setup.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615
  1. /*
  2. * arch/sh/kernel/setup.c
  3. *
  4. * This file handles the architecture-dependent parts of initialization
  5. *
  6. * Copyright (C) 1999 Niibe Yutaka
  7. * Copyright (C) 2002 - 2010 Paul Mundt
  8. */
  9. #include <linux/screen_info.h>
  10. #include <linux/ioport.h>
  11. #include <linux/init.h>
  12. #include <linux/initrd.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/console.h>
  15. #include <linux/seq_file.h>
  16. #include <linux/root_dev.h>
  17. #include <linux/utsname.h>
  18. #include <linux/nodemask.h>
  19. #include <linux/cpu.h>
  20. #include <linux/pfn.h>
  21. #include <linux/fs.h>
  22. #include <linux/mm.h>
  23. #include <linux/kexec.h>
  24. #include <linux/module.h>
  25. #include <linux/smp.h>
  26. #include <linux/err.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/mmzone.h>
  30. #include <linux/clk.h>
  31. #include <linux/delay.h>
  32. #include <linux/platform_device.h>
  33. #include <linux/lmb.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/io.h>
  36. #include <asm/page.h>
  37. #include <asm/elf.h>
  38. #include <asm/sections.h>
  39. #include <asm/irq.h>
  40. #include <asm/setup.h>
  41. #include <asm/clock.h>
  42. #include <asm/smp.h>
  43. #include <asm/mmu_context.h>
  44. #include <asm/mmzone.h>
  45. /*
  46. * Initialize loops_per_jiffy as 10000000 (1000MIPS).
  47. * This value will be used at the very early stage of serial setup.
  48. * The bigger value means no problem.
  49. */
  50. struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
  51. [0] = {
  52. .type = CPU_SH_NONE,
  53. .family = CPU_FAMILY_UNKNOWN,
  54. .loops_per_jiffy = 10000000,
  55. },
  56. };
  57. EXPORT_SYMBOL(cpu_data);
  58. /*
  59. * The machine vector. First entry in .machvec.init, or clobbered by
  60. * sh_mv= on the command line, prior to .machvec.init teardown.
  61. */
  62. struct sh_machine_vector sh_mv = { .mv_name = "generic", };
  63. EXPORT_SYMBOL(sh_mv);
  64. #ifdef CONFIG_VT
  65. struct screen_info screen_info;
  66. #endif
  67. extern int root_mountflags;
  68. #define RAMDISK_IMAGE_START_MASK 0x07FF
  69. #define RAMDISK_PROMPT_FLAG 0x8000
  70. #define RAMDISK_LOAD_FLAG 0x4000
  71. static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
  72. static struct resource code_resource = {
  73. .name = "Kernel code",
  74. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  75. };
  76. static struct resource data_resource = {
  77. .name = "Kernel data",
  78. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  79. };
  80. static struct resource bss_resource = {
  81. .name = "Kernel bss",
  82. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  83. };
  84. unsigned long memory_start;
  85. EXPORT_SYMBOL(memory_start);
  86. unsigned long memory_end = 0;
  87. EXPORT_SYMBOL(memory_end);
  88. unsigned long memory_limit = 0;
  89. static struct resource mem_resources[MAX_NUMNODES];
  90. int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
  91. static int __init early_parse_mem(char *p)
  92. {
  93. if (!p)
  94. return 1;
  95. memory_limit = PAGE_ALIGN(memparse(p, &p));
  96. pr_notice("Memory limited to %ldMB\n", memory_limit >> 20);
  97. return 0;
  98. }
  99. early_param("mem", early_parse_mem);
  100. /*
  101. * Register fully available low RAM pages with the bootmem allocator.
  102. */
  103. static void __init register_bootmem_low_pages(void)
  104. {
  105. unsigned long curr_pfn, last_pfn, pages;
  106. /*
  107. * We are rounding up the start address of usable memory:
  108. */
  109. curr_pfn = PFN_UP(__MEMORY_START);
  110. /*
  111. * ... and at the end of the usable range downwards:
  112. */
  113. last_pfn = PFN_DOWN(__pa(memory_end));
  114. if (last_pfn > max_low_pfn)
  115. last_pfn = max_low_pfn;
  116. pages = last_pfn - curr_pfn;
  117. free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
  118. }
  119. static void __init check_for_initrd(void)
  120. {
  121. #ifdef CONFIG_BLK_DEV_INITRD
  122. unsigned long start, end;
  123. /*
  124. * Check for the rare cases where boot loaders adhere to the boot
  125. * ABI.
  126. */
  127. if (!LOADER_TYPE || !INITRD_START || !INITRD_SIZE)
  128. goto disable;
  129. start = INITRD_START + __MEMORY_START;
  130. end = start + INITRD_SIZE;
  131. if (unlikely(end <= start))
  132. goto disable;
  133. if (unlikely(start & ~PAGE_MASK)) {
  134. pr_err("initrd must be page aligned\n");
  135. goto disable;
  136. }
  137. if (unlikely(start < PAGE_OFFSET)) {
  138. pr_err("initrd start < PAGE_OFFSET\n");
  139. goto disable;
  140. }
  141. if (unlikely(end > lmb_end_of_DRAM())) {
  142. pr_err("initrd extends beyond end of memory "
  143. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  144. end, (unsigned long)lmb_end_of_DRAM());
  145. goto disable;
  146. }
  147. /*
  148. * If we got this far inspite of the boot loader's best efforts
  149. * to the contrary, assume we actually have a valid initrd and
  150. * fix up the root dev.
  151. */
  152. ROOT_DEV = Root_RAM0;
  153. /*
  154. * Address sanitization
  155. */
  156. initrd_start = (unsigned long)__va(__pa(start));
  157. initrd_end = initrd_start + INITRD_SIZE;
  158. lmb_reserve(__pa(initrd_start), INITRD_SIZE);
  159. return;
  160. disable:
  161. pr_info("initrd disabled\n");
  162. initrd_start = initrd_end = 0;
  163. #endif
  164. }
  165. void __cpuinit calibrate_delay(void)
  166. {
  167. struct clk *clk = clk_get(NULL, "cpu_clk");
  168. if (IS_ERR(clk))
  169. panic("Need a sane CPU clock definition!");
  170. loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
  171. printk(KERN_INFO "Calibrating delay loop (skipped)... "
  172. "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
  173. loops_per_jiffy/(500000/HZ),
  174. (loops_per_jiffy/(5000/HZ)) % 100,
  175. loops_per_jiffy);
  176. }
  177. void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
  178. unsigned long end_pfn)
  179. {
  180. struct resource *res = &mem_resources[nid];
  181. WARN_ON(res->name); /* max one active range per node for now */
  182. res->name = "System RAM";
  183. res->start = start_pfn << PAGE_SHIFT;
  184. res->end = (end_pfn << PAGE_SHIFT) - 1;
  185. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  186. if (request_resource(&iomem_resource, res)) {
  187. pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
  188. start_pfn, end_pfn);
  189. return;
  190. }
  191. /*
  192. * We don't know which RAM region contains kernel data,
  193. * so we try it repeatedly and let the resource manager
  194. * test it.
  195. */
  196. request_resource(res, &code_resource);
  197. request_resource(res, &data_resource);
  198. request_resource(res, &bss_resource);
  199. add_active_range(nid, start_pfn, end_pfn);
  200. }
  201. void __init do_init_bootmem(void)
  202. {
  203. unsigned long bootmap_size;
  204. unsigned long bootmap_pages, bootmem_paddr;
  205. u64 total_pages = lmb_phys_mem_size() >> PAGE_SHIFT;
  206. int i;
  207. bootmap_pages = bootmem_bootmap_pages(total_pages);
  208. bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
  209. /*
  210. * Find a proper area for the bootmem bitmap. After this
  211. * bootstrap step all allocations (until the page allocator
  212. * is intact) must be done via bootmem_alloc().
  213. */
  214. bootmap_size = init_bootmem_node(NODE_DATA(0),
  215. bootmem_paddr >> PAGE_SHIFT,
  216. min_low_pfn, max_low_pfn);
  217. /* Add active regions with valid PFNs. */
  218. for (i = 0; i < lmb.memory.cnt; i++) {
  219. unsigned long start_pfn, end_pfn;
  220. start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
  221. end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
  222. __add_active_range(0, start_pfn, end_pfn);
  223. }
  224. /*
  225. * Add all physical memory to the bootmem map and mark each
  226. * area as present.
  227. */
  228. register_bootmem_low_pages();
  229. /* Reserve the sections we're already using. */
  230. for (i = 0; i < lmb.reserved.cnt; i++)
  231. reserve_bootmem(lmb.reserved.region[i].base,
  232. lmb_size_bytes(&lmb.reserved, i),
  233. BOOTMEM_DEFAULT);
  234. node_set_online(0);
  235. sparse_memory_present_with_active_regions(0);
  236. }
  237. static void __init early_reserve_mem(void)
  238. {
  239. unsigned long start_pfn;
  240. /*
  241. * Partially used pages are not usable - thus
  242. * we are rounding upwards:
  243. */
  244. start_pfn = PFN_UP(__pa(_end));
  245. /*
  246. * Reserve the kernel text and
  247. * Reserve the bootmem bitmap. We do this in two steps (first step
  248. * was init_bootmem()), because this catches the (definitely buggy)
  249. * case of us accidentally initializing the bootmem allocator with
  250. * an invalid RAM area.
  251. */
  252. lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
  253. (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
  254. (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
  255. /*
  256. * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
  257. */
  258. if (CONFIG_ZERO_PAGE_OFFSET != 0)
  259. lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
  260. /*
  261. * Handle additional early reservations
  262. */
  263. check_for_initrd();
  264. reserve_crashkernel();
  265. }
  266. /*
  267. * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
  268. * is_kdump_kernel() to determine if we are booting after a panic. Hence
  269. * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
  270. */
  271. #ifdef CONFIG_CRASH_DUMP
  272. /* elfcorehdr= specifies the location of elf core header
  273. * stored by the crashed kernel.
  274. */
  275. static int __init parse_elfcorehdr(char *arg)
  276. {
  277. if (!arg)
  278. return -EINVAL;
  279. elfcorehdr_addr = memparse(arg, &arg);
  280. return 0;
  281. }
  282. early_param("elfcorehdr", parse_elfcorehdr);
  283. #endif
  284. void __init __weak plat_early_device_setup(void)
  285. {
  286. }
  287. void __init __weak plat_mem_setup(void)
  288. {
  289. }
  290. void __init setup_arch(char **cmdline_p)
  291. {
  292. enable_mmu();
  293. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  294. printk(KERN_NOTICE "Boot params:\n"
  295. "... MOUNT_ROOT_RDONLY - %08lx\n"
  296. "... RAMDISK_FLAGS - %08lx\n"
  297. "... ORIG_ROOT_DEV - %08lx\n"
  298. "... LOADER_TYPE - %08lx\n"
  299. "... INITRD_START - %08lx\n"
  300. "... INITRD_SIZE - %08lx\n",
  301. MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
  302. ORIG_ROOT_DEV, LOADER_TYPE,
  303. INITRD_START, INITRD_SIZE);
  304. #ifdef CONFIG_BLK_DEV_RAM
  305. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  306. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  307. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  308. #endif
  309. if (!MOUNT_ROOT_RDONLY)
  310. root_mountflags &= ~MS_RDONLY;
  311. init_mm.start_code = (unsigned long) _text;
  312. init_mm.end_code = (unsigned long) _etext;
  313. init_mm.end_data = (unsigned long) _edata;
  314. init_mm.brk = (unsigned long) _end;
  315. code_resource.start = virt_to_phys(_text);
  316. code_resource.end = virt_to_phys(_etext)-1;
  317. data_resource.start = virt_to_phys(_etext);
  318. data_resource.end = virt_to_phys(_edata)-1;
  319. bss_resource.start = virt_to_phys(__bss_start);
  320. bss_resource.end = virt_to_phys(_ebss)-1;
  321. #ifdef CONFIG_CMDLINE_OVERWRITE
  322. strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
  323. #else
  324. strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
  325. #ifdef CONFIG_CMDLINE_EXTEND
  326. strlcat(command_line, " ", sizeof(command_line));
  327. strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
  328. #endif
  329. #endif
  330. /* Save unparsed command line copy for /proc/cmdline */
  331. memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
  332. *cmdline_p = command_line;
  333. parse_early_param();
  334. plat_early_device_setup();
  335. /* Let earlyprintk output early console messages */
  336. early_platform_driver_probe("earlyprintk", 1, 1);
  337. lmb_init();
  338. sh_mv_setup();
  339. sh_mv.mv_mem_init();
  340. early_reserve_mem();
  341. lmb_enforce_memory_limit(memory_limit);
  342. lmb_analyze();
  343. lmb_dump_all();
  344. /*
  345. * Determine low and high memory ranges:
  346. */
  347. max_low_pfn = max_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
  348. min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
  349. nodes_clear(node_online_map);
  350. memory_start = (unsigned long)__va(__MEMORY_START);
  351. memory_end = memory_start + (memory_limit ?: lmb_phys_mem_size());
  352. uncached_init();
  353. pmb_init();
  354. do_init_bootmem();
  355. plat_mem_setup();
  356. sparse_init();
  357. #ifdef CONFIG_DUMMY_CONSOLE
  358. conswitchp = &dummy_con;
  359. #endif
  360. paging_init();
  361. ioremap_fixed_init();
  362. /* Perform the machine specific initialisation */
  363. if (likely(sh_mv.mv_setup))
  364. sh_mv.mv_setup(cmdline_p);
  365. plat_smp_setup();
  366. }
  367. /* processor boot mode configuration */
  368. int generic_mode_pins(void)
  369. {
  370. pr_warning("generic_mode_pins(): missing mode pin configuration\n");
  371. return 0;
  372. }
  373. int test_mode_pin(int pin)
  374. {
  375. return sh_mv.mv_mode_pins() & pin;
  376. }
  377. static const char *cpu_name[] = {
  378. [CPU_SH7201] = "SH7201",
  379. [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
  380. [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
  381. [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
  382. [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
  383. [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
  384. [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
  385. [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
  386. [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
  387. [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
  388. [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
  389. [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
  390. [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
  391. [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
  392. [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
  393. [CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757",
  394. [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
  395. [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
  396. [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
  397. [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724",
  398. [CPU_SH_NONE] = "Unknown"
  399. };
  400. const char *get_cpu_subtype(struct sh_cpuinfo *c)
  401. {
  402. return cpu_name[c->type];
  403. }
  404. EXPORT_SYMBOL(get_cpu_subtype);
  405. #ifdef CONFIG_PROC_FS
  406. /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
  407. static const char *cpu_flags[] = {
  408. "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
  409. "ptea", "llsc", "l2", "op32", "pteaex", NULL
  410. };
  411. static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
  412. {
  413. unsigned long i;
  414. seq_printf(m, "cpu flags\t:");
  415. if (!c->flags) {
  416. seq_printf(m, " %s\n", cpu_flags[0]);
  417. return;
  418. }
  419. for (i = 0; cpu_flags[i]; i++)
  420. if ((c->flags & (1 << i)))
  421. seq_printf(m, " %s", cpu_flags[i+1]);
  422. seq_printf(m, "\n");
  423. }
  424. static void show_cacheinfo(struct seq_file *m, const char *type,
  425. struct cache_info info)
  426. {
  427. unsigned int cache_size;
  428. cache_size = info.ways * info.sets * info.linesz;
  429. seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
  430. type, cache_size >> 10, info.ways);
  431. }
  432. /*
  433. * Get CPU information for use by the procfs.
  434. */
  435. static int show_cpuinfo(struct seq_file *m, void *v)
  436. {
  437. struct sh_cpuinfo *c = v;
  438. unsigned int cpu = c - cpu_data;
  439. if (!cpu_online(cpu))
  440. return 0;
  441. if (cpu == 0)
  442. seq_printf(m, "machine\t\t: %s\n", get_system_type());
  443. else
  444. seq_printf(m, "\n");
  445. seq_printf(m, "processor\t: %d\n", cpu);
  446. seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
  447. seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
  448. if (c->cut_major == -1)
  449. seq_printf(m, "cut\t\t: unknown\n");
  450. else if (c->cut_minor == -1)
  451. seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
  452. else
  453. seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
  454. show_cpuflags(m, c);
  455. seq_printf(m, "cache type\t: ");
  456. /*
  457. * Check for what type of cache we have, we support both the
  458. * unified cache on the SH-2 and SH-3, as well as the harvard
  459. * style cache on the SH-4.
  460. */
  461. if (c->icache.flags & SH_CACHE_COMBINED) {
  462. seq_printf(m, "unified\n");
  463. show_cacheinfo(m, "cache", c->icache);
  464. } else {
  465. seq_printf(m, "split (harvard)\n");
  466. show_cacheinfo(m, "icache", c->icache);
  467. show_cacheinfo(m, "dcache", c->dcache);
  468. }
  469. /* Optional secondary cache */
  470. if (c->flags & CPU_HAS_L2_CACHE)
  471. show_cacheinfo(m, "scache", c->scache);
  472. seq_printf(m, "bogomips\t: %lu.%02lu\n",
  473. c->loops_per_jiffy/(500000/HZ),
  474. (c->loops_per_jiffy/(5000/HZ)) % 100);
  475. return 0;
  476. }
  477. static void *c_start(struct seq_file *m, loff_t *pos)
  478. {
  479. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  480. }
  481. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  482. {
  483. ++*pos;
  484. return c_start(m, pos);
  485. }
  486. static void c_stop(struct seq_file *m, void *v)
  487. {
  488. }
  489. const struct seq_operations cpuinfo_op = {
  490. .start = c_start,
  491. .next = c_next,
  492. .stop = c_stop,
  493. .show = show_cpuinfo,
  494. };
  495. #endif /* CONFIG_PROC_FS */
  496. struct dentry *sh_debugfs_root;
  497. static int __init sh_debugfs_init(void)
  498. {
  499. sh_debugfs_root = debugfs_create_dir("sh", NULL);
  500. if (!sh_debugfs_root)
  501. return -ENOMEM;
  502. if (IS_ERR(sh_debugfs_root))
  503. return PTR_ERR(sh_debugfs_root);
  504. return 0;
  505. }
  506. arch_initcall(sh_debugfs_init);