intel_display.c 112 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/i2c.h>
  27. #include <linux/kernel.h>
  28. #include "drmP.h"
  29. #include "intel_drv.h"
  30. #include "i915_drm.h"
  31. #include "i915_drv.h"
  32. #include "intel_dp.h"
  33. #include "drm_crtc_helper.h"
  34. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  35. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  36. static void intel_update_watermarks(struct drm_device *dev);
  37. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
  38. typedef struct {
  39. /* given values */
  40. int n;
  41. int m1, m2;
  42. int p1, p2;
  43. /* derived values */
  44. int dot;
  45. int vco;
  46. int m;
  47. int p;
  48. } intel_clock_t;
  49. typedef struct {
  50. int min, max;
  51. } intel_range_t;
  52. typedef struct {
  53. int dot_limit;
  54. int p2_slow, p2_fast;
  55. } intel_p2_t;
  56. #define INTEL_P2_NUM 2
  57. typedef struct intel_limit intel_limit_t;
  58. struct intel_limit {
  59. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  60. intel_p2_t p2;
  61. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  62. int, int, intel_clock_t *);
  63. bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
  64. int, int, intel_clock_t *);
  65. };
  66. #define I8XX_DOT_MIN 25000
  67. #define I8XX_DOT_MAX 350000
  68. #define I8XX_VCO_MIN 930000
  69. #define I8XX_VCO_MAX 1400000
  70. #define I8XX_N_MIN 3
  71. #define I8XX_N_MAX 16
  72. #define I8XX_M_MIN 96
  73. #define I8XX_M_MAX 140
  74. #define I8XX_M1_MIN 18
  75. #define I8XX_M1_MAX 26
  76. #define I8XX_M2_MIN 6
  77. #define I8XX_M2_MAX 16
  78. #define I8XX_P_MIN 4
  79. #define I8XX_P_MAX 128
  80. #define I8XX_P1_MIN 2
  81. #define I8XX_P1_MAX 33
  82. #define I8XX_P1_LVDS_MIN 1
  83. #define I8XX_P1_LVDS_MAX 6
  84. #define I8XX_P2_SLOW 4
  85. #define I8XX_P2_FAST 2
  86. #define I8XX_P2_LVDS_SLOW 14
  87. #define I8XX_P2_LVDS_FAST 7
  88. #define I8XX_P2_SLOW_LIMIT 165000
  89. #define I9XX_DOT_MIN 20000
  90. #define I9XX_DOT_MAX 400000
  91. #define I9XX_VCO_MIN 1400000
  92. #define I9XX_VCO_MAX 2800000
  93. #define IGD_VCO_MIN 1700000
  94. #define IGD_VCO_MAX 3500000
  95. #define I9XX_N_MIN 1
  96. #define I9XX_N_MAX 6
  97. /* IGD's Ncounter is a ring counter */
  98. #define IGD_N_MIN 3
  99. #define IGD_N_MAX 6
  100. #define I9XX_M_MIN 70
  101. #define I9XX_M_MAX 120
  102. #define IGD_M_MIN 2
  103. #define IGD_M_MAX 256
  104. #define I9XX_M1_MIN 10
  105. #define I9XX_M1_MAX 22
  106. #define I9XX_M2_MIN 5
  107. #define I9XX_M2_MAX 9
  108. /* IGD M1 is reserved, and must be 0 */
  109. #define IGD_M1_MIN 0
  110. #define IGD_M1_MAX 0
  111. #define IGD_M2_MIN 0
  112. #define IGD_M2_MAX 254
  113. #define I9XX_P_SDVO_DAC_MIN 5
  114. #define I9XX_P_SDVO_DAC_MAX 80
  115. #define I9XX_P_LVDS_MIN 7
  116. #define I9XX_P_LVDS_MAX 98
  117. #define IGD_P_LVDS_MIN 7
  118. #define IGD_P_LVDS_MAX 112
  119. #define I9XX_P1_MIN 1
  120. #define I9XX_P1_MAX 8
  121. #define I9XX_P2_SDVO_DAC_SLOW 10
  122. #define I9XX_P2_SDVO_DAC_FAST 5
  123. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  124. #define I9XX_P2_LVDS_SLOW 14
  125. #define I9XX_P2_LVDS_FAST 7
  126. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  127. /*The parameter is for SDVO on G4x platform*/
  128. #define G4X_DOT_SDVO_MIN 25000
  129. #define G4X_DOT_SDVO_MAX 270000
  130. #define G4X_VCO_MIN 1750000
  131. #define G4X_VCO_MAX 3500000
  132. #define G4X_N_SDVO_MIN 1
  133. #define G4X_N_SDVO_MAX 4
  134. #define G4X_M_SDVO_MIN 104
  135. #define G4X_M_SDVO_MAX 138
  136. #define G4X_M1_SDVO_MIN 17
  137. #define G4X_M1_SDVO_MAX 23
  138. #define G4X_M2_SDVO_MIN 5
  139. #define G4X_M2_SDVO_MAX 11
  140. #define G4X_P_SDVO_MIN 10
  141. #define G4X_P_SDVO_MAX 30
  142. #define G4X_P1_SDVO_MIN 1
  143. #define G4X_P1_SDVO_MAX 3
  144. #define G4X_P2_SDVO_SLOW 10
  145. #define G4X_P2_SDVO_FAST 10
  146. #define G4X_P2_SDVO_LIMIT 270000
  147. /*The parameter is for HDMI_DAC on G4x platform*/
  148. #define G4X_DOT_HDMI_DAC_MIN 22000
  149. #define G4X_DOT_HDMI_DAC_MAX 400000
  150. #define G4X_N_HDMI_DAC_MIN 1
  151. #define G4X_N_HDMI_DAC_MAX 4
  152. #define G4X_M_HDMI_DAC_MIN 104
  153. #define G4X_M_HDMI_DAC_MAX 138
  154. #define G4X_M1_HDMI_DAC_MIN 16
  155. #define G4X_M1_HDMI_DAC_MAX 23
  156. #define G4X_M2_HDMI_DAC_MIN 5
  157. #define G4X_M2_HDMI_DAC_MAX 11
  158. #define G4X_P_HDMI_DAC_MIN 5
  159. #define G4X_P_HDMI_DAC_MAX 80
  160. #define G4X_P1_HDMI_DAC_MIN 1
  161. #define G4X_P1_HDMI_DAC_MAX 8
  162. #define G4X_P2_HDMI_DAC_SLOW 10
  163. #define G4X_P2_HDMI_DAC_FAST 5
  164. #define G4X_P2_HDMI_DAC_LIMIT 165000
  165. /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
  166. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
  167. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
  168. #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
  169. #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
  170. #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
  171. #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
  172. #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
  173. #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
  174. #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
  175. #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
  176. #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
  177. #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
  178. #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
  179. #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
  180. #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
  181. #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
  182. #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
  183. /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
  184. #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
  185. #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
  186. #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
  187. #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
  188. #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
  189. #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
  190. #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
  191. #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
  192. #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
  193. #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
  194. #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
  195. #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
  196. #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
  197. #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
  198. #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
  199. #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
  200. #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
  201. /*The parameter is for DISPLAY PORT on G4x platform*/
  202. #define G4X_DOT_DISPLAY_PORT_MIN 161670
  203. #define G4X_DOT_DISPLAY_PORT_MAX 227000
  204. #define G4X_N_DISPLAY_PORT_MIN 1
  205. #define G4X_N_DISPLAY_PORT_MAX 2
  206. #define G4X_M_DISPLAY_PORT_MIN 97
  207. #define G4X_M_DISPLAY_PORT_MAX 108
  208. #define G4X_M1_DISPLAY_PORT_MIN 0x10
  209. #define G4X_M1_DISPLAY_PORT_MAX 0x12
  210. #define G4X_M2_DISPLAY_PORT_MIN 0x05
  211. #define G4X_M2_DISPLAY_PORT_MAX 0x06
  212. #define G4X_P_DISPLAY_PORT_MIN 10
  213. #define G4X_P_DISPLAY_PORT_MAX 20
  214. #define G4X_P1_DISPLAY_PORT_MIN 1
  215. #define G4X_P1_DISPLAY_PORT_MAX 2
  216. #define G4X_P2_DISPLAY_PORT_SLOW 10
  217. #define G4X_P2_DISPLAY_PORT_FAST 10
  218. #define G4X_P2_DISPLAY_PORT_LIMIT 0
  219. /* IGDNG */
  220. /* as we calculate clock using (register_value + 2) for
  221. N/M1/M2, so here the range value for them is (actual_value-2).
  222. */
  223. #define IGDNG_DOT_MIN 25000
  224. #define IGDNG_DOT_MAX 350000
  225. #define IGDNG_VCO_MIN 1760000
  226. #define IGDNG_VCO_MAX 3510000
  227. #define IGDNG_N_MIN 1
  228. #define IGDNG_N_MAX 5
  229. #define IGDNG_M_MIN 79
  230. #define IGDNG_M_MAX 118
  231. #define IGDNG_M1_MIN 12
  232. #define IGDNG_M1_MAX 23
  233. #define IGDNG_M2_MIN 5
  234. #define IGDNG_M2_MAX 9
  235. #define IGDNG_P_SDVO_DAC_MIN 5
  236. #define IGDNG_P_SDVO_DAC_MAX 80
  237. #define IGDNG_P_LVDS_MIN 28
  238. #define IGDNG_P_LVDS_MAX 112
  239. #define IGDNG_P1_MIN 1
  240. #define IGDNG_P1_MAX 8
  241. #define IGDNG_P2_SDVO_DAC_SLOW 10
  242. #define IGDNG_P2_SDVO_DAC_FAST 5
  243. #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
  244. #define IGDNG_P2_LVDS_FAST 7 /* double channel */
  245. #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
  246. static bool
  247. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  248. int target, int refclk, intel_clock_t *best_clock);
  249. static bool
  250. intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  251. int target, int refclk, intel_clock_t *best_clock);
  252. static bool
  253. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  254. int target, int refclk, intel_clock_t *best_clock);
  255. static bool
  256. intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  257. int target, int refclk, intel_clock_t *best_clock);
  258. static bool
  259. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  260. int target, int refclk, intel_clock_t *best_clock);
  261. static bool
  262. intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
  263. int target, int refclk, intel_clock_t *best_clock);
  264. static const intel_limit_t intel_limits_i8xx_dvo = {
  265. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  266. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  267. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  268. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  269. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  270. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  271. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  272. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  273. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  274. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  275. .find_pll = intel_find_best_PLL,
  276. .find_reduced_pll = intel_find_best_reduced_PLL,
  277. };
  278. static const intel_limit_t intel_limits_i8xx_lvds = {
  279. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  280. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  281. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  282. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  283. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  284. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  285. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  286. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  287. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  288. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  289. .find_pll = intel_find_best_PLL,
  290. .find_reduced_pll = intel_find_best_reduced_PLL,
  291. };
  292. static const intel_limit_t intel_limits_i9xx_sdvo = {
  293. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  294. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  295. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  296. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  297. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  298. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  299. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  300. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  301. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  302. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  303. .find_pll = intel_find_best_PLL,
  304. .find_reduced_pll = intel_find_best_reduced_PLL,
  305. };
  306. static const intel_limit_t intel_limits_i9xx_lvds = {
  307. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  308. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  309. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  310. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  311. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  312. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  313. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  314. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  315. /* The single-channel range is 25-112Mhz, and dual-channel
  316. * is 80-224Mhz. Prefer single channel as much as possible.
  317. */
  318. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  319. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  320. .find_pll = intel_find_best_PLL,
  321. .find_reduced_pll = intel_find_best_reduced_PLL,
  322. };
  323. /* below parameter and function is for G4X Chipset Family*/
  324. static const intel_limit_t intel_limits_g4x_sdvo = {
  325. .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
  326. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  327. .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
  328. .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
  329. .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
  330. .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
  331. .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
  332. .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
  333. .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
  334. .p2_slow = G4X_P2_SDVO_SLOW,
  335. .p2_fast = G4X_P2_SDVO_FAST
  336. },
  337. .find_pll = intel_g4x_find_best_PLL,
  338. .find_reduced_pll = intel_g4x_find_best_PLL,
  339. };
  340. static const intel_limit_t intel_limits_g4x_hdmi = {
  341. .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
  342. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  343. .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
  344. .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
  345. .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
  346. .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
  347. .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
  348. .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
  349. .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
  350. .p2_slow = G4X_P2_HDMI_DAC_SLOW,
  351. .p2_fast = G4X_P2_HDMI_DAC_FAST
  352. },
  353. .find_pll = intel_g4x_find_best_PLL,
  354. .find_reduced_pll = intel_g4x_find_best_PLL,
  355. };
  356. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  357. .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
  358. .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
  359. .vco = { .min = G4X_VCO_MIN,
  360. .max = G4X_VCO_MAX },
  361. .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
  362. .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
  363. .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
  364. .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
  365. .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
  366. .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
  367. .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
  368. .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
  369. .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
  370. .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
  371. .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
  372. .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
  373. .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
  374. .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
  375. .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
  376. },
  377. .find_pll = intel_g4x_find_best_PLL,
  378. .find_reduced_pll = intel_g4x_find_best_PLL,
  379. };
  380. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  381. .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
  382. .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
  383. .vco = { .min = G4X_VCO_MIN,
  384. .max = G4X_VCO_MAX },
  385. .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
  386. .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
  387. .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
  388. .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
  389. .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
  390. .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
  391. .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
  392. .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
  393. .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
  394. .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
  395. .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
  396. .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
  397. .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
  398. .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
  399. .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
  400. },
  401. .find_pll = intel_g4x_find_best_PLL,
  402. .find_reduced_pll = intel_g4x_find_best_PLL,
  403. };
  404. static const intel_limit_t intel_limits_g4x_display_port = {
  405. .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
  406. .max = G4X_DOT_DISPLAY_PORT_MAX },
  407. .vco = { .min = G4X_VCO_MIN,
  408. .max = G4X_VCO_MAX},
  409. .n = { .min = G4X_N_DISPLAY_PORT_MIN,
  410. .max = G4X_N_DISPLAY_PORT_MAX },
  411. .m = { .min = G4X_M_DISPLAY_PORT_MIN,
  412. .max = G4X_M_DISPLAY_PORT_MAX },
  413. .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
  414. .max = G4X_M1_DISPLAY_PORT_MAX },
  415. .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
  416. .max = G4X_M2_DISPLAY_PORT_MAX },
  417. .p = { .min = G4X_P_DISPLAY_PORT_MIN,
  418. .max = G4X_P_DISPLAY_PORT_MAX },
  419. .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
  420. .max = G4X_P1_DISPLAY_PORT_MAX},
  421. .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
  422. .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
  423. .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
  424. .find_pll = intel_find_pll_g4x_dp,
  425. };
  426. static const intel_limit_t intel_limits_igd_sdvo = {
  427. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
  428. .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
  429. .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
  430. .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
  431. .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
  432. .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
  433. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  434. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  435. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  436. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  437. .find_pll = intel_find_best_PLL,
  438. .find_reduced_pll = intel_find_best_reduced_PLL,
  439. };
  440. static const intel_limit_t intel_limits_igd_lvds = {
  441. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  442. .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
  443. .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
  444. .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
  445. .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
  446. .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
  447. .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
  448. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  449. /* IGD only supports single-channel mode. */
  450. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  451. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
  452. .find_pll = intel_find_best_PLL,
  453. .find_reduced_pll = intel_find_best_reduced_PLL,
  454. };
  455. static const intel_limit_t intel_limits_igdng_sdvo = {
  456. .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
  457. .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
  458. .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
  459. .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
  460. .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
  461. .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
  462. .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
  463. .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
  464. .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
  465. .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
  466. .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
  467. .find_pll = intel_igdng_find_best_PLL,
  468. };
  469. static const intel_limit_t intel_limits_igdng_lvds = {
  470. .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
  471. .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
  472. .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
  473. .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
  474. .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
  475. .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
  476. .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
  477. .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
  478. .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
  479. .p2_slow = IGDNG_P2_LVDS_SLOW,
  480. .p2_fast = IGDNG_P2_LVDS_FAST },
  481. .find_pll = intel_igdng_find_best_PLL,
  482. };
  483. static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
  484. {
  485. const intel_limit_t *limit;
  486. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  487. limit = &intel_limits_igdng_lvds;
  488. else
  489. limit = &intel_limits_igdng_sdvo;
  490. return limit;
  491. }
  492. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  493. {
  494. struct drm_device *dev = crtc->dev;
  495. struct drm_i915_private *dev_priv = dev->dev_private;
  496. const intel_limit_t *limit;
  497. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  498. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  499. LVDS_CLKB_POWER_UP)
  500. /* LVDS with dual channel */
  501. limit = &intel_limits_g4x_dual_channel_lvds;
  502. else
  503. /* LVDS with dual channel */
  504. limit = &intel_limits_g4x_single_channel_lvds;
  505. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  506. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  507. limit = &intel_limits_g4x_hdmi;
  508. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  509. limit = &intel_limits_g4x_sdvo;
  510. } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  511. limit = &intel_limits_g4x_display_port;
  512. } else /* The option is for other outputs */
  513. limit = &intel_limits_i9xx_sdvo;
  514. return limit;
  515. }
  516. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  517. {
  518. struct drm_device *dev = crtc->dev;
  519. const intel_limit_t *limit;
  520. if (IS_IGDNG(dev))
  521. limit = intel_igdng_limit(crtc);
  522. else if (IS_G4X(dev)) {
  523. limit = intel_g4x_limit(crtc);
  524. } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
  525. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  526. limit = &intel_limits_i9xx_lvds;
  527. else
  528. limit = &intel_limits_i9xx_sdvo;
  529. } else if (IS_IGD(dev)) {
  530. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  531. limit = &intel_limits_igd_lvds;
  532. else
  533. limit = &intel_limits_igd_sdvo;
  534. } else {
  535. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  536. limit = &intel_limits_i8xx_lvds;
  537. else
  538. limit = &intel_limits_i8xx_dvo;
  539. }
  540. return limit;
  541. }
  542. /* m1 is reserved as 0 in IGD, n is a ring counter */
  543. static void igd_clock(int refclk, intel_clock_t *clock)
  544. {
  545. clock->m = clock->m2 + 2;
  546. clock->p = clock->p1 * clock->p2;
  547. clock->vco = refclk * clock->m / clock->n;
  548. clock->dot = clock->vco / clock->p;
  549. }
  550. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  551. {
  552. if (IS_IGD(dev)) {
  553. igd_clock(refclk, clock);
  554. return;
  555. }
  556. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  557. clock->p = clock->p1 * clock->p2;
  558. clock->vco = refclk * clock->m / (clock->n + 2);
  559. clock->dot = clock->vco / clock->p;
  560. }
  561. /**
  562. * Returns whether any output on the specified pipe is of the specified type
  563. */
  564. bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
  565. {
  566. struct drm_device *dev = crtc->dev;
  567. struct drm_mode_config *mode_config = &dev->mode_config;
  568. struct drm_connector *l_entry;
  569. list_for_each_entry(l_entry, &mode_config->connector_list, head) {
  570. if (l_entry->encoder &&
  571. l_entry->encoder->crtc == crtc) {
  572. struct intel_output *intel_output = to_intel_output(l_entry);
  573. if (intel_output->type == type)
  574. return true;
  575. }
  576. }
  577. return false;
  578. }
  579. struct drm_connector *
  580. intel_pipe_get_output (struct drm_crtc *crtc)
  581. {
  582. struct drm_device *dev = crtc->dev;
  583. struct drm_mode_config *mode_config = &dev->mode_config;
  584. struct drm_connector *l_entry, *ret = NULL;
  585. list_for_each_entry(l_entry, &mode_config->connector_list, head) {
  586. if (l_entry->encoder &&
  587. l_entry->encoder->crtc == crtc) {
  588. ret = l_entry;
  589. break;
  590. }
  591. }
  592. return ret;
  593. }
  594. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  595. /**
  596. * Returns whether the given set of divisors are valid for a given refclk with
  597. * the given connectors.
  598. */
  599. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  600. {
  601. const intel_limit_t *limit = intel_limit (crtc);
  602. struct drm_device *dev = crtc->dev;
  603. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  604. INTELPllInvalid ("p1 out of range\n");
  605. if (clock->p < limit->p.min || limit->p.max < clock->p)
  606. INTELPllInvalid ("p out of range\n");
  607. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  608. INTELPllInvalid ("m2 out of range\n");
  609. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  610. INTELPllInvalid ("m1 out of range\n");
  611. if (clock->m1 <= clock->m2 && !IS_IGD(dev))
  612. INTELPllInvalid ("m1 <= m2\n");
  613. if (clock->m < limit->m.min || limit->m.max < clock->m)
  614. INTELPllInvalid ("m out of range\n");
  615. if (clock->n < limit->n.min || limit->n.max < clock->n)
  616. INTELPllInvalid ("n out of range\n");
  617. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  618. INTELPllInvalid ("vco out of range\n");
  619. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  620. * connector, etc., rather than just a single range.
  621. */
  622. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  623. INTELPllInvalid ("dot out of range\n");
  624. return true;
  625. }
  626. static bool
  627. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  628. int target, int refclk, intel_clock_t *best_clock)
  629. {
  630. struct drm_device *dev = crtc->dev;
  631. struct drm_i915_private *dev_priv = dev->dev_private;
  632. intel_clock_t clock;
  633. int err = target;
  634. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  635. (I915_READ(LVDS)) != 0) {
  636. /*
  637. * For LVDS, if the panel is on, just rely on its current
  638. * settings for dual-channel. We haven't figured out how to
  639. * reliably set up different single/dual channel state, if we
  640. * even can.
  641. */
  642. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  643. LVDS_CLKB_POWER_UP)
  644. clock.p2 = limit->p2.p2_fast;
  645. else
  646. clock.p2 = limit->p2.p2_slow;
  647. } else {
  648. if (target < limit->p2.dot_limit)
  649. clock.p2 = limit->p2.p2_slow;
  650. else
  651. clock.p2 = limit->p2.p2_fast;
  652. }
  653. memset (best_clock, 0, sizeof (*best_clock));
  654. for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  655. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  656. clock.m1++) {
  657. for (clock.m2 = limit->m2.min;
  658. clock.m2 <= limit->m2.max; clock.m2++) {
  659. /* m1 is always 0 in IGD */
  660. if (clock.m2 >= clock.m1 && !IS_IGD(dev))
  661. break;
  662. for (clock.n = limit->n.min;
  663. clock.n <= limit->n.max; clock.n++) {
  664. int this_err;
  665. intel_clock(dev, refclk, &clock);
  666. if (!intel_PLL_is_valid(crtc, &clock))
  667. continue;
  668. this_err = abs(clock.dot - target);
  669. if (this_err < err) {
  670. *best_clock = clock;
  671. err = this_err;
  672. }
  673. }
  674. }
  675. }
  676. }
  677. return (err != target);
  678. }
  679. static bool
  680. intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  681. int target, int refclk, intel_clock_t *best_clock)
  682. {
  683. struct drm_device *dev = crtc->dev;
  684. intel_clock_t clock;
  685. int err = target;
  686. bool found = false;
  687. memcpy(&clock, best_clock, sizeof(intel_clock_t));
  688. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  689. for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
  690. /* m1 is always 0 in IGD */
  691. if (clock.m2 >= clock.m1 && !IS_IGD(dev))
  692. break;
  693. for (clock.n = limit->n.min; clock.n <= limit->n.max;
  694. clock.n++) {
  695. int this_err;
  696. intel_clock(dev, refclk, &clock);
  697. if (!intel_PLL_is_valid(crtc, &clock))
  698. continue;
  699. this_err = abs(clock.dot - target);
  700. if (this_err < err) {
  701. *best_clock = clock;
  702. err = this_err;
  703. found = true;
  704. }
  705. }
  706. }
  707. }
  708. return found;
  709. }
  710. static bool
  711. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  712. int target, int refclk, intel_clock_t *best_clock)
  713. {
  714. struct drm_device *dev = crtc->dev;
  715. struct drm_i915_private *dev_priv = dev->dev_private;
  716. intel_clock_t clock;
  717. int max_n;
  718. bool found;
  719. /* approximately equals target * 0.00488 */
  720. int err_most = (target >> 8) + (target >> 10);
  721. found = false;
  722. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  723. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  724. LVDS_CLKB_POWER_UP)
  725. clock.p2 = limit->p2.p2_fast;
  726. else
  727. clock.p2 = limit->p2.p2_slow;
  728. } else {
  729. if (target < limit->p2.dot_limit)
  730. clock.p2 = limit->p2.p2_slow;
  731. else
  732. clock.p2 = limit->p2.p2_fast;
  733. }
  734. memset(best_clock, 0, sizeof(*best_clock));
  735. max_n = limit->n.max;
  736. /* based on hardware requriment prefer smaller n to precision */
  737. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  738. /* based on hardware requirment prefere larger m1,m2 */
  739. for (clock.m1 = limit->m1.max;
  740. clock.m1 >= limit->m1.min; clock.m1--) {
  741. for (clock.m2 = limit->m2.max;
  742. clock.m2 >= limit->m2.min; clock.m2--) {
  743. for (clock.p1 = limit->p1.max;
  744. clock.p1 >= limit->p1.min; clock.p1--) {
  745. int this_err;
  746. intel_clock(dev, refclk, &clock);
  747. if (!intel_PLL_is_valid(crtc, &clock))
  748. continue;
  749. this_err = abs(clock.dot - target) ;
  750. if (this_err < err_most) {
  751. *best_clock = clock;
  752. err_most = this_err;
  753. max_n = clock.n;
  754. found = true;
  755. }
  756. }
  757. }
  758. }
  759. }
  760. return found;
  761. }
  762. static bool
  763. intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  764. int target, int refclk, intel_clock_t *best_clock)
  765. {
  766. struct drm_device *dev = crtc->dev;
  767. intel_clock_t clock;
  768. if (target < 200000) {
  769. clock.n = 1;
  770. clock.p1 = 2;
  771. clock.p2 = 10;
  772. clock.m1 = 12;
  773. clock.m2 = 9;
  774. } else {
  775. clock.n = 2;
  776. clock.p1 = 1;
  777. clock.p2 = 10;
  778. clock.m1 = 14;
  779. clock.m2 = 8;
  780. }
  781. intel_clock(dev, refclk, &clock);
  782. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  783. return true;
  784. }
  785. static bool
  786. intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  787. int target, int refclk, intel_clock_t *best_clock)
  788. {
  789. struct drm_device *dev = crtc->dev;
  790. struct drm_i915_private *dev_priv = dev->dev_private;
  791. intel_clock_t clock;
  792. int max_n;
  793. bool found;
  794. int err_most = 47;
  795. found = false;
  796. /* eDP has only 2 clock choice, no n/m/p setting */
  797. if (HAS_eDP)
  798. return true;
  799. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  800. return intel_find_pll_igdng_dp(limit, crtc, target,
  801. refclk, best_clock);
  802. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  803. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  804. LVDS_CLKB_POWER_UP)
  805. clock.p2 = limit->p2.p2_fast;
  806. else
  807. clock.p2 = limit->p2.p2_slow;
  808. } else {
  809. if (target < limit->p2.dot_limit)
  810. clock.p2 = limit->p2.p2_slow;
  811. else
  812. clock.p2 = limit->p2.p2_fast;
  813. }
  814. memset(best_clock, 0, sizeof(*best_clock));
  815. max_n = limit->n.max;
  816. for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  817. /* based on hardware requriment prefer smaller n to precision */
  818. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  819. /* based on hardware requirment prefere larger m1,m2 */
  820. for (clock.m1 = limit->m1.max;
  821. clock.m1 >= limit->m1.min; clock.m1--) {
  822. for (clock.m2 = limit->m2.max;
  823. clock.m2 >= limit->m2.min; clock.m2--) {
  824. int this_err;
  825. intel_clock(dev, refclk, &clock);
  826. if (!intel_PLL_is_valid(crtc, &clock))
  827. continue;
  828. this_err = abs((10000 - (target*10000/clock.dot)));
  829. if (this_err < err_most) {
  830. *best_clock = clock;
  831. err_most = this_err;
  832. max_n = clock.n;
  833. found = true;
  834. /* found on first matching */
  835. goto out;
  836. }
  837. }
  838. }
  839. }
  840. }
  841. out:
  842. return found;
  843. }
  844. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  845. static bool
  846. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  847. int target, int refclk, intel_clock_t *best_clock)
  848. {
  849. intel_clock_t clock;
  850. if (target < 200000) {
  851. clock.p1 = 2;
  852. clock.p2 = 10;
  853. clock.n = 2;
  854. clock.m1 = 23;
  855. clock.m2 = 8;
  856. } else {
  857. clock.p1 = 1;
  858. clock.p2 = 10;
  859. clock.n = 1;
  860. clock.m1 = 14;
  861. clock.m2 = 2;
  862. }
  863. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  864. clock.p = (clock.p1 * clock.p2);
  865. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  866. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  867. return true;
  868. }
  869. void
  870. intel_wait_for_vblank(struct drm_device *dev)
  871. {
  872. /* Wait for 20ms, i.e. one cycle at 50hz. */
  873. mdelay(20);
  874. }
  875. static int
  876. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  877. struct drm_framebuffer *old_fb)
  878. {
  879. struct drm_device *dev = crtc->dev;
  880. struct drm_i915_private *dev_priv = dev->dev_private;
  881. struct drm_i915_master_private *master_priv;
  882. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  883. struct intel_framebuffer *intel_fb;
  884. struct drm_i915_gem_object *obj_priv;
  885. struct drm_gem_object *obj;
  886. int pipe = intel_crtc->pipe;
  887. unsigned long Start, Offset;
  888. int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
  889. int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
  890. int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
  891. int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
  892. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  893. u32 dspcntr, alignment;
  894. int ret;
  895. /* no fb bound */
  896. if (!crtc->fb) {
  897. DRM_DEBUG("No FB bound\n");
  898. return 0;
  899. }
  900. switch (pipe) {
  901. case 0:
  902. case 1:
  903. break;
  904. default:
  905. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  906. return -EINVAL;
  907. }
  908. intel_fb = to_intel_framebuffer(crtc->fb);
  909. obj = intel_fb->obj;
  910. obj_priv = obj->driver_private;
  911. switch (obj_priv->tiling_mode) {
  912. case I915_TILING_NONE:
  913. alignment = 64 * 1024;
  914. break;
  915. case I915_TILING_X:
  916. /* pin() will align the object as required by fence */
  917. alignment = 0;
  918. break;
  919. case I915_TILING_Y:
  920. /* FIXME: Is this true? */
  921. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  922. return -EINVAL;
  923. default:
  924. BUG();
  925. }
  926. mutex_lock(&dev->struct_mutex);
  927. ret = i915_gem_object_pin(obj, alignment);
  928. if (ret != 0) {
  929. mutex_unlock(&dev->struct_mutex);
  930. return ret;
  931. }
  932. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  933. if (ret != 0) {
  934. i915_gem_object_unpin(obj);
  935. mutex_unlock(&dev->struct_mutex);
  936. return ret;
  937. }
  938. /* Pre-i965 needs to install a fence for tiled scan-out */
  939. if (!IS_I965G(dev) &&
  940. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  941. obj_priv->tiling_mode != I915_TILING_NONE) {
  942. ret = i915_gem_object_get_fence_reg(obj);
  943. if (ret != 0) {
  944. i915_gem_object_unpin(obj);
  945. mutex_unlock(&dev->struct_mutex);
  946. return ret;
  947. }
  948. }
  949. dspcntr = I915_READ(dspcntr_reg);
  950. /* Mask out pixel format bits in case we change it */
  951. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  952. switch (crtc->fb->bits_per_pixel) {
  953. case 8:
  954. dspcntr |= DISPPLANE_8BPP;
  955. break;
  956. case 16:
  957. if (crtc->fb->depth == 15)
  958. dspcntr |= DISPPLANE_15_16BPP;
  959. else
  960. dspcntr |= DISPPLANE_16BPP;
  961. break;
  962. case 24:
  963. case 32:
  964. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  965. break;
  966. default:
  967. DRM_ERROR("Unknown color depth\n");
  968. i915_gem_object_unpin(obj);
  969. mutex_unlock(&dev->struct_mutex);
  970. return -EINVAL;
  971. }
  972. if (IS_I965G(dev)) {
  973. if (obj_priv->tiling_mode != I915_TILING_NONE)
  974. dspcntr |= DISPPLANE_TILED;
  975. else
  976. dspcntr &= ~DISPPLANE_TILED;
  977. }
  978. if (IS_IGDNG(dev))
  979. /* must disable */
  980. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  981. I915_WRITE(dspcntr_reg, dspcntr);
  982. Start = obj_priv->gtt_offset;
  983. Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
  984. DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
  985. I915_WRITE(dspstride, crtc->fb->pitch);
  986. if (IS_I965G(dev)) {
  987. I915_WRITE(dspbase, Offset);
  988. I915_READ(dspbase);
  989. I915_WRITE(dspsurf, Start);
  990. I915_READ(dspsurf);
  991. I915_WRITE(dsptileoff, (y << 16) | x);
  992. } else {
  993. I915_WRITE(dspbase, Start + Offset);
  994. I915_READ(dspbase);
  995. }
  996. intel_wait_for_vblank(dev);
  997. if (old_fb) {
  998. intel_fb = to_intel_framebuffer(old_fb);
  999. obj_priv = intel_fb->obj->driver_private;
  1000. i915_gem_object_unpin(intel_fb->obj);
  1001. }
  1002. intel_increase_pllclock(crtc, true);
  1003. mutex_unlock(&dev->struct_mutex);
  1004. if (!dev->primary->master)
  1005. return 0;
  1006. master_priv = dev->primary->master->driver_priv;
  1007. if (!master_priv->sarea_priv)
  1008. return 0;
  1009. if (pipe) {
  1010. master_priv->sarea_priv->pipeB_x = x;
  1011. master_priv->sarea_priv->pipeB_y = y;
  1012. } else {
  1013. master_priv->sarea_priv->pipeA_x = x;
  1014. master_priv->sarea_priv->pipeA_y = y;
  1015. }
  1016. return 0;
  1017. }
  1018. /* Disable the VGA plane that we never use */
  1019. static void i915_disable_vga (struct drm_device *dev)
  1020. {
  1021. struct drm_i915_private *dev_priv = dev->dev_private;
  1022. u8 sr1;
  1023. u32 vga_reg;
  1024. if (IS_IGDNG(dev))
  1025. vga_reg = CPU_VGACNTRL;
  1026. else
  1027. vga_reg = VGACNTRL;
  1028. if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
  1029. return;
  1030. I915_WRITE8(VGA_SR_INDEX, 1);
  1031. sr1 = I915_READ8(VGA_SR_DATA);
  1032. I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
  1033. udelay(100);
  1034. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  1035. }
  1036. static void igdng_disable_pll_edp (struct drm_crtc *crtc)
  1037. {
  1038. struct drm_device *dev = crtc->dev;
  1039. struct drm_i915_private *dev_priv = dev->dev_private;
  1040. u32 dpa_ctl;
  1041. DRM_DEBUG("\n");
  1042. dpa_ctl = I915_READ(DP_A);
  1043. dpa_ctl &= ~DP_PLL_ENABLE;
  1044. I915_WRITE(DP_A, dpa_ctl);
  1045. }
  1046. static void igdng_enable_pll_edp (struct drm_crtc *crtc)
  1047. {
  1048. struct drm_device *dev = crtc->dev;
  1049. struct drm_i915_private *dev_priv = dev->dev_private;
  1050. u32 dpa_ctl;
  1051. dpa_ctl = I915_READ(DP_A);
  1052. dpa_ctl |= DP_PLL_ENABLE;
  1053. I915_WRITE(DP_A, dpa_ctl);
  1054. udelay(200);
  1055. }
  1056. static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
  1057. {
  1058. struct drm_device *dev = crtc->dev;
  1059. struct drm_i915_private *dev_priv = dev->dev_private;
  1060. u32 dpa_ctl;
  1061. DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
  1062. dpa_ctl = I915_READ(DP_A);
  1063. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1064. if (clock < 200000) {
  1065. u32 temp;
  1066. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1067. /* workaround for 160Mhz:
  1068. 1) program 0x4600c bits 15:0 = 0x8124
  1069. 2) program 0x46010 bit 0 = 1
  1070. 3) program 0x46034 bit 24 = 1
  1071. 4) program 0x64000 bit 14 = 1
  1072. */
  1073. temp = I915_READ(0x4600c);
  1074. temp &= 0xffff0000;
  1075. I915_WRITE(0x4600c, temp | 0x8124);
  1076. temp = I915_READ(0x46010);
  1077. I915_WRITE(0x46010, temp | 1);
  1078. temp = I915_READ(0x46034);
  1079. I915_WRITE(0x46034, temp | (1 << 24));
  1080. } else {
  1081. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1082. }
  1083. I915_WRITE(DP_A, dpa_ctl);
  1084. udelay(500);
  1085. }
  1086. static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
  1087. {
  1088. struct drm_device *dev = crtc->dev;
  1089. struct drm_i915_private *dev_priv = dev->dev_private;
  1090. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1091. int pipe = intel_crtc->pipe;
  1092. int plane = intel_crtc->plane;
  1093. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  1094. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1095. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1096. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1097. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1098. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1099. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1100. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1101. int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
  1102. int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
  1103. int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
  1104. int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  1105. int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  1106. int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  1107. int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  1108. int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  1109. int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  1110. int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
  1111. int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
  1112. int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
  1113. int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
  1114. int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
  1115. int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
  1116. u32 temp;
  1117. int tries = 5, j, n;
  1118. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1119. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1120. */
  1121. switch (mode) {
  1122. case DRM_MODE_DPMS_ON:
  1123. case DRM_MODE_DPMS_STANDBY:
  1124. case DRM_MODE_DPMS_SUSPEND:
  1125. DRM_DEBUG("crtc %d dpms on\n", pipe);
  1126. if (HAS_eDP) {
  1127. /* enable eDP PLL */
  1128. igdng_enable_pll_edp(crtc);
  1129. } else {
  1130. /* enable PCH DPLL */
  1131. temp = I915_READ(pch_dpll_reg);
  1132. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1133. I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
  1134. I915_READ(pch_dpll_reg);
  1135. }
  1136. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  1137. temp = I915_READ(fdi_rx_reg);
  1138. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
  1139. FDI_SEL_PCDCLK |
  1140. FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
  1141. I915_READ(fdi_rx_reg);
  1142. udelay(200);
  1143. /* Enable CPU FDI TX PLL, always on for IGDNG */
  1144. temp = I915_READ(fdi_tx_reg);
  1145. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  1146. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  1147. I915_READ(fdi_tx_reg);
  1148. udelay(100);
  1149. }
  1150. }
  1151. /* Enable CPU pipe */
  1152. temp = I915_READ(pipeconf_reg);
  1153. if ((temp & PIPEACONF_ENABLE) == 0) {
  1154. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1155. I915_READ(pipeconf_reg);
  1156. udelay(100);
  1157. }
  1158. /* configure and enable CPU plane */
  1159. temp = I915_READ(dspcntr_reg);
  1160. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1161. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1162. /* Flush the plane changes */
  1163. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1164. }
  1165. if (!HAS_eDP) {
  1166. /* enable CPU FDI TX and PCH FDI RX */
  1167. temp = I915_READ(fdi_tx_reg);
  1168. temp |= FDI_TX_ENABLE;
  1169. temp |= FDI_DP_PORT_WIDTH_X4; /* default */
  1170. temp &= ~FDI_LINK_TRAIN_NONE;
  1171. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1172. I915_WRITE(fdi_tx_reg, temp);
  1173. I915_READ(fdi_tx_reg);
  1174. temp = I915_READ(fdi_rx_reg);
  1175. temp &= ~FDI_LINK_TRAIN_NONE;
  1176. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1177. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1178. I915_READ(fdi_rx_reg);
  1179. udelay(150);
  1180. /* Train FDI. */
  1181. /* umask FDI RX Interrupt symbol_lock and bit_lock bit
  1182. for train result */
  1183. temp = I915_READ(fdi_rx_imr_reg);
  1184. temp &= ~FDI_RX_SYMBOL_LOCK;
  1185. temp &= ~FDI_RX_BIT_LOCK;
  1186. I915_WRITE(fdi_rx_imr_reg, temp);
  1187. I915_READ(fdi_rx_imr_reg);
  1188. udelay(150);
  1189. temp = I915_READ(fdi_rx_iir_reg);
  1190. DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
  1191. if ((temp & FDI_RX_BIT_LOCK) == 0) {
  1192. for (j = 0; j < tries; j++) {
  1193. temp = I915_READ(fdi_rx_iir_reg);
  1194. DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
  1195. if (temp & FDI_RX_BIT_LOCK)
  1196. break;
  1197. udelay(200);
  1198. }
  1199. if (j != tries)
  1200. I915_WRITE(fdi_rx_iir_reg,
  1201. temp | FDI_RX_BIT_LOCK);
  1202. else
  1203. DRM_DEBUG("train 1 fail\n");
  1204. } else {
  1205. I915_WRITE(fdi_rx_iir_reg,
  1206. temp | FDI_RX_BIT_LOCK);
  1207. DRM_DEBUG("train 1 ok 2!\n");
  1208. }
  1209. temp = I915_READ(fdi_tx_reg);
  1210. temp &= ~FDI_LINK_TRAIN_NONE;
  1211. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1212. I915_WRITE(fdi_tx_reg, temp);
  1213. temp = I915_READ(fdi_rx_reg);
  1214. temp &= ~FDI_LINK_TRAIN_NONE;
  1215. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1216. I915_WRITE(fdi_rx_reg, temp);
  1217. udelay(150);
  1218. temp = I915_READ(fdi_rx_iir_reg);
  1219. DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
  1220. if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
  1221. for (j = 0; j < tries; j++) {
  1222. temp = I915_READ(fdi_rx_iir_reg);
  1223. DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
  1224. if (temp & FDI_RX_SYMBOL_LOCK)
  1225. break;
  1226. udelay(200);
  1227. }
  1228. if (j != tries) {
  1229. I915_WRITE(fdi_rx_iir_reg,
  1230. temp | FDI_RX_SYMBOL_LOCK);
  1231. DRM_DEBUG("train 2 ok 1!\n");
  1232. } else
  1233. DRM_DEBUG("train 2 fail\n");
  1234. } else {
  1235. I915_WRITE(fdi_rx_iir_reg,
  1236. temp | FDI_RX_SYMBOL_LOCK);
  1237. DRM_DEBUG("train 2 ok 2!\n");
  1238. }
  1239. DRM_DEBUG("train done\n");
  1240. /* set transcoder timing */
  1241. I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
  1242. I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
  1243. I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
  1244. I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
  1245. I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
  1246. I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
  1247. /* enable PCH transcoder */
  1248. temp = I915_READ(transconf_reg);
  1249. I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
  1250. I915_READ(transconf_reg);
  1251. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
  1252. ;
  1253. /* enable normal */
  1254. temp = I915_READ(fdi_tx_reg);
  1255. temp &= ~FDI_LINK_TRAIN_NONE;
  1256. I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
  1257. FDI_TX_ENHANCE_FRAME_ENABLE);
  1258. I915_READ(fdi_tx_reg);
  1259. temp = I915_READ(fdi_rx_reg);
  1260. temp &= ~FDI_LINK_TRAIN_NONE;
  1261. I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
  1262. FDI_RX_ENHANCE_FRAME_ENABLE);
  1263. I915_READ(fdi_rx_reg);
  1264. /* wait one idle pattern time */
  1265. udelay(100);
  1266. }
  1267. intel_crtc_load_lut(crtc);
  1268. break;
  1269. case DRM_MODE_DPMS_OFF:
  1270. DRM_DEBUG("crtc %d dpms off\n", pipe);
  1271. i915_disable_vga(dev);
  1272. /* Disable display plane */
  1273. temp = I915_READ(dspcntr_reg);
  1274. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1275. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1276. /* Flush the plane changes */
  1277. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1278. I915_READ(dspbase_reg);
  1279. }
  1280. /* disable cpu pipe, disable after all planes disabled */
  1281. temp = I915_READ(pipeconf_reg);
  1282. if ((temp & PIPEACONF_ENABLE) != 0) {
  1283. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1284. I915_READ(pipeconf_reg);
  1285. n = 0;
  1286. /* wait for cpu pipe off, pipe state */
  1287. while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
  1288. n++;
  1289. if (n < 60) {
  1290. udelay(500);
  1291. continue;
  1292. } else {
  1293. DRM_DEBUG("pipe %d off delay\n", pipe);
  1294. break;
  1295. }
  1296. }
  1297. } else
  1298. DRM_DEBUG("crtc %d is disabled\n", pipe);
  1299. if (HAS_eDP) {
  1300. igdng_disable_pll_edp(crtc);
  1301. }
  1302. /* disable CPU FDI tx and PCH FDI rx */
  1303. temp = I915_READ(fdi_tx_reg);
  1304. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
  1305. I915_READ(fdi_tx_reg);
  1306. temp = I915_READ(fdi_rx_reg);
  1307. I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
  1308. I915_READ(fdi_rx_reg);
  1309. udelay(100);
  1310. /* still set train pattern 1 */
  1311. temp = I915_READ(fdi_tx_reg);
  1312. temp &= ~FDI_LINK_TRAIN_NONE;
  1313. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1314. I915_WRITE(fdi_tx_reg, temp);
  1315. temp = I915_READ(fdi_rx_reg);
  1316. temp &= ~FDI_LINK_TRAIN_NONE;
  1317. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1318. I915_WRITE(fdi_rx_reg, temp);
  1319. udelay(100);
  1320. /* disable PCH transcoder */
  1321. temp = I915_READ(transconf_reg);
  1322. if ((temp & TRANS_ENABLE) != 0) {
  1323. I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
  1324. I915_READ(transconf_reg);
  1325. n = 0;
  1326. /* wait for PCH transcoder off, transcoder state */
  1327. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
  1328. n++;
  1329. if (n < 60) {
  1330. udelay(500);
  1331. continue;
  1332. } else {
  1333. DRM_DEBUG("transcoder %d off delay\n", pipe);
  1334. break;
  1335. }
  1336. }
  1337. }
  1338. /* disable PCH DPLL */
  1339. temp = I915_READ(pch_dpll_reg);
  1340. if ((temp & DPLL_VCO_ENABLE) != 0) {
  1341. I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1342. I915_READ(pch_dpll_reg);
  1343. }
  1344. temp = I915_READ(fdi_rx_reg);
  1345. if ((temp & FDI_RX_PLL_ENABLE) != 0) {
  1346. temp &= ~FDI_SEL_PCDCLK;
  1347. temp &= ~FDI_RX_PLL_ENABLE;
  1348. I915_WRITE(fdi_rx_reg, temp);
  1349. I915_READ(fdi_rx_reg);
  1350. }
  1351. /* Disable CPU FDI TX PLL */
  1352. temp = I915_READ(fdi_tx_reg);
  1353. if ((temp & FDI_TX_PLL_ENABLE) != 0) {
  1354. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
  1355. I915_READ(fdi_tx_reg);
  1356. udelay(100);
  1357. }
  1358. /* Disable PF */
  1359. temp = I915_READ(pf_ctl_reg);
  1360. if ((temp & PF_ENABLE) != 0) {
  1361. I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
  1362. I915_READ(pf_ctl_reg);
  1363. }
  1364. I915_WRITE(pf_win_size, 0);
  1365. /* Wait for the clocks to turn off. */
  1366. udelay(150);
  1367. break;
  1368. }
  1369. }
  1370. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  1371. {
  1372. struct drm_device *dev = crtc->dev;
  1373. struct drm_i915_private *dev_priv = dev->dev_private;
  1374. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1375. int pipe = intel_crtc->pipe;
  1376. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  1377. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  1378. int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
  1379. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1380. u32 temp;
  1381. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1382. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1383. */
  1384. switch (mode) {
  1385. case DRM_MODE_DPMS_ON:
  1386. case DRM_MODE_DPMS_STANDBY:
  1387. case DRM_MODE_DPMS_SUSPEND:
  1388. /* Enable the DPLL */
  1389. temp = I915_READ(dpll_reg);
  1390. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1391. I915_WRITE(dpll_reg, temp);
  1392. I915_READ(dpll_reg);
  1393. /* Wait for the clocks to stabilize. */
  1394. udelay(150);
  1395. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1396. I915_READ(dpll_reg);
  1397. /* Wait for the clocks to stabilize. */
  1398. udelay(150);
  1399. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1400. I915_READ(dpll_reg);
  1401. /* Wait for the clocks to stabilize. */
  1402. udelay(150);
  1403. }
  1404. /* Enable the pipe */
  1405. temp = I915_READ(pipeconf_reg);
  1406. if ((temp & PIPEACONF_ENABLE) == 0)
  1407. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1408. /* Enable the plane */
  1409. temp = I915_READ(dspcntr_reg);
  1410. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1411. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1412. /* Flush the plane changes */
  1413. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1414. }
  1415. intel_crtc_load_lut(crtc);
  1416. /* Give the overlay scaler a chance to enable if it's on this pipe */
  1417. //intel_crtc_dpms_video(crtc, true); TODO
  1418. intel_update_watermarks(dev);
  1419. break;
  1420. case DRM_MODE_DPMS_OFF:
  1421. intel_update_watermarks(dev);
  1422. /* Give the overlay scaler a chance to disable if it's on this pipe */
  1423. //intel_crtc_dpms_video(crtc, FALSE); TODO
  1424. /* Disable the VGA plane that we never use */
  1425. i915_disable_vga(dev);
  1426. /* Disable display plane */
  1427. temp = I915_READ(dspcntr_reg);
  1428. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1429. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1430. /* Flush the plane changes */
  1431. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1432. I915_READ(dspbase_reg);
  1433. }
  1434. if (!IS_I9XX(dev)) {
  1435. /* Wait for vblank for the disable to take effect */
  1436. intel_wait_for_vblank(dev);
  1437. }
  1438. /* Next, disable display pipes */
  1439. temp = I915_READ(pipeconf_reg);
  1440. if ((temp & PIPEACONF_ENABLE) != 0) {
  1441. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1442. I915_READ(pipeconf_reg);
  1443. }
  1444. /* Wait for vblank for the disable to take effect. */
  1445. intel_wait_for_vblank(dev);
  1446. temp = I915_READ(dpll_reg);
  1447. if ((temp & DPLL_VCO_ENABLE) != 0) {
  1448. I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1449. I915_READ(dpll_reg);
  1450. }
  1451. /* Wait for the clocks to turn off. */
  1452. udelay(150);
  1453. break;
  1454. }
  1455. }
  1456. /**
  1457. * Sets the power management mode of the pipe and plane.
  1458. *
  1459. * This code should probably grow support for turning the cursor off and back
  1460. * on appropriately at the same time as we're turning the pipe off/on.
  1461. */
  1462. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  1463. {
  1464. struct drm_device *dev = crtc->dev;
  1465. struct drm_i915_master_private *master_priv;
  1466. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1467. int pipe = intel_crtc->pipe;
  1468. bool enabled;
  1469. if (IS_IGDNG(dev))
  1470. igdng_crtc_dpms(crtc, mode);
  1471. else
  1472. i9xx_crtc_dpms(crtc, mode);
  1473. intel_crtc->dpms_mode = mode;
  1474. if (!dev->primary->master)
  1475. return;
  1476. master_priv = dev->primary->master->driver_priv;
  1477. if (!master_priv->sarea_priv)
  1478. return;
  1479. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  1480. switch (pipe) {
  1481. case 0:
  1482. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  1483. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  1484. break;
  1485. case 1:
  1486. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  1487. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  1488. break;
  1489. default:
  1490. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  1491. break;
  1492. }
  1493. }
  1494. static void intel_crtc_prepare (struct drm_crtc *crtc)
  1495. {
  1496. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  1497. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  1498. }
  1499. static void intel_crtc_commit (struct drm_crtc *crtc)
  1500. {
  1501. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  1502. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  1503. }
  1504. void intel_encoder_prepare (struct drm_encoder *encoder)
  1505. {
  1506. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  1507. /* lvds has its own version of prepare see intel_lvds_prepare */
  1508. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  1509. }
  1510. void intel_encoder_commit (struct drm_encoder *encoder)
  1511. {
  1512. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  1513. /* lvds has its own version of commit see intel_lvds_commit */
  1514. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  1515. }
  1516. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  1517. struct drm_display_mode *mode,
  1518. struct drm_display_mode *adjusted_mode)
  1519. {
  1520. struct drm_device *dev = crtc->dev;
  1521. if (IS_IGDNG(dev)) {
  1522. /* FDI link clock is fixed at 2.7G */
  1523. if (mode->clock * 3 > 27000 * 4)
  1524. return MODE_CLOCK_HIGH;
  1525. }
  1526. return true;
  1527. }
  1528. /** Returns the core display clock speed for i830 - i945 */
  1529. static int intel_get_core_clock_speed(struct drm_device *dev)
  1530. {
  1531. /* Core clock values taken from the published datasheets.
  1532. * The 830 may go up to 166 Mhz, which we should check.
  1533. */
  1534. if (IS_I945G(dev))
  1535. return 400000;
  1536. else if (IS_I915G(dev))
  1537. return 333000;
  1538. else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
  1539. return 200000;
  1540. else if (IS_I915GM(dev)) {
  1541. u16 gcfgc = 0;
  1542. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  1543. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  1544. return 133000;
  1545. else {
  1546. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  1547. case GC_DISPLAY_CLOCK_333_MHZ:
  1548. return 333000;
  1549. default:
  1550. case GC_DISPLAY_CLOCK_190_200_MHZ:
  1551. return 190000;
  1552. }
  1553. }
  1554. } else if (IS_I865G(dev))
  1555. return 266000;
  1556. else if (IS_I855(dev)) {
  1557. u16 hpllcc = 0;
  1558. /* Assume that the hardware is in the high speed state. This
  1559. * should be the default.
  1560. */
  1561. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  1562. case GC_CLOCK_133_200:
  1563. case GC_CLOCK_100_200:
  1564. return 200000;
  1565. case GC_CLOCK_166_250:
  1566. return 250000;
  1567. case GC_CLOCK_100_133:
  1568. return 133000;
  1569. }
  1570. } else /* 852, 830 */
  1571. return 133000;
  1572. return 0; /* Silence gcc warning */
  1573. }
  1574. /**
  1575. * Return the pipe currently connected to the panel fitter,
  1576. * or -1 if the panel fitter is not present or not in use
  1577. */
  1578. static int intel_panel_fitter_pipe (struct drm_device *dev)
  1579. {
  1580. struct drm_i915_private *dev_priv = dev->dev_private;
  1581. u32 pfit_control;
  1582. /* i830 doesn't have a panel fitter */
  1583. if (IS_I830(dev))
  1584. return -1;
  1585. pfit_control = I915_READ(PFIT_CONTROL);
  1586. /* See if the panel fitter is in use */
  1587. if ((pfit_control & PFIT_ENABLE) == 0)
  1588. return -1;
  1589. /* 965 can place panel fitter on either pipe */
  1590. if (IS_I965G(dev))
  1591. return (pfit_control >> 29) & 0x3;
  1592. /* older chips can only use pipe 1 */
  1593. return 1;
  1594. }
  1595. struct fdi_m_n {
  1596. u32 tu;
  1597. u32 gmch_m;
  1598. u32 gmch_n;
  1599. u32 link_m;
  1600. u32 link_n;
  1601. };
  1602. static void
  1603. fdi_reduce_ratio(u32 *num, u32 *den)
  1604. {
  1605. while (*num > 0xffffff || *den > 0xffffff) {
  1606. *num >>= 1;
  1607. *den >>= 1;
  1608. }
  1609. }
  1610. #define DATA_N 0x800000
  1611. #define LINK_N 0x80000
  1612. static void
  1613. igdng_compute_m_n(int bytes_per_pixel, int nlanes,
  1614. int pixel_clock, int link_clock,
  1615. struct fdi_m_n *m_n)
  1616. {
  1617. u64 temp;
  1618. m_n->tu = 64; /* default size */
  1619. temp = (u64) DATA_N * pixel_clock;
  1620. temp = div_u64(temp, link_clock);
  1621. m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
  1622. m_n->gmch_n = DATA_N;
  1623. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  1624. temp = (u64) LINK_N * pixel_clock;
  1625. m_n->link_m = div_u64(temp, link_clock);
  1626. m_n->link_n = LINK_N;
  1627. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  1628. }
  1629. struct intel_watermark_params {
  1630. unsigned long fifo_size;
  1631. unsigned long max_wm;
  1632. unsigned long default_wm;
  1633. unsigned long guard_size;
  1634. unsigned long cacheline_size;
  1635. };
  1636. /* IGD has different values for various configs */
  1637. static struct intel_watermark_params igd_display_wm = {
  1638. IGD_DISPLAY_FIFO,
  1639. IGD_MAX_WM,
  1640. IGD_DFT_WM,
  1641. IGD_GUARD_WM,
  1642. IGD_FIFO_LINE_SIZE
  1643. };
  1644. static struct intel_watermark_params igd_display_hplloff_wm = {
  1645. IGD_DISPLAY_FIFO,
  1646. IGD_MAX_WM,
  1647. IGD_DFT_HPLLOFF_WM,
  1648. IGD_GUARD_WM,
  1649. IGD_FIFO_LINE_SIZE
  1650. };
  1651. static struct intel_watermark_params igd_cursor_wm = {
  1652. IGD_CURSOR_FIFO,
  1653. IGD_CURSOR_MAX_WM,
  1654. IGD_CURSOR_DFT_WM,
  1655. IGD_CURSOR_GUARD_WM,
  1656. IGD_FIFO_LINE_SIZE,
  1657. };
  1658. static struct intel_watermark_params igd_cursor_hplloff_wm = {
  1659. IGD_CURSOR_FIFO,
  1660. IGD_CURSOR_MAX_WM,
  1661. IGD_CURSOR_DFT_WM,
  1662. IGD_CURSOR_GUARD_WM,
  1663. IGD_FIFO_LINE_SIZE
  1664. };
  1665. static struct intel_watermark_params i945_wm_info = {
  1666. I945_FIFO_SIZE,
  1667. I915_MAX_WM,
  1668. 1,
  1669. 2,
  1670. I915_FIFO_LINE_SIZE
  1671. };
  1672. static struct intel_watermark_params i915_wm_info = {
  1673. I915_FIFO_SIZE,
  1674. I915_MAX_WM,
  1675. 1,
  1676. 2,
  1677. I915_FIFO_LINE_SIZE
  1678. };
  1679. static struct intel_watermark_params i855_wm_info = {
  1680. I855GM_FIFO_SIZE,
  1681. I915_MAX_WM,
  1682. 1,
  1683. 2,
  1684. I830_FIFO_LINE_SIZE
  1685. };
  1686. static struct intel_watermark_params i830_wm_info = {
  1687. I830_FIFO_SIZE,
  1688. I915_MAX_WM,
  1689. 1,
  1690. 2,
  1691. I830_FIFO_LINE_SIZE
  1692. };
  1693. /**
  1694. * intel_calculate_wm - calculate watermark level
  1695. * @clock_in_khz: pixel clock
  1696. * @wm: chip FIFO params
  1697. * @pixel_size: display pixel size
  1698. * @latency_ns: memory latency for the platform
  1699. *
  1700. * Calculate the watermark level (the level at which the display plane will
  1701. * start fetching from memory again). Each chip has a different display
  1702. * FIFO size and allocation, so the caller needs to figure that out and pass
  1703. * in the correct intel_watermark_params structure.
  1704. *
  1705. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  1706. * on the pixel size. When it reaches the watermark level, it'll start
  1707. * fetching FIFO line sized based chunks from memory until the FIFO fills
  1708. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  1709. * will occur, and a display engine hang could result.
  1710. */
  1711. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  1712. struct intel_watermark_params *wm,
  1713. int pixel_size,
  1714. unsigned long latency_ns)
  1715. {
  1716. long entries_required, wm_size;
  1717. entries_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
  1718. entries_required /= wm->cacheline_size;
  1719. DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
  1720. wm_size = wm->fifo_size - (entries_required + wm->guard_size);
  1721. DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
  1722. /* Don't promote wm_size to unsigned... */
  1723. if (wm_size > (long)wm->max_wm)
  1724. wm_size = wm->max_wm;
  1725. if (wm_size <= 0)
  1726. wm_size = wm->default_wm;
  1727. return wm_size;
  1728. }
  1729. struct cxsr_latency {
  1730. int is_desktop;
  1731. unsigned long fsb_freq;
  1732. unsigned long mem_freq;
  1733. unsigned long display_sr;
  1734. unsigned long display_hpll_disable;
  1735. unsigned long cursor_sr;
  1736. unsigned long cursor_hpll_disable;
  1737. };
  1738. static struct cxsr_latency cxsr_latency_table[] = {
  1739. {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  1740. {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  1741. {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  1742. {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  1743. {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  1744. {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  1745. {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  1746. {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  1747. {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  1748. {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  1749. {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  1750. {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  1751. {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  1752. {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  1753. {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  1754. {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  1755. {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  1756. {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  1757. };
  1758. static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
  1759. int mem)
  1760. {
  1761. int i;
  1762. struct cxsr_latency *latency;
  1763. if (fsb == 0 || mem == 0)
  1764. return NULL;
  1765. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  1766. latency = &cxsr_latency_table[i];
  1767. if (is_desktop == latency->is_desktop &&
  1768. fsb == latency->fsb_freq && mem == latency->mem_freq)
  1769. break;
  1770. }
  1771. if (i >= ARRAY_SIZE(cxsr_latency_table)) {
  1772. DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
  1773. return NULL;
  1774. }
  1775. return latency;
  1776. }
  1777. static void igd_disable_cxsr(struct drm_device *dev)
  1778. {
  1779. struct drm_i915_private *dev_priv = dev->dev_private;
  1780. u32 reg;
  1781. /* deactivate cxsr */
  1782. reg = I915_READ(DSPFW3);
  1783. reg &= ~(IGD_SELF_REFRESH_EN);
  1784. I915_WRITE(DSPFW3, reg);
  1785. DRM_INFO("Big FIFO is disabled\n");
  1786. }
  1787. static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
  1788. int pixel_size)
  1789. {
  1790. struct drm_i915_private *dev_priv = dev->dev_private;
  1791. u32 reg;
  1792. unsigned long wm;
  1793. struct cxsr_latency *latency;
  1794. latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
  1795. dev_priv->mem_freq);
  1796. if (!latency) {
  1797. DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
  1798. igd_disable_cxsr(dev);
  1799. return;
  1800. }
  1801. /* Display SR */
  1802. wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
  1803. latency->display_sr);
  1804. reg = I915_READ(DSPFW1);
  1805. reg &= 0x7fffff;
  1806. reg |= wm << 23;
  1807. I915_WRITE(DSPFW1, reg);
  1808. DRM_DEBUG("DSPFW1 register is %x\n", reg);
  1809. /* cursor SR */
  1810. wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
  1811. latency->cursor_sr);
  1812. reg = I915_READ(DSPFW3);
  1813. reg &= ~(0x3f << 24);
  1814. reg |= (wm & 0x3f) << 24;
  1815. I915_WRITE(DSPFW3, reg);
  1816. /* Display HPLL off SR */
  1817. wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
  1818. latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
  1819. reg = I915_READ(DSPFW3);
  1820. reg &= 0xfffffe00;
  1821. reg |= wm & 0x1ff;
  1822. I915_WRITE(DSPFW3, reg);
  1823. /* cursor HPLL off SR */
  1824. wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
  1825. latency->cursor_hpll_disable);
  1826. reg = I915_READ(DSPFW3);
  1827. reg &= ~(0x3f << 16);
  1828. reg |= (wm & 0x3f) << 16;
  1829. I915_WRITE(DSPFW3, reg);
  1830. DRM_DEBUG("DSPFW3 register is %x\n", reg);
  1831. /* activate cxsr */
  1832. reg = I915_READ(DSPFW3);
  1833. reg |= IGD_SELF_REFRESH_EN;
  1834. I915_WRITE(DSPFW3, reg);
  1835. DRM_INFO("Big FIFO is enabled\n");
  1836. return;
  1837. }
  1838. /*
  1839. * Latency for FIFO fetches is dependent on several factors:
  1840. * - memory configuration (speed, channels)
  1841. * - chipset
  1842. * - current MCH state
  1843. * It can be fairly high in some situations, so here we assume a fairly
  1844. * pessimal value. It's a tradeoff between extra memory fetches (if we
  1845. * set this value too high, the FIFO will fetch frequently to stay full)
  1846. * and power consumption (set it too low to save power and we might see
  1847. * FIFO underruns and display "flicker").
  1848. *
  1849. * A value of 5us seems to be a good balance; safe for very low end
  1850. * platforms but not overly aggressive on lower latency configs.
  1851. */
  1852. const static int latency_ns = 5000;
  1853. static int intel_get_fifo_size(struct drm_device *dev, int plane)
  1854. {
  1855. struct drm_i915_private *dev_priv = dev->dev_private;
  1856. uint32_t dsparb = I915_READ(DSPARB);
  1857. int size;
  1858. if (IS_I9XX(dev)) {
  1859. if (plane == 0)
  1860. size = dsparb & 0x7f;
  1861. else
  1862. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
  1863. (dsparb & 0x7f);
  1864. } else if (IS_I85X(dev)) {
  1865. if (plane == 0)
  1866. size = dsparb & 0x1ff;
  1867. else
  1868. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
  1869. (dsparb & 0x1ff);
  1870. size >>= 1; /* Convert to cachelines */
  1871. } else if (IS_845G(dev)) {
  1872. size = dsparb & 0x7f;
  1873. size >>= 2; /* Convert to cachelines */
  1874. } else {
  1875. size = dsparb & 0x7f;
  1876. size >>= 1; /* Convert to cachelines */
  1877. }
  1878. DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
  1879. size);
  1880. return size;
  1881. }
  1882. static void g4x_update_wm(struct drm_device *dev)
  1883. {
  1884. struct drm_i915_private *dev_priv = dev->dev_private;
  1885. u32 fw_blc_self = I915_READ(FW_BLC_SELF);
  1886. if (i915_powersave)
  1887. fw_blc_self |= FW_BLC_SELF_EN;
  1888. else
  1889. fw_blc_self &= ~FW_BLC_SELF_EN;
  1890. I915_WRITE(FW_BLC_SELF, fw_blc_self);
  1891. }
  1892. static void i965_update_wm(struct drm_device *dev)
  1893. {
  1894. struct drm_i915_private *dev_priv = dev->dev_private;
  1895. DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
  1896. /* 965 has limitations... */
  1897. I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
  1898. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1899. }
  1900. static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
  1901. int planeb_clock, int sr_hdisplay, int pixel_size)
  1902. {
  1903. struct drm_i915_private *dev_priv = dev->dev_private;
  1904. uint32_t fwater_lo;
  1905. uint32_t fwater_hi;
  1906. int total_size, cacheline_size, cwm, srwm = 1;
  1907. int planea_wm, planeb_wm;
  1908. struct intel_watermark_params planea_params, planeb_params;
  1909. unsigned long line_time_us;
  1910. int sr_clock, sr_entries = 0;
  1911. /* Create copies of the base settings for each pipe */
  1912. if (IS_I965GM(dev) || IS_I945GM(dev))
  1913. planea_params = planeb_params = i945_wm_info;
  1914. else if (IS_I9XX(dev))
  1915. planea_params = planeb_params = i915_wm_info;
  1916. else
  1917. planea_params = planeb_params = i855_wm_info;
  1918. /* Grab a couple of global values before we overwrite them */
  1919. total_size = planea_params.fifo_size;
  1920. cacheline_size = planea_params.cacheline_size;
  1921. /* Update per-plane FIFO sizes */
  1922. planea_params.fifo_size = intel_get_fifo_size(dev, 0);
  1923. planeb_params.fifo_size = intel_get_fifo_size(dev, 1);
  1924. planea_wm = intel_calculate_wm(planea_clock, &planea_params,
  1925. pixel_size, latency_ns);
  1926. planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
  1927. pixel_size, latency_ns);
  1928. DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1929. /*
  1930. * Overlay gets an aggressive default since video jitter is bad.
  1931. */
  1932. cwm = 2;
  1933. /* Calc sr entries for one plane configs */
  1934. if (HAS_FW_BLC(dev) && sr_hdisplay &&
  1935. (!planea_clock || !planeb_clock)) {
  1936. /* self-refresh has much higher latency */
  1937. const static int sr_latency_ns = 6000;
  1938. sr_clock = planea_clock ? planea_clock : planeb_clock;
  1939. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  1940. /* Use ns/us then divide to preserve precision */
  1941. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  1942. pixel_size * sr_hdisplay) / 1000;
  1943. sr_entries = roundup(sr_entries / cacheline_size, 1);
  1944. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  1945. srwm = total_size - sr_entries;
  1946. if (srwm < 0)
  1947. srwm = 1;
  1948. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
  1949. }
  1950. DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1951. planea_wm, planeb_wm, cwm, srwm);
  1952. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1953. fwater_hi = (cwm & 0x1f);
  1954. /* Set request length to 8 cachelines per fetch */
  1955. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1956. fwater_hi = fwater_hi | (1 << 8);
  1957. I915_WRITE(FW_BLC, fwater_lo);
  1958. I915_WRITE(FW_BLC2, fwater_hi);
  1959. }
  1960. static void i830_update_wm(struct drm_device *dev, int planea_clock,
  1961. int pixel_size)
  1962. {
  1963. struct drm_i915_private *dev_priv = dev->dev_private;
  1964. uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1965. int planea_wm;
  1966. i830_wm_info.fifo_size = intel_get_fifo_size(dev, 0);
  1967. planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
  1968. pixel_size, latency_ns);
  1969. fwater_lo |= (3<<8) | planea_wm;
  1970. DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);
  1971. I915_WRITE(FW_BLC, fwater_lo);
  1972. }
  1973. /**
  1974. * intel_update_watermarks - update FIFO watermark values based on current modes
  1975. *
  1976. * Calculate watermark values for the various WM regs based on current mode
  1977. * and plane configuration.
  1978. *
  1979. * There are several cases to deal with here:
  1980. * - normal (i.e. non-self-refresh)
  1981. * - self-refresh (SR) mode
  1982. * - lines are large relative to FIFO size (buffer can hold up to 2)
  1983. * - lines are small relative to FIFO size (buffer can hold more than 2
  1984. * lines), so need to account for TLB latency
  1985. *
  1986. * The normal calculation is:
  1987. * watermark = dotclock * bytes per pixel * latency
  1988. * where latency is platform & configuration dependent (we assume pessimal
  1989. * values here).
  1990. *
  1991. * The SR calculation is:
  1992. * watermark = (trunc(latency/line time)+1) * surface width *
  1993. * bytes per pixel
  1994. * where
  1995. * line time = htotal / dotclock
  1996. * and latency is assumed to be high, as above.
  1997. *
  1998. * The final value programmed to the register should always be rounded up,
  1999. * and include an extra 2 entries to account for clock crossings.
  2000. *
  2001. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2002. * to set the non-SR watermarks to 8.
  2003. */
  2004. static void intel_update_watermarks(struct drm_device *dev)
  2005. {
  2006. struct drm_crtc *crtc;
  2007. struct intel_crtc *intel_crtc;
  2008. int sr_hdisplay = 0;
  2009. unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
  2010. int enabled = 0, pixel_size = 0;
  2011. /* Get the clock config from both planes */
  2012. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2013. intel_crtc = to_intel_crtc(crtc);
  2014. if (crtc->enabled) {
  2015. enabled++;
  2016. if (intel_crtc->plane == 0) {
  2017. DRM_DEBUG("plane A (pipe %d) clock: %d\n",
  2018. intel_crtc->pipe, crtc->mode.clock);
  2019. planea_clock = crtc->mode.clock;
  2020. } else {
  2021. DRM_DEBUG("plane B (pipe %d) clock: %d\n",
  2022. intel_crtc->pipe, crtc->mode.clock);
  2023. planeb_clock = crtc->mode.clock;
  2024. }
  2025. sr_hdisplay = crtc->mode.hdisplay;
  2026. sr_clock = crtc->mode.clock;
  2027. if (crtc->fb)
  2028. pixel_size = crtc->fb->bits_per_pixel / 8;
  2029. else
  2030. pixel_size = 4; /* by default */
  2031. }
  2032. }
  2033. if (enabled <= 0)
  2034. return;
  2035. /* Single plane configs can enable self refresh */
  2036. if (enabled == 1 && IS_IGD(dev))
  2037. igd_enable_cxsr(dev, sr_clock, pixel_size);
  2038. else if (IS_IGD(dev))
  2039. igd_disable_cxsr(dev);
  2040. if (IS_G4X(dev))
  2041. g4x_update_wm(dev);
  2042. else if (IS_I965G(dev))
  2043. i965_update_wm(dev);
  2044. else if (IS_I9XX(dev) || IS_MOBILE(dev))
  2045. i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
  2046. pixel_size);
  2047. else
  2048. i830_update_wm(dev, planea_clock, pixel_size);
  2049. }
  2050. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  2051. struct drm_display_mode *mode,
  2052. struct drm_display_mode *adjusted_mode,
  2053. int x, int y,
  2054. struct drm_framebuffer *old_fb)
  2055. {
  2056. struct drm_device *dev = crtc->dev;
  2057. struct drm_i915_private *dev_priv = dev->dev_private;
  2058. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2059. int pipe = intel_crtc->pipe;
  2060. int fp_reg = (pipe == 0) ? FPA0 : FPB0;
  2061. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  2062. int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
  2063. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  2064. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  2065. int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  2066. int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  2067. int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  2068. int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  2069. int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  2070. int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  2071. int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
  2072. int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
  2073. int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
  2074. int refclk, num_outputs = 0;
  2075. intel_clock_t clock, reduced_clock;
  2076. u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
  2077. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  2078. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  2079. bool is_edp = false;
  2080. struct drm_mode_config *mode_config = &dev->mode_config;
  2081. struct drm_connector *connector;
  2082. const intel_limit_t *limit;
  2083. int ret;
  2084. struct fdi_m_n m_n = {0};
  2085. int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
  2086. int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
  2087. int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
  2088. int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
  2089. int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
  2090. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  2091. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  2092. int lvds_reg = LVDS;
  2093. u32 temp;
  2094. int sdvo_pixel_multiply;
  2095. int target_clock;
  2096. drm_vblank_pre_modeset(dev, pipe);
  2097. list_for_each_entry(connector, &mode_config->connector_list, head) {
  2098. struct intel_output *intel_output = to_intel_output(connector);
  2099. if (!connector->encoder || connector->encoder->crtc != crtc)
  2100. continue;
  2101. switch (intel_output->type) {
  2102. case INTEL_OUTPUT_LVDS:
  2103. is_lvds = true;
  2104. break;
  2105. case INTEL_OUTPUT_SDVO:
  2106. case INTEL_OUTPUT_HDMI:
  2107. is_sdvo = true;
  2108. if (intel_output->needs_tv_clock)
  2109. is_tv = true;
  2110. break;
  2111. case INTEL_OUTPUT_DVO:
  2112. is_dvo = true;
  2113. break;
  2114. case INTEL_OUTPUT_TVOUT:
  2115. is_tv = true;
  2116. break;
  2117. case INTEL_OUTPUT_ANALOG:
  2118. is_crt = true;
  2119. break;
  2120. case INTEL_OUTPUT_DISPLAYPORT:
  2121. is_dp = true;
  2122. break;
  2123. case INTEL_OUTPUT_EDP:
  2124. is_edp = true;
  2125. break;
  2126. }
  2127. num_outputs++;
  2128. }
  2129. if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
  2130. refclk = dev_priv->lvds_ssc_freq * 1000;
  2131. DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
  2132. } else if (IS_I9XX(dev)) {
  2133. refclk = 96000;
  2134. if (IS_IGDNG(dev))
  2135. refclk = 120000; /* 120Mhz refclk */
  2136. } else {
  2137. refclk = 48000;
  2138. }
  2139. /*
  2140. * Returns a set of divisors for the desired target clock with the given
  2141. * refclk, or FALSE. The returned values represent the clock equation:
  2142. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  2143. */
  2144. limit = intel_limit(crtc);
  2145. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  2146. if (!ok) {
  2147. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  2148. drm_vblank_post_modeset(dev, pipe);
  2149. return -EINVAL;
  2150. }
  2151. if (limit->find_reduced_pll && dev_priv->lvds_downclock_avail) {
  2152. memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
  2153. has_reduced_clock = limit->find_reduced_pll(limit, crtc,
  2154. (adjusted_mode->clock*3/4),
  2155. refclk,
  2156. &reduced_clock);
  2157. }
  2158. /* SDVO TV has fixed PLL values depend on its clock range,
  2159. this mirrors vbios setting. */
  2160. if (is_sdvo && is_tv) {
  2161. if (adjusted_mode->clock >= 100000
  2162. && adjusted_mode->clock < 140500) {
  2163. clock.p1 = 2;
  2164. clock.p2 = 10;
  2165. clock.n = 3;
  2166. clock.m1 = 16;
  2167. clock.m2 = 8;
  2168. } else if (adjusted_mode->clock >= 140500
  2169. && adjusted_mode->clock <= 200000) {
  2170. clock.p1 = 1;
  2171. clock.p2 = 10;
  2172. clock.n = 6;
  2173. clock.m1 = 12;
  2174. clock.m2 = 8;
  2175. }
  2176. }
  2177. /* FDI link */
  2178. if (IS_IGDNG(dev)) {
  2179. int lane, link_bw;
  2180. /* eDP doesn't require FDI link, so just set DP M/N
  2181. according to current link config */
  2182. if (is_edp) {
  2183. struct drm_connector *edp;
  2184. target_clock = mode->clock;
  2185. edp = intel_pipe_get_output(crtc);
  2186. intel_edp_link_config(to_intel_output(edp),
  2187. &lane, &link_bw);
  2188. } else {
  2189. /* DP over FDI requires target mode clock
  2190. instead of link clock */
  2191. if (is_dp)
  2192. target_clock = mode->clock;
  2193. else
  2194. target_clock = adjusted_mode->clock;
  2195. lane = 4;
  2196. link_bw = 270000;
  2197. }
  2198. igdng_compute_m_n(3, lane, target_clock,
  2199. link_bw, &m_n);
  2200. }
  2201. if (IS_IGD(dev)) {
  2202. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  2203. if (has_reduced_clock)
  2204. fp2 = (1 << reduced_clock.n) << 16 |
  2205. reduced_clock.m1 << 8 | reduced_clock.m2;
  2206. } else {
  2207. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  2208. if (has_reduced_clock)
  2209. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  2210. reduced_clock.m2;
  2211. }
  2212. if (!IS_IGDNG(dev))
  2213. dpll = DPLL_VGA_MODE_DIS;
  2214. if (IS_I9XX(dev)) {
  2215. if (is_lvds)
  2216. dpll |= DPLLB_MODE_LVDS;
  2217. else
  2218. dpll |= DPLLB_MODE_DAC_SERIAL;
  2219. if (is_sdvo) {
  2220. dpll |= DPLL_DVO_HIGH_SPEED;
  2221. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  2222. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  2223. dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  2224. else if (IS_IGDNG(dev))
  2225. dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  2226. }
  2227. if (is_dp)
  2228. dpll |= DPLL_DVO_HIGH_SPEED;
  2229. /* compute bitmask from p1 value */
  2230. if (IS_IGD(dev))
  2231. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
  2232. else {
  2233. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  2234. /* also FPA1 */
  2235. if (IS_IGDNG(dev))
  2236. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  2237. if (IS_G4X(dev) && has_reduced_clock)
  2238. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  2239. }
  2240. switch (clock.p2) {
  2241. case 5:
  2242. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  2243. break;
  2244. case 7:
  2245. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  2246. break;
  2247. case 10:
  2248. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  2249. break;
  2250. case 14:
  2251. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  2252. break;
  2253. }
  2254. if (IS_I965G(dev) && !IS_IGDNG(dev))
  2255. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  2256. } else {
  2257. if (is_lvds) {
  2258. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  2259. } else {
  2260. if (clock.p1 == 2)
  2261. dpll |= PLL_P1_DIVIDE_BY_TWO;
  2262. else
  2263. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  2264. if (clock.p2 == 4)
  2265. dpll |= PLL_P2_DIVIDE_BY_4;
  2266. }
  2267. }
  2268. if (is_sdvo && is_tv)
  2269. dpll |= PLL_REF_INPUT_TVCLKINBC;
  2270. else if (is_tv)
  2271. /* XXX: just matching BIOS for now */
  2272. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  2273. dpll |= 3;
  2274. else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
  2275. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  2276. else
  2277. dpll |= PLL_REF_INPUT_DREFCLK;
  2278. /* setup pipeconf */
  2279. pipeconf = I915_READ(pipeconf_reg);
  2280. /* Set up the display plane register */
  2281. dspcntr = DISPPLANE_GAMMA_ENABLE;
  2282. /* IGDNG's plane is forced to pipe, bit 24 is to
  2283. enable color space conversion */
  2284. if (!IS_IGDNG(dev)) {
  2285. if (pipe == 0)
  2286. dspcntr |= DISPPLANE_SEL_PIPE_A;
  2287. else
  2288. dspcntr |= DISPPLANE_SEL_PIPE_B;
  2289. }
  2290. if (pipe == 0 && !IS_I965G(dev)) {
  2291. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  2292. * core speed.
  2293. *
  2294. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  2295. * pipe == 0 check?
  2296. */
  2297. if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
  2298. pipeconf |= PIPEACONF_DOUBLE_WIDE;
  2299. else
  2300. pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
  2301. }
  2302. dspcntr |= DISPLAY_PLANE_ENABLE;
  2303. pipeconf |= PIPEACONF_ENABLE;
  2304. dpll |= DPLL_VCO_ENABLE;
  2305. /* Disable the panel fitter if it was on our pipe */
  2306. if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
  2307. I915_WRITE(PFIT_CONTROL, 0);
  2308. DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  2309. drm_mode_debug_printmodeline(mode);
  2310. /* assign to IGDNG registers */
  2311. if (IS_IGDNG(dev)) {
  2312. fp_reg = pch_fp_reg;
  2313. dpll_reg = pch_dpll_reg;
  2314. }
  2315. if (is_edp) {
  2316. igdng_disable_pll_edp(crtc);
  2317. } else if ((dpll & DPLL_VCO_ENABLE)) {
  2318. I915_WRITE(fp_reg, fp);
  2319. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  2320. I915_READ(dpll_reg);
  2321. udelay(150);
  2322. }
  2323. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  2324. * This is an exception to the general rule that mode_set doesn't turn
  2325. * things on.
  2326. */
  2327. if (is_lvds) {
  2328. u32 lvds;
  2329. if (IS_IGDNG(dev))
  2330. lvds_reg = PCH_LVDS;
  2331. lvds = I915_READ(lvds_reg);
  2332. lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
  2333. /* Set the B0-B3 data pairs corresponding to whether we're going to
  2334. * set the DPLLs for dual-channel mode or not.
  2335. */
  2336. if (clock.p2 == 7)
  2337. lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  2338. else
  2339. lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  2340. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  2341. * appropriately here, but we need to look more thoroughly into how
  2342. * panels behave in the two modes.
  2343. */
  2344. I915_WRITE(lvds_reg, lvds);
  2345. I915_READ(lvds_reg);
  2346. }
  2347. if (is_dp)
  2348. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  2349. if (!is_edp) {
  2350. I915_WRITE(fp_reg, fp);
  2351. I915_WRITE(dpll_reg, dpll);
  2352. I915_READ(dpll_reg);
  2353. /* Wait for the clocks to stabilize. */
  2354. udelay(150);
  2355. if (IS_I965G(dev) && !IS_IGDNG(dev)) {
  2356. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  2357. I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
  2358. ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
  2359. } else {
  2360. /* write it again -- the BIOS does, after all */
  2361. I915_WRITE(dpll_reg, dpll);
  2362. }
  2363. I915_READ(dpll_reg);
  2364. /* Wait for the clocks to stabilize. */
  2365. udelay(150);
  2366. }
  2367. if (is_lvds && has_reduced_clock && i915_powersave) {
  2368. I915_WRITE(fp_reg + 4, fp2);
  2369. intel_crtc->lowfreq_avail = true;
  2370. if (HAS_PIPE_CXSR(dev)) {
  2371. DRM_DEBUG("enabling CxSR downclocking\n");
  2372. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  2373. }
  2374. } else {
  2375. I915_WRITE(fp_reg + 4, fp);
  2376. intel_crtc->lowfreq_avail = false;
  2377. if (HAS_PIPE_CXSR(dev)) {
  2378. DRM_DEBUG("disabling CxSR downclocking\n");
  2379. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  2380. }
  2381. }
  2382. I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
  2383. ((adjusted_mode->crtc_htotal - 1) << 16));
  2384. I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
  2385. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  2386. I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
  2387. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  2388. I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
  2389. ((adjusted_mode->crtc_vtotal - 1) << 16));
  2390. I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
  2391. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  2392. I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
  2393. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  2394. /* pipesrc and dspsize control the size that is scaled from, which should
  2395. * always be the user's requested size.
  2396. */
  2397. if (!IS_IGDNG(dev)) {
  2398. I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
  2399. (mode->hdisplay - 1));
  2400. I915_WRITE(dsppos_reg, 0);
  2401. }
  2402. I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  2403. if (IS_IGDNG(dev)) {
  2404. I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
  2405. I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
  2406. I915_WRITE(link_m1_reg, m_n.link_m);
  2407. I915_WRITE(link_n1_reg, m_n.link_n);
  2408. if (is_edp) {
  2409. igdng_set_pll_edp(crtc, adjusted_mode->clock);
  2410. } else {
  2411. /* enable FDI RX PLL too */
  2412. temp = I915_READ(fdi_rx_reg);
  2413. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  2414. udelay(200);
  2415. }
  2416. }
  2417. I915_WRITE(pipeconf_reg, pipeconf);
  2418. I915_READ(pipeconf_reg);
  2419. intel_wait_for_vblank(dev);
  2420. if (IS_IGDNG(dev)) {
  2421. /* enable address swizzle for tiling buffer */
  2422. temp = I915_READ(DISP_ARB_CTL);
  2423. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  2424. }
  2425. I915_WRITE(dspcntr_reg, dspcntr);
  2426. /* Flush the plane changes */
  2427. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  2428. intel_update_watermarks(dev);
  2429. drm_vblank_post_modeset(dev, pipe);
  2430. return ret;
  2431. }
  2432. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  2433. void intel_crtc_load_lut(struct drm_crtc *crtc)
  2434. {
  2435. struct drm_device *dev = crtc->dev;
  2436. struct drm_i915_private *dev_priv = dev->dev_private;
  2437. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2438. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  2439. int i;
  2440. /* The clocks have to be on to load the palette. */
  2441. if (!crtc->enabled)
  2442. return;
  2443. /* use legacy palette for IGDNG */
  2444. if (IS_IGDNG(dev))
  2445. palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
  2446. LGC_PALETTE_B;
  2447. for (i = 0; i < 256; i++) {
  2448. I915_WRITE(palreg + 4 * i,
  2449. (intel_crtc->lut_r[i] << 16) |
  2450. (intel_crtc->lut_g[i] << 8) |
  2451. intel_crtc->lut_b[i]);
  2452. }
  2453. }
  2454. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  2455. struct drm_file *file_priv,
  2456. uint32_t handle,
  2457. uint32_t width, uint32_t height)
  2458. {
  2459. struct drm_device *dev = crtc->dev;
  2460. struct drm_i915_private *dev_priv = dev->dev_private;
  2461. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2462. struct drm_gem_object *bo;
  2463. struct drm_i915_gem_object *obj_priv;
  2464. int pipe = intel_crtc->pipe;
  2465. uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
  2466. uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
  2467. uint32_t temp = I915_READ(control);
  2468. size_t addr;
  2469. int ret;
  2470. DRM_DEBUG("\n");
  2471. /* if we want to turn off the cursor ignore width and height */
  2472. if (!handle) {
  2473. DRM_DEBUG("cursor off\n");
  2474. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  2475. temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  2476. temp |= CURSOR_MODE_DISABLE;
  2477. } else {
  2478. temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  2479. }
  2480. addr = 0;
  2481. bo = NULL;
  2482. mutex_lock(&dev->struct_mutex);
  2483. goto finish;
  2484. }
  2485. /* Currently we only support 64x64 cursors */
  2486. if (width != 64 || height != 64) {
  2487. DRM_ERROR("we currently only support 64x64 cursors\n");
  2488. return -EINVAL;
  2489. }
  2490. bo = drm_gem_object_lookup(dev, file_priv, handle);
  2491. if (!bo)
  2492. return -ENOENT;
  2493. obj_priv = bo->driver_private;
  2494. if (bo->size < width * height * 4) {
  2495. DRM_ERROR("buffer is to small\n");
  2496. ret = -ENOMEM;
  2497. goto fail;
  2498. }
  2499. /* we only need to pin inside GTT if cursor is non-phy */
  2500. mutex_lock(&dev->struct_mutex);
  2501. if (!dev_priv->cursor_needs_physical) {
  2502. ret = i915_gem_object_pin(bo, PAGE_SIZE);
  2503. if (ret) {
  2504. DRM_ERROR("failed to pin cursor bo\n");
  2505. goto fail_locked;
  2506. }
  2507. addr = obj_priv->gtt_offset;
  2508. } else {
  2509. ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
  2510. if (ret) {
  2511. DRM_ERROR("failed to attach phys object\n");
  2512. goto fail_locked;
  2513. }
  2514. addr = obj_priv->phys_obj->handle->busaddr;
  2515. }
  2516. if (!IS_I9XX(dev))
  2517. I915_WRITE(CURSIZE, (height << 12) | width);
  2518. /* Hooray for CUR*CNTR differences */
  2519. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  2520. temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  2521. temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  2522. temp |= (pipe << 28); /* Connect to correct pipe */
  2523. } else {
  2524. temp &= ~(CURSOR_FORMAT_MASK);
  2525. temp |= CURSOR_ENABLE;
  2526. temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
  2527. }
  2528. finish:
  2529. I915_WRITE(control, temp);
  2530. I915_WRITE(base, addr);
  2531. if (intel_crtc->cursor_bo) {
  2532. if (dev_priv->cursor_needs_physical) {
  2533. if (intel_crtc->cursor_bo != bo)
  2534. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  2535. } else
  2536. i915_gem_object_unpin(intel_crtc->cursor_bo);
  2537. drm_gem_object_unreference(intel_crtc->cursor_bo);
  2538. }
  2539. mutex_unlock(&dev->struct_mutex);
  2540. intel_crtc->cursor_addr = addr;
  2541. intel_crtc->cursor_bo = bo;
  2542. return 0;
  2543. fail:
  2544. mutex_lock(&dev->struct_mutex);
  2545. fail_locked:
  2546. drm_gem_object_unreference(bo);
  2547. mutex_unlock(&dev->struct_mutex);
  2548. return ret;
  2549. }
  2550. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  2551. {
  2552. struct drm_device *dev = crtc->dev;
  2553. struct drm_i915_private *dev_priv = dev->dev_private;
  2554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2555. struct intel_framebuffer *intel_fb;
  2556. int pipe = intel_crtc->pipe;
  2557. uint32_t temp = 0;
  2558. uint32_t adder;
  2559. if (crtc->fb) {
  2560. intel_fb = to_intel_framebuffer(crtc->fb);
  2561. intel_mark_busy(dev, intel_fb->obj);
  2562. }
  2563. if (x < 0) {
  2564. temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  2565. x = -x;
  2566. }
  2567. if (y < 0) {
  2568. temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  2569. y = -y;
  2570. }
  2571. temp |= x << CURSOR_X_SHIFT;
  2572. temp |= y << CURSOR_Y_SHIFT;
  2573. adder = intel_crtc->cursor_addr;
  2574. I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
  2575. I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
  2576. return 0;
  2577. }
  2578. /** Sets the color ramps on behalf of RandR */
  2579. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  2580. u16 blue, int regno)
  2581. {
  2582. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2583. intel_crtc->lut_r[regno] = red >> 8;
  2584. intel_crtc->lut_g[regno] = green >> 8;
  2585. intel_crtc->lut_b[regno] = blue >> 8;
  2586. }
  2587. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  2588. u16 *blue, uint32_t size)
  2589. {
  2590. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2591. int i;
  2592. if (size != 256)
  2593. return;
  2594. for (i = 0; i < 256; i++) {
  2595. intel_crtc->lut_r[i] = red[i] >> 8;
  2596. intel_crtc->lut_g[i] = green[i] >> 8;
  2597. intel_crtc->lut_b[i] = blue[i] >> 8;
  2598. }
  2599. intel_crtc_load_lut(crtc);
  2600. }
  2601. /**
  2602. * Get a pipe with a simple mode set on it for doing load-based monitor
  2603. * detection.
  2604. *
  2605. * It will be up to the load-detect code to adjust the pipe as appropriate for
  2606. * its requirements. The pipe will be connected to no other outputs.
  2607. *
  2608. * Currently this code will only succeed if there is a pipe with no outputs
  2609. * configured for it. In the future, it could choose to temporarily disable
  2610. * some outputs to free up a pipe for its use.
  2611. *
  2612. * \return crtc, or NULL if no pipes are available.
  2613. */
  2614. /* VESA 640x480x72Hz mode to set on the pipe */
  2615. static struct drm_display_mode load_detect_mode = {
  2616. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  2617. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  2618. };
  2619. struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
  2620. struct drm_display_mode *mode,
  2621. int *dpms_mode)
  2622. {
  2623. struct intel_crtc *intel_crtc;
  2624. struct drm_crtc *possible_crtc;
  2625. struct drm_crtc *supported_crtc =NULL;
  2626. struct drm_encoder *encoder = &intel_output->enc;
  2627. struct drm_crtc *crtc = NULL;
  2628. struct drm_device *dev = encoder->dev;
  2629. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2630. struct drm_crtc_helper_funcs *crtc_funcs;
  2631. int i = -1;
  2632. /*
  2633. * Algorithm gets a little messy:
  2634. * - if the connector already has an assigned crtc, use it (but make
  2635. * sure it's on first)
  2636. * - try to find the first unused crtc that can drive this connector,
  2637. * and use that if we find one
  2638. * - if there are no unused crtcs available, try to use the first
  2639. * one we found that supports the connector
  2640. */
  2641. /* See if we already have a CRTC for this connector */
  2642. if (encoder->crtc) {
  2643. crtc = encoder->crtc;
  2644. /* Make sure the crtc and connector are running */
  2645. intel_crtc = to_intel_crtc(crtc);
  2646. *dpms_mode = intel_crtc->dpms_mode;
  2647. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  2648. crtc_funcs = crtc->helper_private;
  2649. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  2650. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2651. }
  2652. return crtc;
  2653. }
  2654. /* Find an unused one (if possible) */
  2655. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  2656. i++;
  2657. if (!(encoder->possible_crtcs & (1 << i)))
  2658. continue;
  2659. if (!possible_crtc->enabled) {
  2660. crtc = possible_crtc;
  2661. break;
  2662. }
  2663. if (!supported_crtc)
  2664. supported_crtc = possible_crtc;
  2665. }
  2666. /*
  2667. * If we didn't find an unused CRTC, don't use any.
  2668. */
  2669. if (!crtc) {
  2670. return NULL;
  2671. }
  2672. encoder->crtc = crtc;
  2673. intel_output->base.encoder = encoder;
  2674. intel_output->load_detect_temp = true;
  2675. intel_crtc = to_intel_crtc(crtc);
  2676. *dpms_mode = intel_crtc->dpms_mode;
  2677. if (!crtc->enabled) {
  2678. if (!mode)
  2679. mode = &load_detect_mode;
  2680. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  2681. } else {
  2682. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  2683. crtc_funcs = crtc->helper_private;
  2684. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  2685. }
  2686. /* Add this connector to the crtc */
  2687. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  2688. encoder_funcs->commit(encoder);
  2689. }
  2690. /* let the connector get through one full cycle before testing */
  2691. intel_wait_for_vblank(dev);
  2692. return crtc;
  2693. }
  2694. void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
  2695. {
  2696. struct drm_encoder *encoder = &intel_output->enc;
  2697. struct drm_device *dev = encoder->dev;
  2698. struct drm_crtc *crtc = encoder->crtc;
  2699. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2700. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2701. if (intel_output->load_detect_temp) {
  2702. encoder->crtc = NULL;
  2703. intel_output->base.encoder = NULL;
  2704. intel_output->load_detect_temp = false;
  2705. crtc->enabled = drm_helper_crtc_in_use(crtc);
  2706. drm_helper_disable_unused_functions(dev);
  2707. }
  2708. /* Switch crtc and output back off if necessary */
  2709. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  2710. if (encoder->crtc == crtc)
  2711. encoder_funcs->dpms(encoder, dpms_mode);
  2712. crtc_funcs->dpms(crtc, dpms_mode);
  2713. }
  2714. }
  2715. /* Returns the clock of the currently programmed mode of the given pipe. */
  2716. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  2717. {
  2718. struct drm_i915_private *dev_priv = dev->dev_private;
  2719. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2720. int pipe = intel_crtc->pipe;
  2721. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  2722. u32 fp;
  2723. intel_clock_t clock;
  2724. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  2725. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  2726. else
  2727. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  2728. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  2729. if (IS_IGD(dev)) {
  2730. clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  2731. clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
  2732. } else {
  2733. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  2734. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  2735. }
  2736. if (IS_I9XX(dev)) {
  2737. if (IS_IGD(dev))
  2738. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
  2739. DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
  2740. else
  2741. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  2742. DPLL_FPA01_P1_POST_DIV_SHIFT);
  2743. switch (dpll & DPLL_MODE_MASK) {
  2744. case DPLLB_MODE_DAC_SERIAL:
  2745. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  2746. 5 : 10;
  2747. break;
  2748. case DPLLB_MODE_LVDS:
  2749. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  2750. 7 : 14;
  2751. break;
  2752. default:
  2753. DRM_DEBUG("Unknown DPLL mode %08x in programmed "
  2754. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  2755. return 0;
  2756. }
  2757. /* XXX: Handle the 100Mhz refclk */
  2758. intel_clock(dev, 96000, &clock);
  2759. } else {
  2760. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  2761. if (is_lvds) {
  2762. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  2763. DPLL_FPA01_P1_POST_DIV_SHIFT);
  2764. clock.p2 = 14;
  2765. if ((dpll & PLL_REF_INPUT_MASK) ==
  2766. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  2767. /* XXX: might not be 66MHz */
  2768. intel_clock(dev, 66000, &clock);
  2769. } else
  2770. intel_clock(dev, 48000, &clock);
  2771. } else {
  2772. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  2773. clock.p1 = 2;
  2774. else {
  2775. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  2776. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  2777. }
  2778. if (dpll & PLL_P2_DIVIDE_BY_4)
  2779. clock.p2 = 4;
  2780. else
  2781. clock.p2 = 2;
  2782. intel_clock(dev, 48000, &clock);
  2783. }
  2784. }
  2785. /* XXX: It would be nice to validate the clocks, but we can't reuse
  2786. * i830PllIsValid() because it relies on the xf86_config connector
  2787. * configuration being accurate, which it isn't necessarily.
  2788. */
  2789. return clock.dot;
  2790. }
  2791. /** Returns the currently programmed mode of the given pipe. */
  2792. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  2793. struct drm_crtc *crtc)
  2794. {
  2795. struct drm_i915_private *dev_priv = dev->dev_private;
  2796. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2797. int pipe = intel_crtc->pipe;
  2798. struct drm_display_mode *mode;
  2799. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  2800. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  2801. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  2802. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  2803. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  2804. if (!mode)
  2805. return NULL;
  2806. mode->clock = intel_crtc_clock_get(dev, crtc);
  2807. mode->hdisplay = (htot & 0xffff) + 1;
  2808. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  2809. mode->hsync_start = (hsync & 0xffff) + 1;
  2810. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  2811. mode->vdisplay = (vtot & 0xffff) + 1;
  2812. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  2813. mode->vsync_start = (vsync & 0xffff) + 1;
  2814. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  2815. drm_mode_set_name(mode);
  2816. drm_mode_set_crtcinfo(mode, 0);
  2817. return mode;
  2818. }
  2819. #define GPU_IDLE_TIMEOUT 500 /* ms */
  2820. /* When this timer fires, we've been idle for awhile */
  2821. static void intel_gpu_idle_timer(unsigned long arg)
  2822. {
  2823. struct drm_device *dev = (struct drm_device *)arg;
  2824. drm_i915_private_t *dev_priv = dev->dev_private;
  2825. DRM_DEBUG("idle timer fired, downclocking\n");
  2826. dev_priv->busy = false;
  2827. schedule_work(&dev_priv->idle_work);
  2828. }
  2829. void intel_increase_renderclock(struct drm_device *dev, bool schedule)
  2830. {
  2831. drm_i915_private_t *dev_priv = dev->dev_private;
  2832. if (IS_IGDNG(dev))
  2833. return;
  2834. if (!dev_priv->render_reclock_avail) {
  2835. DRM_DEBUG("not reclocking render clock\n");
  2836. return;
  2837. }
  2838. /* Restore render clock frequency to original value */
  2839. if (IS_G4X(dev) || IS_I9XX(dev))
  2840. pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
  2841. else if (IS_I85X(dev))
  2842. pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
  2843. DRM_DEBUG("increasing render clock frequency\n");
  2844. /* Schedule downclock */
  2845. if (schedule)
  2846. mod_timer(&dev_priv->idle_timer, jiffies +
  2847. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  2848. }
  2849. void intel_decrease_renderclock(struct drm_device *dev)
  2850. {
  2851. drm_i915_private_t *dev_priv = dev->dev_private;
  2852. if (IS_IGDNG(dev))
  2853. return;
  2854. if (!dev_priv->render_reclock_avail) {
  2855. DRM_DEBUG("not reclocking render clock\n");
  2856. return;
  2857. }
  2858. if (IS_G4X(dev)) {
  2859. u16 gcfgc;
  2860. /* Adjust render clock... */
  2861. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2862. /* Down to minimum... */
  2863. gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
  2864. gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
  2865. pci_write_config_word(dev->pdev, GCFGC, gcfgc);
  2866. } else if (IS_I965G(dev)) {
  2867. u16 gcfgc;
  2868. /* Adjust render clock... */
  2869. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2870. /* Down to minimum... */
  2871. gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
  2872. gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
  2873. pci_write_config_word(dev->pdev, GCFGC, gcfgc);
  2874. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  2875. u16 gcfgc;
  2876. /* Adjust render clock... */
  2877. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2878. /* Down to minimum... */
  2879. gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
  2880. gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
  2881. pci_write_config_word(dev->pdev, GCFGC, gcfgc);
  2882. } else if (IS_I915G(dev)) {
  2883. u16 gcfgc;
  2884. /* Adjust render clock... */
  2885. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2886. /* Down to minimum... */
  2887. gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
  2888. gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
  2889. pci_write_config_word(dev->pdev, GCFGC, gcfgc);
  2890. } else if (IS_I85X(dev)) {
  2891. u16 hpllcc;
  2892. /* Adjust render clock... */
  2893. pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
  2894. /* Up to maximum... */
  2895. hpllcc &= ~GC_CLOCK_CONTROL_MASK;
  2896. hpllcc |= GC_CLOCK_133_200;
  2897. pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
  2898. }
  2899. DRM_DEBUG("decreasing render clock frequency\n");
  2900. }
  2901. /* Note that no increase function is needed for this - increase_renderclock()
  2902. * will also rewrite these bits
  2903. */
  2904. void intel_decrease_displayclock(struct drm_device *dev)
  2905. {
  2906. if (IS_IGDNG(dev))
  2907. return;
  2908. if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
  2909. IS_I915GM(dev)) {
  2910. u16 gcfgc;
  2911. /* Adjust render clock... */
  2912. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2913. /* Down to minimum... */
  2914. gcfgc &= ~0xf0;
  2915. gcfgc |= 0x80;
  2916. pci_write_config_word(dev->pdev, GCFGC, gcfgc);
  2917. }
  2918. }
  2919. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  2920. static void intel_crtc_idle_timer(unsigned long arg)
  2921. {
  2922. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  2923. struct drm_crtc *crtc = &intel_crtc->base;
  2924. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  2925. DRM_DEBUG("idle timer fired, downclocking\n");
  2926. intel_crtc->busy = false;
  2927. schedule_work(&dev_priv->idle_work);
  2928. }
  2929. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
  2930. {
  2931. struct drm_device *dev = crtc->dev;
  2932. drm_i915_private_t *dev_priv = dev->dev_private;
  2933. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2934. int pipe = intel_crtc->pipe;
  2935. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  2936. int dpll = I915_READ(dpll_reg);
  2937. if (IS_IGDNG(dev))
  2938. return;
  2939. if (!dev_priv->lvds_downclock_avail)
  2940. return;
  2941. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  2942. DRM_DEBUG("upclocking LVDS\n");
  2943. /* Unlock panel regs */
  2944. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
  2945. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  2946. I915_WRITE(dpll_reg, dpll);
  2947. dpll = I915_READ(dpll_reg);
  2948. intel_wait_for_vblank(dev);
  2949. dpll = I915_READ(dpll_reg);
  2950. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  2951. DRM_DEBUG("failed to upclock LVDS!\n");
  2952. /* ...and lock them again */
  2953. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  2954. }
  2955. /* Schedule downclock */
  2956. if (schedule)
  2957. mod_timer(&intel_crtc->idle_timer, jiffies +
  2958. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  2959. }
  2960. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  2961. {
  2962. struct drm_device *dev = crtc->dev;
  2963. drm_i915_private_t *dev_priv = dev->dev_private;
  2964. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2965. int pipe = intel_crtc->pipe;
  2966. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  2967. int dpll = I915_READ(dpll_reg);
  2968. if (IS_IGDNG(dev))
  2969. return;
  2970. if (!dev_priv->lvds_downclock_avail)
  2971. return;
  2972. /*
  2973. * Since this is called by a timer, we should never get here in
  2974. * the manual case.
  2975. */
  2976. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  2977. DRM_DEBUG("downclocking LVDS\n");
  2978. /* Unlock panel regs */
  2979. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
  2980. dpll |= DISPLAY_RATE_SELECT_FPA1;
  2981. I915_WRITE(dpll_reg, dpll);
  2982. dpll = I915_READ(dpll_reg);
  2983. intel_wait_for_vblank(dev);
  2984. dpll = I915_READ(dpll_reg);
  2985. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  2986. DRM_DEBUG("failed to downclock LVDS!\n");
  2987. /* ...and lock them again */
  2988. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  2989. }
  2990. }
  2991. /**
  2992. * intel_idle_update - adjust clocks for idleness
  2993. * @work: work struct
  2994. *
  2995. * Either the GPU or display (or both) went idle. Check the busy status
  2996. * here and adjust the CRTC and GPU clocks as necessary.
  2997. */
  2998. static void intel_idle_update(struct work_struct *work)
  2999. {
  3000. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  3001. idle_work);
  3002. struct drm_device *dev = dev_priv->dev;
  3003. struct drm_crtc *crtc;
  3004. struct intel_crtc *intel_crtc;
  3005. if (!i915_powersave)
  3006. return;
  3007. mutex_lock(&dev->struct_mutex);
  3008. /* GPU isn't processing, downclock it. */
  3009. if (!dev_priv->busy) {
  3010. intel_decrease_renderclock(dev);
  3011. intel_decrease_displayclock(dev);
  3012. }
  3013. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3014. /* Skip inactive CRTCs */
  3015. if (!crtc->fb)
  3016. continue;
  3017. intel_crtc = to_intel_crtc(crtc);
  3018. if (!intel_crtc->busy)
  3019. intel_decrease_pllclock(crtc);
  3020. }
  3021. mutex_unlock(&dev->struct_mutex);
  3022. }
  3023. /**
  3024. * intel_mark_busy - mark the GPU and possibly the display busy
  3025. * @dev: drm device
  3026. * @obj: object we're operating on
  3027. *
  3028. * Callers can use this function to indicate that the GPU is busy processing
  3029. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  3030. * buffer), we'll also mark the display as busy, so we know to increase its
  3031. * clock frequency.
  3032. */
  3033. void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
  3034. {
  3035. drm_i915_private_t *dev_priv = dev->dev_private;
  3036. struct drm_crtc *crtc = NULL;
  3037. struct intel_framebuffer *intel_fb;
  3038. struct intel_crtc *intel_crtc;
  3039. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3040. return;
  3041. dev_priv->busy = true;
  3042. intel_increase_renderclock(dev, true);
  3043. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3044. if (!crtc->fb)
  3045. continue;
  3046. intel_crtc = to_intel_crtc(crtc);
  3047. intel_fb = to_intel_framebuffer(crtc->fb);
  3048. if (intel_fb->obj == obj) {
  3049. if (!intel_crtc->busy) {
  3050. /* Non-busy -> busy, upclock */
  3051. intel_increase_pllclock(crtc, true);
  3052. intel_crtc->busy = true;
  3053. } else {
  3054. /* Busy -> busy, put off timer */
  3055. mod_timer(&intel_crtc->idle_timer, jiffies +
  3056. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  3057. }
  3058. }
  3059. }
  3060. }
  3061. static void intel_crtc_destroy(struct drm_crtc *crtc)
  3062. {
  3063. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3064. if (intel_crtc->mode_set.mode)
  3065. drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
  3066. drm_crtc_cleanup(crtc);
  3067. kfree(intel_crtc);
  3068. }
  3069. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  3070. .dpms = intel_crtc_dpms,
  3071. .mode_fixup = intel_crtc_mode_fixup,
  3072. .mode_set = intel_crtc_mode_set,
  3073. .mode_set_base = intel_pipe_set_base,
  3074. .prepare = intel_crtc_prepare,
  3075. .commit = intel_crtc_commit,
  3076. };
  3077. static const struct drm_crtc_funcs intel_crtc_funcs = {
  3078. .cursor_set = intel_crtc_cursor_set,
  3079. .cursor_move = intel_crtc_cursor_move,
  3080. .gamma_set = intel_crtc_gamma_set,
  3081. .set_config = drm_crtc_helper_set_config,
  3082. .destroy = intel_crtc_destroy,
  3083. };
  3084. static void intel_crtc_init(struct drm_device *dev, int pipe)
  3085. {
  3086. struct intel_crtc *intel_crtc;
  3087. int i;
  3088. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  3089. if (intel_crtc == NULL)
  3090. return;
  3091. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  3092. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  3093. intel_crtc->pipe = pipe;
  3094. intel_crtc->plane = pipe;
  3095. for (i = 0; i < 256; i++) {
  3096. intel_crtc->lut_r[i] = i;
  3097. intel_crtc->lut_g[i] = i;
  3098. intel_crtc->lut_b[i] = i;
  3099. }
  3100. intel_crtc->cursor_addr = 0;
  3101. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  3102. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  3103. intel_crtc->mode_set.crtc = &intel_crtc->base;
  3104. intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
  3105. intel_crtc->mode_set.num_connectors = 0;
  3106. intel_crtc->busy = false;
  3107. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  3108. (unsigned long)intel_crtc);
  3109. if (i915_fbpercrtc) {
  3110. }
  3111. }
  3112. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  3113. struct drm_file *file_priv)
  3114. {
  3115. drm_i915_private_t *dev_priv = dev->dev_private;
  3116. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  3117. struct drm_mode_object *drmmode_obj;
  3118. struct intel_crtc *crtc;
  3119. if (!dev_priv) {
  3120. DRM_ERROR("called with no initialization\n");
  3121. return -EINVAL;
  3122. }
  3123. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  3124. DRM_MODE_OBJECT_CRTC);
  3125. if (!drmmode_obj) {
  3126. DRM_ERROR("no such CRTC id\n");
  3127. return -EINVAL;
  3128. }
  3129. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  3130. pipe_from_crtc_id->pipe = crtc->pipe;
  3131. return 0;
  3132. }
  3133. struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
  3134. {
  3135. struct drm_crtc *crtc = NULL;
  3136. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3137. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3138. if (intel_crtc->pipe == pipe)
  3139. break;
  3140. }
  3141. return crtc;
  3142. }
  3143. static int intel_connector_clones(struct drm_device *dev, int type_mask)
  3144. {
  3145. int index_mask = 0;
  3146. struct drm_connector *connector;
  3147. int entry = 0;
  3148. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3149. struct intel_output *intel_output = to_intel_output(connector);
  3150. if (type_mask & intel_output->clone_mask)
  3151. index_mask |= (1 << entry);
  3152. entry++;
  3153. }
  3154. return index_mask;
  3155. }
  3156. static void intel_setup_outputs(struct drm_device *dev)
  3157. {
  3158. struct drm_i915_private *dev_priv = dev->dev_private;
  3159. struct drm_connector *connector;
  3160. intel_crt_init(dev);
  3161. /* Set up integrated LVDS */
  3162. if (IS_MOBILE(dev) && !IS_I830(dev))
  3163. intel_lvds_init(dev);
  3164. if (IS_IGDNG(dev)) {
  3165. int found;
  3166. if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
  3167. intel_dp_init(dev, DP_A);
  3168. if (I915_READ(HDMIB) & PORT_DETECTED) {
  3169. /* check SDVOB */
  3170. /* found = intel_sdvo_init(dev, HDMIB); */
  3171. found = 0;
  3172. if (!found)
  3173. intel_hdmi_init(dev, HDMIB);
  3174. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  3175. intel_dp_init(dev, PCH_DP_B);
  3176. }
  3177. if (I915_READ(HDMIC) & PORT_DETECTED)
  3178. intel_hdmi_init(dev, HDMIC);
  3179. if (I915_READ(HDMID) & PORT_DETECTED)
  3180. intel_hdmi_init(dev, HDMID);
  3181. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  3182. intel_dp_init(dev, PCH_DP_C);
  3183. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  3184. intel_dp_init(dev, PCH_DP_D);
  3185. } else if (IS_I9XX(dev)) {
  3186. bool found = false;
  3187. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  3188. found = intel_sdvo_init(dev, SDVOB);
  3189. if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
  3190. intel_hdmi_init(dev, SDVOB);
  3191. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  3192. intel_dp_init(dev, DP_B);
  3193. }
  3194. /* Before G4X SDVOC doesn't have its own detect register */
  3195. if (I915_READ(SDVOB) & SDVO_DETECTED)
  3196. found = intel_sdvo_init(dev, SDVOC);
  3197. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  3198. if (SUPPORTS_INTEGRATED_HDMI(dev))
  3199. intel_hdmi_init(dev, SDVOC);
  3200. if (SUPPORTS_INTEGRATED_DP(dev))
  3201. intel_dp_init(dev, DP_C);
  3202. }
  3203. if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
  3204. intel_dp_init(dev, DP_D);
  3205. } else
  3206. intel_dvo_init(dev);
  3207. if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
  3208. intel_tv_init(dev);
  3209. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3210. struct intel_output *intel_output = to_intel_output(connector);
  3211. struct drm_encoder *encoder = &intel_output->enc;
  3212. encoder->possible_crtcs = intel_output->crtc_mask;
  3213. encoder->possible_clones = intel_connector_clones(dev,
  3214. intel_output->clone_mask);
  3215. }
  3216. }
  3217. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  3218. {
  3219. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  3220. struct drm_device *dev = fb->dev;
  3221. if (fb->fbdev)
  3222. intelfb_remove(dev, fb);
  3223. drm_framebuffer_cleanup(fb);
  3224. mutex_lock(&dev->struct_mutex);
  3225. drm_gem_object_unreference(intel_fb->obj);
  3226. mutex_unlock(&dev->struct_mutex);
  3227. kfree(intel_fb);
  3228. }
  3229. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  3230. struct drm_file *file_priv,
  3231. unsigned int *handle)
  3232. {
  3233. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  3234. struct drm_gem_object *object = intel_fb->obj;
  3235. return drm_gem_handle_create(file_priv, object, handle);
  3236. }
  3237. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  3238. .destroy = intel_user_framebuffer_destroy,
  3239. .create_handle = intel_user_framebuffer_create_handle,
  3240. };
  3241. int intel_framebuffer_create(struct drm_device *dev,
  3242. struct drm_mode_fb_cmd *mode_cmd,
  3243. struct drm_framebuffer **fb,
  3244. struct drm_gem_object *obj)
  3245. {
  3246. struct intel_framebuffer *intel_fb;
  3247. int ret;
  3248. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  3249. if (!intel_fb)
  3250. return -ENOMEM;
  3251. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  3252. if (ret) {
  3253. DRM_ERROR("framebuffer init failed %d\n", ret);
  3254. return ret;
  3255. }
  3256. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  3257. intel_fb->obj = obj;
  3258. *fb = &intel_fb->base;
  3259. return 0;
  3260. }
  3261. static struct drm_framebuffer *
  3262. intel_user_framebuffer_create(struct drm_device *dev,
  3263. struct drm_file *filp,
  3264. struct drm_mode_fb_cmd *mode_cmd)
  3265. {
  3266. struct drm_gem_object *obj;
  3267. struct drm_framebuffer *fb;
  3268. int ret;
  3269. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  3270. if (!obj)
  3271. return NULL;
  3272. ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
  3273. if (ret) {
  3274. mutex_lock(&dev->struct_mutex);
  3275. drm_gem_object_unreference(obj);
  3276. mutex_unlock(&dev->struct_mutex);
  3277. return NULL;
  3278. }
  3279. return fb;
  3280. }
  3281. static const struct drm_mode_config_funcs intel_mode_funcs = {
  3282. .fb_create = intel_user_framebuffer_create,
  3283. .fb_changed = intelfb_probe,
  3284. };
  3285. void intel_init_clock_gating(struct drm_device *dev)
  3286. {
  3287. struct drm_i915_private *dev_priv = dev->dev_private;
  3288. /*
  3289. * Disable clock gating reported to work incorrectly according to the
  3290. * specs, but enable as much else as we can.
  3291. */
  3292. if (IS_G4X(dev)) {
  3293. uint32_t dspclk_gate;
  3294. I915_WRITE(RENCLK_GATE_D1, 0);
  3295. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  3296. GS_UNIT_CLOCK_GATE_DISABLE |
  3297. CL_UNIT_CLOCK_GATE_DISABLE);
  3298. I915_WRITE(RAMCLK_GATE_D, 0);
  3299. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  3300. OVRUNIT_CLOCK_GATE_DISABLE |
  3301. OVCUNIT_CLOCK_GATE_DISABLE;
  3302. if (IS_GM45(dev))
  3303. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  3304. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  3305. } else if (IS_I965GM(dev)) {
  3306. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  3307. I915_WRITE(RENCLK_GATE_D2, 0);
  3308. I915_WRITE(DSPCLK_GATE_D, 0);
  3309. I915_WRITE(RAMCLK_GATE_D, 0);
  3310. I915_WRITE16(DEUC, 0);
  3311. } else if (IS_I965G(dev)) {
  3312. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  3313. I965_RCC_CLOCK_GATE_DISABLE |
  3314. I965_RCPB_CLOCK_GATE_DISABLE |
  3315. I965_ISC_CLOCK_GATE_DISABLE |
  3316. I965_FBC_CLOCK_GATE_DISABLE);
  3317. I915_WRITE(RENCLK_GATE_D2, 0);
  3318. } else if (IS_I9XX(dev)) {
  3319. u32 dstate = I915_READ(D_STATE);
  3320. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  3321. DSTATE_DOT_CLOCK_GATING;
  3322. I915_WRITE(D_STATE, dstate);
  3323. } else if (IS_I855(dev) || IS_I865G(dev)) {
  3324. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  3325. } else if (IS_I830(dev)) {
  3326. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  3327. }
  3328. }
  3329. void intel_modeset_init(struct drm_device *dev)
  3330. {
  3331. struct drm_i915_private *dev_priv = dev->dev_private;
  3332. int num_pipe;
  3333. int i;
  3334. drm_mode_config_init(dev);
  3335. dev->mode_config.min_width = 0;
  3336. dev->mode_config.min_height = 0;
  3337. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  3338. if (IS_I965G(dev)) {
  3339. dev->mode_config.max_width = 8192;
  3340. dev->mode_config.max_height = 8192;
  3341. } else if (IS_I9XX(dev)) {
  3342. dev->mode_config.max_width = 4096;
  3343. dev->mode_config.max_height = 4096;
  3344. } else {
  3345. dev->mode_config.max_width = 2048;
  3346. dev->mode_config.max_height = 2048;
  3347. }
  3348. /* set memory base */
  3349. if (IS_I9XX(dev))
  3350. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  3351. else
  3352. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  3353. if (IS_MOBILE(dev) || IS_I9XX(dev))
  3354. num_pipe = 2;
  3355. else
  3356. num_pipe = 1;
  3357. DRM_DEBUG("%d display pipe%s available.\n",
  3358. num_pipe, num_pipe > 1 ? "s" : "");
  3359. if (IS_I85X(dev))
  3360. pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
  3361. else if (IS_I9XX(dev) || IS_G4X(dev))
  3362. pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
  3363. for (i = 0; i < num_pipe; i++) {
  3364. intel_crtc_init(dev, i);
  3365. }
  3366. intel_setup_outputs(dev);
  3367. intel_init_clock_gating(dev);
  3368. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  3369. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  3370. (unsigned long)dev);
  3371. }
  3372. void intel_modeset_cleanup(struct drm_device *dev)
  3373. {
  3374. struct drm_i915_private *dev_priv = dev->dev_private;
  3375. struct drm_crtc *crtc;
  3376. struct intel_crtc *intel_crtc;
  3377. mutex_lock(&dev->struct_mutex);
  3378. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3379. /* Skip inactive CRTCs */
  3380. if (!crtc->fb)
  3381. continue;
  3382. intel_crtc = to_intel_crtc(crtc);
  3383. intel_increase_pllclock(crtc, false);
  3384. del_timer_sync(&intel_crtc->idle_timer);
  3385. }
  3386. intel_increase_renderclock(dev, false);
  3387. del_timer_sync(&dev_priv->idle_timer);
  3388. mutex_unlock(&dev->struct_mutex);
  3389. drm_mode_config_cleanup(dev);
  3390. }
  3391. /* current intel driver doesn't take advantage of encoders
  3392. always give back the encoder for the connector
  3393. */
  3394. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  3395. {
  3396. struct intel_output *intel_output = to_intel_output(connector);
  3397. return &intel_output->enc;
  3398. }