mtd_dataflash.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947
  1. /*
  2. * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
  3. *
  4. * Largely derived from at91_dataflash.c:
  5. * Copyright (C) 2003-2005 SAN People (Pty) Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/delay.h>
  16. #include <linux/device.h>
  17. #include <linux/mutex.h>
  18. #include <linux/err.h>
  19. #include <linux/math64.h>
  20. #include <linux/of.h>
  21. #include <linux/of_device.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/spi/flash.h>
  24. #include <linux/mtd/mtd.h>
  25. #include <linux/mtd/partitions.h>
  26. /*
  27. * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
  28. * each chip, which may be used for double buffered I/O; but this driver
  29. * doesn't (yet) use these for any kind of i/o overlap or prefetching.
  30. *
  31. * Sometimes DataFlash is packaged in MMC-format cards, although the
  32. * MMC stack can't (yet?) distinguish between MMC and DataFlash
  33. * protocols during enumeration.
  34. */
  35. /* reads can bypass the buffers */
  36. #define OP_READ_CONTINUOUS 0xE8
  37. #define OP_READ_PAGE 0xD2
  38. /* group B requests can run even while status reports "busy" */
  39. #define OP_READ_STATUS 0xD7 /* group B */
  40. /* move data between host and buffer */
  41. #define OP_READ_BUFFER1 0xD4 /* group B */
  42. #define OP_READ_BUFFER2 0xD6 /* group B */
  43. #define OP_WRITE_BUFFER1 0x84 /* group B */
  44. #define OP_WRITE_BUFFER2 0x87 /* group B */
  45. /* erasing flash */
  46. #define OP_ERASE_PAGE 0x81
  47. #define OP_ERASE_BLOCK 0x50
  48. /* move data between buffer and flash */
  49. #define OP_TRANSFER_BUF1 0x53
  50. #define OP_TRANSFER_BUF2 0x55
  51. #define OP_MREAD_BUFFER1 0xD4
  52. #define OP_MREAD_BUFFER2 0xD6
  53. #define OP_MWERASE_BUFFER1 0x83
  54. #define OP_MWERASE_BUFFER2 0x86
  55. #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
  56. #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
  57. /* write to buffer, then write-erase to flash */
  58. #define OP_PROGRAM_VIA_BUF1 0x82
  59. #define OP_PROGRAM_VIA_BUF2 0x85
  60. /* compare buffer to flash */
  61. #define OP_COMPARE_BUF1 0x60
  62. #define OP_COMPARE_BUF2 0x61
  63. /* read flash to buffer, then write-erase to flash */
  64. #define OP_REWRITE_VIA_BUF1 0x58
  65. #define OP_REWRITE_VIA_BUF2 0x59
  66. /* newer chips report JEDEC manufacturer and device IDs; chip
  67. * serial number and OTP bits; and per-sector writeprotect.
  68. */
  69. #define OP_READ_ID 0x9F
  70. #define OP_READ_SECURITY 0x77
  71. #define OP_WRITE_SECURITY_REVC 0x9A
  72. #define OP_WRITE_SECURITY 0x9B /* revision D */
  73. struct dataflash {
  74. uint8_t command[4];
  75. char name[24];
  76. unsigned partitioned:1;
  77. unsigned short page_offset; /* offset in flash address */
  78. unsigned int page_size; /* of bytes per page */
  79. struct mutex lock;
  80. struct spi_device *spi;
  81. struct mtd_info mtd;
  82. };
  83. #ifdef CONFIG_OF
  84. static const struct of_device_id dataflash_dt_ids[] = {
  85. { .compatible = "atmel,at45", },
  86. { .compatible = "atmel,dataflash", },
  87. { /* sentinel */ }
  88. };
  89. #else
  90. #define dataflash_dt_ids NULL
  91. #endif
  92. /* ......................................................................... */
  93. /*
  94. * Return the status of the DataFlash device.
  95. */
  96. static inline int dataflash_status(struct spi_device *spi)
  97. {
  98. /* NOTE: at45db321c over 25 MHz wants to write
  99. * a dummy byte after the opcode...
  100. */
  101. return spi_w8r8(spi, OP_READ_STATUS);
  102. }
  103. /*
  104. * Poll the DataFlash device until it is READY.
  105. * This usually takes 5-20 msec or so; more for sector erase.
  106. */
  107. static int dataflash_waitready(struct spi_device *spi)
  108. {
  109. int status;
  110. for (;;) {
  111. status = dataflash_status(spi);
  112. if (status < 0) {
  113. pr_debug("%s: status %d?\n",
  114. dev_name(&spi->dev), status);
  115. status = 0;
  116. }
  117. if (status & (1 << 7)) /* RDY/nBSY */
  118. return status;
  119. msleep(3);
  120. }
  121. }
  122. /* ......................................................................... */
  123. /*
  124. * Erase pages of flash.
  125. */
  126. static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
  127. {
  128. struct dataflash *priv = mtd->priv;
  129. struct spi_device *spi = priv->spi;
  130. struct spi_transfer x = { .tx_dma = 0, };
  131. struct spi_message msg;
  132. unsigned blocksize = priv->page_size << 3;
  133. uint8_t *command;
  134. uint32_t rem;
  135. pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
  136. dev_name(&spi->dev), (long long)instr->addr,
  137. (long long)instr->len);
  138. div_u64_rem(instr->len, priv->page_size, &rem);
  139. if (rem)
  140. return -EINVAL;
  141. div_u64_rem(instr->addr, priv->page_size, &rem);
  142. if (rem)
  143. return -EINVAL;
  144. spi_message_init(&msg);
  145. x.tx_buf = command = priv->command;
  146. x.len = 4;
  147. spi_message_add_tail(&x, &msg);
  148. mutex_lock(&priv->lock);
  149. while (instr->len > 0) {
  150. unsigned int pageaddr;
  151. int status;
  152. int do_block;
  153. /* Calculate flash page address; use block erase (for speed) if
  154. * we're at a block boundary and need to erase the whole block.
  155. */
  156. pageaddr = div_u64(instr->addr, priv->page_size);
  157. do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
  158. pageaddr = pageaddr << priv->page_offset;
  159. command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
  160. command[1] = (uint8_t)(pageaddr >> 16);
  161. command[2] = (uint8_t)(pageaddr >> 8);
  162. command[3] = 0;
  163. pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
  164. do_block ? "block" : "page",
  165. command[0], command[1], command[2], command[3],
  166. pageaddr);
  167. status = spi_sync(spi, &msg);
  168. (void) dataflash_waitready(spi);
  169. if (status < 0) {
  170. printk(KERN_ERR "%s: erase %x, err %d\n",
  171. dev_name(&spi->dev), pageaddr, status);
  172. /* REVISIT: can retry instr->retries times; or
  173. * giveup and instr->fail_addr = instr->addr;
  174. */
  175. continue;
  176. }
  177. if (do_block) {
  178. instr->addr += blocksize;
  179. instr->len -= blocksize;
  180. } else {
  181. instr->addr += priv->page_size;
  182. instr->len -= priv->page_size;
  183. }
  184. }
  185. mutex_unlock(&priv->lock);
  186. /* Inform MTD subsystem that erase is complete */
  187. instr->state = MTD_ERASE_DONE;
  188. mtd_erase_callback(instr);
  189. return 0;
  190. }
  191. /*
  192. * Read from the DataFlash device.
  193. * from : Start offset in flash device
  194. * len : Amount to read
  195. * retlen : About of data actually read
  196. * buf : Buffer containing the data
  197. */
  198. static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
  199. size_t *retlen, u_char *buf)
  200. {
  201. struct dataflash *priv = mtd->priv;
  202. struct spi_transfer x[2] = { { .tx_dma = 0, }, };
  203. struct spi_message msg;
  204. unsigned int addr;
  205. uint8_t *command;
  206. int status;
  207. pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
  208. (unsigned)from, (unsigned)(from + len));
  209. *retlen = 0;
  210. /* Sanity checks */
  211. if (!len)
  212. return 0;
  213. /* Calculate flash page/byte address */
  214. addr = (((unsigned)from / priv->page_size) << priv->page_offset)
  215. + ((unsigned)from % priv->page_size);
  216. command = priv->command;
  217. pr_debug("READ: (%x) %x %x %x\n",
  218. command[0], command[1], command[2], command[3]);
  219. spi_message_init(&msg);
  220. x[0].tx_buf = command;
  221. x[0].len = 8;
  222. spi_message_add_tail(&x[0], &msg);
  223. x[1].rx_buf = buf;
  224. x[1].len = len;
  225. spi_message_add_tail(&x[1], &msg);
  226. mutex_lock(&priv->lock);
  227. /* Continuous read, max clock = f(car) which may be less than
  228. * the peak rate available. Some chips support commands with
  229. * fewer "don't care" bytes. Both buffers stay unchanged.
  230. */
  231. command[0] = OP_READ_CONTINUOUS;
  232. command[1] = (uint8_t)(addr >> 16);
  233. command[2] = (uint8_t)(addr >> 8);
  234. command[3] = (uint8_t)(addr >> 0);
  235. /* plus 4 "don't care" bytes */
  236. status = spi_sync(priv->spi, &msg);
  237. mutex_unlock(&priv->lock);
  238. if (status >= 0) {
  239. *retlen = msg.actual_length - 8;
  240. status = 0;
  241. } else
  242. pr_debug("%s: read %x..%x --> %d\n",
  243. dev_name(&priv->spi->dev),
  244. (unsigned)from, (unsigned)(from + len),
  245. status);
  246. return status;
  247. }
  248. /*
  249. * Write to the DataFlash device.
  250. * to : Start offset in flash device
  251. * len : Amount to write
  252. * retlen : Amount of data actually written
  253. * buf : Buffer containing the data
  254. */
  255. static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
  256. size_t * retlen, const u_char * buf)
  257. {
  258. struct dataflash *priv = mtd->priv;
  259. struct spi_device *spi = priv->spi;
  260. struct spi_transfer x[2] = { { .tx_dma = 0, }, };
  261. struct spi_message msg;
  262. unsigned int pageaddr, addr, offset, writelen;
  263. size_t remaining = len;
  264. u_char *writebuf = (u_char *) buf;
  265. int status = -EINVAL;
  266. uint8_t *command;
  267. pr_debug("%s: write 0x%x..0x%x\n",
  268. dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
  269. *retlen = 0;
  270. /* Sanity checks */
  271. if (!len)
  272. return 0;
  273. spi_message_init(&msg);
  274. x[0].tx_buf = command = priv->command;
  275. x[0].len = 4;
  276. spi_message_add_tail(&x[0], &msg);
  277. pageaddr = ((unsigned)to / priv->page_size);
  278. offset = ((unsigned)to % priv->page_size);
  279. if (offset + len > priv->page_size)
  280. writelen = priv->page_size - offset;
  281. else
  282. writelen = len;
  283. mutex_lock(&priv->lock);
  284. while (remaining > 0) {
  285. pr_debug("write @ %i:%i len=%i\n",
  286. pageaddr, offset, writelen);
  287. /* REVISIT:
  288. * (a) each page in a sector must be rewritten at least
  289. * once every 10K sibling erase/program operations.
  290. * (b) for pages that are already erased, we could
  291. * use WRITE+MWRITE not PROGRAM for ~30% speedup.
  292. * (c) WRITE to buffer could be done while waiting for
  293. * a previous MWRITE/MWERASE to complete ...
  294. * (d) error handling here seems to be mostly missing.
  295. *
  296. * Two persistent bits per page, plus a per-sector counter,
  297. * could support (a) and (b) ... we might consider using
  298. * the second half of sector zero, which is just one block,
  299. * to track that state. (On AT91, that sector should also
  300. * support boot-from-DataFlash.)
  301. */
  302. addr = pageaddr << priv->page_offset;
  303. /* (1) Maybe transfer partial page to Buffer1 */
  304. if (writelen != priv->page_size) {
  305. command[0] = OP_TRANSFER_BUF1;
  306. command[1] = (addr & 0x00FF0000) >> 16;
  307. command[2] = (addr & 0x0000FF00) >> 8;
  308. command[3] = 0;
  309. pr_debug("TRANSFER: (%x) %x %x %x\n",
  310. command[0], command[1], command[2], command[3]);
  311. status = spi_sync(spi, &msg);
  312. if (status < 0)
  313. pr_debug("%s: xfer %u -> %d\n",
  314. dev_name(&spi->dev), addr, status);
  315. (void) dataflash_waitready(priv->spi);
  316. }
  317. /* (2) Program full page via Buffer1 */
  318. addr += offset;
  319. command[0] = OP_PROGRAM_VIA_BUF1;
  320. command[1] = (addr & 0x00FF0000) >> 16;
  321. command[2] = (addr & 0x0000FF00) >> 8;
  322. command[3] = (addr & 0x000000FF);
  323. pr_debug("PROGRAM: (%x) %x %x %x\n",
  324. command[0], command[1], command[2], command[3]);
  325. x[1].tx_buf = writebuf;
  326. x[1].len = writelen;
  327. spi_message_add_tail(x + 1, &msg);
  328. status = spi_sync(spi, &msg);
  329. spi_transfer_del(x + 1);
  330. if (status < 0)
  331. pr_debug("%s: pgm %u/%u -> %d\n",
  332. dev_name(&spi->dev), addr, writelen, status);
  333. (void) dataflash_waitready(priv->spi);
  334. #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
  335. /* (3) Compare to Buffer1 */
  336. addr = pageaddr << priv->page_offset;
  337. command[0] = OP_COMPARE_BUF1;
  338. command[1] = (addr & 0x00FF0000) >> 16;
  339. command[2] = (addr & 0x0000FF00) >> 8;
  340. command[3] = 0;
  341. pr_debug("COMPARE: (%x) %x %x %x\n",
  342. command[0], command[1], command[2], command[3]);
  343. status = spi_sync(spi, &msg);
  344. if (status < 0)
  345. pr_debug("%s: compare %u -> %d\n",
  346. dev_name(&spi->dev), addr, status);
  347. status = dataflash_waitready(priv->spi);
  348. /* Check result of the compare operation */
  349. if (status & (1 << 6)) {
  350. printk(KERN_ERR "%s: compare page %u, err %d\n",
  351. dev_name(&spi->dev), pageaddr, status);
  352. remaining = 0;
  353. status = -EIO;
  354. break;
  355. } else
  356. status = 0;
  357. #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
  358. remaining = remaining - writelen;
  359. pageaddr++;
  360. offset = 0;
  361. writebuf += writelen;
  362. *retlen += writelen;
  363. if (remaining > priv->page_size)
  364. writelen = priv->page_size;
  365. else
  366. writelen = remaining;
  367. }
  368. mutex_unlock(&priv->lock);
  369. return status;
  370. }
  371. /* ......................................................................... */
  372. #ifdef CONFIG_MTD_DATAFLASH_OTP
  373. static int dataflash_get_otp_info(struct mtd_info *mtd,
  374. struct otp_info *info, size_t len)
  375. {
  376. /* Report both blocks as identical: bytes 0..64, locked.
  377. * Unless the user block changed from all-ones, we can't
  378. * tell whether it's still writable; so we assume it isn't.
  379. */
  380. info->start = 0;
  381. info->length = 64;
  382. info->locked = 1;
  383. return sizeof(*info);
  384. }
  385. static ssize_t otp_read(struct spi_device *spi, unsigned base,
  386. uint8_t *buf, loff_t off, size_t len)
  387. {
  388. struct spi_message m;
  389. size_t l;
  390. uint8_t *scratch;
  391. struct spi_transfer t;
  392. int status;
  393. if (off > 64)
  394. return -EINVAL;
  395. if ((off + len) > 64)
  396. len = 64 - off;
  397. if (len == 0)
  398. return len;
  399. spi_message_init(&m);
  400. l = 4 + base + off + len;
  401. scratch = kzalloc(l, GFP_KERNEL);
  402. if (!scratch)
  403. return -ENOMEM;
  404. /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
  405. * IN: ignore 4 bytes, data bytes 0..N (max 127)
  406. */
  407. scratch[0] = OP_READ_SECURITY;
  408. memset(&t, 0, sizeof t);
  409. t.tx_buf = scratch;
  410. t.rx_buf = scratch;
  411. t.len = l;
  412. spi_message_add_tail(&t, &m);
  413. dataflash_waitready(spi);
  414. status = spi_sync(spi, &m);
  415. if (status >= 0) {
  416. memcpy(buf, scratch + 4 + base + off, len);
  417. status = len;
  418. }
  419. kfree(scratch);
  420. return status;
  421. }
  422. static int dataflash_read_fact_otp(struct mtd_info *mtd,
  423. loff_t from, size_t len, size_t *retlen, u_char *buf)
  424. {
  425. struct dataflash *priv = mtd->priv;
  426. int status;
  427. /* 64 bytes, from 0..63 ... start at 64 on-chip */
  428. mutex_lock(&priv->lock);
  429. status = otp_read(priv->spi, 64, buf, from, len);
  430. mutex_unlock(&priv->lock);
  431. if (status < 0)
  432. return status;
  433. *retlen = status;
  434. return 0;
  435. }
  436. static int dataflash_read_user_otp(struct mtd_info *mtd,
  437. loff_t from, size_t len, size_t *retlen, u_char *buf)
  438. {
  439. struct dataflash *priv = mtd->priv;
  440. int status;
  441. /* 64 bytes, from 0..63 ... start at 0 on-chip */
  442. mutex_lock(&priv->lock);
  443. status = otp_read(priv->spi, 0, buf, from, len);
  444. mutex_unlock(&priv->lock);
  445. if (status < 0)
  446. return status;
  447. *retlen = status;
  448. return 0;
  449. }
  450. static int dataflash_write_user_otp(struct mtd_info *mtd,
  451. loff_t from, size_t len, size_t *retlen, u_char *buf)
  452. {
  453. struct spi_message m;
  454. const size_t l = 4 + 64;
  455. uint8_t *scratch;
  456. struct spi_transfer t;
  457. struct dataflash *priv = mtd->priv;
  458. int status;
  459. if (len > 64)
  460. return -EINVAL;
  461. /* Strictly speaking, we *could* truncate the write ... but
  462. * let's not do that for the only write that's ever possible.
  463. */
  464. if ((from + len) > 64)
  465. return -EINVAL;
  466. /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
  467. * IN: ignore all
  468. */
  469. scratch = kzalloc(l, GFP_KERNEL);
  470. if (!scratch)
  471. return -ENOMEM;
  472. scratch[0] = OP_WRITE_SECURITY;
  473. memcpy(scratch + 4 + from, buf, len);
  474. spi_message_init(&m);
  475. memset(&t, 0, sizeof t);
  476. t.tx_buf = scratch;
  477. t.len = l;
  478. spi_message_add_tail(&t, &m);
  479. /* Write the OTP bits, if they've not yet been written.
  480. * This modifies SRAM buffer1.
  481. */
  482. mutex_lock(&priv->lock);
  483. dataflash_waitready(priv->spi);
  484. status = spi_sync(priv->spi, &m);
  485. mutex_unlock(&priv->lock);
  486. kfree(scratch);
  487. if (status >= 0) {
  488. status = 0;
  489. *retlen = len;
  490. }
  491. return status;
  492. }
  493. static char *otp_setup(struct mtd_info *device, char revision)
  494. {
  495. device->_get_fact_prot_info = dataflash_get_otp_info;
  496. device->_read_fact_prot_reg = dataflash_read_fact_otp;
  497. device->_get_user_prot_info = dataflash_get_otp_info;
  498. device->_read_user_prot_reg = dataflash_read_user_otp;
  499. /* rev c parts (at45db321c and at45db1281 only!) use a
  500. * different write procedure; not (yet?) implemented.
  501. */
  502. if (revision > 'c')
  503. device->_write_user_prot_reg = dataflash_write_user_otp;
  504. return ", OTP";
  505. }
  506. #else
  507. static char *otp_setup(struct mtd_info *device, char revision)
  508. {
  509. return " (OTP)";
  510. }
  511. #endif
  512. /* ......................................................................... */
  513. /*
  514. * Register DataFlash device with MTD subsystem.
  515. */
  516. static int __devinit
  517. add_dataflash_otp(struct spi_device *spi, char *name,
  518. int nr_pages, int pagesize, int pageoffset, char revision)
  519. {
  520. struct dataflash *priv;
  521. struct mtd_info *device;
  522. struct mtd_part_parser_data ppdata;
  523. struct flash_platform_data *pdata = spi->dev.platform_data;
  524. char *otp_tag = "";
  525. int err = 0;
  526. priv = kzalloc(sizeof *priv, GFP_KERNEL);
  527. if (!priv)
  528. return -ENOMEM;
  529. mutex_init(&priv->lock);
  530. priv->spi = spi;
  531. priv->page_size = pagesize;
  532. priv->page_offset = pageoffset;
  533. /* name must be usable with cmdlinepart */
  534. sprintf(priv->name, "spi%d.%d-%s",
  535. spi->master->bus_num, spi->chip_select,
  536. name);
  537. device = &priv->mtd;
  538. device->name = (pdata && pdata->name) ? pdata->name : priv->name;
  539. device->size = nr_pages * pagesize;
  540. device->erasesize = pagesize;
  541. device->writesize = pagesize;
  542. device->owner = THIS_MODULE;
  543. device->type = MTD_DATAFLASH;
  544. device->flags = MTD_WRITEABLE;
  545. device->_erase = dataflash_erase;
  546. device->_read = dataflash_read;
  547. device->_write = dataflash_write;
  548. device->priv = priv;
  549. device->dev.parent = &spi->dev;
  550. if (revision >= 'c')
  551. otp_tag = otp_setup(device, revision);
  552. dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
  553. name, (long long)((device->size + 1023) >> 10),
  554. pagesize, otp_tag);
  555. dev_set_drvdata(&spi->dev, priv);
  556. ppdata.of_node = spi->dev.of_node;
  557. err = mtd_device_parse_register(device, NULL, &ppdata,
  558. pdata ? pdata->parts : NULL,
  559. pdata ? pdata->nr_parts : 0);
  560. if (!err)
  561. return 0;
  562. dev_set_drvdata(&spi->dev, NULL);
  563. kfree(priv);
  564. return err;
  565. }
  566. static inline int __devinit
  567. add_dataflash(struct spi_device *spi, char *name,
  568. int nr_pages, int pagesize, int pageoffset)
  569. {
  570. return add_dataflash_otp(spi, name, nr_pages, pagesize,
  571. pageoffset, 0);
  572. }
  573. struct flash_info {
  574. char *name;
  575. /* JEDEC id has a high byte of zero plus three data bytes:
  576. * the manufacturer id, then a two byte device id.
  577. */
  578. uint32_t jedec_id;
  579. /* The size listed here is what works with OP_ERASE_PAGE. */
  580. unsigned nr_pages;
  581. uint16_t pagesize;
  582. uint16_t pageoffset;
  583. uint16_t flags;
  584. #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
  585. #define IS_POW2PS 0x0001 /* uses 2^N byte pages */
  586. };
  587. static struct flash_info __devinitdata dataflash_data [] = {
  588. /*
  589. * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
  590. * one with IS_POW2PS and the other without. The entry with the
  591. * non-2^N byte page size can't name exact chip revisions without
  592. * losing backwards compatibility for cmdlinepart.
  593. *
  594. * These newer chips also support 128-byte security registers (with
  595. * 64 bytes one-time-programmable) and software write-protection.
  596. */
  597. { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
  598. { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
  599. { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
  600. { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
  601. { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
  602. { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
  603. { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
  604. { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
  605. { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
  606. { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
  607. { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
  608. { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
  609. { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
  610. { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
  611. { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
  612. };
  613. static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
  614. {
  615. int tmp;
  616. uint8_t code = OP_READ_ID;
  617. uint8_t id[3];
  618. uint32_t jedec;
  619. struct flash_info *info;
  620. int status;
  621. /* JEDEC also defines an optional "extended device information"
  622. * string for after vendor-specific data, after the three bytes
  623. * we use here. Supporting some chips might require using it.
  624. *
  625. * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
  626. * That's not an error; only rev C and newer chips handle it, and
  627. * only Atmel sells these chips.
  628. */
  629. tmp = spi_write_then_read(spi, &code, 1, id, 3);
  630. if (tmp < 0) {
  631. pr_debug("%s: error %d reading JEDEC ID\n",
  632. dev_name(&spi->dev), tmp);
  633. return ERR_PTR(tmp);
  634. }
  635. if (id[0] != 0x1f)
  636. return NULL;
  637. jedec = id[0];
  638. jedec = jedec << 8;
  639. jedec |= id[1];
  640. jedec = jedec << 8;
  641. jedec |= id[2];
  642. for (tmp = 0, info = dataflash_data;
  643. tmp < ARRAY_SIZE(dataflash_data);
  644. tmp++, info++) {
  645. if (info->jedec_id == jedec) {
  646. pr_debug("%s: OTP, sector protect%s\n",
  647. dev_name(&spi->dev),
  648. (info->flags & SUP_POW2PS)
  649. ? ", binary pagesize" : ""
  650. );
  651. if (info->flags & SUP_POW2PS) {
  652. status = dataflash_status(spi);
  653. if (status < 0) {
  654. pr_debug("%s: status error %d\n",
  655. dev_name(&spi->dev), status);
  656. return ERR_PTR(status);
  657. }
  658. if (status & 0x1) {
  659. if (info->flags & IS_POW2PS)
  660. return info;
  661. } else {
  662. if (!(info->flags & IS_POW2PS))
  663. return info;
  664. }
  665. } else
  666. return info;
  667. }
  668. }
  669. /*
  670. * Treat other chips as errors ... we won't know the right page
  671. * size (it might be binary) even when we can tell which density
  672. * class is involved (legacy chip id scheme).
  673. */
  674. dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
  675. return ERR_PTR(-ENODEV);
  676. }
  677. /*
  678. * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
  679. * or else the ID code embedded in the status bits:
  680. *
  681. * Device Density ID code #Pages PageSize Offset
  682. * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
  683. * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
  684. * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
  685. * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
  686. * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
  687. * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
  688. * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
  689. * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
  690. */
  691. static int __devinit dataflash_probe(struct spi_device *spi)
  692. {
  693. int status;
  694. struct flash_info *info;
  695. /*
  696. * Try to detect dataflash by JEDEC ID.
  697. * If it succeeds we know we have either a C or D part.
  698. * D will support power of 2 pagesize option.
  699. * Both support the security register, though with different
  700. * write procedures.
  701. */
  702. info = jedec_probe(spi);
  703. if (IS_ERR(info))
  704. return PTR_ERR(info);
  705. if (info != NULL)
  706. return add_dataflash_otp(spi, info->name, info->nr_pages,
  707. info->pagesize, info->pageoffset,
  708. (info->flags & SUP_POW2PS) ? 'd' : 'c');
  709. /*
  710. * Older chips support only legacy commands, identifing
  711. * capacity using bits in the status byte.
  712. */
  713. status = dataflash_status(spi);
  714. if (status <= 0 || status == 0xff) {
  715. pr_debug("%s: status error %d\n",
  716. dev_name(&spi->dev), status);
  717. if (status == 0 || status == 0xff)
  718. status = -ENODEV;
  719. return status;
  720. }
  721. /* if there's a device there, assume it's dataflash.
  722. * board setup should have set spi->max_speed_max to
  723. * match f(car) for continuous reads, mode 0 or 3.
  724. */
  725. switch (status & 0x3c) {
  726. case 0x0c: /* 0 0 1 1 x x */
  727. status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
  728. break;
  729. case 0x14: /* 0 1 0 1 x x */
  730. status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
  731. break;
  732. case 0x1c: /* 0 1 1 1 x x */
  733. status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
  734. break;
  735. case 0x24: /* 1 0 0 1 x x */
  736. status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
  737. break;
  738. case 0x2c: /* 1 0 1 1 x x */
  739. status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
  740. break;
  741. case 0x34: /* 1 1 0 1 x x */
  742. status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
  743. break;
  744. case 0x38: /* 1 1 1 x x x */
  745. case 0x3c:
  746. status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
  747. break;
  748. /* obsolete AT45DB1282 not (yet?) supported */
  749. default:
  750. pr_debug("%s: unsupported device (%x)\n", dev_name(&spi->dev),
  751. status & 0x3c);
  752. status = -ENODEV;
  753. }
  754. if (status < 0)
  755. pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
  756. status);
  757. return status;
  758. }
  759. static int __devexit dataflash_remove(struct spi_device *spi)
  760. {
  761. struct dataflash *flash = dev_get_drvdata(&spi->dev);
  762. int status;
  763. pr_debug("%s: remove\n", dev_name(&spi->dev));
  764. status = mtd_device_unregister(&flash->mtd);
  765. if (status == 0) {
  766. dev_set_drvdata(&spi->dev, NULL);
  767. kfree(flash);
  768. }
  769. return status;
  770. }
  771. static struct spi_driver dataflash_driver = {
  772. .driver = {
  773. .name = "mtd_dataflash",
  774. .owner = THIS_MODULE,
  775. .of_match_table = dataflash_dt_ids,
  776. },
  777. .probe = dataflash_probe,
  778. .remove = __devexit_p(dataflash_remove),
  779. /* FIXME: investigate suspend and resume... */
  780. };
  781. module_spi_driver(dataflash_driver);
  782. MODULE_LICENSE("GPL");
  783. MODULE_AUTHOR("Andrew Victor, David Brownell");
  784. MODULE_DESCRIPTION("MTD DataFlash driver");
  785. MODULE_ALIAS("spi:mtd_dataflash");