  8856. struct intel_cursor_error_state {
  8857. u32 control;
  8858. u32 position;
  8859. u32 base;
  8860. u32 size;
  8861. } cursor[I915_MAX_PIPES];
  8862. struct intel_pipe_error_state {
  8863. u32 source;
  8864. } pipe[I915_MAX_PIPES];
  8865. struct intel_plane_error_state {
  8866. u32 control;
  8867. u32 stride;
  8868. u32 size;
  8869. u32 pos;
  8870. u32 addr;
  8871. u32 surface;
  8872. u32 tile_offset;
  8873. } plane[I915_MAX_PIPES];
  8874. struct intel_transcoder_error_state {
  8875. enum transcoder cpu_transcoder;
  8876. u32 conf;
  8877. u32 htotal;
  8878. u32 hblank;
  8879. u32 hsync;
  8880. u32 vtotal;
  8881. u32 vblank;
  8882. u32 vsync;
  8883. } transcoder[4];
  8884. };
  8885. struct intel_display_error_state *
  8886. intel_display_capture_error_state(struct drm_device *dev)
  8887. {
  8888. drm_i915_private_t *dev_priv = dev->dev_private;
  8889. struct intel_display_error_state *error;
  8890. int transcoders[] = {
  8891. TRANSCODER_A,
  8892. TRANSCODER_B,
  8893. TRANSCODER_C,
  8894. TRANSCODER_EDP,
  8895. };
  8896. int i;
  8897. if (INTEL_INFO(dev)->num_pipes == 0)
  8898. return NULL;
  8899. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8900. if (error == NULL)
  8901. return NULL;
  8902. if (HAS_POWER_WELL(dev))
  8903. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8904. for_each_pipe(i) {
  8905. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8906. error->cursor[i].control = I915_READ(CURCNTR(i));
  8907. error->cursor[i].position = I915_READ(CURPOS(i));
  8908. error->cursor[i].base = I915_READ(CURBASE(i));
  8909. } else {
  8910. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8911. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8912. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8913. }
  8914. error->plane[i].control = I915_READ(DSPCNTR(i));
  8915. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8916. if (INTEL_INFO(dev)->gen <= 3) {
  8917. error->plane[i].size = I915_READ(DSPSIZE(i));
  8918. error->plane[i].pos = I915_READ(DSPPOS(i));
  8919. }
  8920. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8921. error->plane[i].addr = I915_READ(DSPADDR(i));
  8922. if (INTEL_INFO(dev)->gen >= 4) {
  8923. error->plane[i].surface = I915_READ(DSPSURF(i));
  8924. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8925. }
  8926. error->pipe[i].source = I915_READ(PIPESRC(i));
  8927. }
  8928. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  8929. if (HAS_DDI(dev_priv->dev))
  8930. error->num_transcoders++; /* Account for eDP. */
  8931. for (i = 0; i < error->num_transcoders; i++) {
  8932. enum transcoder cpu_transcoder = transcoders[i];
  8933. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  8934. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8935. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8936. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8937. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8938. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8939. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8940. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8941. }
  8942. /* In the code above we read the registers without checking if the power
  8943. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8944. * prevent the next I915_WRITE from detecting it and printing an error
  8945. * message. */
  8946. intel_uncore_clear_errors(dev);
  8947. return error;
  8948. }
  8949. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8950. void
  8951. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8952. struct drm_device *dev,
  8953. struct intel_display_error_state *error)
  8954. {
  8955. int i;
  8956. if (!error)
  8957. return;
  8958. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8959. if (HAS_POWER_WELL(dev))
  8960. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8961. error->power_well_driver);
  8962. for_each_pipe(i) {
  8963. err_printf(m, "Pipe [%d]:\n", i);
  8964. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8965. err_printf(m, "Plane [%d]:\n", i);
  8966. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8967. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8968. if (INTEL_INFO(dev)->gen <= 3) {
  8969. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8970. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8971. }
  8972. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8973. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8974. if (INTEL_INFO(dev)->gen >= 4) {
  8975. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8976. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8977. }
  8978. err_printf(m, "Cursor [%d]:\n", i);
  8979. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8980. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8981. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8982. }
  8983. for (i = 0; i < error->num_transcoders; i++) {
  8984. err_printf(m, " CPU transcoder: %c\n",
  8985. transcoder_name(error->transcoder[i].cpu_transcoder));
  8986. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  8987. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  8988. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  8989. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  8990. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  8991. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  8992. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  8993. }
  8994. }