vmx.c 126 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include "trace.h"
  40. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  41. #define __ex_clear(x, reg) \
  42. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static int __read_mostly bypass_guest_pf = 1;
  46. module_param(bypass_guest_pf, bool, S_IRUGO);
  47. static int __read_mostly enable_vpid = 1;
  48. module_param_named(vpid, enable_vpid, bool, 0444);
  49. static int __read_mostly flexpriority_enabled = 1;
  50. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  51. static int __read_mostly enable_ept = 1;
  52. module_param_named(ept, enable_ept, bool, S_IRUGO);
  53. static int __read_mostly enable_unrestricted_guest = 1;
  54. module_param_named(unrestricted_guest,
  55. enable_unrestricted_guest, bool, S_IRUGO);
  56. static int __read_mostly emulate_invalid_guest_state = 0;
  57. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  58. static int __read_mostly vmm_exclusive = 1;
  59. module_param(vmm_exclusive, bool, S_IRUGO);
  60. static int __read_mostly yield_on_hlt = 1;
  61. module_param(yield_on_hlt, bool, S_IRUGO);
  62. /*
  63. * If nested=1, nested virtualization is supported, i.e., guests may use
  64. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  65. * use VMX instructions.
  66. */
  67. static int __read_mostly nested = 0;
  68. module_param(nested, bool, S_IRUGO);
  69. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  70. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  71. #define KVM_GUEST_CR0_MASK \
  72. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  73. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  74. (X86_CR0_WP | X86_CR0_NE)
  75. #define KVM_VM_CR0_ALWAYS_ON \
  76. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  77. #define KVM_CR4_GUEST_OWNED_BITS \
  78. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  79. | X86_CR4_OSXMMEXCPT)
  80. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  81. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  82. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  83. /*
  84. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  85. * ple_gap: upper bound on the amount of time between two successive
  86. * executions of PAUSE in a loop. Also indicate if ple enabled.
  87. * According to test, this time is usually smaller than 128 cycles.
  88. * ple_window: upper bound on the amount of time a guest is allowed to execute
  89. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  90. * less than 2^12 cycles
  91. * Time is measured based on a counter that runs at the same rate as the TSC,
  92. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  93. */
  94. #define KVM_VMX_DEFAULT_PLE_GAP 128
  95. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  96. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  97. module_param(ple_gap, int, S_IRUGO);
  98. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  99. module_param(ple_window, int, S_IRUGO);
  100. #define NR_AUTOLOAD_MSRS 1
  101. struct vmcs {
  102. u32 revision_id;
  103. u32 abort;
  104. char data[0];
  105. };
  106. /*
  107. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  108. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  109. * loaded on this CPU (so we can clear them if the CPU goes down).
  110. */
  111. struct loaded_vmcs {
  112. struct vmcs *vmcs;
  113. int cpu;
  114. int launched;
  115. struct list_head loaded_vmcss_on_cpu_link;
  116. };
  117. struct shared_msr_entry {
  118. unsigned index;
  119. u64 data;
  120. u64 mask;
  121. };
  122. /*
  123. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  124. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  125. */
  126. struct nested_vmx {
  127. /* Has the level1 guest done vmxon? */
  128. bool vmxon;
  129. };
  130. struct vcpu_vmx {
  131. struct kvm_vcpu vcpu;
  132. unsigned long host_rsp;
  133. u8 fail;
  134. u8 cpl;
  135. bool nmi_known_unmasked;
  136. u32 exit_intr_info;
  137. u32 idt_vectoring_info;
  138. ulong rflags;
  139. struct shared_msr_entry *guest_msrs;
  140. int nmsrs;
  141. int save_nmsrs;
  142. #ifdef CONFIG_X86_64
  143. u64 msr_host_kernel_gs_base;
  144. u64 msr_guest_kernel_gs_base;
  145. #endif
  146. /*
  147. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  148. * non-nested (L1) guest, it always points to vmcs01. For a nested
  149. * guest (L2), it points to a different VMCS.
  150. */
  151. struct loaded_vmcs vmcs01;
  152. struct loaded_vmcs *loaded_vmcs;
  153. bool __launched; /* temporary, used in vmx_vcpu_run */
  154. struct msr_autoload {
  155. unsigned nr;
  156. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  157. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  158. } msr_autoload;
  159. struct {
  160. int loaded;
  161. u16 fs_sel, gs_sel, ldt_sel;
  162. int gs_ldt_reload_needed;
  163. int fs_reload_needed;
  164. } host_state;
  165. struct {
  166. int vm86_active;
  167. ulong save_rflags;
  168. struct kvm_save_segment {
  169. u16 selector;
  170. unsigned long base;
  171. u32 limit;
  172. u32 ar;
  173. } tr, es, ds, fs, gs;
  174. } rmode;
  175. struct {
  176. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  177. struct kvm_save_segment seg[8];
  178. } segment_cache;
  179. int vpid;
  180. bool emulation_required;
  181. /* Support for vnmi-less CPUs */
  182. int soft_vnmi_blocked;
  183. ktime_t entry_time;
  184. s64 vnmi_blocked_time;
  185. u32 exit_reason;
  186. bool rdtscp_enabled;
  187. /* Support for a guest hypervisor (nested VMX) */
  188. struct nested_vmx nested;
  189. };
  190. enum segment_cache_field {
  191. SEG_FIELD_SEL = 0,
  192. SEG_FIELD_BASE = 1,
  193. SEG_FIELD_LIMIT = 2,
  194. SEG_FIELD_AR = 3,
  195. SEG_FIELD_NR = 4
  196. };
  197. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  198. {
  199. return container_of(vcpu, struct vcpu_vmx, vcpu);
  200. }
  201. static u64 construct_eptp(unsigned long root_hpa);
  202. static void kvm_cpu_vmxon(u64 addr);
  203. static void kvm_cpu_vmxoff(void);
  204. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  205. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  206. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  207. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  208. /*
  209. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  210. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  211. */
  212. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  213. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  214. static unsigned long *vmx_io_bitmap_a;
  215. static unsigned long *vmx_io_bitmap_b;
  216. static unsigned long *vmx_msr_bitmap_legacy;
  217. static unsigned long *vmx_msr_bitmap_longmode;
  218. static bool cpu_has_load_ia32_efer;
  219. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  220. static DEFINE_SPINLOCK(vmx_vpid_lock);
  221. static struct vmcs_config {
  222. int size;
  223. int order;
  224. u32 revision_id;
  225. u32 pin_based_exec_ctrl;
  226. u32 cpu_based_exec_ctrl;
  227. u32 cpu_based_2nd_exec_ctrl;
  228. u32 vmexit_ctrl;
  229. u32 vmentry_ctrl;
  230. } vmcs_config;
  231. static struct vmx_capability {
  232. u32 ept;
  233. u32 vpid;
  234. } vmx_capability;
  235. #define VMX_SEGMENT_FIELD(seg) \
  236. [VCPU_SREG_##seg] = { \
  237. .selector = GUEST_##seg##_SELECTOR, \
  238. .base = GUEST_##seg##_BASE, \
  239. .limit = GUEST_##seg##_LIMIT, \
  240. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  241. }
  242. static struct kvm_vmx_segment_field {
  243. unsigned selector;
  244. unsigned base;
  245. unsigned limit;
  246. unsigned ar_bytes;
  247. } kvm_vmx_segment_fields[] = {
  248. VMX_SEGMENT_FIELD(CS),
  249. VMX_SEGMENT_FIELD(DS),
  250. VMX_SEGMENT_FIELD(ES),
  251. VMX_SEGMENT_FIELD(FS),
  252. VMX_SEGMENT_FIELD(GS),
  253. VMX_SEGMENT_FIELD(SS),
  254. VMX_SEGMENT_FIELD(TR),
  255. VMX_SEGMENT_FIELD(LDTR),
  256. };
  257. static u64 host_efer;
  258. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  259. /*
  260. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  261. * away by decrementing the array size.
  262. */
  263. static const u32 vmx_msr_index[] = {
  264. #ifdef CONFIG_X86_64
  265. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  266. #endif
  267. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  268. };
  269. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  270. static inline bool is_page_fault(u32 intr_info)
  271. {
  272. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  273. INTR_INFO_VALID_MASK)) ==
  274. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  275. }
  276. static inline bool is_no_device(u32 intr_info)
  277. {
  278. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  279. INTR_INFO_VALID_MASK)) ==
  280. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  281. }
  282. static inline bool is_invalid_opcode(u32 intr_info)
  283. {
  284. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  285. INTR_INFO_VALID_MASK)) ==
  286. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  287. }
  288. static inline bool is_external_interrupt(u32 intr_info)
  289. {
  290. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  291. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  292. }
  293. static inline bool is_machine_check(u32 intr_info)
  294. {
  295. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  296. INTR_INFO_VALID_MASK)) ==
  297. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  298. }
  299. static inline bool cpu_has_vmx_msr_bitmap(void)
  300. {
  301. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  302. }
  303. static inline bool cpu_has_vmx_tpr_shadow(void)
  304. {
  305. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  306. }
  307. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  308. {
  309. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  310. }
  311. static inline bool cpu_has_secondary_exec_ctrls(void)
  312. {
  313. return vmcs_config.cpu_based_exec_ctrl &
  314. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  315. }
  316. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  317. {
  318. return vmcs_config.cpu_based_2nd_exec_ctrl &
  319. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  320. }
  321. static inline bool cpu_has_vmx_flexpriority(void)
  322. {
  323. return cpu_has_vmx_tpr_shadow() &&
  324. cpu_has_vmx_virtualize_apic_accesses();
  325. }
  326. static inline bool cpu_has_vmx_ept_execute_only(void)
  327. {
  328. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  329. }
  330. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  331. {
  332. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  333. }
  334. static inline bool cpu_has_vmx_eptp_writeback(void)
  335. {
  336. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  337. }
  338. static inline bool cpu_has_vmx_ept_2m_page(void)
  339. {
  340. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  341. }
  342. static inline bool cpu_has_vmx_ept_1g_page(void)
  343. {
  344. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  345. }
  346. static inline bool cpu_has_vmx_ept_4levels(void)
  347. {
  348. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  349. }
  350. static inline bool cpu_has_vmx_invept_individual_addr(void)
  351. {
  352. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  353. }
  354. static inline bool cpu_has_vmx_invept_context(void)
  355. {
  356. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  357. }
  358. static inline bool cpu_has_vmx_invept_global(void)
  359. {
  360. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  361. }
  362. static inline bool cpu_has_vmx_invvpid_single(void)
  363. {
  364. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  365. }
  366. static inline bool cpu_has_vmx_invvpid_global(void)
  367. {
  368. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  369. }
  370. static inline bool cpu_has_vmx_ept(void)
  371. {
  372. return vmcs_config.cpu_based_2nd_exec_ctrl &
  373. SECONDARY_EXEC_ENABLE_EPT;
  374. }
  375. static inline bool cpu_has_vmx_unrestricted_guest(void)
  376. {
  377. return vmcs_config.cpu_based_2nd_exec_ctrl &
  378. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  379. }
  380. static inline bool cpu_has_vmx_ple(void)
  381. {
  382. return vmcs_config.cpu_based_2nd_exec_ctrl &
  383. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  384. }
  385. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  386. {
  387. return flexpriority_enabled && irqchip_in_kernel(kvm);
  388. }
  389. static inline bool cpu_has_vmx_vpid(void)
  390. {
  391. return vmcs_config.cpu_based_2nd_exec_ctrl &
  392. SECONDARY_EXEC_ENABLE_VPID;
  393. }
  394. static inline bool cpu_has_vmx_rdtscp(void)
  395. {
  396. return vmcs_config.cpu_based_2nd_exec_ctrl &
  397. SECONDARY_EXEC_RDTSCP;
  398. }
  399. static inline bool cpu_has_virtual_nmis(void)
  400. {
  401. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  402. }
  403. static inline bool cpu_has_vmx_wbinvd_exit(void)
  404. {
  405. return vmcs_config.cpu_based_2nd_exec_ctrl &
  406. SECONDARY_EXEC_WBINVD_EXITING;
  407. }
  408. static inline bool report_flexpriority(void)
  409. {
  410. return flexpriority_enabled;
  411. }
  412. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  413. {
  414. int i;
  415. for (i = 0; i < vmx->nmsrs; ++i)
  416. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  417. return i;
  418. return -1;
  419. }
  420. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  421. {
  422. struct {
  423. u64 vpid : 16;
  424. u64 rsvd : 48;
  425. u64 gva;
  426. } operand = { vpid, 0, gva };
  427. asm volatile (__ex(ASM_VMX_INVVPID)
  428. /* CF==1 or ZF==1 --> rc = -1 */
  429. "; ja 1f ; ud2 ; 1:"
  430. : : "a"(&operand), "c"(ext) : "cc", "memory");
  431. }
  432. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  433. {
  434. struct {
  435. u64 eptp, gpa;
  436. } operand = {eptp, gpa};
  437. asm volatile (__ex(ASM_VMX_INVEPT)
  438. /* CF==1 or ZF==1 --> rc = -1 */
  439. "; ja 1f ; ud2 ; 1:\n"
  440. : : "a" (&operand), "c" (ext) : "cc", "memory");
  441. }
  442. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  443. {
  444. int i;
  445. i = __find_msr_index(vmx, msr);
  446. if (i >= 0)
  447. return &vmx->guest_msrs[i];
  448. return NULL;
  449. }
  450. static void vmcs_clear(struct vmcs *vmcs)
  451. {
  452. u64 phys_addr = __pa(vmcs);
  453. u8 error;
  454. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  455. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  456. : "cc", "memory");
  457. if (error)
  458. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  459. vmcs, phys_addr);
  460. }
  461. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  462. {
  463. vmcs_clear(loaded_vmcs->vmcs);
  464. loaded_vmcs->cpu = -1;
  465. loaded_vmcs->launched = 0;
  466. }
  467. static void vmcs_load(struct vmcs *vmcs)
  468. {
  469. u64 phys_addr = __pa(vmcs);
  470. u8 error;
  471. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  472. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  473. : "cc", "memory");
  474. if (error)
  475. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  476. vmcs, phys_addr);
  477. }
  478. static void __loaded_vmcs_clear(void *arg)
  479. {
  480. struct loaded_vmcs *loaded_vmcs = arg;
  481. int cpu = raw_smp_processor_id();
  482. if (loaded_vmcs->cpu != cpu)
  483. return; /* vcpu migration can race with cpu offline */
  484. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  485. per_cpu(current_vmcs, cpu) = NULL;
  486. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  487. loaded_vmcs_init(loaded_vmcs);
  488. }
  489. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  490. {
  491. if (loaded_vmcs->cpu != -1)
  492. smp_call_function_single(
  493. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  494. }
  495. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  496. {
  497. if (vmx->vpid == 0)
  498. return;
  499. if (cpu_has_vmx_invvpid_single())
  500. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  501. }
  502. static inline void vpid_sync_vcpu_global(void)
  503. {
  504. if (cpu_has_vmx_invvpid_global())
  505. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  506. }
  507. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  508. {
  509. if (cpu_has_vmx_invvpid_single())
  510. vpid_sync_vcpu_single(vmx);
  511. else
  512. vpid_sync_vcpu_global();
  513. }
  514. static inline void ept_sync_global(void)
  515. {
  516. if (cpu_has_vmx_invept_global())
  517. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  518. }
  519. static inline void ept_sync_context(u64 eptp)
  520. {
  521. if (enable_ept) {
  522. if (cpu_has_vmx_invept_context())
  523. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  524. else
  525. ept_sync_global();
  526. }
  527. }
  528. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  529. {
  530. if (enable_ept) {
  531. if (cpu_has_vmx_invept_individual_addr())
  532. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  533. eptp, gpa);
  534. else
  535. ept_sync_context(eptp);
  536. }
  537. }
  538. static __always_inline unsigned long vmcs_readl(unsigned long field)
  539. {
  540. unsigned long value;
  541. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  542. : "=a"(value) : "d"(field) : "cc");
  543. return value;
  544. }
  545. static __always_inline u16 vmcs_read16(unsigned long field)
  546. {
  547. return vmcs_readl(field);
  548. }
  549. static __always_inline u32 vmcs_read32(unsigned long field)
  550. {
  551. return vmcs_readl(field);
  552. }
  553. static __always_inline u64 vmcs_read64(unsigned long field)
  554. {
  555. #ifdef CONFIG_X86_64
  556. return vmcs_readl(field);
  557. #else
  558. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  559. #endif
  560. }
  561. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  562. {
  563. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  564. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  565. dump_stack();
  566. }
  567. static void vmcs_writel(unsigned long field, unsigned long value)
  568. {
  569. u8 error;
  570. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  571. : "=q"(error) : "a"(value), "d"(field) : "cc");
  572. if (unlikely(error))
  573. vmwrite_error(field, value);
  574. }
  575. static void vmcs_write16(unsigned long field, u16 value)
  576. {
  577. vmcs_writel(field, value);
  578. }
  579. static void vmcs_write32(unsigned long field, u32 value)
  580. {
  581. vmcs_writel(field, value);
  582. }
  583. static void vmcs_write64(unsigned long field, u64 value)
  584. {
  585. vmcs_writel(field, value);
  586. #ifndef CONFIG_X86_64
  587. asm volatile ("");
  588. vmcs_writel(field+1, value >> 32);
  589. #endif
  590. }
  591. static void vmcs_clear_bits(unsigned long field, u32 mask)
  592. {
  593. vmcs_writel(field, vmcs_readl(field) & ~mask);
  594. }
  595. static void vmcs_set_bits(unsigned long field, u32 mask)
  596. {
  597. vmcs_writel(field, vmcs_readl(field) | mask);
  598. }
  599. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  600. {
  601. vmx->segment_cache.bitmask = 0;
  602. }
  603. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  604. unsigned field)
  605. {
  606. bool ret;
  607. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  608. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  609. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  610. vmx->segment_cache.bitmask = 0;
  611. }
  612. ret = vmx->segment_cache.bitmask & mask;
  613. vmx->segment_cache.bitmask |= mask;
  614. return ret;
  615. }
  616. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  617. {
  618. u16 *p = &vmx->segment_cache.seg[seg].selector;
  619. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  620. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  621. return *p;
  622. }
  623. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  624. {
  625. ulong *p = &vmx->segment_cache.seg[seg].base;
  626. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  627. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  628. return *p;
  629. }
  630. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  631. {
  632. u32 *p = &vmx->segment_cache.seg[seg].limit;
  633. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  634. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  635. return *p;
  636. }
  637. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  638. {
  639. u32 *p = &vmx->segment_cache.seg[seg].ar;
  640. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  641. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  642. return *p;
  643. }
  644. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  645. {
  646. u32 eb;
  647. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  648. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  649. if ((vcpu->guest_debug &
  650. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  651. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  652. eb |= 1u << BP_VECTOR;
  653. if (to_vmx(vcpu)->rmode.vm86_active)
  654. eb = ~0;
  655. if (enable_ept)
  656. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  657. if (vcpu->fpu_active)
  658. eb &= ~(1u << NM_VECTOR);
  659. vmcs_write32(EXCEPTION_BITMAP, eb);
  660. }
  661. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  662. {
  663. unsigned i;
  664. struct msr_autoload *m = &vmx->msr_autoload;
  665. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  666. vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  667. vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  668. return;
  669. }
  670. for (i = 0; i < m->nr; ++i)
  671. if (m->guest[i].index == msr)
  672. break;
  673. if (i == m->nr)
  674. return;
  675. --m->nr;
  676. m->guest[i] = m->guest[m->nr];
  677. m->host[i] = m->host[m->nr];
  678. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  679. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  680. }
  681. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  682. u64 guest_val, u64 host_val)
  683. {
  684. unsigned i;
  685. struct msr_autoload *m = &vmx->msr_autoload;
  686. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  687. vmcs_write64(GUEST_IA32_EFER, guest_val);
  688. vmcs_write64(HOST_IA32_EFER, host_val);
  689. vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  690. vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  691. return;
  692. }
  693. for (i = 0; i < m->nr; ++i)
  694. if (m->guest[i].index == msr)
  695. break;
  696. if (i == m->nr) {
  697. ++m->nr;
  698. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  699. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  700. }
  701. m->guest[i].index = msr;
  702. m->guest[i].value = guest_val;
  703. m->host[i].index = msr;
  704. m->host[i].value = host_val;
  705. }
  706. static void reload_tss(void)
  707. {
  708. /*
  709. * VT restores TR but not its size. Useless.
  710. */
  711. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  712. struct desc_struct *descs;
  713. descs = (void *)gdt->address;
  714. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  715. load_TR_desc();
  716. }
  717. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  718. {
  719. u64 guest_efer;
  720. u64 ignore_bits;
  721. guest_efer = vmx->vcpu.arch.efer;
  722. /*
  723. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  724. * outside long mode
  725. */
  726. ignore_bits = EFER_NX | EFER_SCE;
  727. #ifdef CONFIG_X86_64
  728. ignore_bits |= EFER_LMA | EFER_LME;
  729. /* SCE is meaningful only in long mode on Intel */
  730. if (guest_efer & EFER_LMA)
  731. ignore_bits &= ~(u64)EFER_SCE;
  732. #endif
  733. guest_efer &= ~ignore_bits;
  734. guest_efer |= host_efer & ignore_bits;
  735. vmx->guest_msrs[efer_offset].data = guest_efer;
  736. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  737. clear_atomic_switch_msr(vmx, MSR_EFER);
  738. /* On ept, can't emulate nx, and must switch nx atomically */
  739. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  740. guest_efer = vmx->vcpu.arch.efer;
  741. if (!(guest_efer & EFER_LMA))
  742. guest_efer &= ~EFER_LME;
  743. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  744. return false;
  745. }
  746. return true;
  747. }
  748. static unsigned long segment_base(u16 selector)
  749. {
  750. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  751. struct desc_struct *d;
  752. unsigned long table_base;
  753. unsigned long v;
  754. if (!(selector & ~3))
  755. return 0;
  756. table_base = gdt->address;
  757. if (selector & 4) { /* from ldt */
  758. u16 ldt_selector = kvm_read_ldt();
  759. if (!(ldt_selector & ~3))
  760. return 0;
  761. table_base = segment_base(ldt_selector);
  762. }
  763. d = (struct desc_struct *)(table_base + (selector & ~7));
  764. v = get_desc_base(d);
  765. #ifdef CONFIG_X86_64
  766. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  767. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  768. #endif
  769. return v;
  770. }
  771. static inline unsigned long kvm_read_tr_base(void)
  772. {
  773. u16 tr;
  774. asm("str %0" : "=g"(tr));
  775. return segment_base(tr);
  776. }
  777. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  778. {
  779. struct vcpu_vmx *vmx = to_vmx(vcpu);
  780. int i;
  781. if (vmx->host_state.loaded)
  782. return;
  783. vmx->host_state.loaded = 1;
  784. /*
  785. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  786. * allow segment selectors with cpl > 0 or ti == 1.
  787. */
  788. vmx->host_state.ldt_sel = kvm_read_ldt();
  789. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  790. savesegment(fs, vmx->host_state.fs_sel);
  791. if (!(vmx->host_state.fs_sel & 7)) {
  792. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  793. vmx->host_state.fs_reload_needed = 0;
  794. } else {
  795. vmcs_write16(HOST_FS_SELECTOR, 0);
  796. vmx->host_state.fs_reload_needed = 1;
  797. }
  798. savesegment(gs, vmx->host_state.gs_sel);
  799. if (!(vmx->host_state.gs_sel & 7))
  800. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  801. else {
  802. vmcs_write16(HOST_GS_SELECTOR, 0);
  803. vmx->host_state.gs_ldt_reload_needed = 1;
  804. }
  805. #ifdef CONFIG_X86_64
  806. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  807. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  808. #else
  809. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  810. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  811. #endif
  812. #ifdef CONFIG_X86_64
  813. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  814. if (is_long_mode(&vmx->vcpu))
  815. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  816. #endif
  817. for (i = 0; i < vmx->save_nmsrs; ++i)
  818. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  819. vmx->guest_msrs[i].data,
  820. vmx->guest_msrs[i].mask);
  821. }
  822. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  823. {
  824. if (!vmx->host_state.loaded)
  825. return;
  826. ++vmx->vcpu.stat.host_state_reload;
  827. vmx->host_state.loaded = 0;
  828. #ifdef CONFIG_X86_64
  829. if (is_long_mode(&vmx->vcpu))
  830. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  831. #endif
  832. if (vmx->host_state.gs_ldt_reload_needed) {
  833. kvm_load_ldt(vmx->host_state.ldt_sel);
  834. #ifdef CONFIG_X86_64
  835. load_gs_index(vmx->host_state.gs_sel);
  836. #else
  837. loadsegment(gs, vmx->host_state.gs_sel);
  838. #endif
  839. }
  840. if (vmx->host_state.fs_reload_needed)
  841. loadsegment(fs, vmx->host_state.fs_sel);
  842. reload_tss();
  843. #ifdef CONFIG_X86_64
  844. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  845. #endif
  846. if (current_thread_info()->status & TS_USEDFPU)
  847. clts();
  848. load_gdt(&__get_cpu_var(host_gdt));
  849. }
  850. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  851. {
  852. preempt_disable();
  853. __vmx_load_host_state(vmx);
  854. preempt_enable();
  855. }
  856. /*
  857. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  858. * vcpu mutex is already taken.
  859. */
  860. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  861. {
  862. struct vcpu_vmx *vmx = to_vmx(vcpu);
  863. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  864. if (!vmm_exclusive)
  865. kvm_cpu_vmxon(phys_addr);
  866. else if (vmx->loaded_vmcs->cpu != cpu)
  867. loaded_vmcs_clear(vmx->loaded_vmcs);
  868. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  869. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  870. vmcs_load(vmx->loaded_vmcs->vmcs);
  871. }
  872. if (vmx->loaded_vmcs->cpu != cpu) {
  873. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  874. unsigned long sysenter_esp;
  875. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  876. local_irq_disable();
  877. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  878. &per_cpu(loaded_vmcss_on_cpu, cpu));
  879. local_irq_enable();
  880. /*
  881. * Linux uses per-cpu TSS and GDT, so set these when switching
  882. * processors.
  883. */
  884. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  885. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  886. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  887. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  888. vmx->loaded_vmcs->cpu = cpu;
  889. }
  890. }
  891. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  892. {
  893. __vmx_load_host_state(to_vmx(vcpu));
  894. if (!vmm_exclusive) {
  895. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  896. vcpu->cpu = -1;
  897. kvm_cpu_vmxoff();
  898. }
  899. }
  900. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  901. {
  902. ulong cr0;
  903. if (vcpu->fpu_active)
  904. return;
  905. vcpu->fpu_active = 1;
  906. cr0 = vmcs_readl(GUEST_CR0);
  907. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  908. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  909. vmcs_writel(GUEST_CR0, cr0);
  910. update_exception_bitmap(vcpu);
  911. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  912. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  913. }
  914. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  915. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  916. {
  917. vmx_decache_cr0_guest_bits(vcpu);
  918. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  919. update_exception_bitmap(vcpu);
  920. vcpu->arch.cr0_guest_owned_bits = 0;
  921. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  922. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  923. }
  924. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  925. {
  926. unsigned long rflags, save_rflags;
  927. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  928. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  929. rflags = vmcs_readl(GUEST_RFLAGS);
  930. if (to_vmx(vcpu)->rmode.vm86_active) {
  931. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  932. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  933. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  934. }
  935. to_vmx(vcpu)->rflags = rflags;
  936. }
  937. return to_vmx(vcpu)->rflags;
  938. }
  939. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  940. {
  941. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  942. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  943. to_vmx(vcpu)->rflags = rflags;
  944. if (to_vmx(vcpu)->rmode.vm86_active) {
  945. to_vmx(vcpu)->rmode.save_rflags = rflags;
  946. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  947. }
  948. vmcs_writel(GUEST_RFLAGS, rflags);
  949. }
  950. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  951. {
  952. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  953. int ret = 0;
  954. if (interruptibility & GUEST_INTR_STATE_STI)
  955. ret |= KVM_X86_SHADOW_INT_STI;
  956. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  957. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  958. return ret & mask;
  959. }
  960. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  961. {
  962. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  963. u32 interruptibility = interruptibility_old;
  964. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  965. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  966. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  967. else if (mask & KVM_X86_SHADOW_INT_STI)
  968. interruptibility |= GUEST_INTR_STATE_STI;
  969. if ((interruptibility != interruptibility_old))
  970. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  971. }
  972. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  973. {
  974. unsigned long rip;
  975. rip = kvm_rip_read(vcpu);
  976. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  977. kvm_rip_write(vcpu, rip);
  978. /* skipping an emulated instruction also counts */
  979. vmx_set_interrupt_shadow(vcpu, 0);
  980. }
  981. static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
  982. {
  983. /* Ensure that we clear the HLT state in the VMCS. We don't need to
  984. * explicitly skip the instruction because if the HLT state is set, then
  985. * the instruction is already executing and RIP has already been
  986. * advanced. */
  987. if (!yield_on_hlt &&
  988. vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
  989. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  990. }
  991. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  992. bool has_error_code, u32 error_code,
  993. bool reinject)
  994. {
  995. struct vcpu_vmx *vmx = to_vmx(vcpu);
  996. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  997. if (has_error_code) {
  998. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  999. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1000. }
  1001. if (vmx->rmode.vm86_active) {
  1002. int inc_eip = 0;
  1003. if (kvm_exception_is_soft(nr))
  1004. inc_eip = vcpu->arch.event_exit_inst_len;
  1005. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1006. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1007. return;
  1008. }
  1009. if (kvm_exception_is_soft(nr)) {
  1010. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1011. vmx->vcpu.arch.event_exit_inst_len);
  1012. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1013. } else
  1014. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1015. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1016. vmx_clear_hlt(vcpu);
  1017. }
  1018. static bool vmx_rdtscp_supported(void)
  1019. {
  1020. return cpu_has_vmx_rdtscp();
  1021. }
  1022. /*
  1023. * Swap MSR entry in host/guest MSR entry array.
  1024. */
  1025. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1026. {
  1027. struct shared_msr_entry tmp;
  1028. tmp = vmx->guest_msrs[to];
  1029. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1030. vmx->guest_msrs[from] = tmp;
  1031. }
  1032. /*
  1033. * Set up the vmcs to automatically save and restore system
  1034. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1035. * mode, as fiddling with msrs is very expensive.
  1036. */
  1037. static void setup_msrs(struct vcpu_vmx *vmx)
  1038. {
  1039. int save_nmsrs, index;
  1040. unsigned long *msr_bitmap;
  1041. vmx_load_host_state(vmx);
  1042. save_nmsrs = 0;
  1043. #ifdef CONFIG_X86_64
  1044. if (is_long_mode(&vmx->vcpu)) {
  1045. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1046. if (index >= 0)
  1047. move_msr_up(vmx, index, save_nmsrs++);
  1048. index = __find_msr_index(vmx, MSR_LSTAR);
  1049. if (index >= 0)
  1050. move_msr_up(vmx, index, save_nmsrs++);
  1051. index = __find_msr_index(vmx, MSR_CSTAR);
  1052. if (index >= 0)
  1053. move_msr_up(vmx, index, save_nmsrs++);
  1054. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1055. if (index >= 0 && vmx->rdtscp_enabled)
  1056. move_msr_up(vmx, index, save_nmsrs++);
  1057. /*
  1058. * MSR_STAR is only needed on long mode guests, and only
  1059. * if efer.sce is enabled.
  1060. */
  1061. index = __find_msr_index(vmx, MSR_STAR);
  1062. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1063. move_msr_up(vmx, index, save_nmsrs++);
  1064. }
  1065. #endif
  1066. index = __find_msr_index(vmx, MSR_EFER);
  1067. if (index >= 0 && update_transition_efer(vmx, index))
  1068. move_msr_up(vmx, index, save_nmsrs++);
  1069. vmx->save_nmsrs = save_nmsrs;
  1070. if (cpu_has_vmx_msr_bitmap()) {
  1071. if (is_long_mode(&vmx->vcpu))
  1072. msr_bitmap = vmx_msr_bitmap_longmode;
  1073. else
  1074. msr_bitmap = vmx_msr_bitmap_legacy;
  1075. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1076. }
  1077. }
  1078. /*
  1079. * reads and returns guest's timestamp counter "register"
  1080. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1081. */
  1082. static u64 guest_read_tsc(void)
  1083. {
  1084. u64 host_tsc, tsc_offset;
  1085. rdtscll(host_tsc);
  1086. tsc_offset = vmcs_read64(TSC_OFFSET);
  1087. return host_tsc + tsc_offset;
  1088. }
  1089. /*
  1090. * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
  1091. * ioctl. In this case the call-back should update internal vmx state to make
  1092. * the changes effective.
  1093. */
  1094. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
  1095. {
  1096. /* Nothing to do here */
  1097. }
  1098. /*
  1099. * writes 'offset' into guest's timestamp counter offset register
  1100. */
  1101. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1102. {
  1103. vmcs_write64(TSC_OFFSET, offset);
  1104. }
  1105. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  1106. {
  1107. u64 offset = vmcs_read64(TSC_OFFSET);
  1108. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1109. }
  1110. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1111. {
  1112. return target_tsc - native_read_tsc();
  1113. }
  1114. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1115. {
  1116. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1117. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1118. }
  1119. /*
  1120. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1121. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1122. * all guests if the "nested" module option is off, and can also be disabled
  1123. * for a single guest by disabling its VMX cpuid bit.
  1124. */
  1125. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1126. {
  1127. return nested && guest_cpuid_has_vmx(vcpu);
  1128. }
  1129. /*
  1130. * Reads an msr value (of 'msr_index') into 'pdata'.
  1131. * Returns 0 on success, non-0 otherwise.
  1132. * Assumes vcpu_load() was already called.
  1133. */
  1134. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1135. {
  1136. u64 data;
  1137. struct shared_msr_entry *msr;
  1138. if (!pdata) {
  1139. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1140. return -EINVAL;
  1141. }
  1142. switch (msr_index) {
  1143. #ifdef CONFIG_X86_64
  1144. case MSR_FS_BASE:
  1145. data = vmcs_readl(GUEST_FS_BASE);
  1146. break;
  1147. case MSR_GS_BASE:
  1148. data = vmcs_readl(GUEST_GS_BASE);
  1149. break;
  1150. case MSR_KERNEL_GS_BASE:
  1151. vmx_load_host_state(to_vmx(vcpu));
  1152. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1153. break;
  1154. #endif
  1155. case MSR_EFER:
  1156. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1157. case MSR_IA32_TSC:
  1158. data = guest_read_tsc();
  1159. break;
  1160. case MSR_IA32_SYSENTER_CS:
  1161. data = vmcs_read32(GUEST_SYSENTER_CS);
  1162. break;
  1163. case MSR_IA32_SYSENTER_EIP:
  1164. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1165. break;
  1166. case MSR_IA32_SYSENTER_ESP:
  1167. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1168. break;
  1169. case MSR_TSC_AUX:
  1170. if (!to_vmx(vcpu)->rdtscp_enabled)
  1171. return 1;
  1172. /* Otherwise falls through */
  1173. default:
  1174. vmx_load_host_state(to_vmx(vcpu));
  1175. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1176. if (msr) {
  1177. vmx_load_host_state(to_vmx(vcpu));
  1178. data = msr->data;
  1179. break;
  1180. }
  1181. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1182. }
  1183. *pdata = data;
  1184. return 0;
  1185. }
  1186. /*
  1187. * Writes msr value into into the appropriate "register".
  1188. * Returns 0 on success, non-0 otherwise.
  1189. * Assumes vcpu_load() was already called.
  1190. */
  1191. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1192. {
  1193. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1194. struct shared_msr_entry *msr;
  1195. int ret = 0;
  1196. switch (msr_index) {
  1197. case MSR_EFER:
  1198. vmx_load_host_state(vmx);
  1199. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1200. break;
  1201. #ifdef CONFIG_X86_64
  1202. case MSR_FS_BASE:
  1203. vmx_segment_cache_clear(vmx);
  1204. vmcs_writel(GUEST_FS_BASE, data);
  1205. break;
  1206. case MSR_GS_BASE:
  1207. vmx_segment_cache_clear(vmx);
  1208. vmcs_writel(GUEST_GS_BASE, data);
  1209. break;
  1210. case MSR_KERNEL_GS_BASE:
  1211. vmx_load_host_state(vmx);
  1212. vmx->msr_guest_kernel_gs_base = data;
  1213. break;
  1214. #endif
  1215. case MSR_IA32_SYSENTER_CS:
  1216. vmcs_write32(GUEST_SYSENTER_CS, data);
  1217. break;
  1218. case MSR_IA32_SYSENTER_EIP:
  1219. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1220. break;
  1221. case MSR_IA32_SYSENTER_ESP:
  1222. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1223. break;
  1224. case MSR_IA32_TSC:
  1225. kvm_write_tsc(vcpu, data);
  1226. break;
  1227. case MSR_IA32_CR_PAT:
  1228. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1229. vmcs_write64(GUEST_IA32_PAT, data);
  1230. vcpu->arch.pat = data;
  1231. break;
  1232. }
  1233. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1234. break;
  1235. case MSR_TSC_AUX:
  1236. if (!vmx->rdtscp_enabled)
  1237. return 1;
  1238. /* Check reserved bit, higher 32 bits should be zero */
  1239. if ((data >> 32) != 0)
  1240. return 1;
  1241. /* Otherwise falls through */
  1242. default:
  1243. msr = find_msr_entry(vmx, msr_index);
  1244. if (msr) {
  1245. vmx_load_host_state(vmx);
  1246. msr->data = data;
  1247. break;
  1248. }
  1249. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1250. }
  1251. return ret;
  1252. }
  1253. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1254. {
  1255. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1256. switch (reg) {
  1257. case VCPU_REGS_RSP:
  1258. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1259. break;
  1260. case VCPU_REGS_RIP:
  1261. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1262. break;
  1263. case VCPU_EXREG_PDPTR:
  1264. if (enable_ept)
  1265. ept_save_pdptrs(vcpu);
  1266. break;
  1267. default:
  1268. break;
  1269. }
  1270. }
  1271. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1272. {
  1273. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1274. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1275. else
  1276. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1277. update_exception_bitmap(vcpu);
  1278. }
  1279. static __init int cpu_has_kvm_support(void)
  1280. {
  1281. return cpu_has_vmx();
  1282. }
  1283. static __init int vmx_disabled_by_bios(void)
  1284. {
  1285. u64 msr;
  1286. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1287. if (msr & FEATURE_CONTROL_LOCKED) {
  1288. /* launched w/ TXT and VMX disabled */
  1289. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1290. && tboot_enabled())
  1291. return 1;
  1292. /* launched w/o TXT and VMX only enabled w/ TXT */
  1293. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1294. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1295. && !tboot_enabled()) {
  1296. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  1297. "activate TXT before enabling KVM\n");
  1298. return 1;
  1299. }
  1300. /* launched w/o TXT and VMX disabled */
  1301. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1302. && !tboot_enabled())
  1303. return 1;
  1304. }
  1305. return 0;
  1306. }
  1307. static void kvm_cpu_vmxon(u64 addr)
  1308. {
  1309. asm volatile (ASM_VMX_VMXON_RAX
  1310. : : "a"(&addr), "m"(addr)
  1311. : "memory", "cc");
  1312. }
  1313. static int hardware_enable(void *garbage)
  1314. {
  1315. int cpu = raw_smp_processor_id();
  1316. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1317. u64 old, test_bits;
  1318. if (read_cr4() & X86_CR4_VMXE)
  1319. return -EBUSY;
  1320. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  1321. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1322. test_bits = FEATURE_CONTROL_LOCKED;
  1323. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1324. if (tboot_enabled())
  1325. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1326. if ((old & test_bits) != test_bits) {
  1327. /* enable and lock */
  1328. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1329. }
  1330. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1331. if (vmm_exclusive) {
  1332. kvm_cpu_vmxon(phys_addr);
  1333. ept_sync_global();
  1334. }
  1335. store_gdt(&__get_cpu_var(host_gdt));
  1336. return 0;
  1337. }
  1338. static void vmclear_local_loaded_vmcss(void)
  1339. {
  1340. int cpu = raw_smp_processor_id();
  1341. struct loaded_vmcs *v, *n;
  1342. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  1343. loaded_vmcss_on_cpu_link)
  1344. __loaded_vmcs_clear(v);
  1345. }
  1346. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1347. * tricks.
  1348. */
  1349. static void kvm_cpu_vmxoff(void)
  1350. {
  1351. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1352. }
  1353. static void hardware_disable(void *garbage)
  1354. {
  1355. if (vmm_exclusive) {
  1356. vmclear_local_loaded_vmcss();
  1357. kvm_cpu_vmxoff();
  1358. }
  1359. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1360. }
  1361. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1362. u32 msr, u32 *result)
  1363. {
  1364. u32 vmx_msr_low, vmx_msr_high;
  1365. u32 ctl = ctl_min | ctl_opt;
  1366. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1367. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1368. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1369. /* Ensure minimum (required) set of control bits are supported. */
  1370. if (ctl_min & ~ctl)
  1371. return -EIO;
  1372. *result = ctl;
  1373. return 0;
  1374. }
  1375. static __init bool allow_1_setting(u32 msr, u32 ctl)
  1376. {
  1377. u32 vmx_msr_low, vmx_msr_high;
  1378. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1379. return vmx_msr_high & ctl;
  1380. }
  1381. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1382. {
  1383. u32 vmx_msr_low, vmx_msr_high;
  1384. u32 min, opt, min2, opt2;
  1385. u32 _pin_based_exec_control = 0;
  1386. u32 _cpu_based_exec_control = 0;
  1387. u32 _cpu_based_2nd_exec_control = 0;
  1388. u32 _vmexit_control = 0;
  1389. u32 _vmentry_control = 0;
  1390. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1391. opt = PIN_BASED_VIRTUAL_NMIS;
  1392. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1393. &_pin_based_exec_control) < 0)
  1394. return -EIO;
  1395. min =
  1396. #ifdef CONFIG_X86_64
  1397. CPU_BASED_CR8_LOAD_EXITING |
  1398. CPU_BASED_CR8_STORE_EXITING |
  1399. #endif
  1400. CPU_BASED_CR3_LOAD_EXITING |
  1401. CPU_BASED_CR3_STORE_EXITING |
  1402. CPU_BASED_USE_IO_BITMAPS |
  1403. CPU_BASED_MOV_DR_EXITING |
  1404. CPU_BASED_USE_TSC_OFFSETING |
  1405. CPU_BASED_MWAIT_EXITING |
  1406. CPU_BASED_MONITOR_EXITING |
  1407. CPU_BASED_INVLPG_EXITING;
  1408. if (yield_on_hlt)
  1409. min |= CPU_BASED_HLT_EXITING;
  1410. opt = CPU_BASED_TPR_SHADOW |
  1411. CPU_BASED_USE_MSR_BITMAPS |
  1412. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1413. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1414. &_cpu_based_exec_control) < 0)
  1415. return -EIO;
  1416. #ifdef CONFIG_X86_64
  1417. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1418. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1419. ~CPU_BASED_CR8_STORE_EXITING;
  1420. #endif
  1421. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1422. min2 = 0;
  1423. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1424. SECONDARY_EXEC_WBINVD_EXITING |
  1425. SECONDARY_EXEC_ENABLE_VPID |
  1426. SECONDARY_EXEC_ENABLE_EPT |
  1427. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1428. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1429. SECONDARY_EXEC_RDTSCP;
  1430. if (adjust_vmx_controls(min2, opt2,
  1431. MSR_IA32_VMX_PROCBASED_CTLS2,
  1432. &_cpu_based_2nd_exec_control) < 0)
  1433. return -EIO;
  1434. }
  1435. #ifndef CONFIG_X86_64
  1436. if (!(_cpu_based_2nd_exec_control &
  1437. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1438. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1439. #endif
  1440. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1441. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1442. enabled */
  1443. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1444. CPU_BASED_CR3_STORE_EXITING |
  1445. CPU_BASED_INVLPG_EXITING);
  1446. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1447. vmx_capability.ept, vmx_capability.vpid);
  1448. }
  1449. min = 0;
  1450. #ifdef CONFIG_X86_64
  1451. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1452. #endif
  1453. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1454. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1455. &_vmexit_control) < 0)
  1456. return -EIO;
  1457. min = 0;
  1458. opt = VM_ENTRY_LOAD_IA32_PAT;
  1459. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1460. &_vmentry_control) < 0)
  1461. return -EIO;
  1462. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1463. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1464. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1465. return -EIO;
  1466. #ifdef CONFIG_X86_64
  1467. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1468. if (vmx_msr_high & (1u<<16))
  1469. return -EIO;
  1470. #endif
  1471. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1472. if (((vmx_msr_high >> 18) & 15) != 6)
  1473. return -EIO;
  1474. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1475. vmcs_conf->order = get_order(vmcs_config.size);
  1476. vmcs_conf->revision_id = vmx_msr_low;
  1477. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1478. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1479. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1480. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1481. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1482. cpu_has_load_ia32_efer =
  1483. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  1484. VM_ENTRY_LOAD_IA32_EFER)
  1485. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  1486. VM_EXIT_LOAD_IA32_EFER);
  1487. return 0;
  1488. }
  1489. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1490. {
  1491. int node = cpu_to_node(cpu);
  1492. struct page *pages;
  1493. struct vmcs *vmcs;
  1494. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1495. if (!pages)
  1496. return NULL;
  1497. vmcs = page_address(pages);
  1498. memset(vmcs, 0, vmcs_config.size);
  1499. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1500. return vmcs;
  1501. }
  1502. static struct vmcs *alloc_vmcs(void)
  1503. {
  1504. return alloc_vmcs_cpu(raw_smp_processor_id());
  1505. }
  1506. static void free_vmcs(struct vmcs *vmcs)
  1507. {
  1508. free_pages((unsigned long)vmcs, vmcs_config.order);
  1509. }
  1510. /*
  1511. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  1512. */
  1513. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  1514. {
  1515. if (!loaded_vmcs->vmcs)
  1516. return;
  1517. loaded_vmcs_clear(loaded_vmcs);
  1518. free_vmcs(loaded_vmcs->vmcs);
  1519. loaded_vmcs->vmcs = NULL;
  1520. }
  1521. static void free_kvm_area(void)
  1522. {
  1523. int cpu;
  1524. for_each_possible_cpu(cpu) {
  1525. free_vmcs(per_cpu(vmxarea, cpu));
  1526. per_cpu(vmxarea, cpu) = NULL;
  1527. }
  1528. }
  1529. static __init int alloc_kvm_area(void)
  1530. {
  1531. int cpu;
  1532. for_each_possible_cpu(cpu) {
  1533. struct vmcs *vmcs;
  1534. vmcs = alloc_vmcs_cpu(cpu);
  1535. if (!vmcs) {
  1536. free_kvm_area();
  1537. return -ENOMEM;
  1538. }
  1539. per_cpu(vmxarea, cpu) = vmcs;
  1540. }
  1541. return 0;
  1542. }
  1543. static __init int hardware_setup(void)
  1544. {
  1545. if (setup_vmcs_config(&vmcs_config) < 0)
  1546. return -EIO;
  1547. if (boot_cpu_has(X86_FEATURE_NX))
  1548. kvm_enable_efer_bits(EFER_NX);
  1549. if (!cpu_has_vmx_vpid())
  1550. enable_vpid = 0;
  1551. if (!cpu_has_vmx_ept() ||
  1552. !cpu_has_vmx_ept_4levels()) {
  1553. enable_ept = 0;
  1554. enable_unrestricted_guest = 0;
  1555. }
  1556. if (!cpu_has_vmx_unrestricted_guest())
  1557. enable_unrestricted_guest = 0;
  1558. if (!cpu_has_vmx_flexpriority())
  1559. flexpriority_enabled = 0;
  1560. if (!cpu_has_vmx_tpr_shadow())
  1561. kvm_x86_ops->update_cr8_intercept = NULL;
  1562. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1563. kvm_disable_largepages();
  1564. if (!cpu_has_vmx_ple())
  1565. ple_gap = 0;
  1566. return alloc_kvm_area();
  1567. }
  1568. static __exit void hardware_unsetup(void)
  1569. {
  1570. free_kvm_area();
  1571. }
  1572. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1573. {
  1574. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1575. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1576. vmcs_write16(sf->selector, save->selector);
  1577. vmcs_writel(sf->base, save->base);
  1578. vmcs_write32(sf->limit, save->limit);
  1579. vmcs_write32(sf->ar_bytes, save->ar);
  1580. } else {
  1581. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1582. << AR_DPL_SHIFT;
  1583. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1584. }
  1585. }
  1586. static void enter_pmode(struct kvm_vcpu *vcpu)
  1587. {
  1588. unsigned long flags;
  1589. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1590. vmx->emulation_required = 1;
  1591. vmx->rmode.vm86_active = 0;
  1592. vmx_segment_cache_clear(vmx);
  1593. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  1594. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1595. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1596. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1597. flags = vmcs_readl(GUEST_RFLAGS);
  1598. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1599. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1600. vmcs_writel(GUEST_RFLAGS, flags);
  1601. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1602. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1603. update_exception_bitmap(vcpu);
  1604. if (emulate_invalid_guest_state)
  1605. return;
  1606. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1607. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1608. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1609. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1610. vmx_segment_cache_clear(vmx);
  1611. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1612. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1613. vmcs_write16(GUEST_CS_SELECTOR,
  1614. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1615. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1616. }
  1617. static gva_t rmode_tss_base(struct kvm *kvm)
  1618. {
  1619. if (!kvm->arch.tss_addr) {
  1620. struct kvm_memslots *slots;
  1621. gfn_t base_gfn;
  1622. slots = kvm_memslots(kvm);
  1623. base_gfn = slots->memslots[0].base_gfn +
  1624. kvm->memslots->memslots[0].npages - 3;
  1625. return base_gfn << PAGE_SHIFT;
  1626. }
  1627. return kvm->arch.tss_addr;
  1628. }
  1629. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1630. {
  1631. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1632. save->selector = vmcs_read16(sf->selector);
  1633. save->base = vmcs_readl(sf->base);
  1634. save->limit = vmcs_read32(sf->limit);
  1635. save->ar = vmcs_read32(sf->ar_bytes);
  1636. vmcs_write16(sf->selector, save->base >> 4);
  1637. vmcs_write32(sf->base, save->base & 0xffff0);
  1638. vmcs_write32(sf->limit, 0xffff);
  1639. vmcs_write32(sf->ar_bytes, 0xf3);
  1640. if (save->base & 0xf)
  1641. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  1642. " aligned when entering protected mode (seg=%d)",
  1643. seg);
  1644. }
  1645. static void enter_rmode(struct kvm_vcpu *vcpu)
  1646. {
  1647. unsigned long flags;
  1648. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1649. if (enable_unrestricted_guest)
  1650. return;
  1651. vmx->emulation_required = 1;
  1652. vmx->rmode.vm86_active = 1;
  1653. /*
  1654. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  1655. * vcpu. Call it here with phys address pointing 16M below 4G.
  1656. */
  1657. if (!vcpu->kvm->arch.tss_addr) {
  1658. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  1659. "called before entering vcpu\n");
  1660. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  1661. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  1662. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  1663. }
  1664. vmx_segment_cache_clear(vmx);
  1665. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  1666. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1667. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1668. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1669. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1670. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1671. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1672. flags = vmcs_readl(GUEST_RFLAGS);
  1673. vmx->rmode.save_rflags = flags;
  1674. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1675. vmcs_writel(GUEST_RFLAGS, flags);
  1676. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1677. update_exception_bitmap(vcpu);
  1678. if (emulate_invalid_guest_state)
  1679. goto continue_rmode;
  1680. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1681. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1682. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1683. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1684. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1685. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1686. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1687. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1688. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1689. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1690. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1691. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1692. continue_rmode:
  1693. kvm_mmu_reset_context(vcpu);
  1694. }
  1695. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1696. {
  1697. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1698. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1699. if (!msr)
  1700. return;
  1701. /*
  1702. * Force kernel_gs_base reloading before EFER changes, as control
  1703. * of this msr depends on is_long_mode().
  1704. */
  1705. vmx_load_host_state(to_vmx(vcpu));
  1706. vcpu->arch.efer = efer;
  1707. if (efer & EFER_LMA) {
  1708. vmcs_write32(VM_ENTRY_CONTROLS,
  1709. vmcs_read32(VM_ENTRY_CONTROLS) |
  1710. VM_ENTRY_IA32E_MODE);
  1711. msr->data = efer;
  1712. } else {
  1713. vmcs_write32(VM_ENTRY_CONTROLS,
  1714. vmcs_read32(VM_ENTRY_CONTROLS) &
  1715. ~VM_ENTRY_IA32E_MODE);
  1716. msr->data = efer & ~EFER_LME;
  1717. }
  1718. setup_msrs(vmx);
  1719. }
  1720. #ifdef CONFIG_X86_64
  1721. static void enter_lmode(struct kvm_vcpu *vcpu)
  1722. {
  1723. u32 guest_tr_ar;
  1724. vmx_segment_cache_clear(to_vmx(vcpu));
  1725. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1726. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1727. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1728. __func__);
  1729. vmcs_write32(GUEST_TR_AR_BYTES,
  1730. (guest_tr_ar & ~AR_TYPE_MASK)
  1731. | AR_TYPE_BUSY_64_TSS);
  1732. }
  1733. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  1734. }
  1735. static void exit_lmode(struct kvm_vcpu *vcpu)
  1736. {
  1737. vmcs_write32(VM_ENTRY_CONTROLS,
  1738. vmcs_read32(VM_ENTRY_CONTROLS)
  1739. & ~VM_ENTRY_IA32E_MODE);
  1740. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  1741. }
  1742. #endif
  1743. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1744. {
  1745. vpid_sync_context(to_vmx(vcpu));
  1746. if (enable_ept) {
  1747. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1748. return;
  1749. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1750. }
  1751. }
  1752. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1753. {
  1754. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1755. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1756. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1757. }
  1758. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  1759. {
  1760. if (enable_ept && is_paging(vcpu))
  1761. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  1762. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  1763. }
  1764. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1765. {
  1766. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1767. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1768. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1769. }
  1770. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1771. {
  1772. if (!test_bit(VCPU_EXREG_PDPTR,
  1773. (unsigned long *)&vcpu->arch.regs_dirty))
  1774. return;
  1775. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1776. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  1777. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  1778. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  1779. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  1780. }
  1781. }
  1782. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1783. {
  1784. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1785. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1786. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1787. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1788. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1789. }
  1790. __set_bit(VCPU_EXREG_PDPTR,
  1791. (unsigned long *)&vcpu->arch.regs_avail);
  1792. __set_bit(VCPU_EXREG_PDPTR,
  1793. (unsigned long *)&vcpu->arch.regs_dirty);
  1794. }
  1795. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1796. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1797. unsigned long cr0,
  1798. struct kvm_vcpu *vcpu)
  1799. {
  1800. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  1801. vmx_decache_cr3(vcpu);
  1802. if (!(cr0 & X86_CR0_PG)) {
  1803. /* From paging/starting to nonpaging */
  1804. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1805. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1806. (CPU_BASED_CR3_LOAD_EXITING |
  1807. CPU_BASED_CR3_STORE_EXITING));
  1808. vcpu->arch.cr0 = cr0;
  1809. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1810. } else if (!is_paging(vcpu)) {
  1811. /* From nonpaging to paging */
  1812. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1813. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1814. ~(CPU_BASED_CR3_LOAD_EXITING |
  1815. CPU_BASED_CR3_STORE_EXITING));
  1816. vcpu->arch.cr0 = cr0;
  1817. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1818. }
  1819. if (!(cr0 & X86_CR0_WP))
  1820. *hw_cr0 &= ~X86_CR0_WP;
  1821. }
  1822. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1823. {
  1824. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1825. unsigned long hw_cr0;
  1826. if (enable_unrestricted_guest)
  1827. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1828. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1829. else
  1830. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1831. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1832. enter_pmode(vcpu);
  1833. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1834. enter_rmode(vcpu);
  1835. #ifdef CONFIG_X86_64
  1836. if (vcpu->arch.efer & EFER_LME) {
  1837. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1838. enter_lmode(vcpu);
  1839. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1840. exit_lmode(vcpu);
  1841. }
  1842. #endif
  1843. if (enable_ept)
  1844. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1845. if (!vcpu->fpu_active)
  1846. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1847. vmcs_writel(CR0_READ_SHADOW, cr0);
  1848. vmcs_writel(GUEST_CR0, hw_cr0);
  1849. vcpu->arch.cr0 = cr0;
  1850. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1851. }
  1852. static u64 construct_eptp(unsigned long root_hpa)
  1853. {
  1854. u64 eptp;
  1855. /* TODO write the value reading from MSR */
  1856. eptp = VMX_EPT_DEFAULT_MT |
  1857. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1858. eptp |= (root_hpa & PAGE_MASK);
  1859. return eptp;
  1860. }
  1861. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1862. {
  1863. unsigned long guest_cr3;
  1864. u64 eptp;
  1865. guest_cr3 = cr3;
  1866. if (enable_ept) {
  1867. eptp = construct_eptp(cr3);
  1868. vmcs_write64(EPT_POINTER, eptp);
  1869. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  1870. vcpu->kvm->arch.ept_identity_map_addr;
  1871. ept_load_pdptrs(vcpu);
  1872. }
  1873. vmx_flush_tlb(vcpu);
  1874. vmcs_writel(GUEST_CR3, guest_cr3);
  1875. }
  1876. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1877. {
  1878. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1879. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1880. if (cr4 & X86_CR4_VMXE) {
  1881. /*
  1882. * To use VMXON (and later other VMX instructions), a guest
  1883. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  1884. * So basically the check on whether to allow nested VMX
  1885. * is here.
  1886. */
  1887. if (!nested_vmx_allowed(vcpu))
  1888. return 1;
  1889. } else if (to_vmx(vcpu)->nested.vmxon)
  1890. return 1;
  1891. vcpu->arch.cr4 = cr4;
  1892. if (enable_ept) {
  1893. if (!is_paging(vcpu)) {
  1894. hw_cr4 &= ~X86_CR4_PAE;
  1895. hw_cr4 |= X86_CR4_PSE;
  1896. } else if (!(cr4 & X86_CR4_PAE)) {
  1897. hw_cr4 &= ~X86_CR4_PAE;
  1898. }
  1899. }
  1900. vmcs_writel(CR4_READ_SHADOW, cr4);
  1901. vmcs_writel(GUEST_CR4, hw_cr4);
  1902. return 0;
  1903. }
  1904. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1905. struct kvm_segment *var, int seg)
  1906. {
  1907. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1908. struct kvm_save_segment *save;
  1909. u32 ar;
  1910. if (vmx->rmode.vm86_active
  1911. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  1912. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  1913. || seg == VCPU_SREG_GS)
  1914. && !emulate_invalid_guest_state) {
  1915. switch (seg) {
  1916. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  1917. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  1918. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  1919. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  1920. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  1921. default: BUG();
  1922. }
  1923. var->selector = save->selector;
  1924. var->base = save->base;
  1925. var->limit = save->limit;
  1926. ar = save->ar;
  1927. if (seg == VCPU_SREG_TR
  1928. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  1929. goto use_saved_rmode_seg;
  1930. }
  1931. var->base = vmx_read_guest_seg_base(vmx, seg);
  1932. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  1933. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  1934. ar = vmx_read_guest_seg_ar(vmx, seg);
  1935. use_saved_rmode_seg:
  1936. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1937. ar = 0;
  1938. var->type = ar & 15;
  1939. var->s = (ar >> 4) & 1;
  1940. var->dpl = (ar >> 5) & 3;
  1941. var->present = (ar >> 7) & 1;
  1942. var->avl = (ar >> 12) & 1;
  1943. var->l = (ar >> 13) & 1;
  1944. var->db = (ar >> 14) & 1;
  1945. var->g = (ar >> 15) & 1;
  1946. var->unusable = (ar >> 16) & 1;
  1947. }
  1948. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1949. {
  1950. struct kvm_segment s;
  1951. if (to_vmx(vcpu)->rmode.vm86_active) {
  1952. vmx_get_segment(vcpu, &s, seg);
  1953. return s.base;
  1954. }
  1955. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  1956. }
  1957. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  1958. {
  1959. if (!is_protmode(vcpu))
  1960. return 0;
  1961. if (!is_long_mode(vcpu)
  1962. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  1963. return 3;
  1964. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  1965. }
  1966. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1967. {
  1968. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  1969. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1970. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  1971. }
  1972. return to_vmx(vcpu)->cpl;
  1973. }
  1974. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1975. {
  1976. u32 ar;
  1977. if (var->unusable)
  1978. ar = 1 << 16;
  1979. else {
  1980. ar = var->type & 15;
  1981. ar |= (var->s & 1) << 4;
  1982. ar |= (var->dpl & 3) << 5;
  1983. ar |= (var->present & 1) << 7;
  1984. ar |= (var->avl & 1) << 12;
  1985. ar |= (var->l & 1) << 13;
  1986. ar |= (var->db & 1) << 14;
  1987. ar |= (var->g & 1) << 15;
  1988. }
  1989. if (ar == 0) /* a 0 value means unusable */
  1990. ar = AR_UNUSABLE_MASK;
  1991. return ar;
  1992. }
  1993. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1994. struct kvm_segment *var, int seg)
  1995. {
  1996. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1997. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1998. u32 ar;
  1999. vmx_segment_cache_clear(vmx);
  2000. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2001. vmcs_write16(sf->selector, var->selector);
  2002. vmx->rmode.tr.selector = var->selector;
  2003. vmx->rmode.tr.base = var->base;
  2004. vmx->rmode.tr.limit = var->limit;
  2005. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2006. return;
  2007. }
  2008. vmcs_writel(sf->base, var->base);
  2009. vmcs_write32(sf->limit, var->limit);
  2010. vmcs_write16(sf->selector, var->selector);
  2011. if (vmx->rmode.vm86_active && var->s) {
  2012. /*
  2013. * Hack real-mode segments into vm86 compatibility.
  2014. */
  2015. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2016. vmcs_writel(sf->base, 0xf0000);
  2017. ar = 0xf3;
  2018. } else
  2019. ar = vmx_segment_access_rights(var);
  2020. /*
  2021. * Fix the "Accessed" bit in AR field of segment registers for older
  2022. * qemu binaries.
  2023. * IA32 arch specifies that at the time of processor reset the
  2024. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2025. * is setting it to 0 in the usedland code. This causes invalid guest
  2026. * state vmexit when "unrestricted guest" mode is turned on.
  2027. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2028. * tree. Newer qemu binaries with that qemu fix would not need this
  2029. * kvm hack.
  2030. */
  2031. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2032. ar |= 0x1; /* Accessed */
  2033. vmcs_write32(sf->ar_bytes, ar);
  2034. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2035. }
  2036. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2037. {
  2038. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2039. *db = (ar >> 14) & 1;
  2040. *l = (ar >> 13) & 1;
  2041. }
  2042. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2043. {
  2044. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2045. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2046. }
  2047. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2048. {
  2049. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2050. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2051. }
  2052. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2053. {
  2054. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2055. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2056. }
  2057. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2058. {
  2059. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2060. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2061. }
  2062. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2063. {
  2064. struct kvm_segment var;
  2065. u32 ar;
  2066. vmx_get_segment(vcpu, &var, seg);
  2067. ar = vmx_segment_access_rights(&var);
  2068. if (var.base != (var.selector << 4))
  2069. return false;
  2070. if (var.limit != 0xffff)
  2071. return false;
  2072. if (ar != 0xf3)
  2073. return false;
  2074. return true;
  2075. }
  2076. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2077. {
  2078. struct kvm_segment cs;
  2079. unsigned int cs_rpl;
  2080. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2081. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2082. if (cs.unusable)
  2083. return false;
  2084. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2085. return false;
  2086. if (!cs.s)
  2087. return false;
  2088. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2089. if (cs.dpl > cs_rpl)
  2090. return false;
  2091. } else {
  2092. if (cs.dpl != cs_rpl)
  2093. return false;
  2094. }
  2095. if (!cs.present)
  2096. return false;
  2097. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2098. return true;
  2099. }
  2100. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2101. {
  2102. struct kvm_segment ss;
  2103. unsigned int ss_rpl;
  2104. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2105. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2106. if (ss.unusable)
  2107. return true;
  2108. if (ss.type != 3 && ss.type != 7)
  2109. return false;
  2110. if (!ss.s)
  2111. return false;
  2112. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2113. return false;
  2114. if (!ss.present)
  2115. return false;
  2116. return true;
  2117. }
  2118. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2119. {
  2120. struct kvm_segment var;
  2121. unsigned int rpl;
  2122. vmx_get_segment(vcpu, &var, seg);
  2123. rpl = var.selector & SELECTOR_RPL_MASK;
  2124. if (var.unusable)
  2125. return true;
  2126. if (!var.s)
  2127. return false;
  2128. if (!var.present)
  2129. return false;
  2130. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2131. if (var.dpl < rpl) /* DPL < RPL */
  2132. return false;
  2133. }
  2134. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2135. * rights flags
  2136. */
  2137. return true;
  2138. }
  2139. static bool tr_valid(struct kvm_vcpu *vcpu)
  2140. {
  2141. struct kvm_segment tr;
  2142. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2143. if (tr.unusable)
  2144. return false;
  2145. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2146. return false;
  2147. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2148. return false;
  2149. if (!tr.present)
  2150. return false;
  2151. return true;
  2152. }
  2153. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2154. {
  2155. struct kvm_segment ldtr;
  2156. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2157. if (ldtr.unusable)
  2158. return true;
  2159. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2160. return false;
  2161. if (ldtr.type != 2)
  2162. return false;
  2163. if (!ldtr.present)
  2164. return false;
  2165. return true;
  2166. }
  2167. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2168. {
  2169. struct kvm_segment cs, ss;
  2170. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2171. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2172. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2173. (ss.selector & SELECTOR_RPL_MASK));
  2174. }
  2175. /*
  2176. * Check if guest state is valid. Returns true if valid, false if
  2177. * not.
  2178. * We assume that registers are always usable
  2179. */
  2180. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2181. {
  2182. /* real mode guest state checks */
  2183. if (!is_protmode(vcpu)) {
  2184. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2185. return false;
  2186. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2187. return false;
  2188. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2189. return false;
  2190. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2191. return false;
  2192. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2193. return false;
  2194. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2195. return false;
  2196. } else {
  2197. /* protected mode guest state checks */
  2198. if (!cs_ss_rpl_check(vcpu))
  2199. return false;
  2200. if (!code_segment_valid(vcpu))
  2201. return false;
  2202. if (!stack_segment_valid(vcpu))
  2203. return false;
  2204. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2205. return false;
  2206. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2207. return false;
  2208. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2209. return false;
  2210. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2211. return false;
  2212. if (!tr_valid(vcpu))
  2213. return false;
  2214. if (!ldtr_valid(vcpu))
  2215. return false;
  2216. }
  2217. /* TODO:
  2218. * - Add checks on RIP
  2219. * - Add checks on RFLAGS
  2220. */
  2221. return true;
  2222. }
  2223. static int init_rmode_tss(struct kvm *kvm)
  2224. {
  2225. gfn_t fn;
  2226. u16 data = 0;
  2227. int r, idx, ret = 0;
  2228. idx = srcu_read_lock(&kvm->srcu);
  2229. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2230. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2231. if (r < 0)
  2232. goto out;
  2233. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2234. r = kvm_write_guest_page(kvm, fn++, &data,
  2235. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2236. if (r < 0)
  2237. goto out;
  2238. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  2239. if (r < 0)
  2240. goto out;
  2241. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2242. if (r < 0)
  2243. goto out;
  2244. data = ~0;
  2245. r = kvm_write_guest_page(kvm, fn, &data,
  2246. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  2247. sizeof(u8));
  2248. if (r < 0)
  2249. goto out;
  2250. ret = 1;
  2251. out:
  2252. srcu_read_unlock(&kvm->srcu, idx);
  2253. return ret;
  2254. }
  2255. static int init_rmode_identity_map(struct kvm *kvm)
  2256. {
  2257. int i, idx, r, ret;
  2258. pfn_t identity_map_pfn;
  2259. u32 tmp;
  2260. if (!enable_ept)
  2261. return 1;
  2262. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  2263. printk(KERN_ERR "EPT: identity-mapping pagetable "
  2264. "haven't been allocated!\n");
  2265. return 0;
  2266. }
  2267. if (likely(kvm->arch.ept_identity_pagetable_done))
  2268. return 1;
  2269. ret = 0;
  2270. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2271. idx = srcu_read_lock(&kvm->srcu);
  2272. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2273. if (r < 0)
  2274. goto out;
  2275. /* Set up identity-mapping pagetable for EPT in real mode */
  2276. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2277. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2278. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2279. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2280. &tmp, i * sizeof(tmp), sizeof(tmp));
  2281. if (r < 0)
  2282. goto out;
  2283. }
  2284. kvm->arch.ept_identity_pagetable_done = true;
  2285. ret = 1;
  2286. out:
  2287. srcu_read_unlock(&kvm->srcu, idx);
  2288. return ret;
  2289. }
  2290. static void seg_setup(int seg)
  2291. {
  2292. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2293. unsigned int ar;
  2294. vmcs_write16(sf->selector, 0);
  2295. vmcs_writel(sf->base, 0);
  2296. vmcs_write32(sf->limit, 0xffff);
  2297. if (enable_unrestricted_guest) {
  2298. ar = 0x93;
  2299. if (seg == VCPU_SREG_CS)
  2300. ar |= 0x08; /* code segment */
  2301. } else
  2302. ar = 0xf3;
  2303. vmcs_write32(sf->ar_bytes, ar);
  2304. }
  2305. static int alloc_apic_access_page(struct kvm *kvm)
  2306. {
  2307. struct kvm_userspace_memory_region kvm_userspace_mem;
  2308. int r = 0;
  2309. mutex_lock(&kvm->slots_lock);
  2310. if (kvm->arch.apic_access_page)
  2311. goto out;
  2312. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2313. kvm_userspace_mem.flags = 0;
  2314. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2315. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2316. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2317. if (r)
  2318. goto out;
  2319. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2320. out:
  2321. mutex_unlock(&kvm->slots_lock);
  2322. return r;
  2323. }
  2324. static int alloc_identity_pagetable(struct kvm *kvm)
  2325. {
  2326. struct kvm_userspace_memory_region kvm_userspace_mem;
  2327. int r = 0;
  2328. mutex_lock(&kvm->slots_lock);
  2329. if (kvm->arch.ept_identity_pagetable)
  2330. goto out;
  2331. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2332. kvm_userspace_mem.flags = 0;
  2333. kvm_userspace_mem.guest_phys_addr =
  2334. kvm->arch.ept_identity_map_addr;
  2335. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2336. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2337. if (r)
  2338. goto out;
  2339. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2340. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2341. out:
  2342. mutex_unlock(&kvm->slots_lock);
  2343. return r;
  2344. }
  2345. static void allocate_vpid(struct vcpu_vmx *vmx)
  2346. {
  2347. int vpid;
  2348. vmx->vpid = 0;
  2349. if (!enable_vpid)
  2350. return;
  2351. spin_lock(&vmx_vpid_lock);
  2352. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2353. if (vpid < VMX_NR_VPIDS) {
  2354. vmx->vpid = vpid;
  2355. __set_bit(vpid, vmx_vpid_bitmap);
  2356. }
  2357. spin_unlock(&vmx_vpid_lock);
  2358. }
  2359. static void free_vpid(struct vcpu_vmx *vmx)
  2360. {
  2361. if (!enable_vpid)
  2362. return;
  2363. spin_lock(&vmx_vpid_lock);
  2364. if (vmx->vpid != 0)
  2365. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2366. spin_unlock(&vmx_vpid_lock);
  2367. }
  2368. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2369. {
  2370. int f = sizeof(unsigned long);
  2371. if (!cpu_has_vmx_msr_bitmap())
  2372. return;
  2373. /*
  2374. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2375. * have the write-low and read-high bitmap offsets the wrong way round.
  2376. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2377. */
  2378. if (msr <= 0x1fff) {
  2379. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2380. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2381. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2382. msr &= 0x1fff;
  2383. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2384. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2385. }
  2386. }
  2387. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2388. {
  2389. if (!longmode_only)
  2390. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2391. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2392. }
  2393. /*
  2394. * Sets up the vmcs for emulated real mode.
  2395. */
  2396. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  2397. {
  2398. u32 host_sysenter_cs, msr_low, msr_high;
  2399. u32 junk;
  2400. u64 host_pat;
  2401. unsigned long a;
  2402. struct desc_ptr dt;
  2403. int i;
  2404. unsigned long kvm_vmx_return;
  2405. u32 exec_control;
  2406. /* I/O */
  2407. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  2408. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  2409. if (cpu_has_vmx_msr_bitmap())
  2410. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  2411. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  2412. /* Control */
  2413. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  2414. vmcs_config.pin_based_exec_ctrl);
  2415. exec_control = vmcs_config.cpu_based_exec_ctrl;
  2416. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2417. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2418. #ifdef CONFIG_X86_64
  2419. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2420. CPU_BASED_CR8_LOAD_EXITING;
  2421. #endif
  2422. }
  2423. if (!enable_ept)
  2424. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2425. CPU_BASED_CR3_LOAD_EXITING |
  2426. CPU_BASED_INVLPG_EXITING;
  2427. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2428. if (cpu_has_secondary_exec_ctrls()) {
  2429. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2430. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2431. exec_control &=
  2432. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2433. if (vmx->vpid == 0)
  2434. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2435. if (!enable_ept) {
  2436. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2437. enable_unrestricted_guest = 0;
  2438. }
  2439. if (!enable_unrestricted_guest)
  2440. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2441. if (!ple_gap)
  2442. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2443. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2444. }
  2445. if (ple_gap) {
  2446. vmcs_write32(PLE_GAP, ple_gap);
  2447. vmcs_write32(PLE_WINDOW, ple_window);
  2448. }
  2449. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2450. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2451. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2452. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  2453. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2454. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2455. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2456. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2457. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2458. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  2459. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  2460. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2461. #ifdef CONFIG_X86_64
  2462. rdmsrl(MSR_FS_BASE, a);
  2463. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2464. rdmsrl(MSR_GS_BASE, a);
  2465. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2466. #else
  2467. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2468. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2469. #endif
  2470. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2471. native_store_idt(&dt);
  2472. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  2473. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2474. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2475. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2476. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2477. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  2478. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2479. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  2480. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2481. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2482. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2483. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2484. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2485. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2486. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2487. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2488. host_pat = msr_low | ((u64) msr_high << 32);
  2489. vmcs_write64(HOST_IA32_PAT, host_pat);
  2490. }
  2491. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2492. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2493. host_pat = msr_low | ((u64) msr_high << 32);
  2494. /* Write the default value follow host pat */
  2495. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2496. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2497. vmx->vcpu.arch.pat = host_pat;
  2498. }
  2499. for (i = 0; i < NR_VMX_MSR; ++i) {
  2500. u32 index = vmx_msr_index[i];
  2501. u32 data_low, data_high;
  2502. int j = vmx->nmsrs;
  2503. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2504. continue;
  2505. if (wrmsr_safe(index, data_low, data_high) < 0)
  2506. continue;
  2507. vmx->guest_msrs[j].index = i;
  2508. vmx->guest_msrs[j].data = 0;
  2509. vmx->guest_msrs[j].mask = -1ull;
  2510. ++vmx->nmsrs;
  2511. }
  2512. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2513. /* 22.2.1, 20.8.1 */
  2514. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2515. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2516. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2517. if (enable_ept)
  2518. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2519. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2520. kvm_write_tsc(&vmx->vcpu, 0);
  2521. return 0;
  2522. }
  2523. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2524. {
  2525. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2526. u64 msr;
  2527. int ret;
  2528. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2529. vmx->rmode.vm86_active = 0;
  2530. vmx->soft_vnmi_blocked = 0;
  2531. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2532. kvm_set_cr8(&vmx->vcpu, 0);
  2533. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2534. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2535. msr |= MSR_IA32_APICBASE_BSP;
  2536. kvm_set_apic_base(&vmx->vcpu, msr);
  2537. ret = fx_init(&vmx->vcpu);
  2538. if (ret != 0)
  2539. goto out;
  2540. vmx_segment_cache_clear(vmx);
  2541. seg_setup(VCPU_SREG_CS);
  2542. /*
  2543. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2544. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2545. */
  2546. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2547. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2548. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2549. } else {
  2550. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2551. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2552. }
  2553. seg_setup(VCPU_SREG_DS);
  2554. seg_setup(VCPU_SREG_ES);
  2555. seg_setup(VCPU_SREG_FS);
  2556. seg_setup(VCPU_SREG_GS);
  2557. seg_setup(VCPU_SREG_SS);
  2558. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2559. vmcs_writel(GUEST_TR_BASE, 0);
  2560. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2561. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2562. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2563. vmcs_writel(GUEST_LDTR_BASE, 0);
  2564. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2565. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2566. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2567. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2568. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2569. vmcs_writel(GUEST_RFLAGS, 0x02);
  2570. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2571. kvm_rip_write(vcpu, 0xfff0);
  2572. else
  2573. kvm_rip_write(vcpu, 0);
  2574. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2575. vmcs_writel(GUEST_DR7, 0x400);
  2576. vmcs_writel(GUEST_GDTR_BASE, 0);
  2577. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2578. vmcs_writel(GUEST_IDTR_BASE, 0);
  2579. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2580. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  2581. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2582. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2583. /* Special registers */
  2584. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2585. setup_msrs(vmx);
  2586. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2587. if (cpu_has_vmx_tpr_shadow()) {
  2588. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2589. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2590. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2591. __pa(vmx->vcpu.arch.apic->regs));
  2592. vmcs_write32(TPR_THRESHOLD, 0);
  2593. }
  2594. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2595. vmcs_write64(APIC_ACCESS_ADDR,
  2596. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2597. if (vmx->vpid != 0)
  2598. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2599. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2600. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2601. vmx_set_cr4(&vmx->vcpu, 0);
  2602. vmx_set_efer(&vmx->vcpu, 0);
  2603. vmx_fpu_activate(&vmx->vcpu);
  2604. update_exception_bitmap(&vmx->vcpu);
  2605. vpid_sync_context(vmx);
  2606. ret = 0;
  2607. /* HACK: Don't enable emulation on guest boot/reset */
  2608. vmx->emulation_required = 0;
  2609. out:
  2610. return ret;
  2611. }
  2612. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2613. {
  2614. u32 cpu_based_vm_exec_control;
  2615. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2616. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2617. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2618. }
  2619. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2620. {
  2621. u32 cpu_based_vm_exec_control;
  2622. if (!cpu_has_virtual_nmis()) {
  2623. enable_irq_window(vcpu);
  2624. return;
  2625. }
  2626. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  2627. enable_irq_window(vcpu);
  2628. return;
  2629. }
  2630. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2631. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2632. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2633. }
  2634. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2635. {
  2636. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2637. uint32_t intr;
  2638. int irq = vcpu->arch.interrupt.nr;
  2639. trace_kvm_inj_virq(irq);
  2640. ++vcpu->stat.irq_injections;
  2641. if (vmx->rmode.vm86_active) {
  2642. int inc_eip = 0;
  2643. if (vcpu->arch.interrupt.soft)
  2644. inc_eip = vcpu->arch.event_exit_inst_len;
  2645. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  2646. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2647. return;
  2648. }
  2649. intr = irq | INTR_INFO_VALID_MASK;
  2650. if (vcpu->arch.interrupt.soft) {
  2651. intr |= INTR_TYPE_SOFT_INTR;
  2652. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2653. vmx->vcpu.arch.event_exit_inst_len);
  2654. } else
  2655. intr |= INTR_TYPE_EXT_INTR;
  2656. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2657. vmx_clear_hlt(vcpu);
  2658. }
  2659. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2660. {
  2661. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2662. if (!cpu_has_virtual_nmis()) {
  2663. /*
  2664. * Tracking the NMI-blocked state in software is built upon
  2665. * finding the next open IRQ window. This, in turn, depends on
  2666. * well-behaving guests: They have to keep IRQs disabled at
  2667. * least as long as the NMI handler runs. Otherwise we may
  2668. * cause NMI nesting, maybe breaking the guest. But as this is
  2669. * highly unlikely, we can live with the residual risk.
  2670. */
  2671. vmx->soft_vnmi_blocked = 1;
  2672. vmx->vnmi_blocked_time = 0;
  2673. }
  2674. ++vcpu->stat.nmi_injections;
  2675. vmx->nmi_known_unmasked = false;
  2676. if (vmx->rmode.vm86_active) {
  2677. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  2678. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2679. return;
  2680. }
  2681. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2682. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2683. vmx_clear_hlt(vcpu);
  2684. }
  2685. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2686. {
  2687. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2688. return 0;
  2689. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2690. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  2691. | GUEST_INTR_STATE_NMI));
  2692. }
  2693. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2694. {
  2695. if (!cpu_has_virtual_nmis())
  2696. return to_vmx(vcpu)->soft_vnmi_blocked;
  2697. if (to_vmx(vcpu)->nmi_known_unmasked)
  2698. return false;
  2699. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  2700. }
  2701. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2702. {
  2703. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2704. if (!cpu_has_virtual_nmis()) {
  2705. if (vmx->soft_vnmi_blocked != masked) {
  2706. vmx->soft_vnmi_blocked = masked;
  2707. vmx->vnmi_blocked_time = 0;
  2708. }
  2709. } else {
  2710. vmx->nmi_known_unmasked = !masked;
  2711. if (masked)
  2712. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2713. GUEST_INTR_STATE_NMI);
  2714. else
  2715. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2716. GUEST_INTR_STATE_NMI);
  2717. }
  2718. }
  2719. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2720. {
  2721. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2722. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2723. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2724. }
  2725. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2726. {
  2727. int ret;
  2728. struct kvm_userspace_memory_region tss_mem = {
  2729. .slot = TSS_PRIVATE_MEMSLOT,
  2730. .guest_phys_addr = addr,
  2731. .memory_size = PAGE_SIZE * 3,
  2732. .flags = 0,
  2733. };
  2734. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2735. if (ret)
  2736. return ret;
  2737. kvm->arch.tss_addr = addr;
  2738. if (!init_rmode_tss(kvm))
  2739. return -ENOMEM;
  2740. return 0;
  2741. }
  2742. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2743. int vec, u32 err_code)
  2744. {
  2745. /*
  2746. * Instruction with address size override prefix opcode 0x67
  2747. * Cause the #SS fault with 0 error code in VM86 mode.
  2748. */
  2749. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2750. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  2751. return 1;
  2752. /*
  2753. * Forward all other exceptions that are valid in real mode.
  2754. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2755. * the required debugging infrastructure rework.
  2756. */
  2757. switch (vec) {
  2758. case DB_VECTOR:
  2759. if (vcpu->guest_debug &
  2760. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2761. return 0;
  2762. kvm_queue_exception(vcpu, vec);
  2763. return 1;
  2764. case BP_VECTOR:
  2765. /*
  2766. * Update instruction length as we may reinject the exception
  2767. * from user space while in guest debugging mode.
  2768. */
  2769. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2770. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2771. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2772. return 0;
  2773. /* fall through */
  2774. case DE_VECTOR:
  2775. case OF_VECTOR:
  2776. case BR_VECTOR:
  2777. case UD_VECTOR:
  2778. case DF_VECTOR:
  2779. case SS_VECTOR:
  2780. case GP_VECTOR:
  2781. case MF_VECTOR:
  2782. kvm_queue_exception(vcpu, vec);
  2783. return 1;
  2784. }
  2785. return 0;
  2786. }
  2787. /*
  2788. * Trigger machine check on the host. We assume all the MSRs are already set up
  2789. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2790. * We pass a fake environment to the machine check handler because we want
  2791. * the guest to be always treated like user space, no matter what context
  2792. * it used internally.
  2793. */
  2794. static void kvm_machine_check(void)
  2795. {
  2796. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2797. struct pt_regs regs = {
  2798. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2799. .flags = X86_EFLAGS_IF,
  2800. };
  2801. do_machine_check(&regs, 0);
  2802. #endif
  2803. }
  2804. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2805. {
  2806. /* already handled by vcpu_run */
  2807. return 1;
  2808. }
  2809. static int handle_exception(struct kvm_vcpu *vcpu)
  2810. {
  2811. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2812. struct kvm_run *kvm_run = vcpu->run;
  2813. u32 intr_info, ex_no, error_code;
  2814. unsigned long cr2, rip, dr6;
  2815. u32 vect_info;
  2816. enum emulation_result er;
  2817. vect_info = vmx->idt_vectoring_info;
  2818. intr_info = vmx->exit_intr_info;
  2819. if (is_machine_check(intr_info))
  2820. return handle_machine_check(vcpu);
  2821. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2822. !is_page_fault(intr_info)) {
  2823. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2824. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2825. vcpu->run->internal.ndata = 2;
  2826. vcpu->run->internal.data[0] = vect_info;
  2827. vcpu->run->internal.data[1] = intr_info;
  2828. return 0;
  2829. }
  2830. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2831. return 1; /* already handled by vmx_vcpu_run() */
  2832. if (is_no_device(intr_info)) {
  2833. vmx_fpu_activate(vcpu);
  2834. return 1;
  2835. }
  2836. if (is_invalid_opcode(intr_info)) {
  2837. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  2838. if (er != EMULATE_DONE)
  2839. kvm_queue_exception(vcpu, UD_VECTOR);
  2840. return 1;
  2841. }
  2842. error_code = 0;
  2843. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2844. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2845. if (is_page_fault(intr_info)) {
  2846. /* EPT won't cause page fault directly */
  2847. if (enable_ept)
  2848. BUG();
  2849. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2850. trace_kvm_page_fault(cr2, error_code);
  2851. if (kvm_event_needs_reinjection(vcpu))
  2852. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2853. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  2854. }
  2855. if (vmx->rmode.vm86_active &&
  2856. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2857. error_code)) {
  2858. if (vcpu->arch.halt_request) {
  2859. vcpu->arch.halt_request = 0;
  2860. return kvm_emulate_halt(vcpu);
  2861. }
  2862. return 1;
  2863. }
  2864. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2865. switch (ex_no) {
  2866. case DB_VECTOR:
  2867. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2868. if (!(vcpu->guest_debug &
  2869. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2870. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2871. kvm_queue_exception(vcpu, DB_VECTOR);
  2872. return 1;
  2873. }
  2874. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2875. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2876. /* fall through */
  2877. case BP_VECTOR:
  2878. /*
  2879. * Update instruction length as we may reinject #BP from
  2880. * user space while in guest debugging mode. Reading it for
  2881. * #DB as well causes no harm, it is not used in that case.
  2882. */
  2883. vmx->vcpu.arch.event_exit_inst_len =
  2884. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2885. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2886. rip = kvm_rip_read(vcpu);
  2887. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2888. kvm_run->debug.arch.exception = ex_no;
  2889. break;
  2890. default:
  2891. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2892. kvm_run->ex.exception = ex_no;
  2893. kvm_run->ex.error_code = error_code;
  2894. break;
  2895. }
  2896. return 0;
  2897. }
  2898. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2899. {
  2900. ++vcpu->stat.irq_exits;
  2901. return 1;
  2902. }
  2903. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2904. {
  2905. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2906. return 0;
  2907. }
  2908. static int handle_io(struct kvm_vcpu *vcpu)
  2909. {
  2910. unsigned long exit_qualification;
  2911. int size, in, string;
  2912. unsigned port;
  2913. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2914. string = (exit_qualification & 16) != 0;
  2915. in = (exit_qualification & 8) != 0;
  2916. ++vcpu->stat.io_exits;
  2917. if (string || in)
  2918. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  2919. port = exit_qualification >> 16;
  2920. size = (exit_qualification & 7) + 1;
  2921. skip_emulated_instruction(vcpu);
  2922. return kvm_fast_pio_out(vcpu, size, port);
  2923. }
  2924. static void
  2925. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2926. {
  2927. /*
  2928. * Patch in the VMCALL instruction:
  2929. */
  2930. hypercall[0] = 0x0f;
  2931. hypercall[1] = 0x01;
  2932. hypercall[2] = 0xc1;
  2933. }
  2934. static int handle_cr(struct kvm_vcpu *vcpu)
  2935. {
  2936. unsigned long exit_qualification, val;
  2937. int cr;
  2938. int reg;
  2939. int err;
  2940. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2941. cr = exit_qualification & 15;
  2942. reg = (exit_qualification >> 8) & 15;
  2943. switch ((exit_qualification >> 4) & 3) {
  2944. case 0: /* mov to cr */
  2945. val = kvm_register_read(vcpu, reg);
  2946. trace_kvm_cr_write(cr, val);
  2947. switch (cr) {
  2948. case 0:
  2949. err = kvm_set_cr0(vcpu, val);
  2950. kvm_complete_insn_gp(vcpu, err);
  2951. return 1;
  2952. case 3:
  2953. err = kvm_set_cr3(vcpu, val);
  2954. kvm_complete_insn_gp(vcpu, err);
  2955. return 1;
  2956. case 4:
  2957. err = kvm_set_cr4(vcpu, val);
  2958. kvm_complete_insn_gp(vcpu, err);
  2959. return 1;
  2960. case 8: {
  2961. u8 cr8_prev = kvm_get_cr8(vcpu);
  2962. u8 cr8 = kvm_register_read(vcpu, reg);
  2963. err = kvm_set_cr8(vcpu, cr8);
  2964. kvm_complete_insn_gp(vcpu, err);
  2965. if (irqchip_in_kernel(vcpu->kvm))
  2966. return 1;
  2967. if (cr8_prev <= cr8)
  2968. return 1;
  2969. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2970. return 0;
  2971. }
  2972. };
  2973. break;
  2974. case 2: /* clts */
  2975. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2976. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2977. skip_emulated_instruction(vcpu);
  2978. vmx_fpu_activate(vcpu);
  2979. return 1;
  2980. case 1: /*mov from cr*/
  2981. switch (cr) {
  2982. case 3:
  2983. val = kvm_read_cr3(vcpu);
  2984. kvm_register_write(vcpu, reg, val);
  2985. trace_kvm_cr_read(cr, val);
  2986. skip_emulated_instruction(vcpu);
  2987. return 1;
  2988. case 8:
  2989. val = kvm_get_cr8(vcpu);
  2990. kvm_register_write(vcpu, reg, val);
  2991. trace_kvm_cr_read(cr, val);
  2992. skip_emulated_instruction(vcpu);
  2993. return 1;
  2994. }
  2995. break;
  2996. case 3: /* lmsw */
  2997. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2998. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2999. kvm_lmsw(vcpu, val);
  3000. skip_emulated_instruction(vcpu);
  3001. return 1;
  3002. default:
  3003. break;
  3004. }
  3005. vcpu->run->exit_reason = 0;
  3006. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3007. (int)(exit_qualification >> 4) & 3, cr);
  3008. return 0;
  3009. }
  3010. static int handle_dr(struct kvm_vcpu *vcpu)
  3011. {
  3012. unsigned long exit_qualification;
  3013. int dr, reg;
  3014. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3015. if (!kvm_require_cpl(vcpu, 0))
  3016. return 1;
  3017. dr = vmcs_readl(GUEST_DR7);
  3018. if (dr & DR7_GD) {
  3019. /*
  3020. * As the vm-exit takes precedence over the debug trap, we
  3021. * need to emulate the latter, either for the host or the
  3022. * guest debugging itself.
  3023. */
  3024. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3025. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3026. vcpu->run->debug.arch.dr7 = dr;
  3027. vcpu->run->debug.arch.pc =
  3028. vmcs_readl(GUEST_CS_BASE) +
  3029. vmcs_readl(GUEST_RIP);
  3030. vcpu->run->debug.arch.exception = DB_VECTOR;
  3031. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3032. return 0;
  3033. } else {
  3034. vcpu->arch.dr7 &= ~DR7_GD;
  3035. vcpu->arch.dr6 |= DR6_BD;
  3036. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3037. kvm_queue_exception(vcpu, DB_VECTOR);
  3038. return 1;
  3039. }
  3040. }
  3041. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3042. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3043. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3044. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3045. unsigned long val;
  3046. if (!kvm_get_dr(vcpu, dr, &val))
  3047. kvm_register_write(vcpu, reg, val);
  3048. } else
  3049. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3050. skip_emulated_instruction(vcpu);
  3051. return 1;
  3052. }
  3053. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3054. {
  3055. vmcs_writel(GUEST_DR7, val);
  3056. }
  3057. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3058. {
  3059. kvm_emulate_cpuid(vcpu);
  3060. return 1;
  3061. }
  3062. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3063. {
  3064. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3065. u64 data;
  3066. if (vmx_get_msr(vcpu, ecx, &data)) {
  3067. trace_kvm_msr_read_ex(ecx);
  3068. kvm_inject_gp(vcpu, 0);
  3069. return 1;
  3070. }
  3071. trace_kvm_msr_read(ecx, data);
  3072. /* FIXME: handling of bits 32:63 of rax, rdx */
  3073. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3074. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3075. skip_emulated_instruction(vcpu);
  3076. return 1;
  3077. }
  3078. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3079. {
  3080. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3081. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3082. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3083. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3084. trace_kvm_msr_write_ex(ecx, data);
  3085. kvm_inject_gp(vcpu, 0);
  3086. return 1;
  3087. }
  3088. trace_kvm_msr_write(ecx, data);
  3089. skip_emulated_instruction(vcpu);
  3090. return 1;
  3091. }
  3092. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3093. {
  3094. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3095. return 1;
  3096. }
  3097. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  3098. {
  3099. u32 cpu_based_vm_exec_control;
  3100. /* clear pending irq */
  3101. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3102. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  3103. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3104. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3105. ++vcpu->stat.irq_window_exits;
  3106. /*
  3107. * If the user space waits to inject interrupts, exit as soon as
  3108. * possible
  3109. */
  3110. if (!irqchip_in_kernel(vcpu->kvm) &&
  3111. vcpu->run->request_interrupt_window &&
  3112. !kvm_cpu_has_interrupt(vcpu)) {
  3113. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  3114. return 0;
  3115. }
  3116. return 1;
  3117. }
  3118. static int handle_halt(struct kvm_vcpu *vcpu)
  3119. {
  3120. skip_emulated_instruction(vcpu);
  3121. return kvm_emulate_halt(vcpu);
  3122. }
  3123. static int handle_vmcall(struct kvm_vcpu *vcpu)
  3124. {
  3125. skip_emulated_instruction(vcpu);
  3126. kvm_emulate_hypercall(vcpu);
  3127. return 1;
  3128. }
  3129. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  3130. {
  3131. kvm_queue_exception(vcpu, UD_VECTOR);
  3132. return 1;
  3133. }
  3134. static int handle_invd(struct kvm_vcpu *vcpu)
  3135. {
  3136. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3137. }
  3138. static int handle_invlpg(struct kvm_vcpu *vcpu)
  3139. {
  3140. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3141. kvm_mmu_invlpg(vcpu, exit_qualification);
  3142. skip_emulated_instruction(vcpu);
  3143. return 1;
  3144. }
  3145. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  3146. {
  3147. skip_emulated_instruction(vcpu);
  3148. kvm_emulate_wbinvd(vcpu);
  3149. return 1;
  3150. }
  3151. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  3152. {
  3153. u64 new_bv = kvm_read_edx_eax(vcpu);
  3154. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3155. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  3156. skip_emulated_instruction(vcpu);
  3157. return 1;
  3158. }
  3159. static int handle_apic_access(struct kvm_vcpu *vcpu)
  3160. {
  3161. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3162. }
  3163. static int handle_task_switch(struct kvm_vcpu *vcpu)
  3164. {
  3165. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3166. unsigned long exit_qualification;
  3167. bool has_error_code = false;
  3168. u32 error_code = 0;
  3169. u16 tss_selector;
  3170. int reason, type, idt_v;
  3171. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  3172. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  3173. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3174. reason = (u32)exit_qualification >> 30;
  3175. if (reason == TASK_SWITCH_GATE && idt_v) {
  3176. switch (type) {
  3177. case INTR_TYPE_NMI_INTR:
  3178. vcpu->arch.nmi_injected = false;
  3179. vmx_set_nmi_mask(vcpu, true);
  3180. break;
  3181. case INTR_TYPE_EXT_INTR:
  3182. case INTR_TYPE_SOFT_INTR:
  3183. kvm_clear_interrupt_queue(vcpu);
  3184. break;
  3185. case INTR_TYPE_HARD_EXCEPTION:
  3186. if (vmx->idt_vectoring_info &
  3187. VECTORING_INFO_DELIVER_CODE_MASK) {
  3188. has_error_code = true;
  3189. error_code =
  3190. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3191. }
  3192. /* fall through */
  3193. case INTR_TYPE_SOFT_EXCEPTION:
  3194. kvm_clear_exception_queue(vcpu);
  3195. break;
  3196. default:
  3197. break;
  3198. }
  3199. }
  3200. tss_selector = exit_qualification;
  3201. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  3202. type != INTR_TYPE_EXT_INTR &&
  3203. type != INTR_TYPE_NMI_INTR))
  3204. skip_emulated_instruction(vcpu);
  3205. if (kvm_task_switch(vcpu, tss_selector, reason,
  3206. has_error_code, error_code) == EMULATE_FAIL) {
  3207. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3208. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3209. vcpu->run->internal.ndata = 0;
  3210. return 0;
  3211. }
  3212. /* clear all local breakpoint enable flags */
  3213. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  3214. /*
  3215. * TODO: What about debug traps on tss switch?
  3216. * Are we supposed to inject them and update dr6?
  3217. */
  3218. return 1;
  3219. }
  3220. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  3221. {
  3222. unsigned long exit_qualification;
  3223. gpa_t gpa;
  3224. int gla_validity;
  3225. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3226. if (exit_qualification & (1 << 6)) {
  3227. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  3228. return -EINVAL;
  3229. }
  3230. gla_validity = (exit_qualification >> 7) & 0x3;
  3231. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  3232. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  3233. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  3234. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  3235. vmcs_readl(GUEST_LINEAR_ADDRESS));
  3236. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  3237. (long unsigned int)exit_qualification);
  3238. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3239. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  3240. return 0;
  3241. }
  3242. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3243. trace_kvm_page_fault(gpa, exit_qualification);
  3244. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  3245. }
  3246. static u64 ept_rsvd_mask(u64 spte, int level)
  3247. {
  3248. int i;
  3249. u64 mask = 0;
  3250. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  3251. mask |= (1ULL << i);
  3252. if (level > 2)
  3253. /* bits 7:3 reserved */
  3254. mask |= 0xf8;
  3255. else if (level == 2) {
  3256. if (spte & (1ULL << 7))
  3257. /* 2MB ref, bits 20:12 reserved */
  3258. mask |= 0x1ff000;
  3259. else
  3260. /* bits 6:3 reserved */
  3261. mask |= 0x78;
  3262. }
  3263. return mask;
  3264. }
  3265. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  3266. int level)
  3267. {
  3268. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  3269. /* 010b (write-only) */
  3270. WARN_ON((spte & 0x7) == 0x2);
  3271. /* 110b (write/execute) */
  3272. WARN_ON((spte & 0x7) == 0x6);
  3273. /* 100b (execute-only) and value not supported by logical processor */
  3274. if (!cpu_has_vmx_ept_execute_only())
  3275. WARN_ON((spte & 0x7) == 0x4);
  3276. /* not 000b */
  3277. if ((spte & 0x7)) {
  3278. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  3279. if (rsvd_bits != 0) {
  3280. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  3281. __func__, rsvd_bits);
  3282. WARN_ON(1);
  3283. }
  3284. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  3285. u64 ept_mem_type = (spte & 0x38) >> 3;
  3286. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  3287. ept_mem_type == 7) {
  3288. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  3289. __func__, ept_mem_type);
  3290. WARN_ON(1);
  3291. }
  3292. }
  3293. }
  3294. }
  3295. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  3296. {
  3297. u64 sptes[4];
  3298. int nr_sptes, i;
  3299. gpa_t gpa;
  3300. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3301. printk(KERN_ERR "EPT: Misconfiguration.\n");
  3302. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  3303. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  3304. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  3305. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  3306. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3307. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3308. return 0;
  3309. }
  3310. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3311. {
  3312. u32 cpu_based_vm_exec_control;
  3313. /* clear pending NMI */
  3314. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3315. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3316. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3317. ++vcpu->stat.nmi_window_exits;
  3318. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3319. return 1;
  3320. }
  3321. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3322. {
  3323. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3324. enum emulation_result err = EMULATE_DONE;
  3325. int ret = 1;
  3326. u32 cpu_exec_ctrl;
  3327. bool intr_window_requested;
  3328. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3329. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  3330. while (!guest_state_valid(vcpu)) {
  3331. if (intr_window_requested
  3332. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  3333. return handle_interrupt_window(&vmx->vcpu);
  3334. err = emulate_instruction(vcpu, 0);
  3335. if (err == EMULATE_DO_MMIO) {
  3336. ret = 0;
  3337. goto out;
  3338. }
  3339. if (err != EMULATE_DONE)
  3340. return 0;
  3341. if (signal_pending(current))
  3342. goto out;
  3343. if (need_resched())
  3344. schedule();
  3345. }
  3346. vmx->emulation_required = 0;
  3347. out:
  3348. return ret;
  3349. }
  3350. /*
  3351. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3352. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3353. */
  3354. static int handle_pause(struct kvm_vcpu *vcpu)
  3355. {
  3356. skip_emulated_instruction(vcpu);
  3357. kvm_vcpu_on_spin(vcpu);
  3358. return 1;
  3359. }
  3360. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3361. {
  3362. kvm_queue_exception(vcpu, UD_VECTOR);
  3363. return 1;
  3364. }
  3365. /*
  3366. * Emulate the VMXON instruction.
  3367. * Currently, we just remember that VMX is active, and do not save or even
  3368. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  3369. * do not currently need to store anything in that guest-allocated memory
  3370. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  3371. * argument is different from the VMXON pointer (which the spec says they do).
  3372. */
  3373. static int handle_vmon(struct kvm_vcpu *vcpu)
  3374. {
  3375. struct kvm_segment cs;
  3376. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3377. /* The Intel VMX Instruction Reference lists a bunch of bits that
  3378. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  3379. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  3380. * Otherwise, we should fail with #UD. We test these now:
  3381. */
  3382. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  3383. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  3384. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  3385. kvm_queue_exception(vcpu, UD_VECTOR);
  3386. return 1;
  3387. }
  3388. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3389. if (is_long_mode(vcpu) && !cs.l) {
  3390. kvm_queue_exception(vcpu, UD_VECTOR);
  3391. return 1;
  3392. }
  3393. if (vmx_get_cpl(vcpu)) {
  3394. kvm_inject_gp(vcpu, 0);
  3395. return 1;
  3396. }
  3397. vmx->nested.vmxon = true;
  3398. skip_emulated_instruction(vcpu);
  3399. return 1;
  3400. }
  3401. /*
  3402. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  3403. * for running VMX instructions (except VMXON, whose prerequisites are
  3404. * slightly different). It also specifies what exception to inject otherwise.
  3405. */
  3406. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  3407. {
  3408. struct kvm_segment cs;
  3409. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3410. if (!vmx->nested.vmxon) {
  3411. kvm_queue_exception(vcpu, UD_VECTOR);
  3412. return 0;
  3413. }
  3414. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3415. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  3416. (is_long_mode(vcpu) && !cs.l)) {
  3417. kvm_queue_exception(vcpu, UD_VECTOR);
  3418. return 0;
  3419. }
  3420. if (vmx_get_cpl(vcpu)) {
  3421. kvm_inject_gp(vcpu, 0);
  3422. return 0;
  3423. }
  3424. return 1;
  3425. }
  3426. /*
  3427. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  3428. * just stops using VMX.
  3429. */
  3430. static void free_nested(struct vcpu_vmx *vmx)
  3431. {
  3432. if (!vmx->nested.vmxon)
  3433. return;
  3434. vmx->nested.vmxon = false;
  3435. }
  3436. /* Emulate the VMXOFF instruction */
  3437. static int handle_vmoff(struct kvm_vcpu *vcpu)
  3438. {
  3439. if (!nested_vmx_check_permission(vcpu))
  3440. return 1;
  3441. free_nested(to_vmx(vcpu));
  3442. skip_emulated_instruction(vcpu);
  3443. return 1;
  3444. }
  3445. /*
  3446. * The exit handlers return 1 if the exit was handled fully and guest execution
  3447. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3448. * to be done to userspace and return 0.
  3449. */
  3450. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3451. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3452. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3453. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3454. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3455. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3456. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3457. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3458. [EXIT_REASON_CPUID] = handle_cpuid,
  3459. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3460. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3461. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3462. [EXIT_REASON_HLT] = handle_halt,
  3463. [EXIT_REASON_INVD] = handle_invd,
  3464. [EXIT_REASON_INVLPG] = handle_invlpg,
  3465. [EXIT_REASON_VMCALL] = handle_vmcall,
  3466. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3467. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3468. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3469. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3470. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3471. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3472. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3473. [EXIT_REASON_VMOFF] = handle_vmoff,
  3474. [EXIT_REASON_VMON] = handle_vmon,
  3475. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3476. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3477. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3478. [EXIT_REASON_XSETBV] = handle_xsetbv,
  3479. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3480. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3481. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3482. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3483. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3484. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3485. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3486. };
  3487. static const int kvm_vmx_max_exit_handlers =
  3488. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3489. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  3490. {
  3491. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  3492. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  3493. }
  3494. /*
  3495. * The guest has exited. See if we can fix it or if we need userspace
  3496. * assistance.
  3497. */
  3498. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3499. {
  3500. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3501. u32 exit_reason = vmx->exit_reason;
  3502. u32 vectoring_info = vmx->idt_vectoring_info;
  3503. trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
  3504. /* If guest state is invalid, start emulating */
  3505. if (vmx->emulation_required && emulate_invalid_guest_state)
  3506. return handle_invalid_guest_state(vcpu);
  3507. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  3508. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3509. vcpu->run->fail_entry.hardware_entry_failure_reason
  3510. = exit_reason;
  3511. return 0;
  3512. }
  3513. if (unlikely(vmx->fail)) {
  3514. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3515. vcpu->run->fail_entry.hardware_entry_failure_reason
  3516. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3517. return 0;
  3518. }
  3519. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3520. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3521. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3522. exit_reason != EXIT_REASON_TASK_SWITCH))
  3523. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3524. "(0x%x) and exit reason is 0x%x\n",
  3525. __func__, vectoring_info, exit_reason);
  3526. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3527. if (vmx_interrupt_allowed(vcpu)) {
  3528. vmx->soft_vnmi_blocked = 0;
  3529. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3530. vcpu->arch.nmi_pending) {
  3531. /*
  3532. * This CPU don't support us in finding the end of an
  3533. * NMI-blocked window if the guest runs with IRQs
  3534. * disabled. So we pull the trigger after 1 s of
  3535. * futile waiting, but inform the user about this.
  3536. */
  3537. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3538. "state on VCPU %d after 1 s timeout\n",
  3539. __func__, vcpu->vcpu_id);
  3540. vmx->soft_vnmi_blocked = 0;
  3541. }
  3542. }
  3543. if (exit_reason < kvm_vmx_max_exit_handlers
  3544. && kvm_vmx_exit_handlers[exit_reason])
  3545. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3546. else {
  3547. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3548. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3549. }
  3550. return 0;
  3551. }
  3552. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3553. {
  3554. if (irr == -1 || tpr < irr) {
  3555. vmcs_write32(TPR_THRESHOLD, 0);
  3556. return;
  3557. }
  3558. vmcs_write32(TPR_THRESHOLD, irr);
  3559. }
  3560. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  3561. {
  3562. u32 exit_intr_info;
  3563. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  3564. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  3565. return;
  3566. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3567. exit_intr_info = vmx->exit_intr_info;
  3568. /* Handle machine checks before interrupts are enabled */
  3569. if (is_machine_check(exit_intr_info))
  3570. kvm_machine_check();
  3571. /* We need to handle NMIs before interrupts are enabled */
  3572. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3573. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  3574. kvm_before_handle_nmi(&vmx->vcpu);
  3575. asm("int $2");
  3576. kvm_after_handle_nmi(&vmx->vcpu);
  3577. }
  3578. }
  3579. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  3580. {
  3581. u32 exit_intr_info;
  3582. bool unblock_nmi;
  3583. u8 vector;
  3584. bool idtv_info_valid;
  3585. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3586. if (cpu_has_virtual_nmis()) {
  3587. if (vmx->nmi_known_unmasked)
  3588. return;
  3589. /*
  3590. * Can't use vmx->exit_intr_info since we're not sure what
  3591. * the exit reason is.
  3592. */
  3593. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3594. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3595. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3596. /*
  3597. * SDM 3: 27.7.1.2 (September 2008)
  3598. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3599. * a guest IRET fault.
  3600. * SDM 3: 23.2.2 (September 2008)
  3601. * Bit 12 is undefined in any of the following cases:
  3602. * If the VM exit sets the valid bit in the IDT-vectoring
  3603. * information field.
  3604. * If the VM exit is due to a double fault.
  3605. */
  3606. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3607. vector != DF_VECTOR && !idtv_info_valid)
  3608. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3609. GUEST_INTR_STATE_NMI);
  3610. else
  3611. vmx->nmi_known_unmasked =
  3612. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  3613. & GUEST_INTR_STATE_NMI);
  3614. } else if (unlikely(vmx->soft_vnmi_blocked))
  3615. vmx->vnmi_blocked_time +=
  3616. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3617. }
  3618. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  3619. u32 idt_vectoring_info,
  3620. int instr_len_field,
  3621. int error_code_field)
  3622. {
  3623. u8 vector;
  3624. int type;
  3625. bool idtv_info_valid;
  3626. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3627. vmx->vcpu.arch.nmi_injected = false;
  3628. kvm_clear_exception_queue(&vmx->vcpu);
  3629. kvm_clear_interrupt_queue(&vmx->vcpu);
  3630. if (!idtv_info_valid)
  3631. return;
  3632. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  3633. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3634. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3635. switch (type) {
  3636. case INTR_TYPE_NMI_INTR:
  3637. vmx->vcpu.arch.nmi_injected = true;
  3638. /*
  3639. * SDM 3: 27.7.1.2 (September 2008)
  3640. * Clear bit "block by NMI" before VM entry if a NMI
  3641. * delivery faulted.
  3642. */
  3643. vmx_set_nmi_mask(&vmx->vcpu, false);
  3644. break;
  3645. case INTR_TYPE_SOFT_EXCEPTION:
  3646. vmx->vcpu.arch.event_exit_inst_len =
  3647. vmcs_read32(instr_len_field);
  3648. /* fall through */
  3649. case INTR_TYPE_HARD_EXCEPTION:
  3650. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3651. u32 err = vmcs_read32(error_code_field);
  3652. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3653. } else
  3654. kvm_queue_exception(&vmx->vcpu, vector);
  3655. break;
  3656. case INTR_TYPE_SOFT_INTR:
  3657. vmx->vcpu.arch.event_exit_inst_len =
  3658. vmcs_read32(instr_len_field);
  3659. /* fall through */
  3660. case INTR_TYPE_EXT_INTR:
  3661. kvm_queue_interrupt(&vmx->vcpu, vector,
  3662. type == INTR_TYPE_SOFT_INTR);
  3663. break;
  3664. default:
  3665. break;
  3666. }
  3667. }
  3668. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3669. {
  3670. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  3671. VM_EXIT_INSTRUCTION_LEN,
  3672. IDT_VECTORING_ERROR_CODE);
  3673. }
  3674. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  3675. {
  3676. __vmx_complete_interrupts(to_vmx(vcpu),
  3677. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  3678. VM_ENTRY_INSTRUCTION_LEN,
  3679. VM_ENTRY_EXCEPTION_ERROR_CODE);
  3680. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  3681. }
  3682. #ifdef CONFIG_X86_64
  3683. #define R "r"
  3684. #define Q "q"
  3685. #else
  3686. #define R "e"
  3687. #define Q "l"
  3688. #endif
  3689. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3690. {
  3691. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3692. /* Record the guest's net vcpu time for enforced NMI injections. */
  3693. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3694. vmx->entry_time = ktime_get();
  3695. /* Don't enter VMX if guest state is invalid, let the exit handler
  3696. start emulation until we arrive back to a valid state */
  3697. if (vmx->emulation_required && emulate_invalid_guest_state)
  3698. return;
  3699. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3700. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3701. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3702. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3703. /* When single-stepping over STI and MOV SS, we must clear the
  3704. * corresponding interruptibility bits in the guest state. Otherwise
  3705. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3706. * exceptions being set, but that's not correct for the guest debugging
  3707. * case. */
  3708. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3709. vmx_set_interrupt_shadow(vcpu, 0);
  3710. vmx->__launched = vmx->loaded_vmcs->launched;
  3711. asm(
  3712. /* Store host registers */
  3713. "push %%"R"dx; push %%"R"bp;"
  3714. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  3715. "push %%"R"cx \n\t"
  3716. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3717. "je 1f \n\t"
  3718. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3719. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3720. "1: \n\t"
  3721. /* Reload cr2 if changed */
  3722. "mov %c[cr2](%0), %%"R"ax \n\t"
  3723. "mov %%cr2, %%"R"dx \n\t"
  3724. "cmp %%"R"ax, %%"R"dx \n\t"
  3725. "je 2f \n\t"
  3726. "mov %%"R"ax, %%cr2 \n\t"
  3727. "2: \n\t"
  3728. /* Check if vmlaunch of vmresume is needed */
  3729. "cmpl $0, %c[launched](%0) \n\t"
  3730. /* Load guest registers. Don't clobber flags. */
  3731. "mov %c[rax](%0), %%"R"ax \n\t"
  3732. "mov %c[rbx](%0), %%"R"bx \n\t"
  3733. "mov %c[rdx](%0), %%"R"dx \n\t"
  3734. "mov %c[rsi](%0), %%"R"si \n\t"
  3735. "mov %c[rdi](%0), %%"R"di \n\t"
  3736. "mov %c[rbp](%0), %%"R"bp \n\t"
  3737. #ifdef CONFIG_X86_64
  3738. "mov %c[r8](%0), %%r8 \n\t"
  3739. "mov %c[r9](%0), %%r9 \n\t"
  3740. "mov %c[r10](%0), %%r10 \n\t"
  3741. "mov %c[r11](%0), %%r11 \n\t"
  3742. "mov %c[r12](%0), %%r12 \n\t"
  3743. "mov %c[r13](%0), %%r13 \n\t"
  3744. "mov %c[r14](%0), %%r14 \n\t"
  3745. "mov %c[r15](%0), %%r15 \n\t"
  3746. #endif
  3747. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3748. /* Enter guest mode */
  3749. "jne .Llaunched \n\t"
  3750. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3751. "jmp .Lkvm_vmx_return \n\t"
  3752. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3753. ".Lkvm_vmx_return: "
  3754. /* Save guest registers, load host registers, keep flags */
  3755. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  3756. "pop %0 \n\t"
  3757. "mov %%"R"ax, %c[rax](%0) \n\t"
  3758. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3759. "pop"Q" %c[rcx](%0) \n\t"
  3760. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3761. "mov %%"R"si, %c[rsi](%0) \n\t"
  3762. "mov %%"R"di, %c[rdi](%0) \n\t"
  3763. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3764. #ifdef CONFIG_X86_64
  3765. "mov %%r8, %c[r8](%0) \n\t"
  3766. "mov %%r9, %c[r9](%0) \n\t"
  3767. "mov %%r10, %c[r10](%0) \n\t"
  3768. "mov %%r11, %c[r11](%0) \n\t"
  3769. "mov %%r12, %c[r12](%0) \n\t"
  3770. "mov %%r13, %c[r13](%0) \n\t"
  3771. "mov %%r14, %c[r14](%0) \n\t"
  3772. "mov %%r15, %c[r15](%0) \n\t"
  3773. #endif
  3774. "mov %%cr2, %%"R"ax \n\t"
  3775. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3776. "pop %%"R"bp; pop %%"R"dx \n\t"
  3777. "setbe %c[fail](%0) \n\t"
  3778. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3779. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  3780. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3781. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3782. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3783. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3784. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3785. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3786. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3787. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3788. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3789. #ifdef CONFIG_X86_64
  3790. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3791. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3792. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3793. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3794. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3795. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3796. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3797. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3798. #endif
  3799. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  3800. [wordsize]"i"(sizeof(ulong))
  3801. : "cc", "memory"
  3802. , R"ax", R"bx", R"di", R"si"
  3803. #ifdef CONFIG_X86_64
  3804. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3805. #endif
  3806. );
  3807. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3808. | (1 << VCPU_EXREG_RFLAGS)
  3809. | (1 << VCPU_EXREG_CPL)
  3810. | (1 << VCPU_EXREG_PDPTR)
  3811. | (1 << VCPU_EXREG_SEGMENTS)
  3812. | (1 << VCPU_EXREG_CR3));
  3813. vcpu->arch.regs_dirty = 0;
  3814. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3815. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3816. vmx->loaded_vmcs->launched = 1;
  3817. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3818. vmx_complete_atomic_exit(vmx);
  3819. vmx_recover_nmi_blocking(vmx);
  3820. vmx_complete_interrupts(vmx);
  3821. }
  3822. #undef R
  3823. #undef Q
  3824. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3825. {
  3826. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3827. free_vpid(vmx);
  3828. free_nested(vmx);
  3829. free_loaded_vmcs(vmx->loaded_vmcs);
  3830. kfree(vmx->guest_msrs);
  3831. kvm_vcpu_uninit(vcpu);
  3832. kmem_cache_free(kvm_vcpu_cache, vmx);
  3833. }
  3834. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3835. {
  3836. int err;
  3837. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3838. int cpu;
  3839. if (!vmx)
  3840. return ERR_PTR(-ENOMEM);
  3841. allocate_vpid(vmx);
  3842. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3843. if (err)
  3844. goto free_vcpu;
  3845. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3846. err = -ENOMEM;
  3847. if (!vmx->guest_msrs) {
  3848. goto uninit_vcpu;
  3849. }
  3850. vmx->loaded_vmcs = &vmx->vmcs01;
  3851. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  3852. if (!vmx->loaded_vmcs->vmcs)
  3853. goto free_msrs;
  3854. if (!vmm_exclusive)
  3855. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  3856. loaded_vmcs_init(vmx->loaded_vmcs);
  3857. if (!vmm_exclusive)
  3858. kvm_cpu_vmxoff();
  3859. cpu = get_cpu();
  3860. vmx_vcpu_load(&vmx->vcpu, cpu);
  3861. vmx->vcpu.cpu = cpu;
  3862. err = vmx_vcpu_setup(vmx);
  3863. vmx_vcpu_put(&vmx->vcpu);
  3864. put_cpu();
  3865. if (err)
  3866. goto free_vmcs;
  3867. if (vm_need_virtualize_apic_accesses(kvm))
  3868. err = alloc_apic_access_page(kvm);
  3869. if (err)
  3870. goto free_vmcs;
  3871. if (enable_ept) {
  3872. if (!kvm->arch.ept_identity_map_addr)
  3873. kvm->arch.ept_identity_map_addr =
  3874. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3875. err = -ENOMEM;
  3876. if (alloc_identity_pagetable(kvm) != 0)
  3877. goto free_vmcs;
  3878. if (!init_rmode_identity_map(kvm))
  3879. goto free_vmcs;
  3880. }
  3881. return &vmx->vcpu;
  3882. free_vmcs:
  3883. free_vmcs(vmx->loaded_vmcs->vmcs);
  3884. free_msrs:
  3885. kfree(vmx->guest_msrs);
  3886. uninit_vcpu:
  3887. kvm_vcpu_uninit(&vmx->vcpu);
  3888. free_vcpu:
  3889. free_vpid(vmx);
  3890. kmem_cache_free(kvm_vcpu_cache, vmx);
  3891. return ERR_PTR(err);
  3892. }
  3893. static void __init vmx_check_processor_compat(void *rtn)
  3894. {
  3895. struct vmcs_config vmcs_conf;
  3896. *(int *)rtn = 0;
  3897. if (setup_vmcs_config(&vmcs_conf) < 0)
  3898. *(int *)rtn = -EIO;
  3899. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3900. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3901. smp_processor_id());
  3902. *(int *)rtn = -EIO;
  3903. }
  3904. }
  3905. static int get_ept_level(void)
  3906. {
  3907. return VMX_EPT_DEFAULT_GAW + 1;
  3908. }
  3909. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3910. {
  3911. u64 ret;
  3912. /* For VT-d and EPT combination
  3913. * 1. MMIO: always map as UC
  3914. * 2. EPT with VT-d:
  3915. * a. VT-d without snooping control feature: can't guarantee the
  3916. * result, try to trust guest.
  3917. * b. VT-d with snooping control feature: snooping control feature of
  3918. * VT-d engine can guarantee the cache correctness. Just set it
  3919. * to WB to keep consistent with host. So the same as item 3.
  3920. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3921. * consistent with host MTRR
  3922. */
  3923. if (is_mmio)
  3924. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3925. else if (vcpu->kvm->arch.iommu_domain &&
  3926. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3927. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3928. VMX_EPT_MT_EPTE_SHIFT;
  3929. else
  3930. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3931. | VMX_EPT_IPAT_BIT;
  3932. return ret;
  3933. }
  3934. #define _ER(x) { EXIT_REASON_##x, #x }
  3935. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3936. _ER(EXCEPTION_NMI),
  3937. _ER(EXTERNAL_INTERRUPT),
  3938. _ER(TRIPLE_FAULT),
  3939. _ER(PENDING_INTERRUPT),
  3940. _ER(NMI_WINDOW),
  3941. _ER(TASK_SWITCH),
  3942. _ER(CPUID),
  3943. _ER(HLT),
  3944. _ER(INVLPG),
  3945. _ER(RDPMC),
  3946. _ER(RDTSC),
  3947. _ER(VMCALL),
  3948. _ER(VMCLEAR),
  3949. _ER(VMLAUNCH),
  3950. _ER(VMPTRLD),
  3951. _ER(VMPTRST),
  3952. _ER(VMREAD),
  3953. _ER(VMRESUME),
  3954. _ER(VMWRITE),
  3955. _ER(VMOFF),
  3956. _ER(VMON),
  3957. _ER(CR_ACCESS),
  3958. _ER(DR_ACCESS),
  3959. _ER(IO_INSTRUCTION),
  3960. _ER(MSR_READ),
  3961. _ER(MSR_WRITE),
  3962. _ER(MWAIT_INSTRUCTION),
  3963. _ER(MONITOR_INSTRUCTION),
  3964. _ER(PAUSE_INSTRUCTION),
  3965. _ER(MCE_DURING_VMENTRY),
  3966. _ER(TPR_BELOW_THRESHOLD),
  3967. _ER(APIC_ACCESS),
  3968. _ER(EPT_VIOLATION),
  3969. _ER(EPT_MISCONFIG),
  3970. _ER(WBINVD),
  3971. { -1, NULL }
  3972. };
  3973. #undef _ER
  3974. static int vmx_get_lpage_level(void)
  3975. {
  3976. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3977. return PT_DIRECTORY_LEVEL;
  3978. else
  3979. /* For shadow and EPT supported 1GB page */
  3980. return PT_PDPE_LEVEL;
  3981. }
  3982. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3983. {
  3984. struct kvm_cpuid_entry2 *best;
  3985. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3986. u32 exec_control;
  3987. vmx->rdtscp_enabled = false;
  3988. if (vmx_rdtscp_supported()) {
  3989. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3990. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3991. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3992. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3993. vmx->rdtscp_enabled = true;
  3994. else {
  3995. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3996. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3997. exec_control);
  3998. }
  3999. }
  4000. }
  4001. }
  4002. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  4003. {
  4004. }
  4005. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  4006. struct x86_instruction_info *info,
  4007. enum x86_intercept_stage stage)
  4008. {
  4009. return X86EMUL_CONTINUE;
  4010. }
  4011. static struct kvm_x86_ops vmx_x86_ops = {
  4012. .cpu_has_kvm_support = cpu_has_kvm_support,
  4013. .disabled_by_bios = vmx_disabled_by_bios,
  4014. .hardware_setup = hardware_setup,
  4015. .hardware_unsetup = hardware_unsetup,
  4016. .check_processor_compatibility = vmx_check_processor_compat,
  4017. .hardware_enable = hardware_enable,
  4018. .hardware_disable = hardware_disable,
  4019. .cpu_has_accelerated_tpr = report_flexpriority,
  4020. .vcpu_create = vmx_create_vcpu,
  4021. .vcpu_free = vmx_free_vcpu,
  4022. .vcpu_reset = vmx_vcpu_reset,
  4023. .prepare_guest_switch = vmx_save_host_state,
  4024. .vcpu_load = vmx_vcpu_load,
  4025. .vcpu_put = vmx_vcpu_put,
  4026. .set_guest_debug = set_guest_debug,
  4027. .get_msr = vmx_get_msr,
  4028. .set_msr = vmx_set_msr,
  4029. .get_segment_base = vmx_get_segment_base,
  4030. .get_segment = vmx_get_segment,
  4031. .set_segment = vmx_set_segment,
  4032. .get_cpl = vmx_get_cpl,
  4033. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  4034. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  4035. .decache_cr3 = vmx_decache_cr3,
  4036. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  4037. .set_cr0 = vmx_set_cr0,
  4038. .set_cr3 = vmx_set_cr3,
  4039. .set_cr4 = vmx_set_cr4,
  4040. .set_efer = vmx_set_efer,
  4041. .get_idt = vmx_get_idt,
  4042. .set_idt = vmx_set_idt,
  4043. .get_gdt = vmx_get_gdt,
  4044. .set_gdt = vmx_set_gdt,
  4045. .set_dr7 = vmx_set_dr7,
  4046. .cache_reg = vmx_cache_reg,
  4047. .get_rflags = vmx_get_rflags,
  4048. .set_rflags = vmx_set_rflags,
  4049. .fpu_activate = vmx_fpu_activate,
  4050. .fpu_deactivate = vmx_fpu_deactivate,
  4051. .tlb_flush = vmx_flush_tlb,
  4052. .run = vmx_vcpu_run,
  4053. .handle_exit = vmx_handle_exit,
  4054. .skip_emulated_instruction = skip_emulated_instruction,
  4055. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  4056. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  4057. .patch_hypercall = vmx_patch_hypercall,
  4058. .set_irq = vmx_inject_irq,
  4059. .set_nmi = vmx_inject_nmi,
  4060. .queue_exception = vmx_queue_exception,
  4061. .cancel_injection = vmx_cancel_injection,
  4062. .interrupt_allowed = vmx_interrupt_allowed,
  4063. .nmi_allowed = vmx_nmi_allowed,
  4064. .get_nmi_mask = vmx_get_nmi_mask,
  4065. .set_nmi_mask = vmx_set_nmi_mask,
  4066. .enable_nmi_window = enable_nmi_window,
  4067. .enable_irq_window = enable_irq_window,
  4068. .update_cr8_intercept = update_cr8_intercept,
  4069. .set_tss_addr = vmx_set_tss_addr,
  4070. .get_tdp_level = get_ept_level,
  4071. .get_mt_mask = vmx_get_mt_mask,
  4072. .get_exit_info = vmx_get_exit_info,
  4073. .exit_reasons_str = vmx_exit_reasons_str,
  4074. .get_lpage_level = vmx_get_lpage_level,
  4075. .cpuid_update = vmx_cpuid_update,
  4076. .rdtscp_supported = vmx_rdtscp_supported,
  4077. .set_supported_cpuid = vmx_set_supported_cpuid,
  4078. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  4079. .set_tsc_khz = vmx_set_tsc_khz,
  4080. .write_tsc_offset = vmx_write_tsc_offset,
  4081. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  4082. .compute_tsc_offset = vmx_compute_tsc_offset,
  4083. .set_tdp_cr3 = vmx_set_cr3,
  4084. .check_intercept = vmx_check_intercept,
  4085. };
  4086. static int __init vmx_init(void)
  4087. {
  4088. int r, i;
  4089. rdmsrl_safe(MSR_EFER, &host_efer);
  4090. for (i = 0; i < NR_VMX_MSR; ++i)
  4091. kvm_define_shared_msr(i, vmx_msr_index[i]);
  4092. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  4093. if (!vmx_io_bitmap_a)
  4094. return -ENOMEM;
  4095. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  4096. if (!vmx_io_bitmap_b) {
  4097. r = -ENOMEM;
  4098. goto out;
  4099. }
  4100. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  4101. if (!vmx_msr_bitmap_legacy) {
  4102. r = -ENOMEM;
  4103. goto out1;
  4104. }
  4105. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  4106. if (!vmx_msr_bitmap_longmode) {
  4107. r = -ENOMEM;
  4108. goto out2;
  4109. }
  4110. /*
  4111. * Allow direct access to the PC debug port (it is often used for I/O
  4112. * delays, but the vmexits simply slow things down).
  4113. */
  4114. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  4115. clear_bit(0x80, vmx_io_bitmap_a);
  4116. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  4117. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  4118. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  4119. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  4120. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  4121. __alignof__(struct vcpu_vmx), THIS_MODULE);
  4122. if (r)
  4123. goto out3;
  4124. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  4125. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  4126. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  4127. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  4128. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  4129. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  4130. if (enable_ept) {
  4131. bypass_guest_pf = 0;
  4132. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  4133. VMX_EPT_EXECUTABLE_MASK);
  4134. kvm_enable_tdp();
  4135. } else
  4136. kvm_disable_tdp();
  4137. if (bypass_guest_pf)
  4138. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  4139. return 0;
  4140. out3:
  4141. free_page((unsigned long)vmx_msr_bitmap_longmode);
  4142. out2:
  4143. free_page((unsigned long)vmx_msr_bitmap_legacy);
  4144. out1:
  4145. free_page((unsigned long)vmx_io_bitmap_b);
  4146. out:
  4147. free_page((unsigned long)vmx_io_bitmap_a);
  4148. return r;
  4149. }
  4150. static void __exit vmx_exit(void)
  4151. {
  4152. free_page((unsigned long)vmx_msr_bitmap_legacy);
  4153. free_page((unsigned long)vmx_msr_bitmap_longmode);
  4154. free_page((unsigned long)vmx_io_bitmap_b);
  4155. free_page((unsigned long)vmx_io_bitmap_a);
  4156. kvm_exit();
  4157. }
  4158. module_init(vmx_init)
  4159. module_exit(vmx_exit)