mtdpart.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include "mtdcore.h"
  33. /* Our partition linked list */
  34. static LIST_HEAD(mtd_partitions);
  35. static DEFINE_MUTEX(mtd_partitions_mutex);
  36. /* Our partition node structure */
  37. struct mtd_part {
  38. struct mtd_info mtd;
  39. struct mtd_info *master;
  40. uint64_t offset;
  41. struct list_head list;
  42. };
  43. /*
  44. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  45. * the pointer to that structure with this macro.
  46. */
  47. #define PART(x) ((struct mtd_part *)(x))
  48. /*
  49. * MTD methods which simply translate the effective address and pass through
  50. * to the _real_ device.
  51. */
  52. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  53. size_t *retlen, u_char *buf)
  54. {
  55. struct mtd_part *part = PART(mtd);
  56. struct mtd_ecc_stats stats;
  57. int res;
  58. stats = part->master->ecc_stats;
  59. res = mtd_read(part->master, from + part->offset, len, retlen, buf);
  60. if (unlikely(res)) {
  61. if (mtd_is_bitflip(res))
  62. mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
  63. if (mtd_is_eccerr(res))
  64. mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
  65. }
  66. return res;
  67. }
  68. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  69. size_t *retlen, void **virt, resource_size_t *phys)
  70. {
  71. struct mtd_part *part = PART(mtd);
  72. return mtd_point(part->master, from + part->offset, len, retlen,
  73. virt, phys);
  74. }
  75. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  76. {
  77. struct mtd_part *part = PART(mtd);
  78. return mtd_unpoint(part->master, from + part->offset, len);
  79. }
  80. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  81. unsigned long len,
  82. unsigned long offset,
  83. unsigned long flags)
  84. {
  85. struct mtd_part *part = PART(mtd);
  86. offset += part->offset;
  87. return mtd_get_unmapped_area(part->master, len, offset, flags);
  88. }
  89. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  90. struct mtd_oob_ops *ops)
  91. {
  92. struct mtd_part *part = PART(mtd);
  93. int res;
  94. if (from >= mtd->size)
  95. return -EINVAL;
  96. if (ops->datbuf && from + ops->len > mtd->size)
  97. return -EINVAL;
  98. /*
  99. * If OOB is also requested, make sure that we do not read past the end
  100. * of this partition.
  101. */
  102. if (ops->oobbuf) {
  103. size_t len, pages;
  104. if (ops->mode == MTD_OPS_AUTO_OOB)
  105. len = mtd->oobavail;
  106. else
  107. len = mtd->oobsize;
  108. pages = mtd_div_by_ws(mtd->size, mtd);
  109. pages -= mtd_div_by_ws(from, mtd);
  110. if (ops->ooboffs + ops->ooblen > pages * len)
  111. return -EINVAL;
  112. }
  113. res = mtd_read_oob(part->master, from + part->offset, ops);
  114. if (unlikely(res)) {
  115. if (mtd_is_bitflip(res))
  116. mtd->ecc_stats.corrected++;
  117. if (mtd_is_eccerr(res))
  118. mtd->ecc_stats.failed++;
  119. }
  120. return res;
  121. }
  122. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  123. size_t len, size_t *retlen, u_char *buf)
  124. {
  125. struct mtd_part *part = PART(mtd);
  126. return mtd_read_user_prot_reg(part->master, from, len, retlen, buf);
  127. }
  128. static int part_get_user_prot_info(struct mtd_info *mtd,
  129. struct otp_info *buf, size_t len)
  130. {
  131. struct mtd_part *part = PART(mtd);
  132. return mtd_get_user_prot_info(part->master, buf, len);
  133. }
  134. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  135. size_t len, size_t *retlen, u_char *buf)
  136. {
  137. struct mtd_part *part = PART(mtd);
  138. return mtd_read_fact_prot_reg(part->master, from, len, retlen, buf);
  139. }
  140. static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  141. size_t len)
  142. {
  143. struct mtd_part *part = PART(mtd);
  144. return mtd_get_fact_prot_info(part->master, buf, len);
  145. }
  146. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  147. size_t *retlen, const u_char *buf)
  148. {
  149. struct mtd_part *part = PART(mtd);
  150. if (!(mtd->flags & MTD_WRITEABLE))
  151. return -EROFS;
  152. return mtd_write(part->master, to + part->offset, len, retlen, buf);
  153. }
  154. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  155. size_t *retlen, const u_char *buf)
  156. {
  157. struct mtd_part *part = PART(mtd);
  158. if (!(mtd->flags & MTD_WRITEABLE))
  159. return -EROFS;
  160. return mtd_panic_write(part->master, to + part->offset, len, retlen,
  161. buf);
  162. }
  163. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  164. struct mtd_oob_ops *ops)
  165. {
  166. struct mtd_part *part = PART(mtd);
  167. if (!(mtd->flags & MTD_WRITEABLE))
  168. return -EROFS;
  169. if (to >= mtd->size)
  170. return -EINVAL;
  171. if (ops->datbuf && to + ops->len > mtd->size)
  172. return -EINVAL;
  173. return mtd_write_oob(part->master, to + part->offset, ops);
  174. }
  175. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  176. size_t len, size_t *retlen, u_char *buf)
  177. {
  178. struct mtd_part *part = PART(mtd);
  179. return mtd_write_user_prot_reg(part->master, from, len, retlen, buf);
  180. }
  181. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  182. size_t len)
  183. {
  184. struct mtd_part *part = PART(mtd);
  185. return mtd_lock_user_prot_reg(part->master, from, len);
  186. }
  187. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  188. unsigned long count, loff_t to, size_t *retlen)
  189. {
  190. struct mtd_part *part = PART(mtd);
  191. if (!(mtd->flags & MTD_WRITEABLE))
  192. return -EROFS;
  193. return mtd_writev(part->master, vecs, count, to + part->offset,
  194. retlen);
  195. }
  196. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  197. {
  198. struct mtd_part *part = PART(mtd);
  199. int ret;
  200. if (!(mtd->flags & MTD_WRITEABLE))
  201. return -EROFS;
  202. instr->addr += part->offset;
  203. ret = mtd_erase(part->master, instr);
  204. if (ret) {
  205. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  206. instr->fail_addr -= part->offset;
  207. instr->addr -= part->offset;
  208. }
  209. return ret;
  210. }
  211. void mtd_erase_callback(struct erase_info *instr)
  212. {
  213. if (instr->mtd->_erase == part_erase) {
  214. struct mtd_part *part = PART(instr->mtd);
  215. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  216. instr->fail_addr -= part->offset;
  217. instr->addr -= part->offset;
  218. }
  219. if (instr->callback)
  220. instr->callback(instr);
  221. }
  222. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  223. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  224. {
  225. struct mtd_part *part = PART(mtd);
  226. return mtd_lock(part->master, ofs + part->offset, len);
  227. }
  228. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  229. {
  230. struct mtd_part *part = PART(mtd);
  231. return mtd_unlock(part->master, ofs + part->offset, len);
  232. }
  233. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  234. {
  235. struct mtd_part *part = PART(mtd);
  236. return mtd_is_locked(part->master, ofs + part->offset, len);
  237. }
  238. static void part_sync(struct mtd_info *mtd)
  239. {
  240. struct mtd_part *part = PART(mtd);
  241. mtd_sync(part->master);
  242. }
  243. static int part_suspend(struct mtd_info *mtd)
  244. {
  245. struct mtd_part *part = PART(mtd);
  246. return mtd_suspend(part->master);
  247. }
  248. static void part_resume(struct mtd_info *mtd)
  249. {
  250. struct mtd_part *part = PART(mtd);
  251. mtd_resume(part->master);
  252. }
  253. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  254. {
  255. struct mtd_part *part = PART(mtd);
  256. ofs += part->offset;
  257. return mtd_block_isbad(part->master, ofs);
  258. }
  259. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  260. {
  261. struct mtd_part *part = PART(mtd);
  262. int res;
  263. if (!(mtd->flags & MTD_WRITEABLE))
  264. return -EROFS;
  265. ofs += part->offset;
  266. res = mtd_block_markbad(part->master, ofs);
  267. if (!res)
  268. mtd->ecc_stats.badblocks++;
  269. return res;
  270. }
  271. static inline void free_partition(struct mtd_part *p)
  272. {
  273. kfree(p->mtd.name);
  274. kfree(p);
  275. }
  276. /*
  277. * This function unregisters and destroy all slave MTD objects which are
  278. * attached to the given master MTD object.
  279. */
  280. int del_mtd_partitions(struct mtd_info *master)
  281. {
  282. struct mtd_part *slave, *next;
  283. int ret, err = 0;
  284. mutex_lock(&mtd_partitions_mutex);
  285. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  286. if (slave->master == master) {
  287. ret = del_mtd_device(&slave->mtd);
  288. if (ret < 0) {
  289. err = ret;
  290. continue;
  291. }
  292. list_del(&slave->list);
  293. free_partition(slave);
  294. }
  295. mutex_unlock(&mtd_partitions_mutex);
  296. return err;
  297. }
  298. static struct mtd_part *allocate_partition(struct mtd_info *master,
  299. const struct mtd_partition *part, int partno,
  300. uint64_t cur_offset)
  301. {
  302. struct mtd_part *slave;
  303. char *name;
  304. /* allocate the partition structure */
  305. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  306. name = kstrdup(part->name, GFP_KERNEL);
  307. if (!name || !slave) {
  308. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  309. master->name);
  310. kfree(name);
  311. kfree(slave);
  312. return ERR_PTR(-ENOMEM);
  313. }
  314. /* set up the MTD object for this partition */
  315. slave->mtd.type = master->type;
  316. slave->mtd.flags = master->flags & ~part->mask_flags;
  317. slave->mtd.size = part->size;
  318. slave->mtd.writesize = master->writesize;
  319. slave->mtd.writebufsize = master->writebufsize;
  320. slave->mtd.oobsize = master->oobsize;
  321. slave->mtd.oobavail = master->oobavail;
  322. slave->mtd.subpage_sft = master->subpage_sft;
  323. slave->mtd.name = name;
  324. slave->mtd.owner = master->owner;
  325. slave->mtd.backing_dev_info = master->backing_dev_info;
  326. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  327. * to have the same data be in two different partitions.
  328. */
  329. slave->mtd.dev.parent = master->dev.parent;
  330. slave->mtd._read = part_read;
  331. slave->mtd._write = part_write;
  332. if (master->_panic_write)
  333. slave->mtd._panic_write = part_panic_write;
  334. if (master->_point && master->_unpoint) {
  335. slave->mtd._point = part_point;
  336. slave->mtd._unpoint = part_unpoint;
  337. }
  338. if (master->_get_unmapped_area)
  339. slave->mtd._get_unmapped_area = part_get_unmapped_area;
  340. if (master->_read_oob)
  341. slave->mtd._read_oob = part_read_oob;
  342. if (master->_write_oob)
  343. slave->mtd._write_oob = part_write_oob;
  344. if (master->_read_user_prot_reg)
  345. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  346. if (master->_read_fact_prot_reg)
  347. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  348. if (master->_write_user_prot_reg)
  349. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  350. if (master->_lock_user_prot_reg)
  351. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  352. if (master->_get_user_prot_info)
  353. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  354. if (master->_get_fact_prot_info)
  355. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  356. if (master->_sync)
  357. slave->mtd._sync = part_sync;
  358. if (!partno && !master->dev.class && master->_suspend &&
  359. master->_resume) {
  360. slave->mtd._suspend = part_suspend;
  361. slave->mtd._resume = part_resume;
  362. }
  363. if (master->_writev)
  364. slave->mtd._writev = part_writev;
  365. if (master->_lock)
  366. slave->mtd._lock = part_lock;
  367. if (master->_unlock)
  368. slave->mtd._unlock = part_unlock;
  369. if (master->_is_locked)
  370. slave->mtd._is_locked = part_is_locked;
  371. if (master->_block_isbad)
  372. slave->mtd._block_isbad = part_block_isbad;
  373. if (master->_block_markbad)
  374. slave->mtd._block_markbad = part_block_markbad;
  375. slave->mtd._erase = part_erase;
  376. slave->master = master;
  377. slave->offset = part->offset;
  378. if (slave->offset == MTDPART_OFS_APPEND)
  379. slave->offset = cur_offset;
  380. if (slave->offset == MTDPART_OFS_NXTBLK) {
  381. slave->offset = cur_offset;
  382. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  383. /* Round up to next erasesize */
  384. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  385. printk(KERN_NOTICE "Moving partition %d: "
  386. "0x%012llx -> 0x%012llx\n", partno,
  387. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  388. }
  389. }
  390. if (slave->offset == MTDPART_OFS_RETAIN) {
  391. slave->offset = cur_offset;
  392. if (master->size - slave->offset >= slave->mtd.size) {
  393. slave->mtd.size = master->size - slave->offset
  394. - slave->mtd.size;
  395. } else {
  396. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  397. part->name, master->size - slave->offset,
  398. slave->mtd.size);
  399. /* register to preserve ordering */
  400. goto out_register;
  401. }
  402. }
  403. if (slave->mtd.size == MTDPART_SIZ_FULL)
  404. slave->mtd.size = master->size - slave->offset;
  405. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  406. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  407. /* let's do some sanity checks */
  408. if (slave->offset >= master->size) {
  409. /* let's register it anyway to preserve ordering */
  410. slave->offset = 0;
  411. slave->mtd.size = 0;
  412. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  413. part->name);
  414. goto out_register;
  415. }
  416. if (slave->offset + slave->mtd.size > master->size) {
  417. slave->mtd.size = master->size - slave->offset;
  418. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  419. part->name, master->name, (unsigned long long)slave->mtd.size);
  420. }
  421. if (master->numeraseregions > 1) {
  422. /* Deal with variable erase size stuff */
  423. int i, max = master->numeraseregions;
  424. u64 end = slave->offset + slave->mtd.size;
  425. struct mtd_erase_region_info *regions = master->eraseregions;
  426. /* Find the first erase regions which is part of this
  427. * partition. */
  428. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  429. ;
  430. /* The loop searched for the region _behind_ the first one */
  431. if (i > 0)
  432. i--;
  433. /* Pick biggest erasesize */
  434. for (; i < max && regions[i].offset < end; i++) {
  435. if (slave->mtd.erasesize < regions[i].erasesize) {
  436. slave->mtd.erasesize = regions[i].erasesize;
  437. }
  438. }
  439. BUG_ON(slave->mtd.erasesize == 0);
  440. } else {
  441. /* Single erase size */
  442. slave->mtd.erasesize = master->erasesize;
  443. }
  444. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  445. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  446. /* Doesn't start on a boundary of major erase size */
  447. /* FIXME: Let it be writable if it is on a boundary of
  448. * _minor_ erase size though */
  449. slave->mtd.flags &= ~MTD_WRITEABLE;
  450. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  451. part->name);
  452. }
  453. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  454. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  455. slave->mtd.flags &= ~MTD_WRITEABLE;
  456. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  457. part->name);
  458. }
  459. slave->mtd.ecclayout = master->ecclayout;
  460. if (master->_block_isbad) {
  461. uint64_t offs = 0;
  462. while (offs < slave->mtd.size) {
  463. if (mtd_block_isbad(master, offs + slave->offset))
  464. slave->mtd.ecc_stats.badblocks++;
  465. offs += slave->mtd.erasesize;
  466. }
  467. }
  468. out_register:
  469. return slave;
  470. }
  471. int mtd_add_partition(struct mtd_info *master, char *name,
  472. long long offset, long long length)
  473. {
  474. struct mtd_partition part;
  475. struct mtd_part *p, *new;
  476. uint64_t start, end;
  477. int ret = 0;
  478. /* the direct offset is expected */
  479. if (offset == MTDPART_OFS_APPEND ||
  480. offset == MTDPART_OFS_NXTBLK)
  481. return -EINVAL;
  482. if (length == MTDPART_SIZ_FULL)
  483. length = master->size - offset;
  484. if (length <= 0)
  485. return -EINVAL;
  486. part.name = name;
  487. part.size = length;
  488. part.offset = offset;
  489. part.mask_flags = 0;
  490. part.ecclayout = NULL;
  491. new = allocate_partition(master, &part, -1, offset);
  492. if (IS_ERR(new))
  493. return PTR_ERR(new);
  494. start = offset;
  495. end = offset + length;
  496. mutex_lock(&mtd_partitions_mutex);
  497. list_for_each_entry(p, &mtd_partitions, list)
  498. if (p->master == master) {
  499. if ((start >= p->offset) &&
  500. (start < (p->offset + p->mtd.size)))
  501. goto err_inv;
  502. if ((end >= p->offset) &&
  503. (end < (p->offset + p->mtd.size)))
  504. goto err_inv;
  505. }
  506. list_add(&new->list, &mtd_partitions);
  507. mutex_unlock(&mtd_partitions_mutex);
  508. add_mtd_device(&new->mtd);
  509. return ret;
  510. err_inv:
  511. mutex_unlock(&mtd_partitions_mutex);
  512. free_partition(new);
  513. return -EINVAL;
  514. }
  515. EXPORT_SYMBOL_GPL(mtd_add_partition);
  516. int mtd_del_partition(struct mtd_info *master, int partno)
  517. {
  518. struct mtd_part *slave, *next;
  519. int ret = -EINVAL;
  520. mutex_lock(&mtd_partitions_mutex);
  521. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  522. if ((slave->master == master) &&
  523. (slave->mtd.index == partno)) {
  524. ret = del_mtd_device(&slave->mtd);
  525. if (ret < 0)
  526. break;
  527. list_del(&slave->list);
  528. free_partition(slave);
  529. break;
  530. }
  531. mutex_unlock(&mtd_partitions_mutex);
  532. return ret;
  533. }
  534. EXPORT_SYMBOL_GPL(mtd_del_partition);
  535. /*
  536. * This function, given a master MTD object and a partition table, creates
  537. * and registers slave MTD objects which are bound to the master according to
  538. * the partition definitions.
  539. *
  540. * We don't register the master, or expect the caller to have done so,
  541. * for reasons of data integrity.
  542. */
  543. int add_mtd_partitions(struct mtd_info *master,
  544. const struct mtd_partition *parts,
  545. int nbparts)
  546. {
  547. struct mtd_part *slave;
  548. uint64_t cur_offset = 0;
  549. int i;
  550. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  551. for (i = 0; i < nbparts; i++) {
  552. slave = allocate_partition(master, parts + i, i, cur_offset);
  553. if (IS_ERR(slave))
  554. return PTR_ERR(slave);
  555. mutex_lock(&mtd_partitions_mutex);
  556. list_add(&slave->list, &mtd_partitions);
  557. mutex_unlock(&mtd_partitions_mutex);
  558. add_mtd_device(&slave->mtd);
  559. cur_offset = slave->offset + slave->mtd.size;
  560. }
  561. return 0;
  562. }
  563. static DEFINE_SPINLOCK(part_parser_lock);
  564. static LIST_HEAD(part_parsers);
  565. static struct mtd_part_parser *get_partition_parser(const char *name)
  566. {
  567. struct mtd_part_parser *p, *ret = NULL;
  568. spin_lock(&part_parser_lock);
  569. list_for_each_entry(p, &part_parsers, list)
  570. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  571. ret = p;
  572. break;
  573. }
  574. spin_unlock(&part_parser_lock);
  575. return ret;
  576. }
  577. #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
  578. int register_mtd_parser(struct mtd_part_parser *p)
  579. {
  580. spin_lock(&part_parser_lock);
  581. list_add(&p->list, &part_parsers);
  582. spin_unlock(&part_parser_lock);
  583. return 0;
  584. }
  585. EXPORT_SYMBOL_GPL(register_mtd_parser);
  586. int deregister_mtd_parser(struct mtd_part_parser *p)
  587. {
  588. spin_lock(&part_parser_lock);
  589. list_del(&p->list);
  590. spin_unlock(&part_parser_lock);
  591. return 0;
  592. }
  593. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  594. /*
  595. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  596. * are changing this array!
  597. */
  598. static const char *default_mtd_part_types[] = {
  599. "cmdlinepart",
  600. "ofpart",
  601. NULL
  602. };
  603. /**
  604. * parse_mtd_partitions - parse MTD partitions
  605. * @master: the master partition (describes whole MTD device)
  606. * @types: names of partition parsers to try or %NULL
  607. * @pparts: array of partitions found is returned here
  608. * @data: MTD partition parser-specific data
  609. *
  610. * This function tries to find partition on MTD device @master. It uses MTD
  611. * partition parsers, specified in @types. However, if @types is %NULL, then
  612. * the default list of parsers is used. The default list contains only the
  613. * "cmdlinepart" and "ofpart" parsers ATM.
  614. *
  615. * This function may return:
  616. * o a negative error code in case of failure
  617. * o zero if no partitions were found
  618. * o a positive number of found partitions, in which case on exit @pparts will
  619. * point to an array containing this number of &struct mtd_info objects.
  620. */
  621. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  622. struct mtd_partition **pparts,
  623. struct mtd_part_parser_data *data)
  624. {
  625. struct mtd_part_parser *parser;
  626. int ret = 0;
  627. if (!types)
  628. types = default_mtd_part_types;
  629. for ( ; ret <= 0 && *types; types++) {
  630. parser = get_partition_parser(*types);
  631. if (!parser && !request_module("%s", *types))
  632. parser = get_partition_parser(*types);
  633. if (!parser)
  634. continue;
  635. ret = (*parser->parse_fn)(master, pparts, data);
  636. if (ret > 0) {
  637. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  638. ret, parser->name, master->name);
  639. }
  640. put_partition_parser(parser);
  641. }
  642. return ret;
  643. }
  644. int mtd_is_partition(struct mtd_info *mtd)
  645. {
  646. struct mtd_part *part;
  647. int ispart = 0;
  648. mutex_lock(&mtd_partitions_mutex);
  649. list_for_each_entry(part, &mtd_partitions, list)
  650. if (&part->mtd == mtd) {
  651. ispart = 1;
  652. break;
  653. }
  654. mutex_unlock(&mtd_partitions_mutex);
  655. return ispart;
  656. }
  657. EXPORT_SYMBOL_GPL(mtd_is_partition);