hugetlb.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <asm/page.h>
  16. #include <asm/pgtable.h>
  17. #include <linux/hugetlb.h>
  18. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  19. static unsigned long nr_huge_pages, free_huge_pages;
  20. unsigned long max_huge_pages;
  21. static struct list_head hugepage_freelists[MAX_NUMNODES];
  22. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  23. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  24. /*
  25. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  26. */
  27. static DEFINE_SPINLOCK(hugetlb_lock);
  28. static void enqueue_huge_page(struct page *page)
  29. {
  30. int nid = page_to_nid(page);
  31. list_add(&page->lru, &hugepage_freelists[nid]);
  32. free_huge_pages++;
  33. free_huge_pages_node[nid]++;
  34. }
  35. static struct page *dequeue_huge_page(struct vm_area_struct *vma,
  36. unsigned long address)
  37. {
  38. int nid = numa_node_id();
  39. struct page *page = NULL;
  40. struct zonelist *zonelist = huge_zonelist(vma, address);
  41. struct zone **z;
  42. for (z = zonelist->zones; *z; z++) {
  43. nid = (*z)->zone_pgdat->node_id;
  44. if (!list_empty(&hugepage_freelists[nid]))
  45. break;
  46. }
  47. if (*z) {
  48. page = list_entry(hugepage_freelists[nid].next,
  49. struct page, lru);
  50. list_del(&page->lru);
  51. free_huge_pages--;
  52. free_huge_pages_node[nid]--;
  53. }
  54. return page;
  55. }
  56. static struct page *alloc_fresh_huge_page(void)
  57. {
  58. static int nid = 0;
  59. struct page *page;
  60. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  61. HUGETLB_PAGE_ORDER);
  62. nid = (nid + 1) % num_online_nodes();
  63. if (page) {
  64. spin_lock(&hugetlb_lock);
  65. nr_huge_pages++;
  66. nr_huge_pages_node[page_to_nid(page)]++;
  67. spin_unlock(&hugetlb_lock);
  68. }
  69. return page;
  70. }
  71. void free_huge_page(struct page *page)
  72. {
  73. BUG_ON(page_count(page));
  74. INIT_LIST_HEAD(&page->lru);
  75. page[1].mapping = NULL;
  76. spin_lock(&hugetlb_lock);
  77. enqueue_huge_page(page);
  78. spin_unlock(&hugetlb_lock);
  79. }
  80. struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
  81. {
  82. struct page *page;
  83. int i;
  84. spin_lock(&hugetlb_lock);
  85. page = dequeue_huge_page(vma, addr);
  86. if (!page) {
  87. spin_unlock(&hugetlb_lock);
  88. return NULL;
  89. }
  90. spin_unlock(&hugetlb_lock);
  91. set_page_count(page, 1);
  92. page[1].mapping = (void *)free_huge_page;
  93. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
  94. clear_highpage(&page[i]);
  95. return page;
  96. }
  97. static int __init hugetlb_init(void)
  98. {
  99. unsigned long i;
  100. struct page *page;
  101. if (HPAGE_SHIFT == 0)
  102. return 0;
  103. for (i = 0; i < MAX_NUMNODES; ++i)
  104. INIT_LIST_HEAD(&hugepage_freelists[i]);
  105. for (i = 0; i < max_huge_pages; ++i) {
  106. page = alloc_fresh_huge_page();
  107. if (!page)
  108. break;
  109. spin_lock(&hugetlb_lock);
  110. enqueue_huge_page(page);
  111. spin_unlock(&hugetlb_lock);
  112. }
  113. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  114. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  115. return 0;
  116. }
  117. module_init(hugetlb_init);
  118. static int __init hugetlb_setup(char *s)
  119. {
  120. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  121. max_huge_pages = 0;
  122. return 1;
  123. }
  124. __setup("hugepages=", hugetlb_setup);
  125. #ifdef CONFIG_SYSCTL
  126. static void update_and_free_page(struct page *page)
  127. {
  128. int i;
  129. nr_huge_pages--;
  130. nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
  131. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  132. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  133. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  134. 1 << PG_private | 1<< PG_writeback);
  135. set_page_count(&page[i], 0);
  136. }
  137. set_page_count(page, 1);
  138. __free_pages(page, HUGETLB_PAGE_ORDER);
  139. }
  140. #ifdef CONFIG_HIGHMEM
  141. static void try_to_free_low(unsigned long count)
  142. {
  143. int i, nid;
  144. for (i = 0; i < MAX_NUMNODES; ++i) {
  145. struct page *page, *next;
  146. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  147. if (PageHighMem(page))
  148. continue;
  149. list_del(&page->lru);
  150. update_and_free_page(page);
  151. nid = page_zone(page)->zone_pgdat->node_id;
  152. free_huge_pages--;
  153. free_huge_pages_node[nid]--;
  154. if (count >= nr_huge_pages)
  155. return;
  156. }
  157. }
  158. }
  159. #else
  160. static inline void try_to_free_low(unsigned long count)
  161. {
  162. }
  163. #endif
  164. static unsigned long set_max_huge_pages(unsigned long count)
  165. {
  166. while (count > nr_huge_pages) {
  167. struct page *page = alloc_fresh_huge_page();
  168. if (!page)
  169. return nr_huge_pages;
  170. spin_lock(&hugetlb_lock);
  171. enqueue_huge_page(page);
  172. spin_unlock(&hugetlb_lock);
  173. }
  174. if (count >= nr_huge_pages)
  175. return nr_huge_pages;
  176. spin_lock(&hugetlb_lock);
  177. try_to_free_low(count);
  178. while (count < nr_huge_pages) {
  179. struct page *page = dequeue_huge_page(NULL, 0);
  180. if (!page)
  181. break;
  182. update_and_free_page(page);
  183. }
  184. spin_unlock(&hugetlb_lock);
  185. return nr_huge_pages;
  186. }
  187. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  188. struct file *file, void __user *buffer,
  189. size_t *length, loff_t *ppos)
  190. {
  191. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  192. max_huge_pages = set_max_huge_pages(max_huge_pages);
  193. return 0;
  194. }
  195. #endif /* CONFIG_SYSCTL */
  196. int hugetlb_report_meminfo(char *buf)
  197. {
  198. return sprintf(buf,
  199. "HugePages_Total: %5lu\n"
  200. "HugePages_Free: %5lu\n"
  201. "Hugepagesize: %5lu kB\n",
  202. nr_huge_pages,
  203. free_huge_pages,
  204. HPAGE_SIZE/1024);
  205. }
  206. int hugetlb_report_node_meminfo(int nid, char *buf)
  207. {
  208. return sprintf(buf,
  209. "Node %d HugePages_Total: %5u\n"
  210. "Node %d HugePages_Free: %5u\n",
  211. nid, nr_huge_pages_node[nid],
  212. nid, free_huge_pages_node[nid]);
  213. }
  214. int is_hugepage_mem_enough(size_t size)
  215. {
  216. return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
  217. }
  218. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  219. unsigned long hugetlb_total_pages(void)
  220. {
  221. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  222. }
  223. /*
  224. * We cannot handle pagefaults against hugetlb pages at all. They cause
  225. * handle_mm_fault() to try to instantiate regular-sized pages in the
  226. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  227. * this far.
  228. */
  229. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  230. unsigned long address, int *unused)
  231. {
  232. BUG();
  233. return NULL;
  234. }
  235. struct vm_operations_struct hugetlb_vm_ops = {
  236. .nopage = hugetlb_nopage,
  237. };
  238. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  239. int writable)
  240. {
  241. pte_t entry;
  242. if (writable) {
  243. entry =
  244. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  245. } else {
  246. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  247. }
  248. entry = pte_mkyoung(entry);
  249. entry = pte_mkhuge(entry);
  250. return entry;
  251. }
  252. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  253. unsigned long address, pte_t *ptep)
  254. {
  255. pte_t entry;
  256. entry = pte_mkwrite(pte_mkdirty(*ptep));
  257. ptep_set_access_flags(vma, address, ptep, entry, 1);
  258. update_mmu_cache(vma, address, entry);
  259. lazy_mmu_prot_update(entry);
  260. }
  261. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  262. struct vm_area_struct *vma)
  263. {
  264. pte_t *src_pte, *dst_pte, entry;
  265. struct page *ptepage;
  266. unsigned long addr;
  267. int cow;
  268. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  269. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  270. src_pte = huge_pte_offset(src, addr);
  271. if (!src_pte)
  272. continue;
  273. dst_pte = huge_pte_alloc(dst, addr);
  274. if (!dst_pte)
  275. goto nomem;
  276. spin_lock(&dst->page_table_lock);
  277. spin_lock(&src->page_table_lock);
  278. if (!pte_none(*src_pte)) {
  279. if (cow)
  280. ptep_set_wrprotect(src, addr, src_pte);
  281. entry = *src_pte;
  282. ptepage = pte_page(entry);
  283. get_page(ptepage);
  284. add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
  285. set_huge_pte_at(dst, addr, dst_pte, entry);
  286. }
  287. spin_unlock(&src->page_table_lock);
  288. spin_unlock(&dst->page_table_lock);
  289. }
  290. return 0;
  291. nomem:
  292. return -ENOMEM;
  293. }
  294. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  295. unsigned long end)
  296. {
  297. struct mm_struct *mm = vma->vm_mm;
  298. unsigned long address;
  299. pte_t *ptep;
  300. pte_t pte;
  301. struct page *page;
  302. WARN_ON(!is_vm_hugetlb_page(vma));
  303. BUG_ON(start & ~HPAGE_MASK);
  304. BUG_ON(end & ~HPAGE_MASK);
  305. spin_lock(&mm->page_table_lock);
  306. /* Update high watermark before we lower rss */
  307. update_hiwater_rss(mm);
  308. for (address = start; address < end; address += HPAGE_SIZE) {
  309. ptep = huge_pte_offset(mm, address);
  310. if (!ptep)
  311. continue;
  312. pte = huge_ptep_get_and_clear(mm, address, ptep);
  313. if (pte_none(pte))
  314. continue;
  315. page = pte_page(pte);
  316. put_page(page);
  317. add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
  318. }
  319. spin_unlock(&mm->page_table_lock);
  320. flush_tlb_range(vma, start, end);
  321. }
  322. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  323. unsigned long address, pte_t *ptep, pte_t pte)
  324. {
  325. struct page *old_page, *new_page;
  326. int i, avoidcopy;
  327. old_page = pte_page(pte);
  328. /* If no-one else is actually using this page, avoid the copy
  329. * and just make the page writable */
  330. avoidcopy = (page_count(old_page) == 1);
  331. if (avoidcopy) {
  332. set_huge_ptep_writable(vma, address, ptep);
  333. return VM_FAULT_MINOR;
  334. }
  335. page_cache_get(old_page);
  336. new_page = alloc_huge_page(vma, address);
  337. if (!new_page) {
  338. page_cache_release(old_page);
  339. /* Logically this is OOM, not a SIGBUS, but an OOM
  340. * could cause the kernel to go killing other
  341. * processes which won't help the hugepage situation
  342. * at all (?) */
  343. return VM_FAULT_SIGBUS;
  344. }
  345. spin_unlock(&mm->page_table_lock);
  346. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
  347. copy_user_highpage(new_page + i, old_page + i,
  348. address + i*PAGE_SIZE);
  349. spin_lock(&mm->page_table_lock);
  350. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  351. if (likely(pte_same(*ptep, pte))) {
  352. /* Break COW */
  353. set_huge_pte_at(mm, address, ptep,
  354. make_huge_pte(vma, new_page, 1));
  355. /* Make the old page be freed below */
  356. new_page = old_page;
  357. }
  358. page_cache_release(new_page);
  359. page_cache_release(old_page);
  360. return VM_FAULT_MINOR;
  361. }
  362. int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  363. unsigned long address, pte_t *ptep, int write_access)
  364. {
  365. int ret = VM_FAULT_SIGBUS;
  366. unsigned long idx;
  367. unsigned long size;
  368. struct page *page;
  369. struct address_space *mapping;
  370. pte_t new_pte;
  371. mapping = vma->vm_file->f_mapping;
  372. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  373. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  374. /*
  375. * Use page lock to guard against racing truncation
  376. * before we get page_table_lock.
  377. */
  378. retry:
  379. page = find_lock_page(mapping, idx);
  380. if (!page) {
  381. if (hugetlb_get_quota(mapping))
  382. goto out;
  383. page = alloc_huge_page(vma, address);
  384. if (!page) {
  385. hugetlb_put_quota(mapping);
  386. goto out;
  387. }
  388. if (vma->vm_flags & VM_SHARED) {
  389. int err;
  390. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  391. if (err) {
  392. put_page(page);
  393. hugetlb_put_quota(mapping);
  394. if (err == -EEXIST)
  395. goto retry;
  396. goto out;
  397. }
  398. } else
  399. lock_page(page);
  400. }
  401. spin_lock(&mm->page_table_lock);
  402. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  403. if (idx >= size)
  404. goto backout;
  405. ret = VM_FAULT_MINOR;
  406. if (!pte_none(*ptep))
  407. goto backout;
  408. add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
  409. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  410. && (vma->vm_flags & VM_SHARED)));
  411. set_huge_pte_at(mm, address, ptep, new_pte);
  412. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  413. /* Optimization, do the COW without a second fault */
  414. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  415. }
  416. spin_unlock(&mm->page_table_lock);
  417. unlock_page(page);
  418. out:
  419. return ret;
  420. backout:
  421. spin_unlock(&mm->page_table_lock);
  422. hugetlb_put_quota(mapping);
  423. unlock_page(page);
  424. put_page(page);
  425. goto out;
  426. }
  427. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  428. unsigned long address, int write_access)
  429. {
  430. pte_t *ptep;
  431. pte_t entry;
  432. int ret;
  433. ptep = huge_pte_alloc(mm, address);
  434. if (!ptep)
  435. return VM_FAULT_OOM;
  436. entry = *ptep;
  437. if (pte_none(entry))
  438. return hugetlb_no_page(mm, vma, address, ptep, write_access);
  439. ret = VM_FAULT_MINOR;
  440. spin_lock(&mm->page_table_lock);
  441. /* Check for a racing update before calling hugetlb_cow */
  442. if (likely(pte_same(entry, *ptep)))
  443. if (write_access && !pte_write(entry))
  444. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  445. spin_unlock(&mm->page_table_lock);
  446. return ret;
  447. }
  448. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  449. struct page **pages, struct vm_area_struct **vmas,
  450. unsigned long *position, int *length, int i)
  451. {
  452. unsigned long vpfn, vaddr = *position;
  453. int remainder = *length;
  454. vpfn = vaddr/PAGE_SIZE;
  455. spin_lock(&mm->page_table_lock);
  456. while (vaddr < vma->vm_end && remainder) {
  457. pte_t *pte;
  458. struct page *page;
  459. /*
  460. * Some archs (sparc64, sh*) have multiple pte_ts to
  461. * each hugepage. We have to make * sure we get the
  462. * first, for the page indexing below to work.
  463. */
  464. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  465. if (!pte || pte_none(*pte)) {
  466. int ret;
  467. spin_unlock(&mm->page_table_lock);
  468. ret = hugetlb_fault(mm, vma, vaddr, 0);
  469. spin_lock(&mm->page_table_lock);
  470. if (ret == VM_FAULT_MINOR)
  471. continue;
  472. remainder = 0;
  473. if (!i)
  474. i = -EFAULT;
  475. break;
  476. }
  477. if (pages) {
  478. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  479. get_page(page);
  480. pages[i] = page;
  481. }
  482. if (vmas)
  483. vmas[i] = vma;
  484. vaddr += PAGE_SIZE;
  485. ++vpfn;
  486. --remainder;
  487. ++i;
  488. }
  489. spin_unlock(&mm->page_table_lock);
  490. *length = remainder;
  491. *position = vaddr;
  492. return i;
  493. }