intel_display.c 233 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #include <linux/dma_remapping.h>
  42. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  43. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  44. static void intel_increase_pllclock(struct drm_crtc *crtc);
  45. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  46. typedef struct {
  47. /* given values */
  48. int n;
  49. int m1, m2;
  50. int p1, p2;
  51. /* derived values */
  52. int dot;
  53. int vco;
  54. int m;
  55. int p;
  56. } intel_clock_t;
  57. typedef struct {
  58. int min, max;
  59. } intel_range_t;
  60. typedef struct {
  61. int dot_limit;
  62. int p2_slow, p2_fast;
  63. } intel_p2_t;
  64. #define INTEL_P2_NUM 2
  65. typedef struct intel_limit intel_limit_t;
  66. struct intel_limit {
  67. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  68. intel_p2_t p2;
  69. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  70. int, int, intel_clock_t *, intel_clock_t *);
  71. };
  72. /* FDI */
  73. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  74. static bool
  75. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  76. int target, int refclk, intel_clock_t *match_clock,
  77. intel_clock_t *best_clock);
  78. static bool
  79. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  80. int target, int refclk, intel_clock_t *match_clock,
  81. intel_clock_t *best_clock);
  82. static bool
  83. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  84. int target, int refclk, intel_clock_t *match_clock,
  85. intel_clock_t *best_clock);
  86. static bool
  87. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  88. int target, int refclk, intel_clock_t *match_clock,
  89. intel_clock_t *best_clock);
  90. static bool
  91. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  92. int target, int refclk, intel_clock_t *match_clock,
  93. intel_clock_t *best_clock);
  94. static inline u32 /* units of 100MHz */
  95. intel_fdi_link_freq(struct drm_device *dev)
  96. {
  97. if (IS_GEN5(dev)) {
  98. struct drm_i915_private *dev_priv = dev->dev_private;
  99. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  100. } else
  101. return 27;
  102. }
  103. static const intel_limit_t intel_limits_i8xx_dvo = {
  104. .dot = { .min = 25000, .max = 350000 },
  105. .vco = { .min = 930000, .max = 1400000 },
  106. .n = { .min = 3, .max = 16 },
  107. .m = { .min = 96, .max = 140 },
  108. .m1 = { .min = 18, .max = 26 },
  109. .m2 = { .min = 6, .max = 16 },
  110. .p = { .min = 4, .max = 128 },
  111. .p1 = { .min = 2, .max = 33 },
  112. .p2 = { .dot_limit = 165000,
  113. .p2_slow = 4, .p2_fast = 2 },
  114. .find_pll = intel_find_best_PLL,
  115. };
  116. static const intel_limit_t intel_limits_i8xx_lvds = {
  117. .dot = { .min = 25000, .max = 350000 },
  118. .vco = { .min = 930000, .max = 1400000 },
  119. .n = { .min = 3, .max = 16 },
  120. .m = { .min = 96, .max = 140 },
  121. .m1 = { .min = 18, .max = 26 },
  122. .m2 = { .min = 6, .max = 16 },
  123. .p = { .min = 4, .max = 128 },
  124. .p1 = { .min = 1, .max = 6 },
  125. .p2 = { .dot_limit = 165000,
  126. .p2_slow = 14, .p2_fast = 7 },
  127. .find_pll = intel_find_best_PLL,
  128. };
  129. static const intel_limit_t intel_limits_i9xx_sdvo = {
  130. .dot = { .min = 20000, .max = 400000 },
  131. .vco = { .min = 1400000, .max = 2800000 },
  132. .n = { .min = 1, .max = 6 },
  133. .m = { .min = 70, .max = 120 },
  134. .m1 = { .min = 10, .max = 22 },
  135. .m2 = { .min = 5, .max = 9 },
  136. .p = { .min = 5, .max = 80 },
  137. .p1 = { .min = 1, .max = 8 },
  138. .p2 = { .dot_limit = 200000,
  139. .p2_slow = 10, .p2_fast = 5 },
  140. .find_pll = intel_find_best_PLL,
  141. };
  142. static const intel_limit_t intel_limits_i9xx_lvds = {
  143. .dot = { .min = 20000, .max = 400000 },
  144. .vco = { .min = 1400000, .max = 2800000 },
  145. .n = { .min = 1, .max = 6 },
  146. .m = { .min = 70, .max = 120 },
  147. .m1 = { .min = 10, .max = 22 },
  148. .m2 = { .min = 5, .max = 9 },
  149. .p = { .min = 7, .max = 98 },
  150. .p1 = { .min = 1, .max = 8 },
  151. .p2 = { .dot_limit = 112000,
  152. .p2_slow = 14, .p2_fast = 7 },
  153. .find_pll = intel_find_best_PLL,
  154. };
  155. static const intel_limit_t intel_limits_g4x_sdvo = {
  156. .dot = { .min = 25000, .max = 270000 },
  157. .vco = { .min = 1750000, .max = 3500000},
  158. .n = { .min = 1, .max = 4 },
  159. .m = { .min = 104, .max = 138 },
  160. .m1 = { .min = 17, .max = 23 },
  161. .m2 = { .min = 5, .max = 11 },
  162. .p = { .min = 10, .max = 30 },
  163. .p1 = { .min = 1, .max = 3},
  164. .p2 = { .dot_limit = 270000,
  165. .p2_slow = 10,
  166. .p2_fast = 10
  167. },
  168. .find_pll = intel_g4x_find_best_PLL,
  169. };
  170. static const intel_limit_t intel_limits_g4x_hdmi = {
  171. .dot = { .min = 22000, .max = 400000 },
  172. .vco = { .min = 1750000, .max = 3500000},
  173. .n = { .min = 1, .max = 4 },
  174. .m = { .min = 104, .max = 138 },
  175. .m1 = { .min = 16, .max = 23 },
  176. .m2 = { .min = 5, .max = 11 },
  177. .p = { .min = 5, .max = 80 },
  178. .p1 = { .min = 1, .max = 8},
  179. .p2 = { .dot_limit = 165000,
  180. .p2_slow = 10, .p2_fast = 5 },
  181. .find_pll = intel_g4x_find_best_PLL,
  182. };
  183. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  184. .dot = { .min = 20000, .max = 115000 },
  185. .vco = { .min = 1750000, .max = 3500000 },
  186. .n = { .min = 1, .max = 3 },
  187. .m = { .min = 104, .max = 138 },
  188. .m1 = { .min = 17, .max = 23 },
  189. .m2 = { .min = 5, .max = 11 },
  190. .p = { .min = 28, .max = 112 },
  191. .p1 = { .min = 2, .max = 8 },
  192. .p2 = { .dot_limit = 0,
  193. .p2_slow = 14, .p2_fast = 14
  194. },
  195. .find_pll = intel_g4x_find_best_PLL,
  196. };
  197. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  198. .dot = { .min = 80000, .max = 224000 },
  199. .vco = { .min = 1750000, .max = 3500000 },
  200. .n = { .min = 1, .max = 3 },
  201. .m = { .min = 104, .max = 138 },
  202. .m1 = { .min = 17, .max = 23 },
  203. .m2 = { .min = 5, .max = 11 },
  204. .p = { .min = 14, .max = 42 },
  205. .p1 = { .min = 2, .max = 6 },
  206. .p2 = { .dot_limit = 0,
  207. .p2_slow = 7, .p2_fast = 7
  208. },
  209. .find_pll = intel_g4x_find_best_PLL,
  210. };
  211. static const intel_limit_t intel_limits_g4x_display_port = {
  212. .dot = { .min = 161670, .max = 227000 },
  213. .vco = { .min = 1750000, .max = 3500000},
  214. .n = { .min = 1, .max = 2 },
  215. .m = { .min = 97, .max = 108 },
  216. .m1 = { .min = 0x10, .max = 0x12 },
  217. .m2 = { .min = 0x05, .max = 0x06 },
  218. .p = { .min = 10, .max = 20 },
  219. .p1 = { .min = 1, .max = 2},
  220. .p2 = { .dot_limit = 0,
  221. .p2_slow = 10, .p2_fast = 10 },
  222. .find_pll = intel_find_pll_g4x_dp,
  223. };
  224. static const intel_limit_t intel_limits_pineview_sdvo = {
  225. .dot = { .min = 20000, .max = 400000},
  226. .vco = { .min = 1700000, .max = 3500000 },
  227. /* Pineview's Ncounter is a ring counter */
  228. .n = { .min = 3, .max = 6 },
  229. .m = { .min = 2, .max = 256 },
  230. /* Pineview only has one combined m divider, which we treat as m2. */
  231. .m1 = { .min = 0, .max = 0 },
  232. .m2 = { .min = 0, .max = 254 },
  233. .p = { .min = 5, .max = 80 },
  234. .p1 = { .min = 1, .max = 8 },
  235. .p2 = { .dot_limit = 200000,
  236. .p2_slow = 10, .p2_fast = 5 },
  237. .find_pll = intel_find_best_PLL,
  238. };
  239. static const intel_limit_t intel_limits_pineview_lvds = {
  240. .dot = { .min = 20000, .max = 400000 },
  241. .vco = { .min = 1700000, .max = 3500000 },
  242. .n = { .min = 3, .max = 6 },
  243. .m = { .min = 2, .max = 256 },
  244. .m1 = { .min = 0, .max = 0 },
  245. .m2 = { .min = 0, .max = 254 },
  246. .p = { .min = 7, .max = 112 },
  247. .p1 = { .min = 1, .max = 8 },
  248. .p2 = { .dot_limit = 112000,
  249. .p2_slow = 14, .p2_fast = 14 },
  250. .find_pll = intel_find_best_PLL,
  251. };
  252. /* Ironlake / Sandybridge
  253. *
  254. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  255. * the range value for them is (actual_value - 2).
  256. */
  257. static const intel_limit_t intel_limits_ironlake_dac = {
  258. .dot = { .min = 25000, .max = 350000 },
  259. .vco = { .min = 1760000, .max = 3510000 },
  260. .n = { .min = 1, .max = 5 },
  261. .m = { .min = 79, .max = 127 },
  262. .m1 = { .min = 12, .max = 22 },
  263. .m2 = { .min = 5, .max = 9 },
  264. .p = { .min = 5, .max = 80 },
  265. .p1 = { .min = 1, .max = 8 },
  266. .p2 = { .dot_limit = 225000,
  267. .p2_slow = 10, .p2_fast = 5 },
  268. .find_pll = intel_g4x_find_best_PLL,
  269. };
  270. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  271. .dot = { .min = 25000, .max = 350000 },
  272. .vco = { .min = 1760000, .max = 3510000 },
  273. .n = { .min = 1, .max = 3 },
  274. .m = { .min = 79, .max = 118 },
  275. .m1 = { .min = 12, .max = 22 },
  276. .m2 = { .min = 5, .max = 9 },
  277. .p = { .min = 28, .max = 112 },
  278. .p1 = { .min = 2, .max = 8 },
  279. .p2 = { .dot_limit = 225000,
  280. .p2_slow = 14, .p2_fast = 14 },
  281. .find_pll = intel_g4x_find_best_PLL,
  282. };
  283. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  284. .dot = { .min = 25000, .max = 350000 },
  285. .vco = { .min = 1760000, .max = 3510000 },
  286. .n = { .min = 1, .max = 3 },
  287. .m = { .min = 79, .max = 127 },
  288. .m1 = { .min = 12, .max = 22 },
  289. .m2 = { .min = 5, .max = 9 },
  290. .p = { .min = 14, .max = 56 },
  291. .p1 = { .min = 2, .max = 8 },
  292. .p2 = { .dot_limit = 225000,
  293. .p2_slow = 7, .p2_fast = 7 },
  294. .find_pll = intel_g4x_find_best_PLL,
  295. };
  296. /* LVDS 100mhz refclk limits. */
  297. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  298. .dot = { .min = 25000, .max = 350000 },
  299. .vco = { .min = 1760000, .max = 3510000 },
  300. .n = { .min = 1, .max = 2 },
  301. .m = { .min = 79, .max = 126 },
  302. .m1 = { .min = 12, .max = 22 },
  303. .m2 = { .min = 5, .max = 9 },
  304. .p = { .min = 28, .max = 112 },
  305. .p1 = { .min = 2, .max = 8 },
  306. .p2 = { .dot_limit = 225000,
  307. .p2_slow = 14, .p2_fast = 14 },
  308. .find_pll = intel_g4x_find_best_PLL,
  309. };
  310. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  311. .dot = { .min = 25000, .max = 350000 },
  312. .vco = { .min = 1760000, .max = 3510000 },
  313. .n = { .min = 1, .max = 3 },
  314. .m = { .min = 79, .max = 126 },
  315. .m1 = { .min = 12, .max = 22 },
  316. .m2 = { .min = 5, .max = 9 },
  317. .p = { .min = 14, .max = 42 },
  318. .p1 = { .min = 2, .max = 6 },
  319. .p2 = { .dot_limit = 225000,
  320. .p2_slow = 7, .p2_fast = 7 },
  321. .find_pll = intel_g4x_find_best_PLL,
  322. };
  323. static const intel_limit_t intel_limits_ironlake_display_port = {
  324. .dot = { .min = 25000, .max = 350000 },
  325. .vco = { .min = 1760000, .max = 3510000},
  326. .n = { .min = 1, .max = 2 },
  327. .m = { .min = 81, .max = 90 },
  328. .m1 = { .min = 12, .max = 22 },
  329. .m2 = { .min = 5, .max = 9 },
  330. .p = { .min = 10, .max = 20 },
  331. .p1 = { .min = 1, .max = 2},
  332. .p2 = { .dot_limit = 0,
  333. .p2_slow = 10, .p2_fast = 10 },
  334. .find_pll = intel_find_pll_ironlake_dp,
  335. };
  336. static const intel_limit_t intel_limits_vlv_dac = {
  337. .dot = { .min = 25000, .max = 270000 },
  338. .vco = { .min = 4000000, .max = 6000000 },
  339. .n = { .min = 1, .max = 7 },
  340. .m = { .min = 22, .max = 450 }, /* guess */
  341. .m1 = { .min = 2, .max = 3 },
  342. .m2 = { .min = 11, .max = 156 },
  343. .p = { .min = 10, .max = 30 },
  344. .p1 = { .min = 2, .max = 3 },
  345. .p2 = { .dot_limit = 270000,
  346. .p2_slow = 2, .p2_fast = 20 },
  347. .find_pll = intel_vlv_find_best_pll,
  348. };
  349. static const intel_limit_t intel_limits_vlv_hdmi = {
  350. .dot = { .min = 20000, .max = 165000 },
  351. .vco = { .min = 4000000, .max = 5994000},
  352. .n = { .min = 1, .max = 7 },
  353. .m = { .min = 60, .max = 300 }, /* guess */
  354. .m1 = { .min = 2, .max = 3 },
  355. .m2 = { .min = 11, .max = 156 },
  356. .p = { .min = 10, .max = 30 },
  357. .p1 = { .min = 2, .max = 3 },
  358. .p2 = { .dot_limit = 270000,
  359. .p2_slow = 2, .p2_fast = 20 },
  360. .find_pll = intel_vlv_find_best_pll,
  361. };
  362. static const intel_limit_t intel_limits_vlv_dp = {
  363. .dot = { .min = 25000, .max = 270000 },
  364. .vco = { .min = 4000000, .max = 6000000 },
  365. .n = { .min = 1, .max = 7 },
  366. .m = { .min = 22, .max = 450 },
  367. .m1 = { .min = 2, .max = 3 },
  368. .m2 = { .min = 11, .max = 156 },
  369. .p = { .min = 10, .max = 30 },
  370. .p1 = { .min = 2, .max = 3 },
  371. .p2 = { .dot_limit = 270000,
  372. .p2_slow = 2, .p2_fast = 20 },
  373. .find_pll = intel_vlv_find_best_pll,
  374. };
  375. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  376. {
  377. unsigned long flags;
  378. u32 val = 0;
  379. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  380. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  381. DRM_ERROR("DPIO idle wait timed out\n");
  382. goto out_unlock;
  383. }
  384. I915_WRITE(DPIO_REG, reg);
  385. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  386. DPIO_BYTE);
  387. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  388. DRM_ERROR("DPIO read wait timed out\n");
  389. goto out_unlock;
  390. }
  391. val = I915_READ(DPIO_DATA);
  392. out_unlock:
  393. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  394. return val;
  395. }
  396. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  397. u32 val)
  398. {
  399. unsigned long flags;
  400. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  401. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  402. DRM_ERROR("DPIO idle wait timed out\n");
  403. goto out_unlock;
  404. }
  405. I915_WRITE(DPIO_DATA, val);
  406. I915_WRITE(DPIO_REG, reg);
  407. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  408. DPIO_BYTE);
  409. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  410. DRM_ERROR("DPIO write wait timed out\n");
  411. out_unlock:
  412. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  413. }
  414. static void vlv_init_dpio(struct drm_device *dev)
  415. {
  416. struct drm_i915_private *dev_priv = dev->dev_private;
  417. /* Reset the DPIO config */
  418. I915_WRITE(DPIO_CTL, 0);
  419. POSTING_READ(DPIO_CTL);
  420. I915_WRITE(DPIO_CTL, 1);
  421. POSTING_READ(DPIO_CTL);
  422. }
  423. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  424. {
  425. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  426. return 1;
  427. }
  428. static const struct dmi_system_id intel_dual_link_lvds[] = {
  429. {
  430. .callback = intel_dual_link_lvds_callback,
  431. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  432. .matches = {
  433. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  434. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  435. },
  436. },
  437. { } /* terminating entry */
  438. };
  439. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  440. unsigned int reg)
  441. {
  442. unsigned int val;
  443. /* use the module option value if specified */
  444. if (i915_lvds_channel_mode > 0)
  445. return i915_lvds_channel_mode == 2;
  446. if (dmi_check_system(intel_dual_link_lvds))
  447. return true;
  448. if (dev_priv->lvds_val)
  449. val = dev_priv->lvds_val;
  450. else {
  451. /* BIOS should set the proper LVDS register value at boot, but
  452. * in reality, it doesn't set the value when the lid is closed;
  453. * we need to check "the value to be set" in VBT when LVDS
  454. * register is uninitialized.
  455. */
  456. val = I915_READ(reg);
  457. if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
  458. val = dev_priv->bios_lvds_val;
  459. dev_priv->lvds_val = val;
  460. }
  461. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  462. }
  463. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  464. int refclk)
  465. {
  466. struct drm_device *dev = crtc->dev;
  467. struct drm_i915_private *dev_priv = dev->dev_private;
  468. const intel_limit_t *limit;
  469. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  470. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  471. /* LVDS dual channel */
  472. if (refclk == 100000)
  473. limit = &intel_limits_ironlake_dual_lvds_100m;
  474. else
  475. limit = &intel_limits_ironlake_dual_lvds;
  476. } else {
  477. if (refclk == 100000)
  478. limit = &intel_limits_ironlake_single_lvds_100m;
  479. else
  480. limit = &intel_limits_ironlake_single_lvds;
  481. }
  482. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  483. HAS_eDP)
  484. limit = &intel_limits_ironlake_display_port;
  485. else
  486. limit = &intel_limits_ironlake_dac;
  487. return limit;
  488. }
  489. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  490. {
  491. struct drm_device *dev = crtc->dev;
  492. struct drm_i915_private *dev_priv = dev->dev_private;
  493. const intel_limit_t *limit;
  494. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  495. if (is_dual_link_lvds(dev_priv, LVDS))
  496. /* LVDS with dual channel */
  497. limit = &intel_limits_g4x_dual_channel_lvds;
  498. else
  499. /* LVDS with dual channel */
  500. limit = &intel_limits_g4x_single_channel_lvds;
  501. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  502. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  503. limit = &intel_limits_g4x_hdmi;
  504. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  505. limit = &intel_limits_g4x_sdvo;
  506. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  507. limit = &intel_limits_g4x_display_port;
  508. } else /* The option is for other outputs */
  509. limit = &intel_limits_i9xx_sdvo;
  510. return limit;
  511. }
  512. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  513. {
  514. struct drm_device *dev = crtc->dev;
  515. const intel_limit_t *limit;
  516. if (HAS_PCH_SPLIT(dev))
  517. limit = intel_ironlake_limit(crtc, refclk);
  518. else if (IS_G4X(dev)) {
  519. limit = intel_g4x_limit(crtc);
  520. } else if (IS_PINEVIEW(dev)) {
  521. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  522. limit = &intel_limits_pineview_lvds;
  523. else
  524. limit = &intel_limits_pineview_sdvo;
  525. } else if (IS_VALLEYVIEW(dev)) {
  526. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  527. limit = &intel_limits_vlv_dac;
  528. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  529. limit = &intel_limits_vlv_hdmi;
  530. else
  531. limit = &intel_limits_vlv_dp;
  532. } else if (!IS_GEN2(dev)) {
  533. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  534. limit = &intel_limits_i9xx_lvds;
  535. else
  536. limit = &intel_limits_i9xx_sdvo;
  537. } else {
  538. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  539. limit = &intel_limits_i8xx_lvds;
  540. else
  541. limit = &intel_limits_i8xx_dvo;
  542. }
  543. return limit;
  544. }
  545. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  546. static void pineview_clock(int refclk, intel_clock_t *clock)
  547. {
  548. clock->m = clock->m2 + 2;
  549. clock->p = clock->p1 * clock->p2;
  550. clock->vco = refclk * clock->m / clock->n;
  551. clock->dot = clock->vco / clock->p;
  552. }
  553. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  554. {
  555. if (IS_PINEVIEW(dev)) {
  556. pineview_clock(refclk, clock);
  557. return;
  558. }
  559. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  560. clock->p = clock->p1 * clock->p2;
  561. clock->vco = refclk * clock->m / (clock->n + 2);
  562. clock->dot = clock->vco / clock->p;
  563. }
  564. /**
  565. * Returns whether any output on the specified pipe is of the specified type
  566. */
  567. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  568. {
  569. struct drm_device *dev = crtc->dev;
  570. struct intel_encoder *encoder;
  571. for_each_encoder_on_crtc(dev, crtc, encoder)
  572. if (encoder->type == type)
  573. return true;
  574. return false;
  575. }
  576. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  577. /**
  578. * Returns whether the given set of divisors are valid for a given refclk with
  579. * the given connectors.
  580. */
  581. static bool intel_PLL_is_valid(struct drm_device *dev,
  582. const intel_limit_t *limit,
  583. const intel_clock_t *clock)
  584. {
  585. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  586. INTELPllInvalid("p1 out of range\n");
  587. if (clock->p < limit->p.min || limit->p.max < clock->p)
  588. INTELPllInvalid("p out of range\n");
  589. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  590. INTELPllInvalid("m2 out of range\n");
  591. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  592. INTELPllInvalid("m1 out of range\n");
  593. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  594. INTELPllInvalid("m1 <= m2\n");
  595. if (clock->m < limit->m.min || limit->m.max < clock->m)
  596. INTELPllInvalid("m out of range\n");
  597. if (clock->n < limit->n.min || limit->n.max < clock->n)
  598. INTELPllInvalid("n out of range\n");
  599. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  600. INTELPllInvalid("vco out of range\n");
  601. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  602. * connector, etc., rather than just a single range.
  603. */
  604. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  605. INTELPllInvalid("dot out of range\n");
  606. return true;
  607. }
  608. static bool
  609. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  610. int target, int refclk, intel_clock_t *match_clock,
  611. intel_clock_t *best_clock)
  612. {
  613. struct drm_device *dev = crtc->dev;
  614. struct drm_i915_private *dev_priv = dev->dev_private;
  615. intel_clock_t clock;
  616. int err = target;
  617. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  618. (I915_READ(LVDS)) != 0) {
  619. /*
  620. * For LVDS, if the panel is on, just rely on its current
  621. * settings for dual-channel. We haven't figured out how to
  622. * reliably set up different single/dual channel state, if we
  623. * even can.
  624. */
  625. if (is_dual_link_lvds(dev_priv, LVDS))
  626. clock.p2 = limit->p2.p2_fast;
  627. else
  628. clock.p2 = limit->p2.p2_slow;
  629. } else {
  630. if (target < limit->p2.dot_limit)
  631. clock.p2 = limit->p2.p2_slow;
  632. else
  633. clock.p2 = limit->p2.p2_fast;
  634. }
  635. memset(best_clock, 0, sizeof(*best_clock));
  636. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  637. clock.m1++) {
  638. for (clock.m2 = limit->m2.min;
  639. clock.m2 <= limit->m2.max; clock.m2++) {
  640. /* m1 is always 0 in Pineview */
  641. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  642. break;
  643. for (clock.n = limit->n.min;
  644. clock.n <= limit->n.max; clock.n++) {
  645. for (clock.p1 = limit->p1.min;
  646. clock.p1 <= limit->p1.max; clock.p1++) {
  647. int this_err;
  648. intel_clock(dev, refclk, &clock);
  649. if (!intel_PLL_is_valid(dev, limit,
  650. &clock))
  651. continue;
  652. if (match_clock &&
  653. clock.p != match_clock->p)
  654. continue;
  655. this_err = abs(clock.dot - target);
  656. if (this_err < err) {
  657. *best_clock = clock;
  658. err = this_err;
  659. }
  660. }
  661. }
  662. }
  663. }
  664. return (err != target);
  665. }
  666. static bool
  667. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  668. int target, int refclk, intel_clock_t *match_clock,
  669. intel_clock_t *best_clock)
  670. {
  671. struct drm_device *dev = crtc->dev;
  672. struct drm_i915_private *dev_priv = dev->dev_private;
  673. intel_clock_t clock;
  674. int max_n;
  675. bool found;
  676. /* approximately equals target * 0.00585 */
  677. int err_most = (target >> 8) + (target >> 9);
  678. found = false;
  679. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  680. int lvds_reg;
  681. if (HAS_PCH_SPLIT(dev))
  682. lvds_reg = PCH_LVDS;
  683. else
  684. lvds_reg = LVDS;
  685. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  686. LVDS_CLKB_POWER_UP)
  687. clock.p2 = limit->p2.p2_fast;
  688. else
  689. clock.p2 = limit->p2.p2_slow;
  690. } else {
  691. if (target < limit->p2.dot_limit)
  692. clock.p2 = limit->p2.p2_slow;
  693. else
  694. clock.p2 = limit->p2.p2_fast;
  695. }
  696. memset(best_clock, 0, sizeof(*best_clock));
  697. max_n = limit->n.max;
  698. /* based on hardware requirement, prefer smaller n to precision */
  699. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  700. /* based on hardware requirement, prefere larger m1,m2 */
  701. for (clock.m1 = limit->m1.max;
  702. clock.m1 >= limit->m1.min; clock.m1--) {
  703. for (clock.m2 = limit->m2.max;
  704. clock.m2 >= limit->m2.min; clock.m2--) {
  705. for (clock.p1 = limit->p1.max;
  706. clock.p1 >= limit->p1.min; clock.p1--) {
  707. int this_err;
  708. intel_clock(dev, refclk, &clock);
  709. if (!intel_PLL_is_valid(dev, limit,
  710. &clock))
  711. continue;
  712. if (match_clock &&
  713. clock.p != match_clock->p)
  714. continue;
  715. this_err = abs(clock.dot - target);
  716. if (this_err < err_most) {
  717. *best_clock = clock;
  718. err_most = this_err;
  719. max_n = clock.n;
  720. found = true;
  721. }
  722. }
  723. }
  724. }
  725. }
  726. return found;
  727. }
  728. static bool
  729. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  730. int target, int refclk, intel_clock_t *match_clock,
  731. intel_clock_t *best_clock)
  732. {
  733. struct drm_device *dev = crtc->dev;
  734. intel_clock_t clock;
  735. if (target < 200000) {
  736. clock.n = 1;
  737. clock.p1 = 2;
  738. clock.p2 = 10;
  739. clock.m1 = 12;
  740. clock.m2 = 9;
  741. } else {
  742. clock.n = 2;
  743. clock.p1 = 1;
  744. clock.p2 = 10;
  745. clock.m1 = 14;
  746. clock.m2 = 8;
  747. }
  748. intel_clock(dev, refclk, &clock);
  749. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  750. return true;
  751. }
  752. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  753. static bool
  754. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  755. int target, int refclk, intel_clock_t *match_clock,
  756. intel_clock_t *best_clock)
  757. {
  758. intel_clock_t clock;
  759. if (target < 200000) {
  760. clock.p1 = 2;
  761. clock.p2 = 10;
  762. clock.n = 2;
  763. clock.m1 = 23;
  764. clock.m2 = 8;
  765. } else {
  766. clock.p1 = 1;
  767. clock.p2 = 10;
  768. clock.n = 1;
  769. clock.m1 = 14;
  770. clock.m2 = 2;
  771. }
  772. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  773. clock.p = (clock.p1 * clock.p2);
  774. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  775. clock.vco = 0;
  776. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  777. return true;
  778. }
  779. static bool
  780. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  781. int target, int refclk, intel_clock_t *match_clock,
  782. intel_clock_t *best_clock)
  783. {
  784. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  785. u32 m, n, fastclk;
  786. u32 updrate, minupdate, fracbits, p;
  787. unsigned long bestppm, ppm, absppm;
  788. int dotclk, flag;
  789. flag = 0;
  790. dotclk = target * 1000;
  791. bestppm = 1000000;
  792. ppm = absppm = 0;
  793. fastclk = dotclk / (2*100);
  794. updrate = 0;
  795. minupdate = 19200;
  796. fracbits = 1;
  797. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  798. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  799. /* based on hardware requirement, prefer smaller n to precision */
  800. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  801. updrate = refclk / n;
  802. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  803. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  804. if (p2 > 10)
  805. p2 = p2 - 1;
  806. p = p1 * p2;
  807. /* based on hardware requirement, prefer bigger m1,m2 values */
  808. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  809. m2 = (((2*(fastclk * p * n / m1 )) +
  810. refclk) / (2*refclk));
  811. m = m1 * m2;
  812. vco = updrate * m;
  813. if (vco >= limit->vco.min && vco < limit->vco.max) {
  814. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  815. absppm = (ppm > 0) ? ppm : (-ppm);
  816. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  817. bestppm = 0;
  818. flag = 1;
  819. }
  820. if (absppm < bestppm - 10) {
  821. bestppm = absppm;
  822. flag = 1;
  823. }
  824. if (flag) {
  825. bestn = n;
  826. bestm1 = m1;
  827. bestm2 = m2;
  828. bestp1 = p1;
  829. bestp2 = p2;
  830. flag = 0;
  831. }
  832. }
  833. }
  834. }
  835. }
  836. }
  837. best_clock->n = bestn;
  838. best_clock->m1 = bestm1;
  839. best_clock->m2 = bestm2;
  840. best_clock->p1 = bestp1;
  841. best_clock->p2 = bestp2;
  842. return true;
  843. }
  844. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  845. {
  846. struct drm_i915_private *dev_priv = dev->dev_private;
  847. u32 frame, frame_reg = PIPEFRAME(pipe);
  848. frame = I915_READ(frame_reg);
  849. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  850. DRM_DEBUG_KMS("vblank wait timed out\n");
  851. }
  852. /**
  853. * intel_wait_for_vblank - wait for vblank on a given pipe
  854. * @dev: drm device
  855. * @pipe: pipe to wait for
  856. *
  857. * Wait for vblank to occur on a given pipe. Needed for various bits of
  858. * mode setting code.
  859. */
  860. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  861. {
  862. struct drm_i915_private *dev_priv = dev->dev_private;
  863. int pipestat_reg = PIPESTAT(pipe);
  864. if (INTEL_INFO(dev)->gen >= 5) {
  865. ironlake_wait_for_vblank(dev, pipe);
  866. return;
  867. }
  868. /* Clear existing vblank status. Note this will clear any other
  869. * sticky status fields as well.
  870. *
  871. * This races with i915_driver_irq_handler() with the result
  872. * that either function could miss a vblank event. Here it is not
  873. * fatal, as we will either wait upon the next vblank interrupt or
  874. * timeout. Generally speaking intel_wait_for_vblank() is only
  875. * called during modeset at which time the GPU should be idle and
  876. * should *not* be performing page flips and thus not waiting on
  877. * vblanks...
  878. * Currently, the result of us stealing a vblank from the irq
  879. * handler is that a single frame will be skipped during swapbuffers.
  880. */
  881. I915_WRITE(pipestat_reg,
  882. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  883. /* Wait for vblank interrupt bit to set */
  884. if (wait_for(I915_READ(pipestat_reg) &
  885. PIPE_VBLANK_INTERRUPT_STATUS,
  886. 50))
  887. DRM_DEBUG_KMS("vblank wait timed out\n");
  888. }
  889. /*
  890. * intel_wait_for_pipe_off - wait for pipe to turn off
  891. * @dev: drm device
  892. * @pipe: pipe to wait for
  893. *
  894. * After disabling a pipe, we can't wait for vblank in the usual way,
  895. * spinning on the vblank interrupt status bit, since we won't actually
  896. * see an interrupt when the pipe is disabled.
  897. *
  898. * On Gen4 and above:
  899. * wait for the pipe register state bit to turn off
  900. *
  901. * Otherwise:
  902. * wait for the display line value to settle (it usually
  903. * ends up stopping at the start of the next frame).
  904. *
  905. */
  906. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  907. {
  908. struct drm_i915_private *dev_priv = dev->dev_private;
  909. if (INTEL_INFO(dev)->gen >= 4) {
  910. int reg = PIPECONF(pipe);
  911. /* Wait for the Pipe State to go off */
  912. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  913. 100))
  914. WARN(1, "pipe_off wait timed out\n");
  915. } else {
  916. u32 last_line, line_mask;
  917. int reg = PIPEDSL(pipe);
  918. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  919. if (IS_GEN2(dev))
  920. line_mask = DSL_LINEMASK_GEN2;
  921. else
  922. line_mask = DSL_LINEMASK_GEN3;
  923. /* Wait for the display line to settle */
  924. do {
  925. last_line = I915_READ(reg) & line_mask;
  926. mdelay(5);
  927. } while (((I915_READ(reg) & line_mask) != last_line) &&
  928. time_after(timeout, jiffies));
  929. if (time_after(jiffies, timeout))
  930. WARN(1, "pipe_off wait timed out\n");
  931. }
  932. }
  933. static const char *state_string(bool enabled)
  934. {
  935. return enabled ? "on" : "off";
  936. }
  937. /* Only for pre-ILK configs */
  938. static void assert_pll(struct drm_i915_private *dev_priv,
  939. enum pipe pipe, bool state)
  940. {
  941. int reg;
  942. u32 val;
  943. bool cur_state;
  944. reg = DPLL(pipe);
  945. val = I915_READ(reg);
  946. cur_state = !!(val & DPLL_VCO_ENABLE);
  947. WARN(cur_state != state,
  948. "PLL state assertion failure (expected %s, current %s)\n",
  949. state_string(state), state_string(cur_state));
  950. }
  951. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  952. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  953. /* For ILK+ */
  954. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  955. struct intel_pch_pll *pll,
  956. struct intel_crtc *crtc,
  957. bool state)
  958. {
  959. u32 val;
  960. bool cur_state;
  961. if (HAS_PCH_LPT(dev_priv->dev)) {
  962. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  963. return;
  964. }
  965. if (WARN (!pll,
  966. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  967. return;
  968. val = I915_READ(pll->pll_reg);
  969. cur_state = !!(val & DPLL_VCO_ENABLE);
  970. WARN(cur_state != state,
  971. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  972. pll->pll_reg, state_string(state), state_string(cur_state), val);
  973. /* Make sure the selected PLL is correctly attached to the transcoder */
  974. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  975. u32 pch_dpll;
  976. pch_dpll = I915_READ(PCH_DPLL_SEL);
  977. cur_state = pll->pll_reg == _PCH_DPLL_B;
  978. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  979. "PLL[%d] not attached to this transcoder %d: %08x\n",
  980. cur_state, crtc->pipe, pch_dpll)) {
  981. cur_state = !!(val >> (4*crtc->pipe + 3));
  982. WARN(cur_state != state,
  983. "PLL[%d] not %s on this transcoder %d: %08x\n",
  984. pll->pll_reg == _PCH_DPLL_B,
  985. state_string(state),
  986. crtc->pipe,
  987. val);
  988. }
  989. }
  990. }
  991. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  992. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  993. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  994. enum pipe pipe, bool state)
  995. {
  996. int reg;
  997. u32 val;
  998. bool cur_state;
  999. if (IS_HASWELL(dev_priv->dev)) {
  1000. /* On Haswell, DDI is used instead of FDI_TX_CTL */
  1001. reg = DDI_FUNC_CTL(pipe);
  1002. val = I915_READ(reg);
  1003. cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
  1004. } else {
  1005. reg = FDI_TX_CTL(pipe);
  1006. val = I915_READ(reg);
  1007. cur_state = !!(val & FDI_TX_ENABLE);
  1008. }
  1009. WARN(cur_state != state,
  1010. "FDI TX state assertion failure (expected %s, current %s)\n",
  1011. state_string(state), state_string(cur_state));
  1012. }
  1013. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1014. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1015. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1016. enum pipe pipe, bool state)
  1017. {
  1018. int reg;
  1019. u32 val;
  1020. bool cur_state;
  1021. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1022. DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
  1023. return;
  1024. } else {
  1025. reg = FDI_RX_CTL(pipe);
  1026. val = I915_READ(reg);
  1027. cur_state = !!(val & FDI_RX_ENABLE);
  1028. }
  1029. WARN(cur_state != state,
  1030. "FDI RX state assertion failure (expected %s, current %s)\n",
  1031. state_string(state), state_string(cur_state));
  1032. }
  1033. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1034. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1035. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1036. enum pipe pipe)
  1037. {
  1038. int reg;
  1039. u32 val;
  1040. /* ILK FDI PLL is always enabled */
  1041. if (dev_priv->info->gen == 5)
  1042. return;
  1043. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1044. if (IS_HASWELL(dev_priv->dev))
  1045. return;
  1046. reg = FDI_TX_CTL(pipe);
  1047. val = I915_READ(reg);
  1048. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1049. }
  1050. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1051. enum pipe pipe)
  1052. {
  1053. int reg;
  1054. u32 val;
  1055. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1056. DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
  1057. return;
  1058. }
  1059. reg = FDI_RX_CTL(pipe);
  1060. val = I915_READ(reg);
  1061. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1062. }
  1063. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1064. enum pipe pipe)
  1065. {
  1066. int pp_reg, lvds_reg;
  1067. u32 val;
  1068. enum pipe panel_pipe = PIPE_A;
  1069. bool locked = true;
  1070. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1071. pp_reg = PCH_PP_CONTROL;
  1072. lvds_reg = PCH_LVDS;
  1073. } else {
  1074. pp_reg = PP_CONTROL;
  1075. lvds_reg = LVDS;
  1076. }
  1077. val = I915_READ(pp_reg);
  1078. if (!(val & PANEL_POWER_ON) ||
  1079. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1080. locked = false;
  1081. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1082. panel_pipe = PIPE_B;
  1083. WARN(panel_pipe == pipe && locked,
  1084. "panel assertion failure, pipe %c regs locked\n",
  1085. pipe_name(pipe));
  1086. }
  1087. void assert_pipe(struct drm_i915_private *dev_priv,
  1088. enum pipe pipe, bool state)
  1089. {
  1090. int reg;
  1091. u32 val;
  1092. bool cur_state;
  1093. /* if we need the pipe A quirk it must be always on */
  1094. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1095. state = true;
  1096. reg = PIPECONF(pipe);
  1097. val = I915_READ(reg);
  1098. cur_state = !!(val & PIPECONF_ENABLE);
  1099. WARN(cur_state != state,
  1100. "pipe %c assertion failure (expected %s, current %s)\n",
  1101. pipe_name(pipe), state_string(state), state_string(cur_state));
  1102. }
  1103. static void assert_plane(struct drm_i915_private *dev_priv,
  1104. enum plane plane, bool state)
  1105. {
  1106. int reg;
  1107. u32 val;
  1108. bool cur_state;
  1109. reg = DSPCNTR(plane);
  1110. val = I915_READ(reg);
  1111. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1112. WARN(cur_state != state,
  1113. "plane %c assertion failure (expected %s, current %s)\n",
  1114. plane_name(plane), state_string(state), state_string(cur_state));
  1115. }
  1116. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1117. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1118. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1119. enum pipe pipe)
  1120. {
  1121. int reg, i;
  1122. u32 val;
  1123. int cur_pipe;
  1124. /* Planes are fixed to pipes on ILK+ */
  1125. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1126. reg = DSPCNTR(pipe);
  1127. val = I915_READ(reg);
  1128. WARN((val & DISPLAY_PLANE_ENABLE),
  1129. "plane %c assertion failure, should be disabled but not\n",
  1130. plane_name(pipe));
  1131. return;
  1132. }
  1133. /* Need to check both planes against the pipe */
  1134. for (i = 0; i < 2; i++) {
  1135. reg = DSPCNTR(i);
  1136. val = I915_READ(reg);
  1137. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1138. DISPPLANE_SEL_PIPE_SHIFT;
  1139. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1140. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1141. plane_name(i), pipe_name(pipe));
  1142. }
  1143. }
  1144. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1145. {
  1146. u32 val;
  1147. bool enabled;
  1148. if (HAS_PCH_LPT(dev_priv->dev)) {
  1149. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1150. return;
  1151. }
  1152. val = I915_READ(PCH_DREF_CONTROL);
  1153. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1154. DREF_SUPERSPREAD_SOURCE_MASK));
  1155. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1156. }
  1157. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1158. enum pipe pipe)
  1159. {
  1160. int reg;
  1161. u32 val;
  1162. bool enabled;
  1163. reg = TRANSCONF(pipe);
  1164. val = I915_READ(reg);
  1165. enabled = !!(val & TRANS_ENABLE);
  1166. WARN(enabled,
  1167. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1168. pipe_name(pipe));
  1169. }
  1170. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1171. enum pipe pipe, u32 port_sel, u32 val)
  1172. {
  1173. if ((val & DP_PORT_EN) == 0)
  1174. return false;
  1175. if (HAS_PCH_CPT(dev_priv->dev)) {
  1176. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1177. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1178. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1179. return false;
  1180. } else {
  1181. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1182. return false;
  1183. }
  1184. return true;
  1185. }
  1186. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1187. enum pipe pipe, u32 val)
  1188. {
  1189. if ((val & PORT_ENABLE) == 0)
  1190. return false;
  1191. if (HAS_PCH_CPT(dev_priv->dev)) {
  1192. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1193. return false;
  1194. } else {
  1195. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1196. return false;
  1197. }
  1198. return true;
  1199. }
  1200. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1201. enum pipe pipe, u32 val)
  1202. {
  1203. if ((val & LVDS_PORT_EN) == 0)
  1204. return false;
  1205. if (HAS_PCH_CPT(dev_priv->dev)) {
  1206. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1207. return false;
  1208. } else {
  1209. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1210. return false;
  1211. }
  1212. return true;
  1213. }
  1214. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1215. enum pipe pipe, u32 val)
  1216. {
  1217. if ((val & ADPA_DAC_ENABLE) == 0)
  1218. return false;
  1219. if (HAS_PCH_CPT(dev_priv->dev)) {
  1220. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1221. return false;
  1222. } else {
  1223. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1224. return false;
  1225. }
  1226. return true;
  1227. }
  1228. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1229. enum pipe pipe, int reg, u32 port_sel)
  1230. {
  1231. u32 val = I915_READ(reg);
  1232. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1233. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1234. reg, pipe_name(pipe));
  1235. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1236. && (val & DP_PIPEB_SELECT),
  1237. "IBX PCH dp port still using transcoder B\n");
  1238. }
  1239. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1240. enum pipe pipe, int reg)
  1241. {
  1242. u32 val = I915_READ(reg);
  1243. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1244. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1245. reg, pipe_name(pipe));
  1246. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
  1247. && (val & SDVO_PIPE_B_SELECT),
  1248. "IBX PCH hdmi port still using transcoder B\n");
  1249. }
  1250. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1251. enum pipe pipe)
  1252. {
  1253. int reg;
  1254. u32 val;
  1255. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1256. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1257. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1258. reg = PCH_ADPA;
  1259. val = I915_READ(reg);
  1260. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1261. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1262. pipe_name(pipe));
  1263. reg = PCH_LVDS;
  1264. val = I915_READ(reg);
  1265. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1266. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1267. pipe_name(pipe));
  1268. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1269. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1270. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1271. }
  1272. /**
  1273. * intel_enable_pll - enable a PLL
  1274. * @dev_priv: i915 private structure
  1275. * @pipe: pipe PLL to enable
  1276. *
  1277. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1278. * make sure the PLL reg is writable first though, since the panel write
  1279. * protect mechanism may be enabled.
  1280. *
  1281. * Note! This is for pre-ILK only.
  1282. *
  1283. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1284. */
  1285. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1286. {
  1287. int reg;
  1288. u32 val;
  1289. /* No really, not for ILK+ */
  1290. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1291. /* PLL is protected by panel, make sure we can write it */
  1292. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1293. assert_panel_unlocked(dev_priv, pipe);
  1294. reg = DPLL(pipe);
  1295. val = I915_READ(reg);
  1296. val |= DPLL_VCO_ENABLE;
  1297. /* We do this three times for luck */
  1298. I915_WRITE(reg, val);
  1299. POSTING_READ(reg);
  1300. udelay(150); /* wait for warmup */
  1301. I915_WRITE(reg, val);
  1302. POSTING_READ(reg);
  1303. udelay(150); /* wait for warmup */
  1304. I915_WRITE(reg, val);
  1305. POSTING_READ(reg);
  1306. udelay(150); /* wait for warmup */
  1307. }
  1308. /**
  1309. * intel_disable_pll - disable a PLL
  1310. * @dev_priv: i915 private structure
  1311. * @pipe: pipe PLL to disable
  1312. *
  1313. * Disable the PLL for @pipe, making sure the pipe is off first.
  1314. *
  1315. * Note! This is for pre-ILK only.
  1316. */
  1317. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1318. {
  1319. int reg;
  1320. u32 val;
  1321. /* Don't disable pipe A or pipe A PLLs if needed */
  1322. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1323. return;
  1324. /* Make sure the pipe isn't still relying on us */
  1325. assert_pipe_disabled(dev_priv, pipe);
  1326. reg = DPLL(pipe);
  1327. val = I915_READ(reg);
  1328. val &= ~DPLL_VCO_ENABLE;
  1329. I915_WRITE(reg, val);
  1330. POSTING_READ(reg);
  1331. }
  1332. /* SBI access */
  1333. static void
  1334. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
  1335. {
  1336. unsigned long flags;
  1337. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1338. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1339. 100)) {
  1340. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1341. goto out_unlock;
  1342. }
  1343. I915_WRITE(SBI_ADDR,
  1344. (reg << 16));
  1345. I915_WRITE(SBI_DATA,
  1346. value);
  1347. I915_WRITE(SBI_CTL_STAT,
  1348. SBI_BUSY |
  1349. SBI_CTL_OP_CRWR);
  1350. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1351. 100)) {
  1352. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1353. goto out_unlock;
  1354. }
  1355. out_unlock:
  1356. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1357. }
  1358. static u32
  1359. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
  1360. {
  1361. unsigned long flags;
  1362. u32 value = 0;
  1363. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1364. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1365. 100)) {
  1366. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1367. goto out_unlock;
  1368. }
  1369. I915_WRITE(SBI_ADDR,
  1370. (reg << 16));
  1371. I915_WRITE(SBI_CTL_STAT,
  1372. SBI_BUSY |
  1373. SBI_CTL_OP_CRRD);
  1374. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1375. 100)) {
  1376. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1377. goto out_unlock;
  1378. }
  1379. value = I915_READ(SBI_DATA);
  1380. out_unlock:
  1381. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1382. return value;
  1383. }
  1384. /**
  1385. * intel_enable_pch_pll - enable PCH PLL
  1386. * @dev_priv: i915 private structure
  1387. * @pipe: pipe PLL to enable
  1388. *
  1389. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1390. * drives the transcoder clock.
  1391. */
  1392. static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
  1393. {
  1394. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1395. struct intel_pch_pll *pll;
  1396. int reg;
  1397. u32 val;
  1398. /* PCH PLLs only available on ILK, SNB and IVB */
  1399. BUG_ON(dev_priv->info->gen < 5);
  1400. pll = intel_crtc->pch_pll;
  1401. if (pll == NULL)
  1402. return;
  1403. if (WARN_ON(pll->refcount == 0))
  1404. return;
  1405. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1406. pll->pll_reg, pll->active, pll->on,
  1407. intel_crtc->base.base.id);
  1408. /* PCH refclock must be enabled first */
  1409. assert_pch_refclk_enabled(dev_priv);
  1410. if (pll->active++ && pll->on) {
  1411. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1412. return;
  1413. }
  1414. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1415. reg = pll->pll_reg;
  1416. val = I915_READ(reg);
  1417. val |= DPLL_VCO_ENABLE;
  1418. I915_WRITE(reg, val);
  1419. POSTING_READ(reg);
  1420. udelay(200);
  1421. pll->on = true;
  1422. }
  1423. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1424. {
  1425. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1426. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1427. int reg;
  1428. u32 val;
  1429. /* PCH only available on ILK+ */
  1430. BUG_ON(dev_priv->info->gen < 5);
  1431. if (pll == NULL)
  1432. return;
  1433. if (WARN_ON(pll->refcount == 0))
  1434. return;
  1435. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1436. pll->pll_reg, pll->active, pll->on,
  1437. intel_crtc->base.base.id);
  1438. if (WARN_ON(pll->active == 0)) {
  1439. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1440. return;
  1441. }
  1442. if (--pll->active) {
  1443. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1444. return;
  1445. }
  1446. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1447. /* Make sure transcoder isn't still depending on us */
  1448. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1449. reg = pll->pll_reg;
  1450. val = I915_READ(reg);
  1451. val &= ~DPLL_VCO_ENABLE;
  1452. I915_WRITE(reg, val);
  1453. POSTING_READ(reg);
  1454. udelay(200);
  1455. pll->on = false;
  1456. }
  1457. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1458. enum pipe pipe)
  1459. {
  1460. int reg;
  1461. u32 val, pipeconf_val;
  1462. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1463. /* PCH only available on ILK+ */
  1464. BUG_ON(dev_priv->info->gen < 5);
  1465. /* Make sure PCH DPLL is enabled */
  1466. assert_pch_pll_enabled(dev_priv,
  1467. to_intel_crtc(crtc)->pch_pll,
  1468. to_intel_crtc(crtc));
  1469. /* FDI must be feeding us bits for PCH ports */
  1470. assert_fdi_tx_enabled(dev_priv, pipe);
  1471. assert_fdi_rx_enabled(dev_priv, pipe);
  1472. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1473. DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
  1474. return;
  1475. }
  1476. reg = TRANSCONF(pipe);
  1477. val = I915_READ(reg);
  1478. pipeconf_val = I915_READ(PIPECONF(pipe));
  1479. if (HAS_PCH_IBX(dev_priv->dev)) {
  1480. /*
  1481. * make the BPC in transcoder be consistent with
  1482. * that in pipeconf reg.
  1483. */
  1484. val &= ~PIPE_BPC_MASK;
  1485. val |= pipeconf_val & PIPE_BPC_MASK;
  1486. }
  1487. val &= ~TRANS_INTERLACE_MASK;
  1488. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1489. if (HAS_PCH_IBX(dev_priv->dev) &&
  1490. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1491. val |= TRANS_LEGACY_INTERLACED_ILK;
  1492. else
  1493. val |= TRANS_INTERLACED;
  1494. else
  1495. val |= TRANS_PROGRESSIVE;
  1496. I915_WRITE(reg, val | TRANS_ENABLE);
  1497. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1498. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1499. }
  1500. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1501. enum pipe pipe)
  1502. {
  1503. int reg;
  1504. u32 val;
  1505. /* FDI relies on the transcoder */
  1506. assert_fdi_tx_disabled(dev_priv, pipe);
  1507. assert_fdi_rx_disabled(dev_priv, pipe);
  1508. /* Ports must be off as well */
  1509. assert_pch_ports_disabled(dev_priv, pipe);
  1510. reg = TRANSCONF(pipe);
  1511. val = I915_READ(reg);
  1512. val &= ~TRANS_ENABLE;
  1513. I915_WRITE(reg, val);
  1514. /* wait for PCH transcoder off, transcoder state */
  1515. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1516. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1517. }
  1518. /**
  1519. * intel_enable_pipe - enable a pipe, asserting requirements
  1520. * @dev_priv: i915 private structure
  1521. * @pipe: pipe to enable
  1522. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1523. *
  1524. * Enable @pipe, making sure that various hardware specific requirements
  1525. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1526. *
  1527. * @pipe should be %PIPE_A or %PIPE_B.
  1528. *
  1529. * Will wait until the pipe is actually running (i.e. first vblank) before
  1530. * returning.
  1531. */
  1532. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1533. bool pch_port)
  1534. {
  1535. int reg;
  1536. u32 val;
  1537. /*
  1538. * A pipe without a PLL won't actually be able to drive bits from
  1539. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1540. * need the check.
  1541. */
  1542. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1543. assert_pll_enabled(dev_priv, pipe);
  1544. else {
  1545. if (pch_port) {
  1546. /* if driving the PCH, we need FDI enabled */
  1547. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1548. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1549. }
  1550. /* FIXME: assert CPU port conditions for SNB+ */
  1551. }
  1552. reg = PIPECONF(pipe);
  1553. val = I915_READ(reg);
  1554. if (val & PIPECONF_ENABLE)
  1555. return;
  1556. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1557. intel_wait_for_vblank(dev_priv->dev, pipe);
  1558. }
  1559. /**
  1560. * intel_disable_pipe - disable a pipe, asserting requirements
  1561. * @dev_priv: i915 private structure
  1562. * @pipe: pipe to disable
  1563. *
  1564. * Disable @pipe, making sure that various hardware specific requirements
  1565. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1566. *
  1567. * @pipe should be %PIPE_A or %PIPE_B.
  1568. *
  1569. * Will wait until the pipe has shut down before returning.
  1570. */
  1571. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1572. enum pipe pipe)
  1573. {
  1574. int reg;
  1575. u32 val;
  1576. /*
  1577. * Make sure planes won't keep trying to pump pixels to us,
  1578. * or we might hang the display.
  1579. */
  1580. assert_planes_disabled(dev_priv, pipe);
  1581. /* Don't disable pipe A or pipe A PLLs if needed */
  1582. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1583. return;
  1584. reg = PIPECONF(pipe);
  1585. val = I915_READ(reg);
  1586. if ((val & PIPECONF_ENABLE) == 0)
  1587. return;
  1588. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1589. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1590. }
  1591. /*
  1592. * Plane regs are double buffered, going from enabled->disabled needs a
  1593. * trigger in order to latch. The display address reg provides this.
  1594. */
  1595. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1596. enum plane plane)
  1597. {
  1598. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1599. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1600. }
  1601. /**
  1602. * intel_enable_plane - enable a display plane on a given pipe
  1603. * @dev_priv: i915 private structure
  1604. * @plane: plane to enable
  1605. * @pipe: pipe being fed
  1606. *
  1607. * Enable @plane on @pipe, making sure that @pipe is running first.
  1608. */
  1609. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1610. enum plane plane, enum pipe pipe)
  1611. {
  1612. int reg;
  1613. u32 val;
  1614. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1615. assert_pipe_enabled(dev_priv, pipe);
  1616. reg = DSPCNTR(plane);
  1617. val = I915_READ(reg);
  1618. if (val & DISPLAY_PLANE_ENABLE)
  1619. return;
  1620. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1621. intel_flush_display_plane(dev_priv, plane);
  1622. intel_wait_for_vblank(dev_priv->dev, pipe);
  1623. }
  1624. /**
  1625. * intel_disable_plane - disable a display plane
  1626. * @dev_priv: i915 private structure
  1627. * @plane: plane to disable
  1628. * @pipe: pipe consuming the data
  1629. *
  1630. * Disable @plane; should be an independent operation.
  1631. */
  1632. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1633. enum plane plane, enum pipe pipe)
  1634. {
  1635. int reg;
  1636. u32 val;
  1637. reg = DSPCNTR(plane);
  1638. val = I915_READ(reg);
  1639. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1640. return;
  1641. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1642. intel_flush_display_plane(dev_priv, plane);
  1643. intel_wait_for_vblank(dev_priv->dev, pipe);
  1644. }
  1645. int
  1646. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1647. struct drm_i915_gem_object *obj,
  1648. struct intel_ring_buffer *pipelined)
  1649. {
  1650. struct drm_i915_private *dev_priv = dev->dev_private;
  1651. u32 alignment;
  1652. int ret;
  1653. switch (obj->tiling_mode) {
  1654. case I915_TILING_NONE:
  1655. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1656. alignment = 128 * 1024;
  1657. else if (INTEL_INFO(dev)->gen >= 4)
  1658. alignment = 4 * 1024;
  1659. else
  1660. alignment = 64 * 1024;
  1661. break;
  1662. case I915_TILING_X:
  1663. /* pin() will align the object as required by fence */
  1664. alignment = 0;
  1665. break;
  1666. case I915_TILING_Y:
  1667. /* FIXME: Is this true? */
  1668. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1669. return -EINVAL;
  1670. default:
  1671. BUG();
  1672. }
  1673. dev_priv->mm.interruptible = false;
  1674. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1675. if (ret)
  1676. goto err_interruptible;
  1677. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1678. * fence, whereas 965+ only requires a fence if using
  1679. * framebuffer compression. For simplicity, we always install
  1680. * a fence as the cost is not that onerous.
  1681. */
  1682. ret = i915_gem_object_get_fence(obj);
  1683. if (ret)
  1684. goto err_unpin;
  1685. i915_gem_object_pin_fence(obj);
  1686. dev_priv->mm.interruptible = true;
  1687. return 0;
  1688. err_unpin:
  1689. i915_gem_object_unpin(obj);
  1690. err_interruptible:
  1691. dev_priv->mm.interruptible = true;
  1692. return ret;
  1693. }
  1694. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1695. {
  1696. i915_gem_object_unpin_fence(obj);
  1697. i915_gem_object_unpin(obj);
  1698. }
  1699. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1700. * is assumed to be a power-of-two. */
  1701. static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
  1702. unsigned int bpp,
  1703. unsigned int pitch)
  1704. {
  1705. int tile_rows, tiles;
  1706. tile_rows = *y / 8;
  1707. *y %= 8;
  1708. tiles = *x / (512/bpp);
  1709. *x %= 512/bpp;
  1710. return tile_rows * pitch * 8 + tiles * 4096;
  1711. }
  1712. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1713. int x, int y)
  1714. {
  1715. struct drm_device *dev = crtc->dev;
  1716. struct drm_i915_private *dev_priv = dev->dev_private;
  1717. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1718. struct intel_framebuffer *intel_fb;
  1719. struct drm_i915_gem_object *obj;
  1720. int plane = intel_crtc->plane;
  1721. unsigned long linear_offset;
  1722. u32 dspcntr;
  1723. u32 reg;
  1724. switch (plane) {
  1725. case 0:
  1726. case 1:
  1727. break;
  1728. default:
  1729. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1730. return -EINVAL;
  1731. }
  1732. intel_fb = to_intel_framebuffer(fb);
  1733. obj = intel_fb->obj;
  1734. reg = DSPCNTR(plane);
  1735. dspcntr = I915_READ(reg);
  1736. /* Mask out pixel format bits in case we change it */
  1737. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1738. switch (fb->bits_per_pixel) {
  1739. case 8:
  1740. dspcntr |= DISPPLANE_8BPP;
  1741. break;
  1742. case 16:
  1743. if (fb->depth == 15)
  1744. dspcntr |= DISPPLANE_15_16BPP;
  1745. else
  1746. dspcntr |= DISPPLANE_16BPP;
  1747. break;
  1748. case 24:
  1749. case 32:
  1750. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1751. break;
  1752. default:
  1753. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1754. return -EINVAL;
  1755. }
  1756. if (INTEL_INFO(dev)->gen >= 4) {
  1757. if (obj->tiling_mode != I915_TILING_NONE)
  1758. dspcntr |= DISPPLANE_TILED;
  1759. else
  1760. dspcntr &= ~DISPPLANE_TILED;
  1761. }
  1762. I915_WRITE(reg, dspcntr);
  1763. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1764. if (INTEL_INFO(dev)->gen >= 4) {
  1765. intel_crtc->dspaddr_offset =
  1766. gen4_compute_dspaddr_offset_xtiled(&x, &y,
  1767. fb->bits_per_pixel / 8,
  1768. fb->pitches[0]);
  1769. linear_offset -= intel_crtc->dspaddr_offset;
  1770. } else {
  1771. intel_crtc->dspaddr_offset = linear_offset;
  1772. }
  1773. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1774. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1775. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1776. if (INTEL_INFO(dev)->gen >= 4) {
  1777. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1778. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1779. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1780. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1781. } else
  1782. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1783. POSTING_READ(reg);
  1784. return 0;
  1785. }
  1786. static int ironlake_update_plane(struct drm_crtc *crtc,
  1787. struct drm_framebuffer *fb, int x, int y)
  1788. {
  1789. struct drm_device *dev = crtc->dev;
  1790. struct drm_i915_private *dev_priv = dev->dev_private;
  1791. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1792. struct intel_framebuffer *intel_fb;
  1793. struct drm_i915_gem_object *obj;
  1794. int plane = intel_crtc->plane;
  1795. unsigned long linear_offset;
  1796. u32 dspcntr;
  1797. u32 reg;
  1798. switch (plane) {
  1799. case 0:
  1800. case 1:
  1801. case 2:
  1802. break;
  1803. default:
  1804. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1805. return -EINVAL;
  1806. }
  1807. intel_fb = to_intel_framebuffer(fb);
  1808. obj = intel_fb->obj;
  1809. reg = DSPCNTR(plane);
  1810. dspcntr = I915_READ(reg);
  1811. /* Mask out pixel format bits in case we change it */
  1812. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1813. switch (fb->bits_per_pixel) {
  1814. case 8:
  1815. dspcntr |= DISPPLANE_8BPP;
  1816. break;
  1817. case 16:
  1818. if (fb->depth != 16)
  1819. return -EINVAL;
  1820. dspcntr |= DISPPLANE_16BPP;
  1821. break;
  1822. case 24:
  1823. case 32:
  1824. if (fb->depth == 24)
  1825. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1826. else if (fb->depth == 30)
  1827. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1828. else
  1829. return -EINVAL;
  1830. break;
  1831. default:
  1832. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1833. return -EINVAL;
  1834. }
  1835. if (obj->tiling_mode != I915_TILING_NONE)
  1836. dspcntr |= DISPPLANE_TILED;
  1837. else
  1838. dspcntr &= ~DISPPLANE_TILED;
  1839. /* must disable */
  1840. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1841. I915_WRITE(reg, dspcntr);
  1842. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1843. intel_crtc->dspaddr_offset =
  1844. gen4_compute_dspaddr_offset_xtiled(&x, &y,
  1845. fb->bits_per_pixel / 8,
  1846. fb->pitches[0]);
  1847. linear_offset -= intel_crtc->dspaddr_offset;
  1848. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1849. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1850. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1851. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1852. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1853. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1854. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1855. POSTING_READ(reg);
  1856. return 0;
  1857. }
  1858. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1859. static int
  1860. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1861. int x, int y, enum mode_set_atomic state)
  1862. {
  1863. struct drm_device *dev = crtc->dev;
  1864. struct drm_i915_private *dev_priv = dev->dev_private;
  1865. if (dev_priv->display.disable_fbc)
  1866. dev_priv->display.disable_fbc(dev);
  1867. intel_increase_pllclock(crtc);
  1868. return dev_priv->display.update_plane(crtc, fb, x, y);
  1869. }
  1870. static int
  1871. intel_finish_fb(struct drm_framebuffer *old_fb)
  1872. {
  1873. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1874. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1875. bool was_interruptible = dev_priv->mm.interruptible;
  1876. int ret;
  1877. wait_event(dev_priv->pending_flip_queue,
  1878. atomic_read(&dev_priv->mm.wedged) ||
  1879. atomic_read(&obj->pending_flip) == 0);
  1880. /* Big Hammer, we also need to ensure that any pending
  1881. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1882. * current scanout is retired before unpinning the old
  1883. * framebuffer.
  1884. *
  1885. * This should only fail upon a hung GPU, in which case we
  1886. * can safely continue.
  1887. */
  1888. dev_priv->mm.interruptible = false;
  1889. ret = i915_gem_object_finish_gpu(obj);
  1890. dev_priv->mm.interruptible = was_interruptible;
  1891. return ret;
  1892. }
  1893. static int
  1894. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1895. struct drm_framebuffer *fb)
  1896. {
  1897. struct drm_device *dev = crtc->dev;
  1898. struct drm_i915_private *dev_priv = dev->dev_private;
  1899. struct drm_i915_master_private *master_priv;
  1900. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1901. struct drm_framebuffer *old_fb;
  1902. int ret;
  1903. /* no fb bound */
  1904. if (!fb) {
  1905. DRM_ERROR("No FB bound\n");
  1906. return 0;
  1907. }
  1908. if(intel_crtc->plane > dev_priv->num_pipe) {
  1909. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  1910. intel_crtc->plane,
  1911. dev_priv->num_pipe);
  1912. return -EINVAL;
  1913. }
  1914. mutex_lock(&dev->struct_mutex);
  1915. ret = intel_pin_and_fence_fb_obj(dev,
  1916. to_intel_framebuffer(fb)->obj,
  1917. NULL);
  1918. if (ret != 0) {
  1919. mutex_unlock(&dev->struct_mutex);
  1920. DRM_ERROR("pin & fence failed\n");
  1921. return ret;
  1922. }
  1923. if (crtc->fb)
  1924. intel_finish_fb(crtc->fb);
  1925. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1926. if (ret) {
  1927. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1928. mutex_unlock(&dev->struct_mutex);
  1929. DRM_ERROR("failed to update base address\n");
  1930. return ret;
  1931. }
  1932. old_fb = crtc->fb;
  1933. crtc->fb = fb;
  1934. crtc->x = x;
  1935. crtc->y = y;
  1936. if (old_fb) {
  1937. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1938. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1939. }
  1940. intel_update_fbc(dev);
  1941. mutex_unlock(&dev->struct_mutex);
  1942. if (!dev->primary->master)
  1943. return 0;
  1944. master_priv = dev->primary->master->driver_priv;
  1945. if (!master_priv->sarea_priv)
  1946. return 0;
  1947. if (intel_crtc->pipe) {
  1948. master_priv->sarea_priv->pipeB_x = x;
  1949. master_priv->sarea_priv->pipeB_y = y;
  1950. } else {
  1951. master_priv->sarea_priv->pipeA_x = x;
  1952. master_priv->sarea_priv->pipeA_y = y;
  1953. }
  1954. return 0;
  1955. }
  1956. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  1957. {
  1958. struct drm_device *dev = crtc->dev;
  1959. struct drm_i915_private *dev_priv = dev->dev_private;
  1960. u32 dpa_ctl;
  1961. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1962. dpa_ctl = I915_READ(DP_A);
  1963. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1964. if (clock < 200000) {
  1965. u32 temp;
  1966. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1967. /* workaround for 160Mhz:
  1968. 1) program 0x4600c bits 15:0 = 0x8124
  1969. 2) program 0x46010 bit 0 = 1
  1970. 3) program 0x46034 bit 24 = 1
  1971. 4) program 0x64000 bit 14 = 1
  1972. */
  1973. temp = I915_READ(0x4600c);
  1974. temp &= 0xffff0000;
  1975. I915_WRITE(0x4600c, temp | 0x8124);
  1976. temp = I915_READ(0x46010);
  1977. I915_WRITE(0x46010, temp | 1);
  1978. temp = I915_READ(0x46034);
  1979. I915_WRITE(0x46034, temp | (1 << 24));
  1980. } else {
  1981. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1982. }
  1983. I915_WRITE(DP_A, dpa_ctl);
  1984. POSTING_READ(DP_A);
  1985. udelay(500);
  1986. }
  1987. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1988. {
  1989. struct drm_device *dev = crtc->dev;
  1990. struct drm_i915_private *dev_priv = dev->dev_private;
  1991. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1992. int pipe = intel_crtc->pipe;
  1993. u32 reg, temp;
  1994. /* enable normal train */
  1995. reg = FDI_TX_CTL(pipe);
  1996. temp = I915_READ(reg);
  1997. if (IS_IVYBRIDGE(dev)) {
  1998. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1999. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2000. } else {
  2001. temp &= ~FDI_LINK_TRAIN_NONE;
  2002. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2003. }
  2004. I915_WRITE(reg, temp);
  2005. reg = FDI_RX_CTL(pipe);
  2006. temp = I915_READ(reg);
  2007. if (HAS_PCH_CPT(dev)) {
  2008. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2009. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2010. } else {
  2011. temp &= ~FDI_LINK_TRAIN_NONE;
  2012. temp |= FDI_LINK_TRAIN_NONE;
  2013. }
  2014. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2015. /* wait one idle pattern time */
  2016. POSTING_READ(reg);
  2017. udelay(1000);
  2018. /* IVB wants error correction enabled */
  2019. if (IS_IVYBRIDGE(dev))
  2020. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2021. FDI_FE_ERRC_ENABLE);
  2022. }
  2023. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2024. {
  2025. struct drm_i915_private *dev_priv = dev->dev_private;
  2026. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2027. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2028. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2029. flags |= FDI_PHASE_SYNC_EN(pipe);
  2030. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2031. POSTING_READ(SOUTH_CHICKEN1);
  2032. }
  2033. /* The FDI link training functions for ILK/Ibexpeak. */
  2034. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2035. {
  2036. struct drm_device *dev = crtc->dev;
  2037. struct drm_i915_private *dev_priv = dev->dev_private;
  2038. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2039. int pipe = intel_crtc->pipe;
  2040. int plane = intel_crtc->plane;
  2041. u32 reg, temp, tries;
  2042. /* FDI needs bits from pipe & plane first */
  2043. assert_pipe_enabled(dev_priv, pipe);
  2044. assert_plane_enabled(dev_priv, plane);
  2045. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2046. for train result */
  2047. reg = FDI_RX_IMR(pipe);
  2048. temp = I915_READ(reg);
  2049. temp &= ~FDI_RX_SYMBOL_LOCK;
  2050. temp &= ~FDI_RX_BIT_LOCK;
  2051. I915_WRITE(reg, temp);
  2052. I915_READ(reg);
  2053. udelay(150);
  2054. /* enable CPU FDI TX and PCH FDI RX */
  2055. reg = FDI_TX_CTL(pipe);
  2056. temp = I915_READ(reg);
  2057. temp &= ~(7 << 19);
  2058. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2059. temp &= ~FDI_LINK_TRAIN_NONE;
  2060. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2061. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2062. reg = FDI_RX_CTL(pipe);
  2063. temp = I915_READ(reg);
  2064. temp &= ~FDI_LINK_TRAIN_NONE;
  2065. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2066. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2067. POSTING_READ(reg);
  2068. udelay(150);
  2069. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2070. if (HAS_PCH_IBX(dev)) {
  2071. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2072. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2073. FDI_RX_PHASE_SYNC_POINTER_EN);
  2074. }
  2075. reg = FDI_RX_IIR(pipe);
  2076. for (tries = 0; tries < 5; tries++) {
  2077. temp = I915_READ(reg);
  2078. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2079. if ((temp & FDI_RX_BIT_LOCK)) {
  2080. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2081. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2082. break;
  2083. }
  2084. }
  2085. if (tries == 5)
  2086. DRM_ERROR("FDI train 1 fail!\n");
  2087. /* Train 2 */
  2088. reg = FDI_TX_CTL(pipe);
  2089. temp = I915_READ(reg);
  2090. temp &= ~FDI_LINK_TRAIN_NONE;
  2091. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2092. I915_WRITE(reg, temp);
  2093. reg = FDI_RX_CTL(pipe);
  2094. temp = I915_READ(reg);
  2095. temp &= ~FDI_LINK_TRAIN_NONE;
  2096. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2097. I915_WRITE(reg, temp);
  2098. POSTING_READ(reg);
  2099. udelay(150);
  2100. reg = FDI_RX_IIR(pipe);
  2101. for (tries = 0; tries < 5; tries++) {
  2102. temp = I915_READ(reg);
  2103. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2104. if (temp & FDI_RX_SYMBOL_LOCK) {
  2105. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2106. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2107. break;
  2108. }
  2109. }
  2110. if (tries == 5)
  2111. DRM_ERROR("FDI train 2 fail!\n");
  2112. DRM_DEBUG_KMS("FDI train done\n");
  2113. }
  2114. static const int snb_b_fdi_train_param[] = {
  2115. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2116. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2117. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2118. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2119. };
  2120. /* The FDI link training functions for SNB/Cougarpoint. */
  2121. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2122. {
  2123. struct drm_device *dev = crtc->dev;
  2124. struct drm_i915_private *dev_priv = dev->dev_private;
  2125. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2126. int pipe = intel_crtc->pipe;
  2127. u32 reg, temp, i, retry;
  2128. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2129. for train result */
  2130. reg = FDI_RX_IMR(pipe);
  2131. temp = I915_READ(reg);
  2132. temp &= ~FDI_RX_SYMBOL_LOCK;
  2133. temp &= ~FDI_RX_BIT_LOCK;
  2134. I915_WRITE(reg, temp);
  2135. POSTING_READ(reg);
  2136. udelay(150);
  2137. /* enable CPU FDI TX and PCH FDI RX */
  2138. reg = FDI_TX_CTL(pipe);
  2139. temp = I915_READ(reg);
  2140. temp &= ~(7 << 19);
  2141. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2142. temp &= ~FDI_LINK_TRAIN_NONE;
  2143. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2144. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2145. /* SNB-B */
  2146. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2147. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2148. reg = FDI_RX_CTL(pipe);
  2149. temp = I915_READ(reg);
  2150. if (HAS_PCH_CPT(dev)) {
  2151. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2152. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2153. } else {
  2154. temp &= ~FDI_LINK_TRAIN_NONE;
  2155. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2156. }
  2157. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2158. POSTING_READ(reg);
  2159. udelay(150);
  2160. if (HAS_PCH_CPT(dev))
  2161. cpt_phase_pointer_enable(dev, pipe);
  2162. for (i = 0; i < 4; i++) {
  2163. reg = FDI_TX_CTL(pipe);
  2164. temp = I915_READ(reg);
  2165. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2166. temp |= snb_b_fdi_train_param[i];
  2167. I915_WRITE(reg, temp);
  2168. POSTING_READ(reg);
  2169. udelay(500);
  2170. for (retry = 0; retry < 5; retry++) {
  2171. reg = FDI_RX_IIR(pipe);
  2172. temp = I915_READ(reg);
  2173. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2174. if (temp & FDI_RX_BIT_LOCK) {
  2175. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2176. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2177. break;
  2178. }
  2179. udelay(50);
  2180. }
  2181. if (retry < 5)
  2182. break;
  2183. }
  2184. if (i == 4)
  2185. DRM_ERROR("FDI train 1 fail!\n");
  2186. /* Train 2 */
  2187. reg = FDI_TX_CTL(pipe);
  2188. temp = I915_READ(reg);
  2189. temp &= ~FDI_LINK_TRAIN_NONE;
  2190. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2191. if (IS_GEN6(dev)) {
  2192. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2193. /* SNB-B */
  2194. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2195. }
  2196. I915_WRITE(reg, temp);
  2197. reg = FDI_RX_CTL(pipe);
  2198. temp = I915_READ(reg);
  2199. if (HAS_PCH_CPT(dev)) {
  2200. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2201. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2202. } else {
  2203. temp &= ~FDI_LINK_TRAIN_NONE;
  2204. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2205. }
  2206. I915_WRITE(reg, temp);
  2207. POSTING_READ(reg);
  2208. udelay(150);
  2209. for (i = 0; i < 4; i++) {
  2210. reg = FDI_TX_CTL(pipe);
  2211. temp = I915_READ(reg);
  2212. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2213. temp |= snb_b_fdi_train_param[i];
  2214. I915_WRITE(reg, temp);
  2215. POSTING_READ(reg);
  2216. udelay(500);
  2217. for (retry = 0; retry < 5; retry++) {
  2218. reg = FDI_RX_IIR(pipe);
  2219. temp = I915_READ(reg);
  2220. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2221. if (temp & FDI_RX_SYMBOL_LOCK) {
  2222. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2223. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2224. break;
  2225. }
  2226. udelay(50);
  2227. }
  2228. if (retry < 5)
  2229. break;
  2230. }
  2231. if (i == 4)
  2232. DRM_ERROR("FDI train 2 fail!\n");
  2233. DRM_DEBUG_KMS("FDI train done.\n");
  2234. }
  2235. /* Manual link training for Ivy Bridge A0 parts */
  2236. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2237. {
  2238. struct drm_device *dev = crtc->dev;
  2239. struct drm_i915_private *dev_priv = dev->dev_private;
  2240. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2241. int pipe = intel_crtc->pipe;
  2242. u32 reg, temp, i;
  2243. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2244. for train result */
  2245. reg = FDI_RX_IMR(pipe);
  2246. temp = I915_READ(reg);
  2247. temp &= ~FDI_RX_SYMBOL_LOCK;
  2248. temp &= ~FDI_RX_BIT_LOCK;
  2249. I915_WRITE(reg, temp);
  2250. POSTING_READ(reg);
  2251. udelay(150);
  2252. /* enable CPU FDI TX and PCH FDI RX */
  2253. reg = FDI_TX_CTL(pipe);
  2254. temp = I915_READ(reg);
  2255. temp &= ~(7 << 19);
  2256. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2257. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2258. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2259. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2260. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2261. temp |= FDI_COMPOSITE_SYNC;
  2262. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2263. reg = FDI_RX_CTL(pipe);
  2264. temp = I915_READ(reg);
  2265. temp &= ~FDI_LINK_TRAIN_AUTO;
  2266. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2267. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2268. temp |= FDI_COMPOSITE_SYNC;
  2269. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2270. POSTING_READ(reg);
  2271. udelay(150);
  2272. if (HAS_PCH_CPT(dev))
  2273. cpt_phase_pointer_enable(dev, pipe);
  2274. for (i = 0; i < 4; i++) {
  2275. reg = FDI_TX_CTL(pipe);
  2276. temp = I915_READ(reg);
  2277. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2278. temp |= snb_b_fdi_train_param[i];
  2279. I915_WRITE(reg, temp);
  2280. POSTING_READ(reg);
  2281. udelay(500);
  2282. reg = FDI_RX_IIR(pipe);
  2283. temp = I915_READ(reg);
  2284. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2285. if (temp & FDI_RX_BIT_LOCK ||
  2286. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2287. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2288. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2289. break;
  2290. }
  2291. }
  2292. if (i == 4)
  2293. DRM_ERROR("FDI train 1 fail!\n");
  2294. /* Train 2 */
  2295. reg = FDI_TX_CTL(pipe);
  2296. temp = I915_READ(reg);
  2297. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2298. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2299. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2300. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2301. I915_WRITE(reg, temp);
  2302. reg = FDI_RX_CTL(pipe);
  2303. temp = I915_READ(reg);
  2304. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2305. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2306. I915_WRITE(reg, temp);
  2307. POSTING_READ(reg);
  2308. udelay(150);
  2309. for (i = 0; i < 4; i++) {
  2310. reg = FDI_TX_CTL(pipe);
  2311. temp = I915_READ(reg);
  2312. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2313. temp |= snb_b_fdi_train_param[i];
  2314. I915_WRITE(reg, temp);
  2315. POSTING_READ(reg);
  2316. udelay(500);
  2317. reg = FDI_RX_IIR(pipe);
  2318. temp = I915_READ(reg);
  2319. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2320. if (temp & FDI_RX_SYMBOL_LOCK) {
  2321. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2322. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2323. break;
  2324. }
  2325. }
  2326. if (i == 4)
  2327. DRM_ERROR("FDI train 2 fail!\n");
  2328. DRM_DEBUG_KMS("FDI train done.\n");
  2329. }
  2330. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2331. {
  2332. struct drm_device *dev = intel_crtc->base.dev;
  2333. struct drm_i915_private *dev_priv = dev->dev_private;
  2334. int pipe = intel_crtc->pipe;
  2335. u32 reg, temp;
  2336. /* Write the TU size bits so error detection works */
  2337. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2338. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2339. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2340. reg = FDI_RX_CTL(pipe);
  2341. temp = I915_READ(reg);
  2342. temp &= ~((0x7 << 19) | (0x7 << 16));
  2343. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2344. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2345. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2346. POSTING_READ(reg);
  2347. udelay(200);
  2348. /* Switch from Rawclk to PCDclk */
  2349. temp = I915_READ(reg);
  2350. I915_WRITE(reg, temp | FDI_PCDCLK);
  2351. POSTING_READ(reg);
  2352. udelay(200);
  2353. /* On Haswell, the PLL configuration for ports and pipes is handled
  2354. * separately, as part of DDI setup */
  2355. if (!IS_HASWELL(dev)) {
  2356. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2357. reg = FDI_TX_CTL(pipe);
  2358. temp = I915_READ(reg);
  2359. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2360. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2361. POSTING_READ(reg);
  2362. udelay(100);
  2363. }
  2364. }
  2365. }
  2366. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2367. {
  2368. struct drm_device *dev = intel_crtc->base.dev;
  2369. struct drm_i915_private *dev_priv = dev->dev_private;
  2370. int pipe = intel_crtc->pipe;
  2371. u32 reg, temp;
  2372. /* Switch from PCDclk to Rawclk */
  2373. reg = FDI_RX_CTL(pipe);
  2374. temp = I915_READ(reg);
  2375. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2376. /* Disable CPU FDI TX PLL */
  2377. reg = FDI_TX_CTL(pipe);
  2378. temp = I915_READ(reg);
  2379. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2380. POSTING_READ(reg);
  2381. udelay(100);
  2382. reg = FDI_RX_CTL(pipe);
  2383. temp = I915_READ(reg);
  2384. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2385. /* Wait for the clocks to turn off. */
  2386. POSTING_READ(reg);
  2387. udelay(100);
  2388. }
  2389. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2390. {
  2391. struct drm_i915_private *dev_priv = dev->dev_private;
  2392. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2393. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2394. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2395. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2396. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2397. POSTING_READ(SOUTH_CHICKEN1);
  2398. }
  2399. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2400. {
  2401. struct drm_device *dev = crtc->dev;
  2402. struct drm_i915_private *dev_priv = dev->dev_private;
  2403. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2404. int pipe = intel_crtc->pipe;
  2405. u32 reg, temp;
  2406. /* disable CPU FDI tx and PCH FDI rx */
  2407. reg = FDI_TX_CTL(pipe);
  2408. temp = I915_READ(reg);
  2409. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2410. POSTING_READ(reg);
  2411. reg = FDI_RX_CTL(pipe);
  2412. temp = I915_READ(reg);
  2413. temp &= ~(0x7 << 16);
  2414. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2415. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2416. POSTING_READ(reg);
  2417. udelay(100);
  2418. /* Ironlake workaround, disable clock pointer after downing FDI */
  2419. if (HAS_PCH_IBX(dev)) {
  2420. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2421. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2422. I915_READ(FDI_RX_CHICKEN(pipe) &
  2423. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2424. } else if (HAS_PCH_CPT(dev)) {
  2425. cpt_phase_pointer_disable(dev, pipe);
  2426. }
  2427. /* still set train pattern 1 */
  2428. reg = FDI_TX_CTL(pipe);
  2429. temp = I915_READ(reg);
  2430. temp &= ~FDI_LINK_TRAIN_NONE;
  2431. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2432. I915_WRITE(reg, temp);
  2433. reg = FDI_RX_CTL(pipe);
  2434. temp = I915_READ(reg);
  2435. if (HAS_PCH_CPT(dev)) {
  2436. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2437. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2438. } else {
  2439. temp &= ~FDI_LINK_TRAIN_NONE;
  2440. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2441. }
  2442. /* BPC in FDI rx is consistent with that in PIPECONF */
  2443. temp &= ~(0x07 << 16);
  2444. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2445. I915_WRITE(reg, temp);
  2446. POSTING_READ(reg);
  2447. udelay(100);
  2448. }
  2449. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2450. {
  2451. struct drm_device *dev = crtc->dev;
  2452. if (crtc->fb == NULL)
  2453. return;
  2454. mutex_lock(&dev->struct_mutex);
  2455. intel_finish_fb(crtc->fb);
  2456. mutex_unlock(&dev->struct_mutex);
  2457. }
  2458. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2459. {
  2460. struct drm_device *dev = crtc->dev;
  2461. struct intel_encoder *intel_encoder;
  2462. /*
  2463. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2464. * must be driven by its own crtc; no sharing is possible.
  2465. */
  2466. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2467. /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
  2468. * CPU handles all others */
  2469. if (IS_HASWELL(dev)) {
  2470. /* It is still unclear how this will work on PPT, so throw up a warning */
  2471. WARN_ON(!HAS_PCH_LPT(dev));
  2472. if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
  2473. DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
  2474. return true;
  2475. } else {
  2476. DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
  2477. intel_encoder->type);
  2478. return false;
  2479. }
  2480. }
  2481. switch (intel_encoder->type) {
  2482. case INTEL_OUTPUT_EDP:
  2483. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2484. return false;
  2485. continue;
  2486. }
  2487. }
  2488. return true;
  2489. }
  2490. /* Program iCLKIP clock to the desired frequency */
  2491. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2492. {
  2493. struct drm_device *dev = crtc->dev;
  2494. struct drm_i915_private *dev_priv = dev->dev_private;
  2495. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2496. u32 temp;
  2497. /* It is necessary to ungate the pixclk gate prior to programming
  2498. * the divisors, and gate it back when it is done.
  2499. */
  2500. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2501. /* Disable SSCCTL */
  2502. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2503. intel_sbi_read(dev_priv, SBI_SSCCTL6) |
  2504. SBI_SSCCTL_DISABLE);
  2505. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2506. if (crtc->mode.clock == 20000) {
  2507. auxdiv = 1;
  2508. divsel = 0x41;
  2509. phaseinc = 0x20;
  2510. } else {
  2511. /* The iCLK virtual clock root frequency is in MHz,
  2512. * but the crtc->mode.clock in in KHz. To get the divisors,
  2513. * it is necessary to divide one by another, so we
  2514. * convert the virtual clock precision to KHz here for higher
  2515. * precision.
  2516. */
  2517. u32 iclk_virtual_root_freq = 172800 * 1000;
  2518. u32 iclk_pi_range = 64;
  2519. u32 desired_divisor, msb_divisor_value, pi_value;
  2520. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2521. msb_divisor_value = desired_divisor / iclk_pi_range;
  2522. pi_value = desired_divisor % iclk_pi_range;
  2523. auxdiv = 0;
  2524. divsel = msb_divisor_value - 2;
  2525. phaseinc = pi_value;
  2526. }
  2527. /* This should not happen with any sane values */
  2528. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2529. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2530. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2531. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2532. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2533. crtc->mode.clock,
  2534. auxdiv,
  2535. divsel,
  2536. phasedir,
  2537. phaseinc);
  2538. /* Program SSCDIVINTPHASE6 */
  2539. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
  2540. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2541. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2542. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2543. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2544. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2545. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2546. intel_sbi_write(dev_priv,
  2547. SBI_SSCDIVINTPHASE6,
  2548. temp);
  2549. /* Program SSCAUXDIV */
  2550. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
  2551. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2552. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2553. intel_sbi_write(dev_priv,
  2554. SBI_SSCAUXDIV6,
  2555. temp);
  2556. /* Enable modulator and associated divider */
  2557. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
  2558. temp &= ~SBI_SSCCTL_DISABLE;
  2559. intel_sbi_write(dev_priv,
  2560. SBI_SSCCTL6,
  2561. temp);
  2562. /* Wait for initialization time */
  2563. udelay(24);
  2564. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2565. }
  2566. /*
  2567. * Enable PCH resources required for PCH ports:
  2568. * - PCH PLLs
  2569. * - FDI training & RX/TX
  2570. * - update transcoder timings
  2571. * - DP transcoding bits
  2572. * - transcoder
  2573. */
  2574. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2575. {
  2576. struct drm_device *dev = crtc->dev;
  2577. struct drm_i915_private *dev_priv = dev->dev_private;
  2578. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2579. int pipe = intel_crtc->pipe;
  2580. u32 reg, temp;
  2581. assert_transcoder_disabled(dev_priv, pipe);
  2582. /* For PCH output, training FDI link */
  2583. dev_priv->display.fdi_link_train(crtc);
  2584. intel_enable_pch_pll(intel_crtc);
  2585. if (HAS_PCH_LPT(dev)) {
  2586. DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
  2587. lpt_program_iclkip(crtc);
  2588. } else if (HAS_PCH_CPT(dev)) {
  2589. u32 sel;
  2590. temp = I915_READ(PCH_DPLL_SEL);
  2591. switch (pipe) {
  2592. default:
  2593. case 0:
  2594. temp |= TRANSA_DPLL_ENABLE;
  2595. sel = TRANSA_DPLLB_SEL;
  2596. break;
  2597. case 1:
  2598. temp |= TRANSB_DPLL_ENABLE;
  2599. sel = TRANSB_DPLLB_SEL;
  2600. break;
  2601. case 2:
  2602. temp |= TRANSC_DPLL_ENABLE;
  2603. sel = TRANSC_DPLLB_SEL;
  2604. break;
  2605. }
  2606. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2607. temp |= sel;
  2608. else
  2609. temp &= ~sel;
  2610. I915_WRITE(PCH_DPLL_SEL, temp);
  2611. }
  2612. /* set transcoder timing, panel must allow it */
  2613. assert_panel_unlocked(dev_priv, pipe);
  2614. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2615. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2616. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2617. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2618. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2619. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2620. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2621. if (!IS_HASWELL(dev))
  2622. intel_fdi_normal_train(crtc);
  2623. /* For PCH DP, enable TRANS_DP_CTL */
  2624. if (HAS_PCH_CPT(dev) &&
  2625. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2626. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2627. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2628. reg = TRANS_DP_CTL(pipe);
  2629. temp = I915_READ(reg);
  2630. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2631. TRANS_DP_SYNC_MASK |
  2632. TRANS_DP_BPC_MASK);
  2633. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2634. TRANS_DP_ENH_FRAMING);
  2635. temp |= bpc << 9; /* same format but at 11:9 */
  2636. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2637. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2638. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2639. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2640. switch (intel_trans_dp_port_sel(crtc)) {
  2641. case PCH_DP_B:
  2642. temp |= TRANS_DP_PORT_SEL_B;
  2643. break;
  2644. case PCH_DP_C:
  2645. temp |= TRANS_DP_PORT_SEL_C;
  2646. break;
  2647. case PCH_DP_D:
  2648. temp |= TRANS_DP_PORT_SEL_D;
  2649. break;
  2650. default:
  2651. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2652. temp |= TRANS_DP_PORT_SEL_B;
  2653. break;
  2654. }
  2655. I915_WRITE(reg, temp);
  2656. }
  2657. intel_enable_transcoder(dev_priv, pipe);
  2658. }
  2659. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2660. {
  2661. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2662. if (pll == NULL)
  2663. return;
  2664. if (pll->refcount == 0) {
  2665. WARN(1, "bad PCH PLL refcount\n");
  2666. return;
  2667. }
  2668. --pll->refcount;
  2669. intel_crtc->pch_pll = NULL;
  2670. }
  2671. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2672. {
  2673. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2674. struct intel_pch_pll *pll;
  2675. int i;
  2676. pll = intel_crtc->pch_pll;
  2677. if (pll) {
  2678. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2679. intel_crtc->base.base.id, pll->pll_reg);
  2680. goto prepare;
  2681. }
  2682. if (HAS_PCH_IBX(dev_priv->dev)) {
  2683. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2684. i = intel_crtc->pipe;
  2685. pll = &dev_priv->pch_plls[i];
  2686. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2687. intel_crtc->base.base.id, pll->pll_reg);
  2688. goto found;
  2689. }
  2690. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2691. pll = &dev_priv->pch_plls[i];
  2692. /* Only want to check enabled timings first */
  2693. if (pll->refcount == 0)
  2694. continue;
  2695. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2696. fp == I915_READ(pll->fp0_reg)) {
  2697. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2698. intel_crtc->base.base.id,
  2699. pll->pll_reg, pll->refcount, pll->active);
  2700. goto found;
  2701. }
  2702. }
  2703. /* Ok no matching timings, maybe there's a free one? */
  2704. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2705. pll = &dev_priv->pch_plls[i];
  2706. if (pll->refcount == 0) {
  2707. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2708. intel_crtc->base.base.id, pll->pll_reg);
  2709. goto found;
  2710. }
  2711. }
  2712. return NULL;
  2713. found:
  2714. intel_crtc->pch_pll = pll;
  2715. pll->refcount++;
  2716. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2717. prepare: /* separate function? */
  2718. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2719. /* Wait for the clocks to stabilize before rewriting the regs */
  2720. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2721. POSTING_READ(pll->pll_reg);
  2722. udelay(150);
  2723. I915_WRITE(pll->fp0_reg, fp);
  2724. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2725. pll->on = false;
  2726. return pll;
  2727. }
  2728. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2729. {
  2730. struct drm_i915_private *dev_priv = dev->dev_private;
  2731. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2732. u32 temp;
  2733. temp = I915_READ(dslreg);
  2734. udelay(500);
  2735. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2736. /* Without this, mode sets may fail silently on FDI */
  2737. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2738. udelay(250);
  2739. I915_WRITE(tc2reg, 0);
  2740. if (wait_for(I915_READ(dslreg) != temp, 5))
  2741. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2742. }
  2743. }
  2744. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2745. {
  2746. struct drm_device *dev = crtc->dev;
  2747. struct drm_i915_private *dev_priv = dev->dev_private;
  2748. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2749. struct intel_encoder *encoder;
  2750. int pipe = intel_crtc->pipe;
  2751. int plane = intel_crtc->plane;
  2752. u32 temp;
  2753. bool is_pch_port;
  2754. WARN_ON(!crtc->enabled);
  2755. if (intel_crtc->active)
  2756. return;
  2757. intel_crtc->active = true;
  2758. intel_update_watermarks(dev);
  2759. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2760. temp = I915_READ(PCH_LVDS);
  2761. if ((temp & LVDS_PORT_EN) == 0)
  2762. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2763. }
  2764. is_pch_port = intel_crtc_driving_pch(crtc);
  2765. if (is_pch_port) {
  2766. ironlake_fdi_pll_enable(intel_crtc);
  2767. } else {
  2768. assert_fdi_tx_disabled(dev_priv, pipe);
  2769. assert_fdi_rx_disabled(dev_priv, pipe);
  2770. }
  2771. for_each_encoder_on_crtc(dev, crtc, encoder)
  2772. if (encoder->pre_enable)
  2773. encoder->pre_enable(encoder);
  2774. if (IS_HASWELL(dev))
  2775. intel_ddi_enable_pipe_clock(intel_crtc);
  2776. /* Enable panel fitting for LVDS */
  2777. if (dev_priv->pch_pf_size &&
  2778. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2779. /* Force use of hard-coded filter coefficients
  2780. * as some pre-programmed values are broken,
  2781. * e.g. x201.
  2782. */
  2783. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2784. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2785. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2786. }
  2787. /*
  2788. * On ILK+ LUT must be loaded before the pipe is running but with
  2789. * clocks enabled
  2790. */
  2791. intel_crtc_load_lut(crtc);
  2792. if (IS_HASWELL(dev))
  2793. intel_ddi_enable_pipe_func(crtc);
  2794. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2795. intel_enable_plane(dev_priv, plane, pipe);
  2796. if (is_pch_port)
  2797. ironlake_pch_enable(crtc);
  2798. mutex_lock(&dev->struct_mutex);
  2799. intel_update_fbc(dev);
  2800. mutex_unlock(&dev->struct_mutex);
  2801. intel_crtc_update_cursor(crtc, true);
  2802. for_each_encoder_on_crtc(dev, crtc, encoder)
  2803. encoder->enable(encoder);
  2804. if (HAS_PCH_CPT(dev))
  2805. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2806. }
  2807. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2808. {
  2809. struct drm_device *dev = crtc->dev;
  2810. struct drm_i915_private *dev_priv = dev->dev_private;
  2811. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2812. struct intel_encoder *encoder;
  2813. int pipe = intel_crtc->pipe;
  2814. int plane = intel_crtc->plane;
  2815. u32 reg, temp;
  2816. if (!intel_crtc->active)
  2817. return;
  2818. for_each_encoder_on_crtc(dev, crtc, encoder)
  2819. encoder->disable(encoder);
  2820. intel_crtc_wait_for_pending_flips(crtc);
  2821. drm_vblank_off(dev, pipe);
  2822. intel_crtc_update_cursor(crtc, false);
  2823. intel_disable_plane(dev_priv, plane, pipe);
  2824. if (dev_priv->cfb_plane == plane)
  2825. intel_disable_fbc(dev);
  2826. intel_disable_pipe(dev_priv, pipe);
  2827. if (IS_HASWELL(dev))
  2828. intel_ddi_disable_pipe_func(dev_priv, pipe);
  2829. /* Disable PF */
  2830. I915_WRITE(PF_CTL(pipe), 0);
  2831. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2832. if (IS_HASWELL(dev))
  2833. intel_ddi_disable_pipe_clock(intel_crtc);
  2834. for_each_encoder_on_crtc(dev, crtc, encoder)
  2835. if (encoder->post_disable)
  2836. encoder->post_disable(encoder);
  2837. ironlake_fdi_disable(crtc);
  2838. intel_disable_transcoder(dev_priv, pipe);
  2839. if (HAS_PCH_CPT(dev)) {
  2840. /* disable TRANS_DP_CTL */
  2841. reg = TRANS_DP_CTL(pipe);
  2842. temp = I915_READ(reg);
  2843. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2844. temp |= TRANS_DP_PORT_SEL_NONE;
  2845. I915_WRITE(reg, temp);
  2846. /* disable DPLL_SEL */
  2847. temp = I915_READ(PCH_DPLL_SEL);
  2848. switch (pipe) {
  2849. case 0:
  2850. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2851. break;
  2852. case 1:
  2853. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2854. break;
  2855. case 2:
  2856. /* C shares PLL A or B */
  2857. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2858. break;
  2859. default:
  2860. BUG(); /* wtf */
  2861. }
  2862. I915_WRITE(PCH_DPLL_SEL, temp);
  2863. }
  2864. /* disable PCH DPLL */
  2865. intel_disable_pch_pll(intel_crtc);
  2866. ironlake_fdi_pll_disable(intel_crtc);
  2867. intel_crtc->active = false;
  2868. intel_update_watermarks(dev);
  2869. mutex_lock(&dev->struct_mutex);
  2870. intel_update_fbc(dev);
  2871. mutex_unlock(&dev->struct_mutex);
  2872. }
  2873. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2874. {
  2875. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2876. intel_put_pch_pll(intel_crtc);
  2877. }
  2878. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2879. {
  2880. if (!enable && intel_crtc->overlay) {
  2881. struct drm_device *dev = intel_crtc->base.dev;
  2882. struct drm_i915_private *dev_priv = dev->dev_private;
  2883. mutex_lock(&dev->struct_mutex);
  2884. dev_priv->mm.interruptible = false;
  2885. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2886. dev_priv->mm.interruptible = true;
  2887. mutex_unlock(&dev->struct_mutex);
  2888. }
  2889. /* Let userspace switch the overlay on again. In most cases userspace
  2890. * has to recompute where to put it anyway.
  2891. */
  2892. }
  2893. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2894. {
  2895. struct drm_device *dev = crtc->dev;
  2896. struct drm_i915_private *dev_priv = dev->dev_private;
  2897. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2898. struct intel_encoder *encoder;
  2899. int pipe = intel_crtc->pipe;
  2900. int plane = intel_crtc->plane;
  2901. WARN_ON(!crtc->enabled);
  2902. if (intel_crtc->active)
  2903. return;
  2904. intel_crtc->active = true;
  2905. intel_update_watermarks(dev);
  2906. intel_enable_pll(dev_priv, pipe);
  2907. intel_enable_pipe(dev_priv, pipe, false);
  2908. intel_enable_plane(dev_priv, plane, pipe);
  2909. intel_crtc_load_lut(crtc);
  2910. intel_update_fbc(dev);
  2911. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2912. intel_crtc_dpms_overlay(intel_crtc, true);
  2913. intel_crtc_update_cursor(crtc, true);
  2914. for_each_encoder_on_crtc(dev, crtc, encoder)
  2915. encoder->enable(encoder);
  2916. }
  2917. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2918. {
  2919. struct drm_device *dev = crtc->dev;
  2920. struct drm_i915_private *dev_priv = dev->dev_private;
  2921. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2922. struct intel_encoder *encoder;
  2923. int pipe = intel_crtc->pipe;
  2924. int plane = intel_crtc->plane;
  2925. if (!intel_crtc->active)
  2926. return;
  2927. for_each_encoder_on_crtc(dev, crtc, encoder)
  2928. encoder->disable(encoder);
  2929. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2930. intel_crtc_wait_for_pending_flips(crtc);
  2931. drm_vblank_off(dev, pipe);
  2932. intel_crtc_dpms_overlay(intel_crtc, false);
  2933. intel_crtc_update_cursor(crtc, false);
  2934. if (dev_priv->cfb_plane == plane)
  2935. intel_disable_fbc(dev);
  2936. intel_disable_plane(dev_priv, plane, pipe);
  2937. intel_disable_pipe(dev_priv, pipe);
  2938. intel_disable_pll(dev_priv, pipe);
  2939. intel_crtc->active = false;
  2940. intel_update_fbc(dev);
  2941. intel_update_watermarks(dev);
  2942. }
  2943. static void i9xx_crtc_off(struct drm_crtc *crtc)
  2944. {
  2945. }
  2946. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  2947. bool enabled)
  2948. {
  2949. struct drm_device *dev = crtc->dev;
  2950. struct drm_i915_master_private *master_priv;
  2951. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2952. int pipe = intel_crtc->pipe;
  2953. if (!dev->primary->master)
  2954. return;
  2955. master_priv = dev->primary->master->driver_priv;
  2956. if (!master_priv->sarea_priv)
  2957. return;
  2958. switch (pipe) {
  2959. case 0:
  2960. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2961. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2962. break;
  2963. case 1:
  2964. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2965. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2966. break;
  2967. default:
  2968. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2969. break;
  2970. }
  2971. }
  2972. /**
  2973. * Sets the power management mode of the pipe and plane.
  2974. */
  2975. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  2976. {
  2977. struct drm_device *dev = crtc->dev;
  2978. struct drm_i915_private *dev_priv = dev->dev_private;
  2979. struct intel_encoder *intel_encoder;
  2980. bool enable = false;
  2981. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2982. enable |= intel_encoder->connectors_active;
  2983. if (enable)
  2984. dev_priv->display.crtc_enable(crtc);
  2985. else
  2986. dev_priv->display.crtc_disable(crtc);
  2987. intel_crtc_update_sarea(crtc, enable);
  2988. }
  2989. static void intel_crtc_noop(struct drm_crtc *crtc)
  2990. {
  2991. }
  2992. static void intel_crtc_disable(struct drm_crtc *crtc)
  2993. {
  2994. struct drm_device *dev = crtc->dev;
  2995. struct drm_connector *connector;
  2996. struct drm_i915_private *dev_priv = dev->dev_private;
  2997. /* crtc should still be enabled when we disable it. */
  2998. WARN_ON(!crtc->enabled);
  2999. dev_priv->display.crtc_disable(crtc);
  3000. intel_crtc_update_sarea(crtc, false);
  3001. dev_priv->display.off(crtc);
  3002. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3003. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3004. if (crtc->fb) {
  3005. mutex_lock(&dev->struct_mutex);
  3006. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3007. mutex_unlock(&dev->struct_mutex);
  3008. crtc->fb = NULL;
  3009. }
  3010. /* Update computed state. */
  3011. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3012. if (!connector->encoder || !connector->encoder->crtc)
  3013. continue;
  3014. if (connector->encoder->crtc != crtc)
  3015. continue;
  3016. connector->dpms = DRM_MODE_DPMS_OFF;
  3017. to_intel_encoder(connector->encoder)->connectors_active = false;
  3018. }
  3019. }
  3020. void intel_modeset_disable(struct drm_device *dev)
  3021. {
  3022. struct drm_crtc *crtc;
  3023. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3024. if (crtc->enabled)
  3025. intel_crtc_disable(crtc);
  3026. }
  3027. }
  3028. void intel_encoder_noop(struct drm_encoder *encoder)
  3029. {
  3030. }
  3031. void intel_encoder_destroy(struct drm_encoder *encoder)
  3032. {
  3033. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3034. drm_encoder_cleanup(encoder);
  3035. kfree(intel_encoder);
  3036. }
  3037. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3038. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3039. * state of the entire output pipe. */
  3040. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3041. {
  3042. if (mode == DRM_MODE_DPMS_ON) {
  3043. encoder->connectors_active = true;
  3044. intel_crtc_update_dpms(encoder->base.crtc);
  3045. } else {
  3046. encoder->connectors_active = false;
  3047. intel_crtc_update_dpms(encoder->base.crtc);
  3048. }
  3049. }
  3050. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3051. * internal consistency). */
  3052. static void intel_connector_check_state(struct intel_connector *connector)
  3053. {
  3054. if (connector->get_hw_state(connector)) {
  3055. struct intel_encoder *encoder = connector->encoder;
  3056. struct drm_crtc *crtc;
  3057. bool encoder_enabled;
  3058. enum pipe pipe;
  3059. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3060. connector->base.base.id,
  3061. drm_get_connector_name(&connector->base));
  3062. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3063. "wrong connector dpms state\n");
  3064. WARN(connector->base.encoder != &encoder->base,
  3065. "active connector not linked to encoder\n");
  3066. WARN(!encoder->connectors_active,
  3067. "encoder->connectors_active not set\n");
  3068. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3069. WARN(!encoder_enabled, "encoder not enabled\n");
  3070. if (WARN_ON(!encoder->base.crtc))
  3071. return;
  3072. crtc = encoder->base.crtc;
  3073. WARN(!crtc->enabled, "crtc not enabled\n");
  3074. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3075. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3076. "encoder active on the wrong pipe\n");
  3077. }
  3078. }
  3079. /* Even simpler default implementation, if there's really no special case to
  3080. * consider. */
  3081. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3082. {
  3083. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3084. /* All the simple cases only support two dpms states. */
  3085. if (mode != DRM_MODE_DPMS_ON)
  3086. mode = DRM_MODE_DPMS_OFF;
  3087. if (mode == connector->dpms)
  3088. return;
  3089. connector->dpms = mode;
  3090. /* Only need to change hw state when actually enabled */
  3091. if (encoder->base.crtc)
  3092. intel_encoder_dpms(encoder, mode);
  3093. else
  3094. WARN_ON(encoder->connectors_active != false);
  3095. intel_modeset_check_state(connector->dev);
  3096. }
  3097. /* Simple connector->get_hw_state implementation for encoders that support only
  3098. * one connector and no cloning and hence the encoder state determines the state
  3099. * of the connector. */
  3100. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3101. {
  3102. enum pipe pipe = 0;
  3103. struct intel_encoder *encoder = connector->encoder;
  3104. return encoder->get_hw_state(encoder, &pipe);
  3105. }
  3106. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3107. const struct drm_display_mode *mode,
  3108. struct drm_display_mode *adjusted_mode)
  3109. {
  3110. struct drm_device *dev = crtc->dev;
  3111. if (HAS_PCH_SPLIT(dev)) {
  3112. /* FDI link clock is fixed at 2.7G */
  3113. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3114. return false;
  3115. }
  3116. /* All interlaced capable intel hw wants timings in frames. Note though
  3117. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3118. * timings, so we need to be careful not to clobber these.*/
  3119. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3120. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3121. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3122. * with a hsync front porch of 0.
  3123. */
  3124. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3125. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3126. return false;
  3127. return true;
  3128. }
  3129. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3130. {
  3131. return 400000; /* FIXME */
  3132. }
  3133. static int i945_get_display_clock_speed(struct drm_device *dev)
  3134. {
  3135. return 400000;
  3136. }
  3137. static int i915_get_display_clock_speed(struct drm_device *dev)
  3138. {
  3139. return 333000;
  3140. }
  3141. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3142. {
  3143. return 200000;
  3144. }
  3145. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3146. {
  3147. u16 gcfgc = 0;
  3148. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3149. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3150. return 133000;
  3151. else {
  3152. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3153. case GC_DISPLAY_CLOCK_333_MHZ:
  3154. return 333000;
  3155. default:
  3156. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3157. return 190000;
  3158. }
  3159. }
  3160. }
  3161. static int i865_get_display_clock_speed(struct drm_device *dev)
  3162. {
  3163. return 266000;
  3164. }
  3165. static int i855_get_display_clock_speed(struct drm_device *dev)
  3166. {
  3167. u16 hpllcc = 0;
  3168. /* Assume that the hardware is in the high speed state. This
  3169. * should be the default.
  3170. */
  3171. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3172. case GC_CLOCK_133_200:
  3173. case GC_CLOCK_100_200:
  3174. return 200000;
  3175. case GC_CLOCK_166_250:
  3176. return 250000;
  3177. case GC_CLOCK_100_133:
  3178. return 133000;
  3179. }
  3180. /* Shouldn't happen */
  3181. return 0;
  3182. }
  3183. static int i830_get_display_clock_speed(struct drm_device *dev)
  3184. {
  3185. return 133000;
  3186. }
  3187. struct fdi_m_n {
  3188. u32 tu;
  3189. u32 gmch_m;
  3190. u32 gmch_n;
  3191. u32 link_m;
  3192. u32 link_n;
  3193. };
  3194. static void
  3195. fdi_reduce_ratio(u32 *num, u32 *den)
  3196. {
  3197. while (*num > 0xffffff || *den > 0xffffff) {
  3198. *num >>= 1;
  3199. *den >>= 1;
  3200. }
  3201. }
  3202. static void
  3203. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3204. int link_clock, struct fdi_m_n *m_n)
  3205. {
  3206. m_n->tu = 64; /* default size */
  3207. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3208. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3209. m_n->gmch_n = link_clock * nlanes * 8;
  3210. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3211. m_n->link_m = pixel_clock;
  3212. m_n->link_n = link_clock;
  3213. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3214. }
  3215. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3216. {
  3217. if (i915_panel_use_ssc >= 0)
  3218. return i915_panel_use_ssc != 0;
  3219. return dev_priv->lvds_use_ssc
  3220. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3221. }
  3222. /**
  3223. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3224. * @crtc: CRTC structure
  3225. * @mode: requested mode
  3226. *
  3227. * A pipe may be connected to one or more outputs. Based on the depth of the
  3228. * attached framebuffer, choose a good color depth to use on the pipe.
  3229. *
  3230. * If possible, match the pipe depth to the fb depth. In some cases, this
  3231. * isn't ideal, because the connected output supports a lesser or restricted
  3232. * set of depths. Resolve that here:
  3233. * LVDS typically supports only 6bpc, so clamp down in that case
  3234. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3235. * Displays may support a restricted set as well, check EDID and clamp as
  3236. * appropriate.
  3237. * DP may want to dither down to 6bpc to fit larger modes
  3238. *
  3239. * RETURNS:
  3240. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3241. * true if they don't match).
  3242. */
  3243. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3244. struct drm_framebuffer *fb,
  3245. unsigned int *pipe_bpp,
  3246. struct drm_display_mode *mode)
  3247. {
  3248. struct drm_device *dev = crtc->dev;
  3249. struct drm_i915_private *dev_priv = dev->dev_private;
  3250. struct drm_connector *connector;
  3251. struct intel_encoder *intel_encoder;
  3252. unsigned int display_bpc = UINT_MAX, bpc;
  3253. /* Walk the encoders & connectors on this crtc, get min bpc */
  3254. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3255. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3256. unsigned int lvds_bpc;
  3257. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3258. LVDS_A3_POWER_UP)
  3259. lvds_bpc = 8;
  3260. else
  3261. lvds_bpc = 6;
  3262. if (lvds_bpc < display_bpc) {
  3263. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3264. display_bpc = lvds_bpc;
  3265. }
  3266. continue;
  3267. }
  3268. /* Not one of the known troublemakers, check the EDID */
  3269. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3270. head) {
  3271. if (connector->encoder != &intel_encoder->base)
  3272. continue;
  3273. /* Don't use an invalid EDID bpc value */
  3274. if (connector->display_info.bpc &&
  3275. connector->display_info.bpc < display_bpc) {
  3276. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3277. display_bpc = connector->display_info.bpc;
  3278. }
  3279. }
  3280. /*
  3281. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3282. * through, clamp it down. (Note: >12bpc will be caught below.)
  3283. */
  3284. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3285. if (display_bpc > 8 && display_bpc < 12) {
  3286. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3287. display_bpc = 12;
  3288. } else {
  3289. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3290. display_bpc = 8;
  3291. }
  3292. }
  3293. }
  3294. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3295. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3296. display_bpc = 6;
  3297. }
  3298. /*
  3299. * We could just drive the pipe at the highest bpc all the time and
  3300. * enable dithering as needed, but that costs bandwidth. So choose
  3301. * the minimum value that expresses the full color range of the fb but
  3302. * also stays within the max display bpc discovered above.
  3303. */
  3304. switch (fb->depth) {
  3305. case 8:
  3306. bpc = 8; /* since we go through a colormap */
  3307. break;
  3308. case 15:
  3309. case 16:
  3310. bpc = 6; /* min is 18bpp */
  3311. break;
  3312. case 24:
  3313. bpc = 8;
  3314. break;
  3315. case 30:
  3316. bpc = 10;
  3317. break;
  3318. case 48:
  3319. bpc = 12;
  3320. break;
  3321. default:
  3322. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3323. bpc = min((unsigned int)8, display_bpc);
  3324. break;
  3325. }
  3326. display_bpc = min(display_bpc, bpc);
  3327. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3328. bpc, display_bpc);
  3329. *pipe_bpp = display_bpc * 3;
  3330. return display_bpc != bpc;
  3331. }
  3332. static int vlv_get_refclk(struct drm_crtc *crtc)
  3333. {
  3334. struct drm_device *dev = crtc->dev;
  3335. struct drm_i915_private *dev_priv = dev->dev_private;
  3336. int refclk = 27000; /* for DP & HDMI */
  3337. return 100000; /* only one validated so far */
  3338. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3339. refclk = 96000;
  3340. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3341. if (intel_panel_use_ssc(dev_priv))
  3342. refclk = 100000;
  3343. else
  3344. refclk = 96000;
  3345. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3346. refclk = 100000;
  3347. }
  3348. return refclk;
  3349. }
  3350. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3351. {
  3352. struct drm_device *dev = crtc->dev;
  3353. struct drm_i915_private *dev_priv = dev->dev_private;
  3354. int refclk;
  3355. if (IS_VALLEYVIEW(dev)) {
  3356. refclk = vlv_get_refclk(crtc);
  3357. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3358. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3359. refclk = dev_priv->lvds_ssc_freq * 1000;
  3360. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3361. refclk / 1000);
  3362. } else if (!IS_GEN2(dev)) {
  3363. refclk = 96000;
  3364. } else {
  3365. refclk = 48000;
  3366. }
  3367. return refclk;
  3368. }
  3369. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3370. intel_clock_t *clock)
  3371. {
  3372. /* SDVO TV has fixed PLL values depend on its clock range,
  3373. this mirrors vbios setting. */
  3374. if (adjusted_mode->clock >= 100000
  3375. && adjusted_mode->clock < 140500) {
  3376. clock->p1 = 2;
  3377. clock->p2 = 10;
  3378. clock->n = 3;
  3379. clock->m1 = 16;
  3380. clock->m2 = 8;
  3381. } else if (adjusted_mode->clock >= 140500
  3382. && adjusted_mode->clock <= 200000) {
  3383. clock->p1 = 1;
  3384. clock->p2 = 10;
  3385. clock->n = 6;
  3386. clock->m1 = 12;
  3387. clock->m2 = 8;
  3388. }
  3389. }
  3390. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3391. intel_clock_t *clock,
  3392. intel_clock_t *reduced_clock)
  3393. {
  3394. struct drm_device *dev = crtc->dev;
  3395. struct drm_i915_private *dev_priv = dev->dev_private;
  3396. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3397. int pipe = intel_crtc->pipe;
  3398. u32 fp, fp2 = 0;
  3399. if (IS_PINEVIEW(dev)) {
  3400. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3401. if (reduced_clock)
  3402. fp2 = (1 << reduced_clock->n) << 16 |
  3403. reduced_clock->m1 << 8 | reduced_clock->m2;
  3404. } else {
  3405. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3406. if (reduced_clock)
  3407. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3408. reduced_clock->m2;
  3409. }
  3410. I915_WRITE(FP0(pipe), fp);
  3411. intel_crtc->lowfreq_avail = false;
  3412. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3413. reduced_clock && i915_powersave) {
  3414. I915_WRITE(FP1(pipe), fp2);
  3415. intel_crtc->lowfreq_avail = true;
  3416. } else {
  3417. I915_WRITE(FP1(pipe), fp);
  3418. }
  3419. }
  3420. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  3421. struct drm_display_mode *adjusted_mode)
  3422. {
  3423. struct drm_device *dev = crtc->dev;
  3424. struct drm_i915_private *dev_priv = dev->dev_private;
  3425. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3426. int pipe = intel_crtc->pipe;
  3427. u32 temp;
  3428. temp = I915_READ(LVDS);
  3429. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3430. if (pipe == 1) {
  3431. temp |= LVDS_PIPEB_SELECT;
  3432. } else {
  3433. temp &= ~LVDS_PIPEB_SELECT;
  3434. }
  3435. /* set the corresponsding LVDS_BORDER bit */
  3436. temp |= dev_priv->lvds_border_bits;
  3437. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3438. * set the DPLLs for dual-channel mode or not.
  3439. */
  3440. if (clock->p2 == 7)
  3441. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3442. else
  3443. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3444. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3445. * appropriately here, but we need to look more thoroughly into how
  3446. * panels behave in the two modes.
  3447. */
  3448. /* set the dithering flag on LVDS as needed */
  3449. if (INTEL_INFO(dev)->gen >= 4) {
  3450. if (dev_priv->lvds_dither)
  3451. temp |= LVDS_ENABLE_DITHER;
  3452. else
  3453. temp &= ~LVDS_ENABLE_DITHER;
  3454. }
  3455. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  3456. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  3457. temp |= LVDS_HSYNC_POLARITY;
  3458. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  3459. temp |= LVDS_VSYNC_POLARITY;
  3460. I915_WRITE(LVDS, temp);
  3461. }
  3462. static void vlv_update_pll(struct drm_crtc *crtc,
  3463. struct drm_display_mode *mode,
  3464. struct drm_display_mode *adjusted_mode,
  3465. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3466. int num_connectors)
  3467. {
  3468. struct drm_device *dev = crtc->dev;
  3469. struct drm_i915_private *dev_priv = dev->dev_private;
  3470. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3471. int pipe = intel_crtc->pipe;
  3472. u32 dpll, mdiv, pdiv;
  3473. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3474. bool is_sdvo;
  3475. u32 temp;
  3476. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3477. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3478. dpll = DPLL_VGA_MODE_DIS;
  3479. dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
  3480. dpll |= DPLL_REFA_CLK_ENABLE_VLV;
  3481. dpll |= DPLL_INTEGRATED_CLOCK_VLV;
  3482. I915_WRITE(DPLL(pipe), dpll);
  3483. POSTING_READ(DPLL(pipe));
  3484. bestn = clock->n;
  3485. bestm1 = clock->m1;
  3486. bestm2 = clock->m2;
  3487. bestp1 = clock->p1;
  3488. bestp2 = clock->p2;
  3489. /*
  3490. * In Valleyview PLL and program lane counter registers are exposed
  3491. * through DPIO interface
  3492. */
  3493. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3494. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3495. mdiv |= ((bestn << DPIO_N_SHIFT));
  3496. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3497. mdiv |= (1 << DPIO_K_SHIFT);
  3498. mdiv |= DPIO_ENABLE_CALIBRATION;
  3499. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3500. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3501. pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3502. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3503. (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
  3504. (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3505. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3506. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
  3507. dpll |= DPLL_VCO_ENABLE;
  3508. I915_WRITE(DPLL(pipe), dpll);
  3509. POSTING_READ(DPLL(pipe));
  3510. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3511. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3512. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
  3513. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3514. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3515. I915_WRITE(DPLL(pipe), dpll);
  3516. /* Wait for the clocks to stabilize. */
  3517. POSTING_READ(DPLL(pipe));
  3518. udelay(150);
  3519. temp = 0;
  3520. if (is_sdvo) {
  3521. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3522. if (temp > 1)
  3523. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3524. else
  3525. temp = 0;
  3526. }
  3527. I915_WRITE(DPLL_MD(pipe), temp);
  3528. POSTING_READ(DPLL_MD(pipe));
  3529. /* Now program lane control registers */
  3530. if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
  3531. || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  3532. {
  3533. temp = 0x1000C4;
  3534. if(pipe == 1)
  3535. temp |= (1 << 21);
  3536. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
  3537. }
  3538. if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
  3539. {
  3540. temp = 0x1000C4;
  3541. if(pipe == 1)
  3542. temp |= (1 << 21);
  3543. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
  3544. }
  3545. }
  3546. static void i9xx_update_pll(struct drm_crtc *crtc,
  3547. struct drm_display_mode *mode,
  3548. struct drm_display_mode *adjusted_mode,
  3549. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3550. int num_connectors)
  3551. {
  3552. struct drm_device *dev = crtc->dev;
  3553. struct drm_i915_private *dev_priv = dev->dev_private;
  3554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3555. int pipe = intel_crtc->pipe;
  3556. u32 dpll;
  3557. bool is_sdvo;
  3558. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3559. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3560. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3561. dpll = DPLL_VGA_MODE_DIS;
  3562. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3563. dpll |= DPLLB_MODE_LVDS;
  3564. else
  3565. dpll |= DPLLB_MODE_DAC_SERIAL;
  3566. if (is_sdvo) {
  3567. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3568. if (pixel_multiplier > 1) {
  3569. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3570. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3571. }
  3572. dpll |= DPLL_DVO_HIGH_SPEED;
  3573. }
  3574. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3575. dpll |= DPLL_DVO_HIGH_SPEED;
  3576. /* compute bitmask from p1 value */
  3577. if (IS_PINEVIEW(dev))
  3578. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3579. else {
  3580. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3581. if (IS_G4X(dev) && reduced_clock)
  3582. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3583. }
  3584. switch (clock->p2) {
  3585. case 5:
  3586. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3587. break;
  3588. case 7:
  3589. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3590. break;
  3591. case 10:
  3592. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3593. break;
  3594. case 14:
  3595. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3596. break;
  3597. }
  3598. if (INTEL_INFO(dev)->gen >= 4)
  3599. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3600. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3601. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3602. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3603. /* XXX: just matching BIOS for now */
  3604. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3605. dpll |= 3;
  3606. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3607. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3608. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3609. else
  3610. dpll |= PLL_REF_INPUT_DREFCLK;
  3611. dpll |= DPLL_VCO_ENABLE;
  3612. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3613. POSTING_READ(DPLL(pipe));
  3614. udelay(150);
  3615. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3616. * This is an exception to the general rule that mode_set doesn't turn
  3617. * things on.
  3618. */
  3619. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3620. intel_update_lvds(crtc, clock, adjusted_mode);
  3621. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3622. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3623. I915_WRITE(DPLL(pipe), dpll);
  3624. /* Wait for the clocks to stabilize. */
  3625. POSTING_READ(DPLL(pipe));
  3626. udelay(150);
  3627. if (INTEL_INFO(dev)->gen >= 4) {
  3628. u32 temp = 0;
  3629. if (is_sdvo) {
  3630. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3631. if (temp > 1)
  3632. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3633. else
  3634. temp = 0;
  3635. }
  3636. I915_WRITE(DPLL_MD(pipe), temp);
  3637. } else {
  3638. /* The pixel multiplier can only be updated once the
  3639. * DPLL is enabled and the clocks are stable.
  3640. *
  3641. * So write it again.
  3642. */
  3643. I915_WRITE(DPLL(pipe), dpll);
  3644. }
  3645. }
  3646. static void i8xx_update_pll(struct drm_crtc *crtc,
  3647. struct drm_display_mode *adjusted_mode,
  3648. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3649. int num_connectors)
  3650. {
  3651. struct drm_device *dev = crtc->dev;
  3652. struct drm_i915_private *dev_priv = dev->dev_private;
  3653. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3654. int pipe = intel_crtc->pipe;
  3655. u32 dpll;
  3656. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3657. dpll = DPLL_VGA_MODE_DIS;
  3658. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3659. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3660. } else {
  3661. if (clock->p1 == 2)
  3662. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3663. else
  3664. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3665. if (clock->p2 == 4)
  3666. dpll |= PLL_P2_DIVIDE_BY_4;
  3667. }
  3668. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3669. /* XXX: just matching BIOS for now */
  3670. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3671. dpll |= 3;
  3672. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3673. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3674. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3675. else
  3676. dpll |= PLL_REF_INPUT_DREFCLK;
  3677. dpll |= DPLL_VCO_ENABLE;
  3678. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3679. POSTING_READ(DPLL(pipe));
  3680. udelay(150);
  3681. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3682. * This is an exception to the general rule that mode_set doesn't turn
  3683. * things on.
  3684. */
  3685. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3686. intel_update_lvds(crtc, clock, adjusted_mode);
  3687. I915_WRITE(DPLL(pipe), dpll);
  3688. /* Wait for the clocks to stabilize. */
  3689. POSTING_READ(DPLL(pipe));
  3690. udelay(150);
  3691. /* The pixel multiplier can only be updated once the
  3692. * DPLL is enabled and the clocks are stable.
  3693. *
  3694. * So write it again.
  3695. */
  3696. I915_WRITE(DPLL(pipe), dpll);
  3697. }
  3698. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3699. struct drm_display_mode *mode,
  3700. struct drm_display_mode *adjusted_mode)
  3701. {
  3702. struct drm_device *dev = intel_crtc->base.dev;
  3703. struct drm_i915_private *dev_priv = dev->dev_private;
  3704. enum pipe pipe = intel_crtc->pipe;
  3705. uint32_t vsyncshift;
  3706. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3707. /* the chip adds 2 halflines automatically */
  3708. adjusted_mode->crtc_vtotal -= 1;
  3709. adjusted_mode->crtc_vblank_end -= 1;
  3710. vsyncshift = adjusted_mode->crtc_hsync_start
  3711. - adjusted_mode->crtc_htotal / 2;
  3712. } else {
  3713. vsyncshift = 0;
  3714. }
  3715. if (INTEL_INFO(dev)->gen > 3)
  3716. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  3717. I915_WRITE(HTOTAL(pipe),
  3718. (adjusted_mode->crtc_hdisplay - 1) |
  3719. ((adjusted_mode->crtc_htotal - 1) << 16));
  3720. I915_WRITE(HBLANK(pipe),
  3721. (adjusted_mode->crtc_hblank_start - 1) |
  3722. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3723. I915_WRITE(HSYNC(pipe),
  3724. (adjusted_mode->crtc_hsync_start - 1) |
  3725. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3726. I915_WRITE(VTOTAL(pipe),
  3727. (adjusted_mode->crtc_vdisplay - 1) |
  3728. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3729. I915_WRITE(VBLANK(pipe),
  3730. (adjusted_mode->crtc_vblank_start - 1) |
  3731. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3732. I915_WRITE(VSYNC(pipe),
  3733. (adjusted_mode->crtc_vsync_start - 1) |
  3734. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3735. /* pipesrc controls the size that is scaled from, which should
  3736. * always be the user's requested size.
  3737. */
  3738. I915_WRITE(PIPESRC(pipe),
  3739. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3740. }
  3741. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3742. struct drm_display_mode *mode,
  3743. struct drm_display_mode *adjusted_mode,
  3744. int x, int y,
  3745. struct drm_framebuffer *fb)
  3746. {
  3747. struct drm_device *dev = crtc->dev;
  3748. struct drm_i915_private *dev_priv = dev->dev_private;
  3749. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3750. int pipe = intel_crtc->pipe;
  3751. int plane = intel_crtc->plane;
  3752. int refclk, num_connectors = 0;
  3753. intel_clock_t clock, reduced_clock;
  3754. u32 dspcntr, pipeconf;
  3755. bool ok, has_reduced_clock = false, is_sdvo = false;
  3756. bool is_lvds = false, is_tv = false, is_dp = false;
  3757. struct intel_encoder *encoder;
  3758. const intel_limit_t *limit;
  3759. int ret;
  3760. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3761. switch (encoder->type) {
  3762. case INTEL_OUTPUT_LVDS:
  3763. is_lvds = true;
  3764. break;
  3765. case INTEL_OUTPUT_SDVO:
  3766. case INTEL_OUTPUT_HDMI:
  3767. is_sdvo = true;
  3768. if (encoder->needs_tv_clock)
  3769. is_tv = true;
  3770. break;
  3771. case INTEL_OUTPUT_TVOUT:
  3772. is_tv = true;
  3773. break;
  3774. case INTEL_OUTPUT_DISPLAYPORT:
  3775. is_dp = true;
  3776. break;
  3777. }
  3778. num_connectors++;
  3779. }
  3780. refclk = i9xx_get_refclk(crtc, num_connectors);
  3781. /*
  3782. * Returns a set of divisors for the desired target clock with the given
  3783. * refclk, or FALSE. The returned values represent the clock equation:
  3784. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3785. */
  3786. limit = intel_limit(crtc, refclk);
  3787. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3788. &clock);
  3789. if (!ok) {
  3790. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3791. return -EINVAL;
  3792. }
  3793. /* Ensure that the cursor is valid for the new mode before changing... */
  3794. intel_crtc_update_cursor(crtc, true);
  3795. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3796. /*
  3797. * Ensure we match the reduced clock's P to the target clock.
  3798. * If the clocks don't match, we can't switch the display clock
  3799. * by using the FP0/FP1. In such case we will disable the LVDS
  3800. * downclock feature.
  3801. */
  3802. has_reduced_clock = limit->find_pll(limit, crtc,
  3803. dev_priv->lvds_downclock,
  3804. refclk,
  3805. &clock,
  3806. &reduced_clock);
  3807. }
  3808. if (is_sdvo && is_tv)
  3809. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  3810. if (IS_GEN2(dev))
  3811. i8xx_update_pll(crtc, adjusted_mode, &clock,
  3812. has_reduced_clock ? &reduced_clock : NULL,
  3813. num_connectors);
  3814. else if (IS_VALLEYVIEW(dev))
  3815. vlv_update_pll(crtc, mode, adjusted_mode, &clock,
  3816. has_reduced_clock ? &reduced_clock : NULL,
  3817. num_connectors);
  3818. else
  3819. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  3820. has_reduced_clock ? &reduced_clock : NULL,
  3821. num_connectors);
  3822. /* setup pipeconf */
  3823. pipeconf = I915_READ(PIPECONF(pipe));
  3824. /* Set up the display plane register */
  3825. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3826. if (pipe == 0)
  3827. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3828. else
  3829. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3830. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3831. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3832. * core speed.
  3833. *
  3834. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3835. * pipe == 0 check?
  3836. */
  3837. if (mode->clock >
  3838. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3839. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3840. else
  3841. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3842. }
  3843. /* default to 8bpc */
  3844. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  3845. if (is_dp) {
  3846. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3847. pipeconf |= PIPECONF_BPP_6 |
  3848. PIPECONF_DITHER_EN |
  3849. PIPECONF_DITHER_TYPE_SP;
  3850. }
  3851. }
  3852. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3853. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3854. pipeconf |= PIPECONF_BPP_6 |
  3855. PIPECONF_ENABLE |
  3856. I965_PIPECONF_ACTIVE;
  3857. }
  3858. }
  3859. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3860. drm_mode_debug_printmodeline(mode);
  3861. if (HAS_PIPE_CXSR(dev)) {
  3862. if (intel_crtc->lowfreq_avail) {
  3863. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3864. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3865. } else {
  3866. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3867. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3868. }
  3869. }
  3870. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  3871. if (!IS_GEN2(dev) &&
  3872. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  3873. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3874. else
  3875. pipeconf |= PIPECONF_PROGRESSIVE;
  3876. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  3877. /* pipesrc and dspsize control the size that is scaled from,
  3878. * which should always be the user's requested size.
  3879. */
  3880. I915_WRITE(DSPSIZE(plane),
  3881. ((mode->vdisplay - 1) << 16) |
  3882. (mode->hdisplay - 1));
  3883. I915_WRITE(DSPPOS(plane), 0);
  3884. I915_WRITE(PIPECONF(pipe), pipeconf);
  3885. POSTING_READ(PIPECONF(pipe));
  3886. intel_enable_pipe(dev_priv, pipe, false);
  3887. intel_wait_for_vblank(dev, pipe);
  3888. I915_WRITE(DSPCNTR(plane), dspcntr);
  3889. POSTING_READ(DSPCNTR(plane));
  3890. ret = intel_pipe_set_base(crtc, x, y, fb);
  3891. intel_update_watermarks(dev);
  3892. return ret;
  3893. }
  3894. /*
  3895. * Initialize reference clocks when the driver loads
  3896. */
  3897. void ironlake_init_pch_refclk(struct drm_device *dev)
  3898. {
  3899. struct drm_i915_private *dev_priv = dev->dev_private;
  3900. struct drm_mode_config *mode_config = &dev->mode_config;
  3901. struct intel_encoder *encoder;
  3902. u32 temp;
  3903. bool has_lvds = false;
  3904. bool has_cpu_edp = false;
  3905. bool has_pch_edp = false;
  3906. bool has_panel = false;
  3907. bool has_ck505 = false;
  3908. bool can_ssc = false;
  3909. /* We need to take the global config into account */
  3910. list_for_each_entry(encoder, &mode_config->encoder_list,
  3911. base.head) {
  3912. switch (encoder->type) {
  3913. case INTEL_OUTPUT_LVDS:
  3914. has_panel = true;
  3915. has_lvds = true;
  3916. break;
  3917. case INTEL_OUTPUT_EDP:
  3918. has_panel = true;
  3919. if (intel_encoder_is_pch_edp(&encoder->base))
  3920. has_pch_edp = true;
  3921. else
  3922. has_cpu_edp = true;
  3923. break;
  3924. }
  3925. }
  3926. if (HAS_PCH_IBX(dev)) {
  3927. has_ck505 = dev_priv->display_clock_mode;
  3928. can_ssc = has_ck505;
  3929. } else {
  3930. has_ck505 = false;
  3931. can_ssc = true;
  3932. }
  3933. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  3934. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  3935. has_ck505);
  3936. /* Ironlake: try to setup display ref clock before DPLL
  3937. * enabling. This is only under driver's control after
  3938. * PCH B stepping, previous chipset stepping should be
  3939. * ignoring this setting.
  3940. */
  3941. temp = I915_READ(PCH_DREF_CONTROL);
  3942. /* Always enable nonspread source */
  3943. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3944. if (has_ck505)
  3945. temp |= DREF_NONSPREAD_CK505_ENABLE;
  3946. else
  3947. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3948. if (has_panel) {
  3949. temp &= ~DREF_SSC_SOURCE_MASK;
  3950. temp |= DREF_SSC_SOURCE_ENABLE;
  3951. /* SSC must be turned on before enabling the CPU output */
  3952. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  3953. DRM_DEBUG_KMS("Using SSC on panel\n");
  3954. temp |= DREF_SSC1_ENABLE;
  3955. } else
  3956. temp &= ~DREF_SSC1_ENABLE;
  3957. /* Get SSC going before enabling the outputs */
  3958. I915_WRITE(PCH_DREF_CONTROL, temp);
  3959. POSTING_READ(PCH_DREF_CONTROL);
  3960. udelay(200);
  3961. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3962. /* Enable CPU source on CPU attached eDP */
  3963. if (has_cpu_edp) {
  3964. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  3965. DRM_DEBUG_KMS("Using SSC on eDP\n");
  3966. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3967. }
  3968. else
  3969. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3970. } else
  3971. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  3972. I915_WRITE(PCH_DREF_CONTROL, temp);
  3973. POSTING_READ(PCH_DREF_CONTROL);
  3974. udelay(200);
  3975. } else {
  3976. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  3977. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3978. /* Turn off CPU output */
  3979. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  3980. I915_WRITE(PCH_DREF_CONTROL, temp);
  3981. POSTING_READ(PCH_DREF_CONTROL);
  3982. udelay(200);
  3983. /* Turn off the SSC source */
  3984. temp &= ~DREF_SSC_SOURCE_MASK;
  3985. temp |= DREF_SSC_SOURCE_DISABLE;
  3986. /* Turn off SSC1 */
  3987. temp &= ~ DREF_SSC1_ENABLE;
  3988. I915_WRITE(PCH_DREF_CONTROL, temp);
  3989. POSTING_READ(PCH_DREF_CONTROL);
  3990. udelay(200);
  3991. }
  3992. }
  3993. static int ironlake_get_refclk(struct drm_crtc *crtc)
  3994. {
  3995. struct drm_device *dev = crtc->dev;
  3996. struct drm_i915_private *dev_priv = dev->dev_private;
  3997. struct intel_encoder *encoder;
  3998. struct intel_encoder *edp_encoder = NULL;
  3999. int num_connectors = 0;
  4000. bool is_lvds = false;
  4001. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4002. switch (encoder->type) {
  4003. case INTEL_OUTPUT_LVDS:
  4004. is_lvds = true;
  4005. break;
  4006. case INTEL_OUTPUT_EDP:
  4007. edp_encoder = encoder;
  4008. break;
  4009. }
  4010. num_connectors++;
  4011. }
  4012. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4013. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4014. dev_priv->lvds_ssc_freq);
  4015. return dev_priv->lvds_ssc_freq * 1000;
  4016. }
  4017. return 120000;
  4018. }
  4019. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4020. struct drm_display_mode *adjusted_mode,
  4021. bool dither)
  4022. {
  4023. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4024. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4025. int pipe = intel_crtc->pipe;
  4026. uint32_t val;
  4027. val = I915_READ(PIPECONF(pipe));
  4028. val &= ~PIPE_BPC_MASK;
  4029. switch (intel_crtc->bpp) {
  4030. case 18:
  4031. val |= PIPE_6BPC;
  4032. break;
  4033. case 24:
  4034. val |= PIPE_8BPC;
  4035. break;
  4036. case 30:
  4037. val |= PIPE_10BPC;
  4038. break;
  4039. case 36:
  4040. val |= PIPE_12BPC;
  4041. break;
  4042. default:
  4043. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4044. BUG();
  4045. }
  4046. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4047. if (dither)
  4048. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4049. val &= ~PIPECONF_INTERLACE_MASK;
  4050. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4051. val |= PIPECONF_INTERLACED_ILK;
  4052. else
  4053. val |= PIPECONF_PROGRESSIVE;
  4054. I915_WRITE(PIPECONF(pipe), val);
  4055. POSTING_READ(PIPECONF(pipe));
  4056. }
  4057. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4058. struct drm_display_mode *adjusted_mode,
  4059. intel_clock_t *clock,
  4060. bool *has_reduced_clock,
  4061. intel_clock_t *reduced_clock)
  4062. {
  4063. struct drm_device *dev = crtc->dev;
  4064. struct drm_i915_private *dev_priv = dev->dev_private;
  4065. struct intel_encoder *intel_encoder;
  4066. int refclk;
  4067. const intel_limit_t *limit;
  4068. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4069. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4070. switch (intel_encoder->type) {
  4071. case INTEL_OUTPUT_LVDS:
  4072. is_lvds = true;
  4073. break;
  4074. case INTEL_OUTPUT_SDVO:
  4075. case INTEL_OUTPUT_HDMI:
  4076. is_sdvo = true;
  4077. if (intel_encoder->needs_tv_clock)
  4078. is_tv = true;
  4079. break;
  4080. case INTEL_OUTPUT_TVOUT:
  4081. is_tv = true;
  4082. break;
  4083. }
  4084. }
  4085. refclk = ironlake_get_refclk(crtc);
  4086. /*
  4087. * Returns a set of divisors for the desired target clock with the given
  4088. * refclk, or FALSE. The returned values represent the clock equation:
  4089. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4090. */
  4091. limit = intel_limit(crtc, refclk);
  4092. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4093. clock);
  4094. if (!ret)
  4095. return false;
  4096. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4097. /*
  4098. * Ensure we match the reduced clock's P to the target clock.
  4099. * If the clocks don't match, we can't switch the display clock
  4100. * by using the FP0/FP1. In such case we will disable the LVDS
  4101. * downclock feature.
  4102. */
  4103. *has_reduced_clock = limit->find_pll(limit, crtc,
  4104. dev_priv->lvds_downclock,
  4105. refclk,
  4106. clock,
  4107. reduced_clock);
  4108. }
  4109. if (is_sdvo && is_tv)
  4110. i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
  4111. return true;
  4112. }
  4113. static void ironlake_set_m_n(struct drm_crtc *crtc,
  4114. struct drm_display_mode *mode,
  4115. struct drm_display_mode *adjusted_mode)
  4116. {
  4117. struct drm_device *dev = crtc->dev;
  4118. struct drm_i915_private *dev_priv = dev->dev_private;
  4119. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4120. enum pipe pipe = intel_crtc->pipe;
  4121. struct intel_encoder *intel_encoder, *edp_encoder = NULL;
  4122. struct fdi_m_n m_n = {0};
  4123. int target_clock, pixel_multiplier, lane, link_bw;
  4124. bool is_dp = false, is_cpu_edp = false;
  4125. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4126. switch (intel_encoder->type) {
  4127. case INTEL_OUTPUT_DISPLAYPORT:
  4128. is_dp = true;
  4129. break;
  4130. case INTEL_OUTPUT_EDP:
  4131. is_dp = true;
  4132. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4133. is_cpu_edp = true;
  4134. edp_encoder = intel_encoder;
  4135. break;
  4136. }
  4137. }
  4138. /* FDI link */
  4139. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4140. lane = 0;
  4141. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4142. according to current link config */
  4143. if (is_cpu_edp) {
  4144. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4145. } else {
  4146. /* FDI is a binary signal running at ~2.7GHz, encoding
  4147. * each output octet as 10 bits. The actual frequency
  4148. * is stored as a divider into a 100MHz clock, and the
  4149. * mode pixel clock is stored in units of 1KHz.
  4150. * Hence the bw of each lane in terms of the mode signal
  4151. * is:
  4152. */
  4153. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4154. }
  4155. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4156. if (edp_encoder)
  4157. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4158. else if (is_dp)
  4159. target_clock = mode->clock;
  4160. else
  4161. target_clock = adjusted_mode->clock;
  4162. if (!lane) {
  4163. /*
  4164. * Account for spread spectrum to avoid
  4165. * oversubscribing the link. Max center spread
  4166. * is 2.5%; use 5% for safety's sake.
  4167. */
  4168. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4169. lane = bps / (link_bw * 8) + 1;
  4170. }
  4171. intel_crtc->fdi_lanes = lane;
  4172. if (pixel_multiplier > 1)
  4173. link_bw *= pixel_multiplier;
  4174. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4175. &m_n);
  4176. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4177. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  4178. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  4179. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  4180. }
  4181. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4182. struct drm_display_mode *adjusted_mode,
  4183. intel_clock_t *clock, u32 fp)
  4184. {
  4185. struct drm_crtc *crtc = &intel_crtc->base;
  4186. struct drm_device *dev = crtc->dev;
  4187. struct drm_i915_private *dev_priv = dev->dev_private;
  4188. struct intel_encoder *intel_encoder;
  4189. uint32_t dpll;
  4190. int factor, pixel_multiplier, num_connectors = 0;
  4191. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4192. bool is_dp = false, is_cpu_edp = false;
  4193. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4194. switch (intel_encoder->type) {
  4195. case INTEL_OUTPUT_LVDS:
  4196. is_lvds = true;
  4197. break;
  4198. case INTEL_OUTPUT_SDVO:
  4199. case INTEL_OUTPUT_HDMI:
  4200. is_sdvo = true;
  4201. if (intel_encoder->needs_tv_clock)
  4202. is_tv = true;
  4203. break;
  4204. case INTEL_OUTPUT_TVOUT:
  4205. is_tv = true;
  4206. break;
  4207. case INTEL_OUTPUT_DISPLAYPORT:
  4208. is_dp = true;
  4209. break;
  4210. case INTEL_OUTPUT_EDP:
  4211. is_dp = true;
  4212. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4213. is_cpu_edp = true;
  4214. break;
  4215. }
  4216. num_connectors++;
  4217. }
  4218. /* Enable autotuning of the PLL clock (if permissible) */
  4219. factor = 21;
  4220. if (is_lvds) {
  4221. if ((intel_panel_use_ssc(dev_priv) &&
  4222. dev_priv->lvds_ssc_freq == 100) ||
  4223. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4224. factor = 25;
  4225. } else if (is_sdvo && is_tv)
  4226. factor = 20;
  4227. if (clock->m < factor * clock->n)
  4228. fp |= FP_CB_TUNE;
  4229. dpll = 0;
  4230. if (is_lvds)
  4231. dpll |= DPLLB_MODE_LVDS;
  4232. else
  4233. dpll |= DPLLB_MODE_DAC_SERIAL;
  4234. if (is_sdvo) {
  4235. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4236. if (pixel_multiplier > 1) {
  4237. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4238. }
  4239. dpll |= DPLL_DVO_HIGH_SPEED;
  4240. }
  4241. if (is_dp && !is_cpu_edp)
  4242. dpll |= DPLL_DVO_HIGH_SPEED;
  4243. /* compute bitmask from p1 value */
  4244. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4245. /* also FPA1 */
  4246. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4247. switch (clock->p2) {
  4248. case 5:
  4249. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4250. break;
  4251. case 7:
  4252. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4253. break;
  4254. case 10:
  4255. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4256. break;
  4257. case 14:
  4258. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4259. break;
  4260. }
  4261. if (is_sdvo && is_tv)
  4262. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4263. else if (is_tv)
  4264. /* XXX: just matching BIOS for now */
  4265. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4266. dpll |= 3;
  4267. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4268. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4269. else
  4270. dpll |= PLL_REF_INPUT_DREFCLK;
  4271. return dpll;
  4272. }
  4273. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4274. struct drm_display_mode *mode,
  4275. struct drm_display_mode *adjusted_mode,
  4276. int x, int y,
  4277. struct drm_framebuffer *fb)
  4278. {
  4279. struct drm_device *dev = crtc->dev;
  4280. struct drm_i915_private *dev_priv = dev->dev_private;
  4281. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4282. int pipe = intel_crtc->pipe;
  4283. int plane = intel_crtc->plane;
  4284. int num_connectors = 0;
  4285. intel_clock_t clock, reduced_clock;
  4286. u32 dpll, fp = 0, fp2 = 0;
  4287. bool ok, has_reduced_clock = false;
  4288. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4289. struct intel_encoder *encoder;
  4290. u32 temp;
  4291. int ret;
  4292. bool dither;
  4293. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4294. switch (encoder->type) {
  4295. case INTEL_OUTPUT_LVDS:
  4296. is_lvds = true;
  4297. break;
  4298. case INTEL_OUTPUT_DISPLAYPORT:
  4299. is_dp = true;
  4300. break;
  4301. case INTEL_OUTPUT_EDP:
  4302. is_dp = true;
  4303. if (!intel_encoder_is_pch_edp(&encoder->base))
  4304. is_cpu_edp = true;
  4305. break;
  4306. }
  4307. num_connectors++;
  4308. }
  4309. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4310. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4311. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4312. &has_reduced_clock, &reduced_clock);
  4313. if (!ok) {
  4314. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4315. return -EINVAL;
  4316. }
  4317. /* Ensure that the cursor is valid for the new mode before changing... */
  4318. intel_crtc_update_cursor(crtc, true);
  4319. /* determine panel color depth */
  4320. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
  4321. if (is_lvds && dev_priv->lvds_dither)
  4322. dither = true;
  4323. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4324. if (has_reduced_clock)
  4325. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4326. reduced_clock.m2;
  4327. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
  4328. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4329. drm_mode_debug_printmodeline(mode);
  4330. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4331. if (!is_cpu_edp) {
  4332. struct intel_pch_pll *pll;
  4333. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4334. if (pll == NULL) {
  4335. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4336. pipe);
  4337. return -EINVAL;
  4338. }
  4339. } else
  4340. intel_put_pch_pll(intel_crtc);
  4341. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4342. * This is an exception to the general rule that mode_set doesn't turn
  4343. * things on.
  4344. */
  4345. if (is_lvds) {
  4346. temp = I915_READ(PCH_LVDS);
  4347. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4348. if (HAS_PCH_CPT(dev)) {
  4349. temp &= ~PORT_TRANS_SEL_MASK;
  4350. temp |= PORT_TRANS_SEL_CPT(pipe);
  4351. } else {
  4352. if (pipe == 1)
  4353. temp |= LVDS_PIPEB_SELECT;
  4354. else
  4355. temp &= ~LVDS_PIPEB_SELECT;
  4356. }
  4357. /* set the corresponsding LVDS_BORDER bit */
  4358. temp |= dev_priv->lvds_border_bits;
  4359. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4360. * set the DPLLs for dual-channel mode or not.
  4361. */
  4362. if (clock.p2 == 7)
  4363. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4364. else
  4365. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4366. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4367. * appropriately here, but we need to look more thoroughly into how
  4368. * panels behave in the two modes.
  4369. */
  4370. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4371. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4372. temp |= LVDS_HSYNC_POLARITY;
  4373. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4374. temp |= LVDS_VSYNC_POLARITY;
  4375. I915_WRITE(PCH_LVDS, temp);
  4376. }
  4377. if (is_dp && !is_cpu_edp) {
  4378. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4379. } else {
  4380. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4381. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4382. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4383. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4384. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4385. }
  4386. if (intel_crtc->pch_pll) {
  4387. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4388. /* Wait for the clocks to stabilize. */
  4389. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4390. udelay(150);
  4391. /* The pixel multiplier can only be updated once the
  4392. * DPLL is enabled and the clocks are stable.
  4393. *
  4394. * So write it again.
  4395. */
  4396. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4397. }
  4398. intel_crtc->lowfreq_avail = false;
  4399. if (intel_crtc->pch_pll) {
  4400. if (is_lvds && has_reduced_clock && i915_powersave) {
  4401. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4402. intel_crtc->lowfreq_avail = true;
  4403. } else {
  4404. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4405. }
  4406. }
  4407. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4408. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4409. if (is_cpu_edp)
  4410. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4411. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4412. intel_wait_for_vblank(dev, pipe);
  4413. /* Set up the display plane register */
  4414. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4415. POSTING_READ(DSPCNTR(plane));
  4416. ret = intel_pipe_set_base(crtc, x, y, fb);
  4417. intel_update_watermarks(dev);
  4418. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4419. return ret;
  4420. }
  4421. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4422. struct drm_display_mode *mode,
  4423. struct drm_display_mode *adjusted_mode,
  4424. int x, int y,
  4425. struct drm_framebuffer *fb)
  4426. {
  4427. struct drm_device *dev = crtc->dev;
  4428. struct drm_i915_private *dev_priv = dev->dev_private;
  4429. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4430. int pipe = intel_crtc->pipe;
  4431. int plane = intel_crtc->plane;
  4432. int num_connectors = 0;
  4433. intel_clock_t clock, reduced_clock;
  4434. u32 dpll = 0, fp = 0, fp2 = 0;
  4435. bool ok, has_reduced_clock = false;
  4436. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4437. struct intel_encoder *encoder;
  4438. u32 temp;
  4439. int ret;
  4440. bool dither;
  4441. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4442. switch (encoder->type) {
  4443. case INTEL_OUTPUT_LVDS:
  4444. is_lvds = true;
  4445. break;
  4446. case INTEL_OUTPUT_DISPLAYPORT:
  4447. is_dp = true;
  4448. break;
  4449. case INTEL_OUTPUT_EDP:
  4450. is_dp = true;
  4451. if (!intel_encoder_is_pch_edp(&encoder->base))
  4452. is_cpu_edp = true;
  4453. break;
  4454. }
  4455. num_connectors++;
  4456. }
  4457. /* We are not sure yet this won't happen. */
  4458. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4459. INTEL_PCH_TYPE(dev));
  4460. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4461. num_connectors, pipe_name(pipe));
  4462. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4463. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4464. &has_reduced_clock,
  4465. &reduced_clock);
  4466. if (!ok) {
  4467. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4468. return -EINVAL;
  4469. }
  4470. }
  4471. /* Ensure that the cursor is valid for the new mode before changing... */
  4472. intel_crtc_update_cursor(crtc, true);
  4473. /* determine panel color depth */
  4474. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
  4475. if (is_lvds && dev_priv->lvds_dither)
  4476. dither = true;
  4477. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4478. drm_mode_debug_printmodeline(mode);
  4479. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4480. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4481. if (has_reduced_clock)
  4482. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4483. reduced_clock.m2;
  4484. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
  4485. fp);
  4486. /* CPU eDP is the only output that doesn't need a PCH PLL of its
  4487. * own on pre-Haswell/LPT generation */
  4488. if (!is_cpu_edp) {
  4489. struct intel_pch_pll *pll;
  4490. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4491. if (pll == NULL) {
  4492. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4493. pipe);
  4494. return -EINVAL;
  4495. }
  4496. } else
  4497. intel_put_pch_pll(intel_crtc);
  4498. /* The LVDS pin pair needs to be on before the DPLLs are
  4499. * enabled. This is an exception to the general rule that
  4500. * mode_set doesn't turn things on.
  4501. */
  4502. if (is_lvds) {
  4503. temp = I915_READ(PCH_LVDS);
  4504. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4505. if (HAS_PCH_CPT(dev)) {
  4506. temp &= ~PORT_TRANS_SEL_MASK;
  4507. temp |= PORT_TRANS_SEL_CPT(pipe);
  4508. } else {
  4509. if (pipe == 1)
  4510. temp |= LVDS_PIPEB_SELECT;
  4511. else
  4512. temp &= ~LVDS_PIPEB_SELECT;
  4513. }
  4514. /* set the corresponsding LVDS_BORDER bit */
  4515. temp |= dev_priv->lvds_border_bits;
  4516. /* Set the B0-B3 data pairs corresponding to whether
  4517. * we're going to set the DPLLs for dual-channel mode or
  4518. * not.
  4519. */
  4520. if (clock.p2 == 7)
  4521. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4522. else
  4523. temp &= ~(LVDS_B0B3_POWER_UP |
  4524. LVDS_CLKB_POWER_UP);
  4525. /* It would be nice to set 24 vs 18-bit mode
  4526. * (LVDS_A3_POWER_UP) appropriately here, but we need to
  4527. * look more thoroughly into how panels behave in the
  4528. * two modes.
  4529. */
  4530. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4531. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4532. temp |= LVDS_HSYNC_POLARITY;
  4533. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4534. temp |= LVDS_VSYNC_POLARITY;
  4535. I915_WRITE(PCH_LVDS, temp);
  4536. }
  4537. }
  4538. if (is_dp && !is_cpu_edp) {
  4539. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4540. } else {
  4541. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4542. /* For non-DP output, clear any trans DP clock recovery
  4543. * setting.*/
  4544. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4545. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4546. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4547. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4548. }
  4549. }
  4550. intel_crtc->lowfreq_avail = false;
  4551. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4552. if (intel_crtc->pch_pll) {
  4553. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4554. /* Wait for the clocks to stabilize. */
  4555. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4556. udelay(150);
  4557. /* The pixel multiplier can only be updated once the
  4558. * DPLL is enabled and the clocks are stable.
  4559. *
  4560. * So write it again.
  4561. */
  4562. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4563. }
  4564. if (intel_crtc->pch_pll) {
  4565. if (is_lvds && has_reduced_clock && i915_powersave) {
  4566. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4567. intel_crtc->lowfreq_avail = true;
  4568. } else {
  4569. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4570. }
  4571. }
  4572. }
  4573. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4574. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4575. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4576. if (is_cpu_edp)
  4577. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4578. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4579. intel_wait_for_vblank(dev, pipe);
  4580. /* Set up the display plane register */
  4581. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4582. POSTING_READ(DSPCNTR(plane));
  4583. ret = intel_pipe_set_base(crtc, x, y, fb);
  4584. intel_update_watermarks(dev);
  4585. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4586. return ret;
  4587. }
  4588. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4589. struct drm_display_mode *mode,
  4590. struct drm_display_mode *adjusted_mode,
  4591. int x, int y,
  4592. struct drm_framebuffer *fb)
  4593. {
  4594. struct drm_device *dev = crtc->dev;
  4595. struct drm_i915_private *dev_priv = dev->dev_private;
  4596. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4597. int pipe = intel_crtc->pipe;
  4598. int ret;
  4599. drm_vblank_pre_modeset(dev, pipe);
  4600. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4601. x, y, fb);
  4602. drm_vblank_post_modeset(dev, pipe);
  4603. return ret;
  4604. }
  4605. static bool intel_eld_uptodate(struct drm_connector *connector,
  4606. int reg_eldv, uint32_t bits_eldv,
  4607. int reg_elda, uint32_t bits_elda,
  4608. int reg_edid)
  4609. {
  4610. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4611. uint8_t *eld = connector->eld;
  4612. uint32_t i;
  4613. i = I915_READ(reg_eldv);
  4614. i &= bits_eldv;
  4615. if (!eld[0])
  4616. return !i;
  4617. if (!i)
  4618. return false;
  4619. i = I915_READ(reg_elda);
  4620. i &= ~bits_elda;
  4621. I915_WRITE(reg_elda, i);
  4622. for (i = 0; i < eld[2]; i++)
  4623. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  4624. return false;
  4625. return true;
  4626. }
  4627. static void g4x_write_eld(struct drm_connector *connector,
  4628. struct drm_crtc *crtc)
  4629. {
  4630. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4631. uint8_t *eld = connector->eld;
  4632. uint32_t eldv;
  4633. uint32_t len;
  4634. uint32_t i;
  4635. i = I915_READ(G4X_AUD_VID_DID);
  4636. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  4637. eldv = G4X_ELDV_DEVCL_DEVBLC;
  4638. else
  4639. eldv = G4X_ELDV_DEVCTG;
  4640. if (intel_eld_uptodate(connector,
  4641. G4X_AUD_CNTL_ST, eldv,
  4642. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  4643. G4X_HDMIW_HDMIEDID))
  4644. return;
  4645. i = I915_READ(G4X_AUD_CNTL_ST);
  4646. i &= ~(eldv | G4X_ELD_ADDR);
  4647. len = (i >> 9) & 0x1f; /* ELD buffer size */
  4648. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4649. if (!eld[0])
  4650. return;
  4651. len = min_t(uint8_t, eld[2], len);
  4652. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4653. for (i = 0; i < len; i++)
  4654. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  4655. i = I915_READ(G4X_AUD_CNTL_ST);
  4656. i |= eldv;
  4657. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4658. }
  4659. static void haswell_write_eld(struct drm_connector *connector,
  4660. struct drm_crtc *crtc)
  4661. {
  4662. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4663. uint8_t *eld = connector->eld;
  4664. struct drm_device *dev = crtc->dev;
  4665. uint32_t eldv;
  4666. uint32_t i;
  4667. int len;
  4668. int pipe = to_intel_crtc(crtc)->pipe;
  4669. int tmp;
  4670. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  4671. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  4672. int aud_config = HSW_AUD_CFG(pipe);
  4673. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  4674. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  4675. /* Audio output enable */
  4676. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  4677. tmp = I915_READ(aud_cntrl_st2);
  4678. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  4679. I915_WRITE(aud_cntrl_st2, tmp);
  4680. /* Wait for 1 vertical blank */
  4681. intel_wait_for_vblank(dev, pipe);
  4682. /* Set ELD valid state */
  4683. tmp = I915_READ(aud_cntrl_st2);
  4684. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  4685. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  4686. I915_WRITE(aud_cntrl_st2, tmp);
  4687. tmp = I915_READ(aud_cntrl_st2);
  4688. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  4689. /* Enable HDMI mode */
  4690. tmp = I915_READ(aud_config);
  4691. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  4692. /* clear N_programing_enable and N_value_index */
  4693. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  4694. I915_WRITE(aud_config, tmp);
  4695. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4696. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  4697. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4698. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4699. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4700. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4701. } else
  4702. I915_WRITE(aud_config, 0);
  4703. if (intel_eld_uptodate(connector,
  4704. aud_cntrl_st2, eldv,
  4705. aud_cntl_st, IBX_ELD_ADDRESS,
  4706. hdmiw_hdmiedid))
  4707. return;
  4708. i = I915_READ(aud_cntrl_st2);
  4709. i &= ~eldv;
  4710. I915_WRITE(aud_cntrl_st2, i);
  4711. if (!eld[0])
  4712. return;
  4713. i = I915_READ(aud_cntl_st);
  4714. i &= ~IBX_ELD_ADDRESS;
  4715. I915_WRITE(aud_cntl_st, i);
  4716. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4717. DRM_DEBUG_DRIVER("port num:%d\n", i);
  4718. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4719. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4720. for (i = 0; i < len; i++)
  4721. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4722. i = I915_READ(aud_cntrl_st2);
  4723. i |= eldv;
  4724. I915_WRITE(aud_cntrl_st2, i);
  4725. }
  4726. static void ironlake_write_eld(struct drm_connector *connector,
  4727. struct drm_crtc *crtc)
  4728. {
  4729. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4730. uint8_t *eld = connector->eld;
  4731. uint32_t eldv;
  4732. uint32_t i;
  4733. int len;
  4734. int hdmiw_hdmiedid;
  4735. int aud_config;
  4736. int aud_cntl_st;
  4737. int aud_cntrl_st2;
  4738. int pipe = to_intel_crtc(crtc)->pipe;
  4739. if (HAS_PCH_IBX(connector->dev)) {
  4740. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  4741. aud_config = IBX_AUD_CFG(pipe);
  4742. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  4743. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  4744. } else {
  4745. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  4746. aud_config = CPT_AUD_CFG(pipe);
  4747. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  4748. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  4749. }
  4750. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4751. i = I915_READ(aud_cntl_st);
  4752. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4753. if (!i) {
  4754. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  4755. /* operate blindly on all ports */
  4756. eldv = IBX_ELD_VALIDB;
  4757. eldv |= IBX_ELD_VALIDB << 4;
  4758. eldv |= IBX_ELD_VALIDB << 8;
  4759. } else {
  4760. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  4761. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  4762. }
  4763. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4764. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4765. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4766. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4767. } else
  4768. I915_WRITE(aud_config, 0);
  4769. if (intel_eld_uptodate(connector,
  4770. aud_cntrl_st2, eldv,
  4771. aud_cntl_st, IBX_ELD_ADDRESS,
  4772. hdmiw_hdmiedid))
  4773. return;
  4774. i = I915_READ(aud_cntrl_st2);
  4775. i &= ~eldv;
  4776. I915_WRITE(aud_cntrl_st2, i);
  4777. if (!eld[0])
  4778. return;
  4779. i = I915_READ(aud_cntl_st);
  4780. i &= ~IBX_ELD_ADDRESS;
  4781. I915_WRITE(aud_cntl_st, i);
  4782. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4783. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4784. for (i = 0; i < len; i++)
  4785. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4786. i = I915_READ(aud_cntrl_st2);
  4787. i |= eldv;
  4788. I915_WRITE(aud_cntrl_st2, i);
  4789. }
  4790. void intel_write_eld(struct drm_encoder *encoder,
  4791. struct drm_display_mode *mode)
  4792. {
  4793. struct drm_crtc *crtc = encoder->crtc;
  4794. struct drm_connector *connector;
  4795. struct drm_device *dev = encoder->dev;
  4796. struct drm_i915_private *dev_priv = dev->dev_private;
  4797. connector = drm_select_eld(encoder, mode);
  4798. if (!connector)
  4799. return;
  4800. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4801. connector->base.id,
  4802. drm_get_connector_name(connector),
  4803. connector->encoder->base.id,
  4804. drm_get_encoder_name(connector->encoder));
  4805. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  4806. if (dev_priv->display.write_eld)
  4807. dev_priv->display.write_eld(connector, crtc);
  4808. }
  4809. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4810. void intel_crtc_load_lut(struct drm_crtc *crtc)
  4811. {
  4812. struct drm_device *dev = crtc->dev;
  4813. struct drm_i915_private *dev_priv = dev->dev_private;
  4814. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4815. int palreg = PALETTE(intel_crtc->pipe);
  4816. int i;
  4817. /* The clocks have to be on to load the palette. */
  4818. if (!crtc->enabled || !intel_crtc->active)
  4819. return;
  4820. /* use legacy palette for Ironlake */
  4821. if (HAS_PCH_SPLIT(dev))
  4822. palreg = LGC_PALETTE(intel_crtc->pipe);
  4823. for (i = 0; i < 256; i++) {
  4824. I915_WRITE(palreg + 4 * i,
  4825. (intel_crtc->lut_r[i] << 16) |
  4826. (intel_crtc->lut_g[i] << 8) |
  4827. intel_crtc->lut_b[i]);
  4828. }
  4829. }
  4830. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  4831. {
  4832. struct drm_device *dev = crtc->dev;
  4833. struct drm_i915_private *dev_priv = dev->dev_private;
  4834. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4835. bool visible = base != 0;
  4836. u32 cntl;
  4837. if (intel_crtc->cursor_visible == visible)
  4838. return;
  4839. cntl = I915_READ(_CURACNTR);
  4840. if (visible) {
  4841. /* On these chipsets we can only modify the base whilst
  4842. * the cursor is disabled.
  4843. */
  4844. I915_WRITE(_CURABASE, base);
  4845. cntl &= ~(CURSOR_FORMAT_MASK);
  4846. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  4847. cntl |= CURSOR_ENABLE |
  4848. CURSOR_GAMMA_ENABLE |
  4849. CURSOR_FORMAT_ARGB;
  4850. } else
  4851. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  4852. I915_WRITE(_CURACNTR, cntl);
  4853. intel_crtc->cursor_visible = visible;
  4854. }
  4855. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  4856. {
  4857. struct drm_device *dev = crtc->dev;
  4858. struct drm_i915_private *dev_priv = dev->dev_private;
  4859. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4860. int pipe = intel_crtc->pipe;
  4861. bool visible = base != 0;
  4862. if (intel_crtc->cursor_visible != visible) {
  4863. uint32_t cntl = I915_READ(CURCNTR(pipe));
  4864. if (base) {
  4865. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  4866. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4867. cntl |= pipe << 28; /* Connect to correct pipe */
  4868. } else {
  4869. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4870. cntl |= CURSOR_MODE_DISABLE;
  4871. }
  4872. I915_WRITE(CURCNTR(pipe), cntl);
  4873. intel_crtc->cursor_visible = visible;
  4874. }
  4875. /* and commit changes on next vblank */
  4876. I915_WRITE(CURBASE(pipe), base);
  4877. }
  4878. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  4879. {
  4880. struct drm_device *dev = crtc->dev;
  4881. struct drm_i915_private *dev_priv = dev->dev_private;
  4882. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4883. int pipe = intel_crtc->pipe;
  4884. bool visible = base != 0;
  4885. if (intel_crtc->cursor_visible != visible) {
  4886. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  4887. if (base) {
  4888. cntl &= ~CURSOR_MODE;
  4889. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4890. } else {
  4891. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4892. cntl |= CURSOR_MODE_DISABLE;
  4893. }
  4894. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  4895. intel_crtc->cursor_visible = visible;
  4896. }
  4897. /* and commit changes on next vblank */
  4898. I915_WRITE(CURBASE_IVB(pipe), base);
  4899. }
  4900. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  4901. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  4902. bool on)
  4903. {
  4904. struct drm_device *dev = crtc->dev;
  4905. struct drm_i915_private *dev_priv = dev->dev_private;
  4906. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4907. int pipe = intel_crtc->pipe;
  4908. int x = intel_crtc->cursor_x;
  4909. int y = intel_crtc->cursor_y;
  4910. u32 base, pos;
  4911. bool visible;
  4912. pos = 0;
  4913. if (on && crtc->enabled && crtc->fb) {
  4914. base = intel_crtc->cursor_addr;
  4915. if (x > (int) crtc->fb->width)
  4916. base = 0;
  4917. if (y > (int) crtc->fb->height)
  4918. base = 0;
  4919. } else
  4920. base = 0;
  4921. if (x < 0) {
  4922. if (x + intel_crtc->cursor_width < 0)
  4923. base = 0;
  4924. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  4925. x = -x;
  4926. }
  4927. pos |= x << CURSOR_X_SHIFT;
  4928. if (y < 0) {
  4929. if (y + intel_crtc->cursor_height < 0)
  4930. base = 0;
  4931. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  4932. y = -y;
  4933. }
  4934. pos |= y << CURSOR_Y_SHIFT;
  4935. visible = base != 0;
  4936. if (!visible && !intel_crtc->cursor_visible)
  4937. return;
  4938. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  4939. I915_WRITE(CURPOS_IVB(pipe), pos);
  4940. ivb_update_cursor(crtc, base);
  4941. } else {
  4942. I915_WRITE(CURPOS(pipe), pos);
  4943. if (IS_845G(dev) || IS_I865G(dev))
  4944. i845_update_cursor(crtc, base);
  4945. else
  4946. i9xx_update_cursor(crtc, base);
  4947. }
  4948. }
  4949. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  4950. struct drm_file *file,
  4951. uint32_t handle,
  4952. uint32_t width, uint32_t height)
  4953. {
  4954. struct drm_device *dev = crtc->dev;
  4955. struct drm_i915_private *dev_priv = dev->dev_private;
  4956. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4957. struct drm_i915_gem_object *obj;
  4958. uint32_t addr;
  4959. int ret;
  4960. /* if we want to turn off the cursor ignore width and height */
  4961. if (!handle) {
  4962. DRM_DEBUG_KMS("cursor off\n");
  4963. addr = 0;
  4964. obj = NULL;
  4965. mutex_lock(&dev->struct_mutex);
  4966. goto finish;
  4967. }
  4968. /* Currently we only support 64x64 cursors */
  4969. if (width != 64 || height != 64) {
  4970. DRM_ERROR("we currently only support 64x64 cursors\n");
  4971. return -EINVAL;
  4972. }
  4973. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  4974. if (&obj->base == NULL)
  4975. return -ENOENT;
  4976. if (obj->base.size < width * height * 4) {
  4977. DRM_ERROR("buffer is to small\n");
  4978. ret = -ENOMEM;
  4979. goto fail;
  4980. }
  4981. /* we only need to pin inside GTT if cursor is non-phy */
  4982. mutex_lock(&dev->struct_mutex);
  4983. if (!dev_priv->info->cursor_needs_physical) {
  4984. if (obj->tiling_mode) {
  4985. DRM_ERROR("cursor cannot be tiled\n");
  4986. ret = -EINVAL;
  4987. goto fail_locked;
  4988. }
  4989. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  4990. if (ret) {
  4991. DRM_ERROR("failed to move cursor bo into the GTT\n");
  4992. goto fail_locked;
  4993. }
  4994. ret = i915_gem_object_put_fence(obj);
  4995. if (ret) {
  4996. DRM_ERROR("failed to release fence for cursor");
  4997. goto fail_unpin;
  4998. }
  4999. addr = obj->gtt_offset;
  5000. } else {
  5001. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5002. ret = i915_gem_attach_phys_object(dev, obj,
  5003. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5004. align);
  5005. if (ret) {
  5006. DRM_ERROR("failed to attach phys object\n");
  5007. goto fail_locked;
  5008. }
  5009. addr = obj->phys_obj->handle->busaddr;
  5010. }
  5011. if (IS_GEN2(dev))
  5012. I915_WRITE(CURSIZE, (height << 12) | width);
  5013. finish:
  5014. if (intel_crtc->cursor_bo) {
  5015. if (dev_priv->info->cursor_needs_physical) {
  5016. if (intel_crtc->cursor_bo != obj)
  5017. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5018. } else
  5019. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5020. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5021. }
  5022. mutex_unlock(&dev->struct_mutex);
  5023. intel_crtc->cursor_addr = addr;
  5024. intel_crtc->cursor_bo = obj;
  5025. intel_crtc->cursor_width = width;
  5026. intel_crtc->cursor_height = height;
  5027. intel_crtc_update_cursor(crtc, true);
  5028. return 0;
  5029. fail_unpin:
  5030. i915_gem_object_unpin(obj);
  5031. fail_locked:
  5032. mutex_unlock(&dev->struct_mutex);
  5033. fail:
  5034. drm_gem_object_unreference_unlocked(&obj->base);
  5035. return ret;
  5036. }
  5037. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5038. {
  5039. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5040. intel_crtc->cursor_x = x;
  5041. intel_crtc->cursor_y = y;
  5042. intel_crtc_update_cursor(crtc, true);
  5043. return 0;
  5044. }
  5045. /** Sets the color ramps on behalf of RandR */
  5046. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5047. u16 blue, int regno)
  5048. {
  5049. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5050. intel_crtc->lut_r[regno] = red >> 8;
  5051. intel_crtc->lut_g[regno] = green >> 8;
  5052. intel_crtc->lut_b[regno] = blue >> 8;
  5053. }
  5054. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5055. u16 *blue, int regno)
  5056. {
  5057. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5058. *red = intel_crtc->lut_r[regno] << 8;
  5059. *green = intel_crtc->lut_g[regno] << 8;
  5060. *blue = intel_crtc->lut_b[regno] << 8;
  5061. }
  5062. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5063. u16 *blue, uint32_t start, uint32_t size)
  5064. {
  5065. int end = (start + size > 256) ? 256 : start + size, i;
  5066. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5067. for (i = start; i < end; i++) {
  5068. intel_crtc->lut_r[i] = red[i] >> 8;
  5069. intel_crtc->lut_g[i] = green[i] >> 8;
  5070. intel_crtc->lut_b[i] = blue[i] >> 8;
  5071. }
  5072. intel_crtc_load_lut(crtc);
  5073. }
  5074. /**
  5075. * Get a pipe with a simple mode set on it for doing load-based monitor
  5076. * detection.
  5077. *
  5078. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5079. * its requirements. The pipe will be connected to no other encoders.
  5080. *
  5081. * Currently this code will only succeed if there is a pipe with no encoders
  5082. * configured for it. In the future, it could choose to temporarily disable
  5083. * some outputs to free up a pipe for its use.
  5084. *
  5085. * \return crtc, or NULL if no pipes are available.
  5086. */
  5087. /* VESA 640x480x72Hz mode to set on the pipe */
  5088. static struct drm_display_mode load_detect_mode = {
  5089. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5090. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5091. };
  5092. static struct drm_framebuffer *
  5093. intel_framebuffer_create(struct drm_device *dev,
  5094. struct drm_mode_fb_cmd2 *mode_cmd,
  5095. struct drm_i915_gem_object *obj)
  5096. {
  5097. struct intel_framebuffer *intel_fb;
  5098. int ret;
  5099. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5100. if (!intel_fb) {
  5101. drm_gem_object_unreference_unlocked(&obj->base);
  5102. return ERR_PTR(-ENOMEM);
  5103. }
  5104. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5105. if (ret) {
  5106. drm_gem_object_unreference_unlocked(&obj->base);
  5107. kfree(intel_fb);
  5108. return ERR_PTR(ret);
  5109. }
  5110. return &intel_fb->base;
  5111. }
  5112. static u32
  5113. intel_framebuffer_pitch_for_width(int width, int bpp)
  5114. {
  5115. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5116. return ALIGN(pitch, 64);
  5117. }
  5118. static u32
  5119. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5120. {
  5121. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5122. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5123. }
  5124. static struct drm_framebuffer *
  5125. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5126. struct drm_display_mode *mode,
  5127. int depth, int bpp)
  5128. {
  5129. struct drm_i915_gem_object *obj;
  5130. struct drm_mode_fb_cmd2 mode_cmd;
  5131. obj = i915_gem_alloc_object(dev,
  5132. intel_framebuffer_size_for_mode(mode, bpp));
  5133. if (obj == NULL)
  5134. return ERR_PTR(-ENOMEM);
  5135. mode_cmd.width = mode->hdisplay;
  5136. mode_cmd.height = mode->vdisplay;
  5137. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5138. bpp);
  5139. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5140. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5141. }
  5142. static struct drm_framebuffer *
  5143. mode_fits_in_fbdev(struct drm_device *dev,
  5144. struct drm_display_mode *mode)
  5145. {
  5146. struct drm_i915_private *dev_priv = dev->dev_private;
  5147. struct drm_i915_gem_object *obj;
  5148. struct drm_framebuffer *fb;
  5149. if (dev_priv->fbdev == NULL)
  5150. return NULL;
  5151. obj = dev_priv->fbdev->ifb.obj;
  5152. if (obj == NULL)
  5153. return NULL;
  5154. fb = &dev_priv->fbdev->ifb.base;
  5155. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5156. fb->bits_per_pixel))
  5157. return NULL;
  5158. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5159. return NULL;
  5160. return fb;
  5161. }
  5162. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5163. struct drm_display_mode *mode,
  5164. struct intel_load_detect_pipe *old)
  5165. {
  5166. struct intel_crtc *intel_crtc;
  5167. struct intel_encoder *intel_encoder =
  5168. intel_attached_encoder(connector);
  5169. struct drm_crtc *possible_crtc;
  5170. struct drm_encoder *encoder = &intel_encoder->base;
  5171. struct drm_crtc *crtc = NULL;
  5172. struct drm_device *dev = encoder->dev;
  5173. struct drm_framebuffer *fb;
  5174. int i = -1;
  5175. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5176. connector->base.id, drm_get_connector_name(connector),
  5177. encoder->base.id, drm_get_encoder_name(encoder));
  5178. /*
  5179. * Algorithm gets a little messy:
  5180. *
  5181. * - if the connector already has an assigned crtc, use it (but make
  5182. * sure it's on first)
  5183. *
  5184. * - try to find the first unused crtc that can drive this connector,
  5185. * and use that if we find one
  5186. */
  5187. /* See if we already have a CRTC for this connector */
  5188. if (encoder->crtc) {
  5189. crtc = encoder->crtc;
  5190. old->dpms_mode = connector->dpms;
  5191. old->load_detect_temp = false;
  5192. /* Make sure the crtc and connector are running */
  5193. if (connector->dpms != DRM_MODE_DPMS_ON)
  5194. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5195. return true;
  5196. }
  5197. /* Find an unused one (if possible) */
  5198. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5199. i++;
  5200. if (!(encoder->possible_crtcs & (1 << i)))
  5201. continue;
  5202. if (!possible_crtc->enabled) {
  5203. crtc = possible_crtc;
  5204. break;
  5205. }
  5206. }
  5207. /*
  5208. * If we didn't find an unused CRTC, don't use any.
  5209. */
  5210. if (!crtc) {
  5211. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5212. return false;
  5213. }
  5214. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5215. to_intel_connector(connector)->new_encoder = intel_encoder;
  5216. intel_crtc = to_intel_crtc(crtc);
  5217. old->dpms_mode = connector->dpms;
  5218. old->load_detect_temp = true;
  5219. old->release_fb = NULL;
  5220. if (!mode)
  5221. mode = &load_detect_mode;
  5222. /* We need a framebuffer large enough to accommodate all accesses
  5223. * that the plane may generate whilst we perform load detection.
  5224. * We can not rely on the fbcon either being present (we get called
  5225. * during its initialisation to detect all boot displays, or it may
  5226. * not even exist) or that it is large enough to satisfy the
  5227. * requested mode.
  5228. */
  5229. fb = mode_fits_in_fbdev(dev, mode);
  5230. if (fb == NULL) {
  5231. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5232. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5233. old->release_fb = fb;
  5234. } else
  5235. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5236. if (IS_ERR(fb)) {
  5237. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5238. goto fail;
  5239. }
  5240. if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
  5241. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5242. if (old->release_fb)
  5243. old->release_fb->funcs->destroy(old->release_fb);
  5244. goto fail;
  5245. }
  5246. /* let the connector get through one full cycle before testing */
  5247. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5248. return true;
  5249. fail:
  5250. connector->encoder = NULL;
  5251. encoder->crtc = NULL;
  5252. return false;
  5253. }
  5254. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5255. struct intel_load_detect_pipe *old)
  5256. {
  5257. struct intel_encoder *intel_encoder =
  5258. intel_attached_encoder(connector);
  5259. struct drm_encoder *encoder = &intel_encoder->base;
  5260. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5261. connector->base.id, drm_get_connector_name(connector),
  5262. encoder->base.id, drm_get_encoder_name(encoder));
  5263. if (old->load_detect_temp) {
  5264. struct drm_crtc *crtc = encoder->crtc;
  5265. to_intel_connector(connector)->new_encoder = NULL;
  5266. intel_encoder->new_crtc = NULL;
  5267. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5268. if (old->release_fb)
  5269. old->release_fb->funcs->destroy(old->release_fb);
  5270. return;
  5271. }
  5272. /* Switch crtc and encoder back off if necessary */
  5273. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5274. connector->funcs->dpms(connector, old->dpms_mode);
  5275. }
  5276. /* Returns the clock of the currently programmed mode of the given pipe. */
  5277. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5278. {
  5279. struct drm_i915_private *dev_priv = dev->dev_private;
  5280. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5281. int pipe = intel_crtc->pipe;
  5282. u32 dpll = I915_READ(DPLL(pipe));
  5283. u32 fp;
  5284. intel_clock_t clock;
  5285. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5286. fp = I915_READ(FP0(pipe));
  5287. else
  5288. fp = I915_READ(FP1(pipe));
  5289. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5290. if (IS_PINEVIEW(dev)) {
  5291. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5292. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5293. } else {
  5294. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5295. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5296. }
  5297. if (!IS_GEN2(dev)) {
  5298. if (IS_PINEVIEW(dev))
  5299. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5300. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5301. else
  5302. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5303. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5304. switch (dpll & DPLL_MODE_MASK) {
  5305. case DPLLB_MODE_DAC_SERIAL:
  5306. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5307. 5 : 10;
  5308. break;
  5309. case DPLLB_MODE_LVDS:
  5310. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5311. 7 : 14;
  5312. break;
  5313. default:
  5314. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5315. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5316. return 0;
  5317. }
  5318. /* XXX: Handle the 100Mhz refclk */
  5319. intel_clock(dev, 96000, &clock);
  5320. } else {
  5321. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5322. if (is_lvds) {
  5323. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5324. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5325. clock.p2 = 14;
  5326. if ((dpll & PLL_REF_INPUT_MASK) ==
  5327. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5328. /* XXX: might not be 66MHz */
  5329. intel_clock(dev, 66000, &clock);
  5330. } else
  5331. intel_clock(dev, 48000, &clock);
  5332. } else {
  5333. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5334. clock.p1 = 2;
  5335. else {
  5336. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5337. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5338. }
  5339. if (dpll & PLL_P2_DIVIDE_BY_4)
  5340. clock.p2 = 4;
  5341. else
  5342. clock.p2 = 2;
  5343. intel_clock(dev, 48000, &clock);
  5344. }
  5345. }
  5346. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5347. * i830PllIsValid() because it relies on the xf86_config connector
  5348. * configuration being accurate, which it isn't necessarily.
  5349. */
  5350. return clock.dot;
  5351. }
  5352. /** Returns the currently programmed mode of the given pipe. */
  5353. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5354. struct drm_crtc *crtc)
  5355. {
  5356. struct drm_i915_private *dev_priv = dev->dev_private;
  5357. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5358. int pipe = intel_crtc->pipe;
  5359. struct drm_display_mode *mode;
  5360. int htot = I915_READ(HTOTAL(pipe));
  5361. int hsync = I915_READ(HSYNC(pipe));
  5362. int vtot = I915_READ(VTOTAL(pipe));
  5363. int vsync = I915_READ(VSYNC(pipe));
  5364. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5365. if (!mode)
  5366. return NULL;
  5367. mode->clock = intel_crtc_clock_get(dev, crtc);
  5368. mode->hdisplay = (htot & 0xffff) + 1;
  5369. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5370. mode->hsync_start = (hsync & 0xffff) + 1;
  5371. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5372. mode->vdisplay = (vtot & 0xffff) + 1;
  5373. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5374. mode->vsync_start = (vsync & 0xffff) + 1;
  5375. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5376. drm_mode_set_name(mode);
  5377. return mode;
  5378. }
  5379. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5380. {
  5381. struct drm_device *dev = crtc->dev;
  5382. drm_i915_private_t *dev_priv = dev->dev_private;
  5383. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5384. int pipe = intel_crtc->pipe;
  5385. int dpll_reg = DPLL(pipe);
  5386. int dpll;
  5387. if (HAS_PCH_SPLIT(dev))
  5388. return;
  5389. if (!dev_priv->lvds_downclock_avail)
  5390. return;
  5391. dpll = I915_READ(dpll_reg);
  5392. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5393. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5394. assert_panel_unlocked(dev_priv, pipe);
  5395. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5396. I915_WRITE(dpll_reg, dpll);
  5397. intel_wait_for_vblank(dev, pipe);
  5398. dpll = I915_READ(dpll_reg);
  5399. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5400. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5401. }
  5402. }
  5403. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5404. {
  5405. struct drm_device *dev = crtc->dev;
  5406. drm_i915_private_t *dev_priv = dev->dev_private;
  5407. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5408. if (HAS_PCH_SPLIT(dev))
  5409. return;
  5410. if (!dev_priv->lvds_downclock_avail)
  5411. return;
  5412. /*
  5413. * Since this is called by a timer, we should never get here in
  5414. * the manual case.
  5415. */
  5416. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5417. int pipe = intel_crtc->pipe;
  5418. int dpll_reg = DPLL(pipe);
  5419. int dpll;
  5420. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5421. assert_panel_unlocked(dev_priv, pipe);
  5422. dpll = I915_READ(dpll_reg);
  5423. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5424. I915_WRITE(dpll_reg, dpll);
  5425. intel_wait_for_vblank(dev, pipe);
  5426. dpll = I915_READ(dpll_reg);
  5427. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5428. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5429. }
  5430. }
  5431. void intel_mark_busy(struct drm_device *dev)
  5432. {
  5433. i915_update_gfx_val(dev->dev_private);
  5434. }
  5435. void intel_mark_idle(struct drm_device *dev)
  5436. {
  5437. }
  5438. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5439. {
  5440. struct drm_device *dev = obj->base.dev;
  5441. struct drm_crtc *crtc;
  5442. if (!i915_powersave)
  5443. return;
  5444. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5445. if (!crtc->fb)
  5446. continue;
  5447. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5448. intel_increase_pllclock(crtc);
  5449. }
  5450. }
  5451. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  5452. {
  5453. struct drm_device *dev = obj->base.dev;
  5454. struct drm_crtc *crtc;
  5455. if (!i915_powersave)
  5456. return;
  5457. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5458. if (!crtc->fb)
  5459. continue;
  5460. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5461. intel_decrease_pllclock(crtc);
  5462. }
  5463. }
  5464. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5465. {
  5466. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5467. struct drm_device *dev = crtc->dev;
  5468. struct intel_unpin_work *work;
  5469. unsigned long flags;
  5470. spin_lock_irqsave(&dev->event_lock, flags);
  5471. work = intel_crtc->unpin_work;
  5472. intel_crtc->unpin_work = NULL;
  5473. spin_unlock_irqrestore(&dev->event_lock, flags);
  5474. if (work) {
  5475. cancel_work_sync(&work->work);
  5476. kfree(work);
  5477. }
  5478. drm_crtc_cleanup(crtc);
  5479. kfree(intel_crtc);
  5480. }
  5481. static void intel_unpin_work_fn(struct work_struct *__work)
  5482. {
  5483. struct intel_unpin_work *work =
  5484. container_of(__work, struct intel_unpin_work, work);
  5485. mutex_lock(&work->dev->struct_mutex);
  5486. intel_unpin_fb_obj(work->old_fb_obj);
  5487. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5488. drm_gem_object_unreference(&work->old_fb_obj->base);
  5489. intel_update_fbc(work->dev);
  5490. mutex_unlock(&work->dev->struct_mutex);
  5491. kfree(work);
  5492. }
  5493. static void do_intel_finish_page_flip(struct drm_device *dev,
  5494. struct drm_crtc *crtc)
  5495. {
  5496. drm_i915_private_t *dev_priv = dev->dev_private;
  5497. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5498. struct intel_unpin_work *work;
  5499. struct drm_i915_gem_object *obj;
  5500. struct drm_pending_vblank_event *e;
  5501. struct timeval tnow, tvbl;
  5502. unsigned long flags;
  5503. /* Ignore early vblank irqs */
  5504. if (intel_crtc == NULL)
  5505. return;
  5506. do_gettimeofday(&tnow);
  5507. spin_lock_irqsave(&dev->event_lock, flags);
  5508. work = intel_crtc->unpin_work;
  5509. if (work == NULL || !work->pending) {
  5510. spin_unlock_irqrestore(&dev->event_lock, flags);
  5511. return;
  5512. }
  5513. intel_crtc->unpin_work = NULL;
  5514. if (work->event) {
  5515. e = work->event;
  5516. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  5517. /* Called before vblank count and timestamps have
  5518. * been updated for the vblank interval of flip
  5519. * completion? Need to increment vblank count and
  5520. * add one videorefresh duration to returned timestamp
  5521. * to account for this. We assume this happened if we
  5522. * get called over 0.9 frame durations after the last
  5523. * timestamped vblank.
  5524. *
  5525. * This calculation can not be used with vrefresh rates
  5526. * below 5Hz (10Hz to be on the safe side) without
  5527. * promoting to 64 integers.
  5528. */
  5529. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  5530. 9 * crtc->framedur_ns) {
  5531. e->event.sequence++;
  5532. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  5533. crtc->framedur_ns);
  5534. }
  5535. e->event.tv_sec = tvbl.tv_sec;
  5536. e->event.tv_usec = tvbl.tv_usec;
  5537. list_add_tail(&e->base.link,
  5538. &e->base.file_priv->event_list);
  5539. wake_up_interruptible(&e->base.file_priv->event_wait);
  5540. }
  5541. drm_vblank_put(dev, intel_crtc->pipe);
  5542. spin_unlock_irqrestore(&dev->event_lock, flags);
  5543. obj = work->old_fb_obj;
  5544. atomic_clear_mask(1 << intel_crtc->plane,
  5545. &obj->pending_flip.counter);
  5546. if (atomic_read(&obj->pending_flip) == 0)
  5547. wake_up(&dev_priv->pending_flip_queue);
  5548. schedule_work(&work->work);
  5549. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5550. }
  5551. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5552. {
  5553. drm_i915_private_t *dev_priv = dev->dev_private;
  5554. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5555. do_intel_finish_page_flip(dev, crtc);
  5556. }
  5557. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5558. {
  5559. drm_i915_private_t *dev_priv = dev->dev_private;
  5560. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5561. do_intel_finish_page_flip(dev, crtc);
  5562. }
  5563. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5564. {
  5565. drm_i915_private_t *dev_priv = dev->dev_private;
  5566. struct intel_crtc *intel_crtc =
  5567. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5568. unsigned long flags;
  5569. spin_lock_irqsave(&dev->event_lock, flags);
  5570. if (intel_crtc->unpin_work) {
  5571. if ((++intel_crtc->unpin_work->pending) > 1)
  5572. DRM_ERROR("Prepared flip multiple times\n");
  5573. } else {
  5574. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5575. }
  5576. spin_unlock_irqrestore(&dev->event_lock, flags);
  5577. }
  5578. static int intel_gen2_queue_flip(struct drm_device *dev,
  5579. struct drm_crtc *crtc,
  5580. struct drm_framebuffer *fb,
  5581. struct drm_i915_gem_object *obj)
  5582. {
  5583. struct drm_i915_private *dev_priv = dev->dev_private;
  5584. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5585. u32 flip_mask;
  5586. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5587. int ret;
  5588. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5589. if (ret)
  5590. goto err;
  5591. ret = intel_ring_begin(ring, 6);
  5592. if (ret)
  5593. goto err_unpin;
  5594. /* Can't queue multiple flips, so wait for the previous
  5595. * one to finish before executing the next.
  5596. */
  5597. if (intel_crtc->plane)
  5598. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5599. else
  5600. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5601. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5602. intel_ring_emit(ring, MI_NOOP);
  5603. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5604. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5605. intel_ring_emit(ring, fb->pitches[0]);
  5606. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5607. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5608. intel_ring_advance(ring);
  5609. return 0;
  5610. err_unpin:
  5611. intel_unpin_fb_obj(obj);
  5612. err:
  5613. return ret;
  5614. }
  5615. static int intel_gen3_queue_flip(struct drm_device *dev,
  5616. struct drm_crtc *crtc,
  5617. struct drm_framebuffer *fb,
  5618. struct drm_i915_gem_object *obj)
  5619. {
  5620. struct drm_i915_private *dev_priv = dev->dev_private;
  5621. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5622. u32 flip_mask;
  5623. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5624. int ret;
  5625. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5626. if (ret)
  5627. goto err;
  5628. ret = intel_ring_begin(ring, 6);
  5629. if (ret)
  5630. goto err_unpin;
  5631. if (intel_crtc->plane)
  5632. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5633. else
  5634. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5635. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5636. intel_ring_emit(ring, MI_NOOP);
  5637. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  5638. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5639. intel_ring_emit(ring, fb->pitches[0]);
  5640. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5641. intel_ring_emit(ring, MI_NOOP);
  5642. intel_ring_advance(ring);
  5643. return 0;
  5644. err_unpin:
  5645. intel_unpin_fb_obj(obj);
  5646. err:
  5647. return ret;
  5648. }
  5649. static int intel_gen4_queue_flip(struct drm_device *dev,
  5650. struct drm_crtc *crtc,
  5651. struct drm_framebuffer *fb,
  5652. struct drm_i915_gem_object *obj)
  5653. {
  5654. struct drm_i915_private *dev_priv = dev->dev_private;
  5655. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5656. uint32_t pf, pipesrc;
  5657. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5658. int ret;
  5659. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5660. if (ret)
  5661. goto err;
  5662. ret = intel_ring_begin(ring, 4);
  5663. if (ret)
  5664. goto err_unpin;
  5665. /* i965+ uses the linear or tiled offsets from the
  5666. * Display Registers (which do not change across a page-flip)
  5667. * so we need only reprogram the base address.
  5668. */
  5669. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5670. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5671. intel_ring_emit(ring, fb->pitches[0]);
  5672. intel_ring_emit(ring,
  5673. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  5674. obj->tiling_mode);
  5675. /* XXX Enabling the panel-fitter across page-flip is so far
  5676. * untested on non-native modes, so ignore it for now.
  5677. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  5678. */
  5679. pf = 0;
  5680. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5681. intel_ring_emit(ring, pf | pipesrc);
  5682. intel_ring_advance(ring);
  5683. return 0;
  5684. err_unpin:
  5685. intel_unpin_fb_obj(obj);
  5686. err:
  5687. return ret;
  5688. }
  5689. static int intel_gen6_queue_flip(struct drm_device *dev,
  5690. struct drm_crtc *crtc,
  5691. struct drm_framebuffer *fb,
  5692. struct drm_i915_gem_object *obj)
  5693. {
  5694. struct drm_i915_private *dev_priv = dev->dev_private;
  5695. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5696. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5697. uint32_t pf, pipesrc;
  5698. int ret;
  5699. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5700. if (ret)
  5701. goto err;
  5702. ret = intel_ring_begin(ring, 4);
  5703. if (ret)
  5704. goto err_unpin;
  5705. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5706. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5707. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  5708. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5709. /* Contrary to the suggestions in the documentation,
  5710. * "Enable Panel Fitter" does not seem to be required when page
  5711. * flipping with a non-native mode, and worse causes a normal
  5712. * modeset to fail.
  5713. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  5714. */
  5715. pf = 0;
  5716. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5717. intel_ring_emit(ring, pf | pipesrc);
  5718. intel_ring_advance(ring);
  5719. return 0;
  5720. err_unpin:
  5721. intel_unpin_fb_obj(obj);
  5722. err:
  5723. return ret;
  5724. }
  5725. /*
  5726. * On gen7 we currently use the blit ring because (in early silicon at least)
  5727. * the render ring doesn't give us interrpts for page flip completion, which
  5728. * means clients will hang after the first flip is queued. Fortunately the
  5729. * blit ring generates interrupts properly, so use it instead.
  5730. */
  5731. static int intel_gen7_queue_flip(struct drm_device *dev,
  5732. struct drm_crtc *crtc,
  5733. struct drm_framebuffer *fb,
  5734. struct drm_i915_gem_object *obj)
  5735. {
  5736. struct drm_i915_private *dev_priv = dev->dev_private;
  5737. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5738. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  5739. uint32_t plane_bit = 0;
  5740. int ret;
  5741. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5742. if (ret)
  5743. goto err;
  5744. switch(intel_crtc->plane) {
  5745. case PLANE_A:
  5746. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  5747. break;
  5748. case PLANE_B:
  5749. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  5750. break;
  5751. case PLANE_C:
  5752. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  5753. break;
  5754. default:
  5755. WARN_ONCE(1, "unknown plane in flip command\n");
  5756. ret = -ENODEV;
  5757. goto err_unpin;
  5758. }
  5759. ret = intel_ring_begin(ring, 4);
  5760. if (ret)
  5761. goto err_unpin;
  5762. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  5763. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  5764. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5765. intel_ring_emit(ring, (MI_NOOP));
  5766. intel_ring_advance(ring);
  5767. return 0;
  5768. err_unpin:
  5769. intel_unpin_fb_obj(obj);
  5770. err:
  5771. return ret;
  5772. }
  5773. static int intel_default_queue_flip(struct drm_device *dev,
  5774. struct drm_crtc *crtc,
  5775. struct drm_framebuffer *fb,
  5776. struct drm_i915_gem_object *obj)
  5777. {
  5778. return -ENODEV;
  5779. }
  5780. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  5781. struct drm_framebuffer *fb,
  5782. struct drm_pending_vblank_event *event)
  5783. {
  5784. struct drm_device *dev = crtc->dev;
  5785. struct drm_i915_private *dev_priv = dev->dev_private;
  5786. struct intel_framebuffer *intel_fb;
  5787. struct drm_i915_gem_object *obj;
  5788. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5789. struct intel_unpin_work *work;
  5790. unsigned long flags;
  5791. int ret;
  5792. /* Can't change pixel format via MI display flips. */
  5793. if (fb->pixel_format != crtc->fb->pixel_format)
  5794. return -EINVAL;
  5795. /*
  5796. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  5797. * Note that pitch changes could also affect these register.
  5798. */
  5799. if (INTEL_INFO(dev)->gen > 3 &&
  5800. (fb->offsets[0] != crtc->fb->offsets[0] ||
  5801. fb->pitches[0] != crtc->fb->pitches[0]))
  5802. return -EINVAL;
  5803. work = kzalloc(sizeof *work, GFP_KERNEL);
  5804. if (work == NULL)
  5805. return -ENOMEM;
  5806. work->event = event;
  5807. work->dev = crtc->dev;
  5808. intel_fb = to_intel_framebuffer(crtc->fb);
  5809. work->old_fb_obj = intel_fb->obj;
  5810. INIT_WORK(&work->work, intel_unpin_work_fn);
  5811. ret = drm_vblank_get(dev, intel_crtc->pipe);
  5812. if (ret)
  5813. goto free_work;
  5814. /* We borrow the event spin lock for protecting unpin_work */
  5815. spin_lock_irqsave(&dev->event_lock, flags);
  5816. if (intel_crtc->unpin_work) {
  5817. spin_unlock_irqrestore(&dev->event_lock, flags);
  5818. kfree(work);
  5819. drm_vblank_put(dev, intel_crtc->pipe);
  5820. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  5821. return -EBUSY;
  5822. }
  5823. intel_crtc->unpin_work = work;
  5824. spin_unlock_irqrestore(&dev->event_lock, flags);
  5825. intel_fb = to_intel_framebuffer(fb);
  5826. obj = intel_fb->obj;
  5827. ret = i915_mutex_lock_interruptible(dev);
  5828. if (ret)
  5829. goto cleanup;
  5830. /* Reference the objects for the scheduled work. */
  5831. drm_gem_object_reference(&work->old_fb_obj->base);
  5832. drm_gem_object_reference(&obj->base);
  5833. crtc->fb = fb;
  5834. work->pending_flip_obj = obj;
  5835. work->enable_stall_check = true;
  5836. /* Block clients from rendering to the new back buffer until
  5837. * the flip occurs and the object is no longer visible.
  5838. */
  5839. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5840. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  5841. if (ret)
  5842. goto cleanup_pending;
  5843. intel_disable_fbc(dev);
  5844. intel_mark_fb_busy(obj);
  5845. mutex_unlock(&dev->struct_mutex);
  5846. trace_i915_flip_request(intel_crtc->plane, obj);
  5847. return 0;
  5848. cleanup_pending:
  5849. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5850. drm_gem_object_unreference(&work->old_fb_obj->base);
  5851. drm_gem_object_unreference(&obj->base);
  5852. mutex_unlock(&dev->struct_mutex);
  5853. cleanup:
  5854. spin_lock_irqsave(&dev->event_lock, flags);
  5855. intel_crtc->unpin_work = NULL;
  5856. spin_unlock_irqrestore(&dev->event_lock, flags);
  5857. drm_vblank_put(dev, intel_crtc->pipe);
  5858. free_work:
  5859. kfree(work);
  5860. return ret;
  5861. }
  5862. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  5863. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  5864. .load_lut = intel_crtc_load_lut,
  5865. .disable = intel_crtc_noop,
  5866. };
  5867. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  5868. {
  5869. struct intel_encoder *other_encoder;
  5870. struct drm_crtc *crtc = &encoder->new_crtc->base;
  5871. if (WARN_ON(!crtc))
  5872. return false;
  5873. list_for_each_entry(other_encoder,
  5874. &crtc->dev->mode_config.encoder_list,
  5875. base.head) {
  5876. if (&other_encoder->new_crtc->base != crtc ||
  5877. encoder == other_encoder)
  5878. continue;
  5879. else
  5880. return true;
  5881. }
  5882. return false;
  5883. }
  5884. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  5885. struct drm_crtc *crtc)
  5886. {
  5887. struct drm_device *dev;
  5888. struct drm_crtc *tmp;
  5889. int crtc_mask = 1;
  5890. WARN(!crtc, "checking null crtc?\n");
  5891. dev = crtc->dev;
  5892. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  5893. if (tmp == crtc)
  5894. break;
  5895. crtc_mask <<= 1;
  5896. }
  5897. if (encoder->possible_crtcs & crtc_mask)
  5898. return true;
  5899. return false;
  5900. }
  5901. /**
  5902. * intel_modeset_update_staged_output_state
  5903. *
  5904. * Updates the staged output configuration state, e.g. after we've read out the
  5905. * current hw state.
  5906. */
  5907. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  5908. {
  5909. struct intel_encoder *encoder;
  5910. struct intel_connector *connector;
  5911. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5912. base.head) {
  5913. connector->new_encoder =
  5914. to_intel_encoder(connector->base.encoder);
  5915. }
  5916. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5917. base.head) {
  5918. encoder->new_crtc =
  5919. to_intel_crtc(encoder->base.crtc);
  5920. }
  5921. }
  5922. /**
  5923. * intel_modeset_commit_output_state
  5924. *
  5925. * This function copies the stage display pipe configuration to the real one.
  5926. */
  5927. static void intel_modeset_commit_output_state(struct drm_device *dev)
  5928. {
  5929. struct intel_encoder *encoder;
  5930. struct intel_connector *connector;
  5931. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5932. base.head) {
  5933. connector->base.encoder = &connector->new_encoder->base;
  5934. }
  5935. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5936. base.head) {
  5937. encoder->base.crtc = &encoder->new_crtc->base;
  5938. }
  5939. }
  5940. static struct drm_display_mode *
  5941. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  5942. struct drm_display_mode *mode)
  5943. {
  5944. struct drm_device *dev = crtc->dev;
  5945. struct drm_display_mode *adjusted_mode;
  5946. struct drm_encoder_helper_funcs *encoder_funcs;
  5947. struct intel_encoder *encoder;
  5948. adjusted_mode = drm_mode_duplicate(dev, mode);
  5949. if (!adjusted_mode)
  5950. return ERR_PTR(-ENOMEM);
  5951. /* Pass our mode to the connectors and the CRTC to give them a chance to
  5952. * adjust it according to limitations or connector properties, and also
  5953. * a chance to reject the mode entirely.
  5954. */
  5955. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5956. base.head) {
  5957. if (&encoder->new_crtc->base != crtc)
  5958. continue;
  5959. encoder_funcs = encoder->base.helper_private;
  5960. if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  5961. adjusted_mode))) {
  5962. DRM_DEBUG_KMS("Encoder fixup failed\n");
  5963. goto fail;
  5964. }
  5965. }
  5966. if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  5967. DRM_DEBUG_KMS("CRTC fixup failed\n");
  5968. goto fail;
  5969. }
  5970. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  5971. return adjusted_mode;
  5972. fail:
  5973. drm_mode_destroy(dev, adjusted_mode);
  5974. return ERR_PTR(-EINVAL);
  5975. }
  5976. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  5977. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  5978. static void
  5979. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  5980. unsigned *prepare_pipes, unsigned *disable_pipes)
  5981. {
  5982. struct intel_crtc *intel_crtc;
  5983. struct drm_device *dev = crtc->dev;
  5984. struct intel_encoder *encoder;
  5985. struct intel_connector *connector;
  5986. struct drm_crtc *tmp_crtc;
  5987. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  5988. /* Check which crtcs have changed outputs connected to them, these need
  5989. * to be part of the prepare_pipes mask. We don't (yet) support global
  5990. * modeset across multiple crtcs, so modeset_pipes will only have one
  5991. * bit set at most. */
  5992. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5993. base.head) {
  5994. if (connector->base.encoder == &connector->new_encoder->base)
  5995. continue;
  5996. if (connector->base.encoder) {
  5997. tmp_crtc = connector->base.encoder->crtc;
  5998. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  5999. }
  6000. if (connector->new_encoder)
  6001. *prepare_pipes |=
  6002. 1 << connector->new_encoder->new_crtc->pipe;
  6003. }
  6004. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6005. base.head) {
  6006. if (encoder->base.crtc == &encoder->new_crtc->base)
  6007. continue;
  6008. if (encoder->base.crtc) {
  6009. tmp_crtc = encoder->base.crtc;
  6010. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6011. }
  6012. if (encoder->new_crtc)
  6013. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6014. }
  6015. /* Check for any pipes that will be fully disabled ... */
  6016. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6017. base.head) {
  6018. bool used = false;
  6019. /* Don't try to disable disabled crtcs. */
  6020. if (!intel_crtc->base.enabled)
  6021. continue;
  6022. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6023. base.head) {
  6024. if (encoder->new_crtc == intel_crtc)
  6025. used = true;
  6026. }
  6027. if (!used)
  6028. *disable_pipes |= 1 << intel_crtc->pipe;
  6029. }
  6030. /* set_mode is also used to update properties on life display pipes. */
  6031. intel_crtc = to_intel_crtc(crtc);
  6032. if (crtc->enabled)
  6033. *prepare_pipes |= 1 << intel_crtc->pipe;
  6034. /* We only support modeset on one single crtc, hence we need to do that
  6035. * only for the passed in crtc iff we change anything else than just
  6036. * disable crtcs.
  6037. *
  6038. * This is actually not true, to be fully compatible with the old crtc
  6039. * helper we automatically disable _any_ output (i.e. doesn't need to be
  6040. * connected to the crtc we're modesetting on) if it's disconnected.
  6041. * Which is a rather nutty api (since changed the output configuration
  6042. * without userspace's explicit request can lead to confusion), but
  6043. * alas. Hence we currently need to modeset on all pipes we prepare. */
  6044. if (*prepare_pipes)
  6045. *modeset_pipes = *prepare_pipes;
  6046. /* ... and mask these out. */
  6047. *modeset_pipes &= ~(*disable_pipes);
  6048. *prepare_pipes &= ~(*disable_pipes);
  6049. }
  6050. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6051. {
  6052. struct drm_encoder *encoder;
  6053. struct drm_device *dev = crtc->dev;
  6054. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6055. if (encoder->crtc == crtc)
  6056. return true;
  6057. return false;
  6058. }
  6059. static void
  6060. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6061. {
  6062. struct intel_encoder *intel_encoder;
  6063. struct intel_crtc *intel_crtc;
  6064. struct drm_connector *connector;
  6065. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6066. base.head) {
  6067. if (!intel_encoder->base.crtc)
  6068. continue;
  6069. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6070. if (prepare_pipes & (1 << intel_crtc->pipe))
  6071. intel_encoder->connectors_active = false;
  6072. }
  6073. intel_modeset_commit_output_state(dev);
  6074. /* Update computed state. */
  6075. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6076. base.head) {
  6077. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6078. }
  6079. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6080. if (!connector->encoder || !connector->encoder->crtc)
  6081. continue;
  6082. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6083. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6084. struct drm_property *dpms_property =
  6085. dev->mode_config.dpms_property;
  6086. connector->dpms = DRM_MODE_DPMS_ON;
  6087. drm_connector_property_set_value(connector,
  6088. dpms_property,
  6089. DRM_MODE_DPMS_ON);
  6090. intel_encoder = to_intel_encoder(connector->encoder);
  6091. intel_encoder->connectors_active = true;
  6092. }
  6093. }
  6094. }
  6095. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6096. list_for_each_entry((intel_crtc), \
  6097. &(dev)->mode_config.crtc_list, \
  6098. base.head) \
  6099. if (mask & (1 <<(intel_crtc)->pipe)) \
  6100. void
  6101. intel_modeset_check_state(struct drm_device *dev)
  6102. {
  6103. struct intel_crtc *crtc;
  6104. struct intel_encoder *encoder;
  6105. struct intel_connector *connector;
  6106. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6107. base.head) {
  6108. /* This also checks the encoder/connector hw state with the
  6109. * ->get_hw_state callbacks. */
  6110. intel_connector_check_state(connector);
  6111. WARN(&connector->new_encoder->base != connector->base.encoder,
  6112. "connector's staged encoder doesn't match current encoder\n");
  6113. }
  6114. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6115. base.head) {
  6116. bool enabled = false;
  6117. bool active = false;
  6118. enum pipe pipe, tracked_pipe;
  6119. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6120. encoder->base.base.id,
  6121. drm_get_encoder_name(&encoder->base));
  6122. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6123. "encoder's stage crtc doesn't match current crtc\n");
  6124. WARN(encoder->connectors_active && !encoder->base.crtc,
  6125. "encoder's active_connectors set, but no crtc\n");
  6126. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6127. base.head) {
  6128. if (connector->base.encoder != &encoder->base)
  6129. continue;
  6130. enabled = true;
  6131. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6132. active = true;
  6133. }
  6134. WARN(!!encoder->base.crtc != enabled,
  6135. "encoder's enabled state mismatch "
  6136. "(expected %i, found %i)\n",
  6137. !!encoder->base.crtc, enabled);
  6138. WARN(active && !encoder->base.crtc,
  6139. "active encoder with no crtc\n");
  6140. WARN(encoder->connectors_active != active,
  6141. "encoder's computed active state doesn't match tracked active state "
  6142. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6143. active = encoder->get_hw_state(encoder, &pipe);
  6144. WARN(active != encoder->connectors_active,
  6145. "encoder's hw state doesn't match sw tracking "
  6146. "(expected %i, found %i)\n",
  6147. encoder->connectors_active, active);
  6148. if (!encoder->base.crtc)
  6149. continue;
  6150. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6151. WARN(active && pipe != tracked_pipe,
  6152. "active encoder's pipe doesn't match"
  6153. "(expected %i, found %i)\n",
  6154. tracked_pipe, pipe);
  6155. }
  6156. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6157. base.head) {
  6158. bool enabled = false;
  6159. bool active = false;
  6160. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6161. crtc->base.base.id);
  6162. WARN(crtc->active && !crtc->base.enabled,
  6163. "active crtc, but not enabled in sw tracking\n");
  6164. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6165. base.head) {
  6166. if (encoder->base.crtc != &crtc->base)
  6167. continue;
  6168. enabled = true;
  6169. if (encoder->connectors_active)
  6170. active = true;
  6171. }
  6172. WARN(active != crtc->active,
  6173. "crtc's computed active state doesn't match tracked active state "
  6174. "(expected %i, found %i)\n", active, crtc->active);
  6175. WARN(enabled != crtc->base.enabled,
  6176. "crtc's computed enabled state doesn't match tracked enabled state "
  6177. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6178. assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  6179. }
  6180. }
  6181. bool intel_set_mode(struct drm_crtc *crtc,
  6182. struct drm_display_mode *mode,
  6183. int x, int y, struct drm_framebuffer *fb)
  6184. {
  6185. struct drm_device *dev = crtc->dev;
  6186. drm_i915_private_t *dev_priv = dev->dev_private;
  6187. struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
  6188. struct drm_encoder_helper_funcs *encoder_funcs;
  6189. struct drm_encoder *encoder;
  6190. struct intel_crtc *intel_crtc;
  6191. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6192. bool ret = true;
  6193. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6194. &prepare_pipes, &disable_pipes);
  6195. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6196. modeset_pipes, prepare_pipes, disable_pipes);
  6197. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6198. intel_crtc_disable(&intel_crtc->base);
  6199. saved_hwmode = crtc->hwmode;
  6200. saved_mode = crtc->mode;
  6201. /* Hack: Because we don't (yet) support global modeset on multiple
  6202. * crtcs, we don't keep track of the new mode for more than one crtc.
  6203. * Hence simply check whether any bit is set in modeset_pipes in all the
  6204. * pieces of code that are not yet converted to deal with mutliple crtcs
  6205. * changing their mode at the same time. */
  6206. adjusted_mode = NULL;
  6207. if (modeset_pipes) {
  6208. adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  6209. if (IS_ERR(adjusted_mode)) {
  6210. return false;
  6211. }
  6212. }
  6213. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6214. if (intel_crtc->base.enabled)
  6215. dev_priv->display.crtc_disable(&intel_crtc->base);
  6216. }
  6217. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6218. * to set it here already despite that we pass it down the callchain.
  6219. */
  6220. if (modeset_pipes)
  6221. crtc->mode = *mode;
  6222. /* Only after disabling all output pipelines that will be changed can we
  6223. * update the the output configuration. */
  6224. intel_modeset_update_state(dev, prepare_pipes);
  6225. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6226. * on the DPLL.
  6227. */
  6228. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6229. ret = !intel_crtc_mode_set(&intel_crtc->base,
  6230. mode, adjusted_mode,
  6231. x, y, fb);
  6232. if (!ret)
  6233. goto done;
  6234. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6235. if (encoder->crtc != &intel_crtc->base)
  6236. continue;
  6237. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  6238. encoder->base.id, drm_get_encoder_name(encoder),
  6239. mode->base.id, mode->name);
  6240. encoder_funcs = encoder->helper_private;
  6241. encoder_funcs->mode_set(encoder, mode, adjusted_mode);
  6242. }
  6243. }
  6244. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6245. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6246. dev_priv->display.crtc_enable(&intel_crtc->base);
  6247. if (modeset_pipes) {
  6248. /* Store real post-adjustment hardware mode. */
  6249. crtc->hwmode = *adjusted_mode;
  6250. /* Calculate and store various constants which
  6251. * are later needed by vblank and swap-completion
  6252. * timestamping. They are derived from true hwmode.
  6253. */
  6254. drm_calc_timestamping_constants(crtc);
  6255. }
  6256. /* FIXME: add subpixel order */
  6257. done:
  6258. drm_mode_destroy(dev, adjusted_mode);
  6259. if (!ret && crtc->enabled) {
  6260. crtc->hwmode = saved_hwmode;
  6261. crtc->mode = saved_mode;
  6262. } else {
  6263. intel_modeset_check_state(dev);
  6264. }
  6265. return ret;
  6266. }
  6267. #undef for_each_intel_crtc_masked
  6268. static void intel_set_config_free(struct intel_set_config *config)
  6269. {
  6270. if (!config)
  6271. return;
  6272. kfree(config->save_connector_encoders);
  6273. kfree(config->save_encoder_crtcs);
  6274. kfree(config);
  6275. }
  6276. static int intel_set_config_save_state(struct drm_device *dev,
  6277. struct intel_set_config *config)
  6278. {
  6279. struct drm_encoder *encoder;
  6280. struct drm_connector *connector;
  6281. int count;
  6282. config->save_encoder_crtcs =
  6283. kcalloc(dev->mode_config.num_encoder,
  6284. sizeof(struct drm_crtc *), GFP_KERNEL);
  6285. if (!config->save_encoder_crtcs)
  6286. return -ENOMEM;
  6287. config->save_connector_encoders =
  6288. kcalloc(dev->mode_config.num_connector,
  6289. sizeof(struct drm_encoder *), GFP_KERNEL);
  6290. if (!config->save_connector_encoders)
  6291. return -ENOMEM;
  6292. /* Copy data. Note that driver private data is not affected.
  6293. * Should anything bad happen only the expected state is
  6294. * restored, not the drivers personal bookkeeping.
  6295. */
  6296. count = 0;
  6297. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6298. config->save_encoder_crtcs[count++] = encoder->crtc;
  6299. }
  6300. count = 0;
  6301. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6302. config->save_connector_encoders[count++] = connector->encoder;
  6303. }
  6304. return 0;
  6305. }
  6306. static void intel_set_config_restore_state(struct drm_device *dev,
  6307. struct intel_set_config *config)
  6308. {
  6309. struct intel_encoder *encoder;
  6310. struct intel_connector *connector;
  6311. int count;
  6312. count = 0;
  6313. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6314. encoder->new_crtc =
  6315. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6316. }
  6317. count = 0;
  6318. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6319. connector->new_encoder =
  6320. to_intel_encoder(config->save_connector_encoders[count++]);
  6321. }
  6322. }
  6323. static void
  6324. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6325. struct intel_set_config *config)
  6326. {
  6327. /* We should be able to check here if the fb has the same properties
  6328. * and then just flip_or_move it */
  6329. if (set->crtc->fb != set->fb) {
  6330. /* If we have no fb then treat it as a full mode set */
  6331. if (set->crtc->fb == NULL) {
  6332. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6333. config->mode_changed = true;
  6334. } else if (set->fb == NULL) {
  6335. config->mode_changed = true;
  6336. } else if (set->fb->depth != set->crtc->fb->depth) {
  6337. config->mode_changed = true;
  6338. } else if (set->fb->bits_per_pixel !=
  6339. set->crtc->fb->bits_per_pixel) {
  6340. config->mode_changed = true;
  6341. } else
  6342. config->fb_changed = true;
  6343. }
  6344. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6345. config->fb_changed = true;
  6346. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6347. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6348. drm_mode_debug_printmodeline(&set->crtc->mode);
  6349. drm_mode_debug_printmodeline(set->mode);
  6350. config->mode_changed = true;
  6351. }
  6352. }
  6353. static int
  6354. intel_modeset_stage_output_state(struct drm_device *dev,
  6355. struct drm_mode_set *set,
  6356. struct intel_set_config *config)
  6357. {
  6358. struct drm_crtc *new_crtc;
  6359. struct intel_connector *connector;
  6360. struct intel_encoder *encoder;
  6361. int count, ro;
  6362. /* The upper layers ensure that we either disabl a crtc or have a list
  6363. * of connectors. For paranoia, double-check this. */
  6364. WARN_ON(!set->fb && (set->num_connectors != 0));
  6365. WARN_ON(set->fb && (set->num_connectors == 0));
  6366. count = 0;
  6367. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6368. base.head) {
  6369. /* Otherwise traverse passed in connector list and get encoders
  6370. * for them. */
  6371. for (ro = 0; ro < set->num_connectors; ro++) {
  6372. if (set->connectors[ro] == &connector->base) {
  6373. connector->new_encoder = connector->encoder;
  6374. break;
  6375. }
  6376. }
  6377. /* If we disable the crtc, disable all its connectors. Also, if
  6378. * the connector is on the changing crtc but not on the new
  6379. * connector list, disable it. */
  6380. if ((!set->fb || ro == set->num_connectors) &&
  6381. connector->base.encoder &&
  6382. connector->base.encoder->crtc == set->crtc) {
  6383. connector->new_encoder = NULL;
  6384. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6385. connector->base.base.id,
  6386. drm_get_connector_name(&connector->base));
  6387. }
  6388. if (&connector->new_encoder->base != connector->base.encoder) {
  6389. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6390. config->mode_changed = true;
  6391. }
  6392. /* Disable all disconnected encoders. */
  6393. if (connector->base.status == connector_status_disconnected)
  6394. connector->new_encoder = NULL;
  6395. }
  6396. /* connector->new_encoder is now updated for all connectors. */
  6397. /* Update crtc of enabled connectors. */
  6398. count = 0;
  6399. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6400. base.head) {
  6401. if (!connector->new_encoder)
  6402. continue;
  6403. new_crtc = connector->new_encoder->base.crtc;
  6404. for (ro = 0; ro < set->num_connectors; ro++) {
  6405. if (set->connectors[ro] == &connector->base)
  6406. new_crtc = set->crtc;
  6407. }
  6408. /* Make sure the new CRTC will work with the encoder */
  6409. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6410. new_crtc)) {
  6411. return -EINVAL;
  6412. }
  6413. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6414. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6415. connector->base.base.id,
  6416. drm_get_connector_name(&connector->base),
  6417. new_crtc->base.id);
  6418. }
  6419. /* Check for any encoders that needs to be disabled. */
  6420. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6421. base.head) {
  6422. list_for_each_entry(connector,
  6423. &dev->mode_config.connector_list,
  6424. base.head) {
  6425. if (connector->new_encoder == encoder) {
  6426. WARN_ON(!connector->new_encoder->new_crtc);
  6427. goto next_encoder;
  6428. }
  6429. }
  6430. encoder->new_crtc = NULL;
  6431. next_encoder:
  6432. /* Only now check for crtc changes so we don't miss encoders
  6433. * that will be disabled. */
  6434. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6435. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6436. config->mode_changed = true;
  6437. }
  6438. }
  6439. /* Now we've also updated encoder->new_crtc for all encoders. */
  6440. return 0;
  6441. }
  6442. static int intel_crtc_set_config(struct drm_mode_set *set)
  6443. {
  6444. struct drm_device *dev;
  6445. struct drm_mode_set save_set;
  6446. struct intel_set_config *config;
  6447. int ret;
  6448. BUG_ON(!set);
  6449. BUG_ON(!set->crtc);
  6450. BUG_ON(!set->crtc->helper_private);
  6451. if (!set->mode)
  6452. set->fb = NULL;
  6453. /* The fb helper likes to play gross jokes with ->mode_set_config.
  6454. * Unfortunately the crtc helper doesn't do much at all for this case,
  6455. * so we have to cope with this madness until the fb helper is fixed up. */
  6456. if (set->fb && set->num_connectors == 0)
  6457. return 0;
  6458. if (set->fb) {
  6459. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6460. set->crtc->base.id, set->fb->base.id,
  6461. (int)set->num_connectors, set->x, set->y);
  6462. } else {
  6463. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6464. }
  6465. dev = set->crtc->dev;
  6466. ret = -ENOMEM;
  6467. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6468. if (!config)
  6469. goto out_config;
  6470. ret = intel_set_config_save_state(dev, config);
  6471. if (ret)
  6472. goto out_config;
  6473. save_set.crtc = set->crtc;
  6474. save_set.mode = &set->crtc->mode;
  6475. save_set.x = set->crtc->x;
  6476. save_set.y = set->crtc->y;
  6477. save_set.fb = set->crtc->fb;
  6478. /* Compute whether we need a full modeset, only an fb base update or no
  6479. * change at all. In the future we might also check whether only the
  6480. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6481. * such cases. */
  6482. intel_set_config_compute_mode_changes(set, config);
  6483. ret = intel_modeset_stage_output_state(dev, set, config);
  6484. if (ret)
  6485. goto fail;
  6486. if (config->mode_changed) {
  6487. if (set->mode) {
  6488. DRM_DEBUG_KMS("attempting to set mode from"
  6489. " userspace\n");
  6490. drm_mode_debug_printmodeline(set->mode);
  6491. }
  6492. if (!intel_set_mode(set->crtc, set->mode,
  6493. set->x, set->y, set->fb)) {
  6494. DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  6495. set->crtc->base.id);
  6496. ret = -EINVAL;
  6497. goto fail;
  6498. }
  6499. } else if (config->fb_changed) {
  6500. ret = intel_pipe_set_base(set->crtc,
  6501. set->x, set->y, set->fb);
  6502. }
  6503. intel_set_config_free(config);
  6504. return 0;
  6505. fail:
  6506. intel_set_config_restore_state(dev, config);
  6507. /* Try to restore the config */
  6508. if (config->mode_changed &&
  6509. !intel_set_mode(save_set.crtc, save_set.mode,
  6510. save_set.x, save_set.y, save_set.fb))
  6511. DRM_ERROR("failed to restore config after modeset failure\n");
  6512. out_config:
  6513. intel_set_config_free(config);
  6514. return ret;
  6515. }
  6516. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6517. .cursor_set = intel_crtc_cursor_set,
  6518. .cursor_move = intel_crtc_cursor_move,
  6519. .gamma_set = intel_crtc_gamma_set,
  6520. .set_config = intel_crtc_set_config,
  6521. .destroy = intel_crtc_destroy,
  6522. .page_flip = intel_crtc_page_flip,
  6523. };
  6524. static void intel_cpu_pll_init(struct drm_device *dev)
  6525. {
  6526. if (IS_HASWELL(dev))
  6527. intel_ddi_pll_init(dev);
  6528. }
  6529. static void intel_pch_pll_init(struct drm_device *dev)
  6530. {
  6531. drm_i915_private_t *dev_priv = dev->dev_private;
  6532. int i;
  6533. if (dev_priv->num_pch_pll == 0) {
  6534. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  6535. return;
  6536. }
  6537. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  6538. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  6539. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  6540. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  6541. }
  6542. }
  6543. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6544. {
  6545. drm_i915_private_t *dev_priv = dev->dev_private;
  6546. struct intel_crtc *intel_crtc;
  6547. int i;
  6548. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6549. if (intel_crtc == NULL)
  6550. return;
  6551. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6552. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6553. for (i = 0; i < 256; i++) {
  6554. intel_crtc->lut_r[i] = i;
  6555. intel_crtc->lut_g[i] = i;
  6556. intel_crtc->lut_b[i] = i;
  6557. }
  6558. /* Swap pipes & planes for FBC on pre-965 */
  6559. intel_crtc->pipe = pipe;
  6560. intel_crtc->plane = pipe;
  6561. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6562. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6563. intel_crtc->plane = !pipe;
  6564. }
  6565. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6566. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6567. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6568. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6569. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6570. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6571. }
  6572. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6573. struct drm_file *file)
  6574. {
  6575. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6576. struct drm_mode_object *drmmode_obj;
  6577. struct intel_crtc *crtc;
  6578. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6579. return -ENODEV;
  6580. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6581. DRM_MODE_OBJECT_CRTC);
  6582. if (!drmmode_obj) {
  6583. DRM_ERROR("no such CRTC id\n");
  6584. return -EINVAL;
  6585. }
  6586. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6587. pipe_from_crtc_id->pipe = crtc->pipe;
  6588. return 0;
  6589. }
  6590. static int intel_encoder_clones(struct intel_encoder *encoder)
  6591. {
  6592. struct drm_device *dev = encoder->base.dev;
  6593. struct intel_encoder *source_encoder;
  6594. int index_mask = 0;
  6595. int entry = 0;
  6596. list_for_each_entry(source_encoder,
  6597. &dev->mode_config.encoder_list, base.head) {
  6598. if (encoder == source_encoder)
  6599. index_mask |= (1 << entry);
  6600. /* Intel hw has only one MUX where enocoders could be cloned. */
  6601. if (encoder->cloneable && source_encoder->cloneable)
  6602. index_mask |= (1 << entry);
  6603. entry++;
  6604. }
  6605. return index_mask;
  6606. }
  6607. static bool has_edp_a(struct drm_device *dev)
  6608. {
  6609. struct drm_i915_private *dev_priv = dev->dev_private;
  6610. if (!IS_MOBILE(dev))
  6611. return false;
  6612. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6613. return false;
  6614. if (IS_GEN5(dev) &&
  6615. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6616. return false;
  6617. return true;
  6618. }
  6619. static void intel_setup_outputs(struct drm_device *dev)
  6620. {
  6621. struct drm_i915_private *dev_priv = dev->dev_private;
  6622. struct intel_encoder *encoder;
  6623. bool dpd_is_edp = false;
  6624. bool has_lvds;
  6625. has_lvds = intel_lvds_init(dev);
  6626. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6627. /* disable the panel fitter on everything but LVDS */
  6628. I915_WRITE(PFIT_CONTROL, 0);
  6629. }
  6630. if (HAS_PCH_SPLIT(dev)) {
  6631. dpd_is_edp = intel_dpd_is_edp(dev);
  6632. if (has_edp_a(dev))
  6633. intel_dp_init(dev, DP_A, PORT_A);
  6634. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6635. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6636. }
  6637. intel_crt_init(dev);
  6638. if (IS_HASWELL(dev)) {
  6639. int found;
  6640. /* Haswell uses DDI functions to detect digital outputs */
  6641. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  6642. /* DDI A only supports eDP */
  6643. if (found)
  6644. intel_ddi_init(dev, PORT_A);
  6645. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  6646. * register */
  6647. found = I915_READ(SFUSE_STRAP);
  6648. if (found & SFUSE_STRAP_DDIB_DETECTED)
  6649. intel_ddi_init(dev, PORT_B);
  6650. if (found & SFUSE_STRAP_DDIC_DETECTED)
  6651. intel_ddi_init(dev, PORT_C);
  6652. if (found & SFUSE_STRAP_DDID_DETECTED)
  6653. intel_ddi_init(dev, PORT_D);
  6654. } else if (HAS_PCH_SPLIT(dev)) {
  6655. int found;
  6656. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6657. /* PCH SDVOB multiplex with HDMIB */
  6658. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  6659. if (!found)
  6660. intel_hdmi_init(dev, HDMIB, PORT_B);
  6661. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6662. intel_dp_init(dev, PCH_DP_B, PORT_B);
  6663. }
  6664. if (I915_READ(HDMIC) & PORT_DETECTED)
  6665. intel_hdmi_init(dev, HDMIC, PORT_C);
  6666. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  6667. intel_hdmi_init(dev, HDMID, PORT_D);
  6668. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6669. intel_dp_init(dev, PCH_DP_C, PORT_C);
  6670. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6671. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6672. } else if (IS_VALLEYVIEW(dev)) {
  6673. int found;
  6674. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  6675. if (I915_READ(DP_C) & DP_DETECTED)
  6676. intel_dp_init(dev, DP_C, PORT_C);
  6677. if (I915_READ(SDVOB) & PORT_DETECTED) {
  6678. /* SDVOB multiplex with HDMIB */
  6679. found = intel_sdvo_init(dev, SDVOB, true);
  6680. if (!found)
  6681. intel_hdmi_init(dev, SDVOB, PORT_B);
  6682. if (!found && (I915_READ(DP_B) & DP_DETECTED))
  6683. intel_dp_init(dev, DP_B, PORT_B);
  6684. }
  6685. if (I915_READ(SDVOC) & PORT_DETECTED)
  6686. intel_hdmi_init(dev, SDVOC, PORT_C);
  6687. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6688. bool found = false;
  6689. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6690. DRM_DEBUG_KMS("probing SDVOB\n");
  6691. found = intel_sdvo_init(dev, SDVOB, true);
  6692. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6693. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6694. intel_hdmi_init(dev, SDVOB, PORT_B);
  6695. }
  6696. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6697. DRM_DEBUG_KMS("probing DP_B\n");
  6698. intel_dp_init(dev, DP_B, PORT_B);
  6699. }
  6700. }
  6701. /* Before G4X SDVOC doesn't have its own detect register */
  6702. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6703. DRM_DEBUG_KMS("probing SDVOC\n");
  6704. found = intel_sdvo_init(dev, SDVOC, false);
  6705. }
  6706. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6707. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6708. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6709. intel_hdmi_init(dev, SDVOC, PORT_C);
  6710. }
  6711. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6712. DRM_DEBUG_KMS("probing DP_C\n");
  6713. intel_dp_init(dev, DP_C, PORT_C);
  6714. }
  6715. }
  6716. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6717. (I915_READ(DP_D) & DP_DETECTED)) {
  6718. DRM_DEBUG_KMS("probing DP_D\n");
  6719. intel_dp_init(dev, DP_D, PORT_D);
  6720. }
  6721. } else if (IS_GEN2(dev))
  6722. intel_dvo_init(dev);
  6723. if (SUPPORTS_TV(dev))
  6724. intel_tv_init(dev);
  6725. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6726. encoder->base.possible_crtcs = encoder->crtc_mask;
  6727. encoder->base.possible_clones =
  6728. intel_encoder_clones(encoder);
  6729. }
  6730. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  6731. ironlake_init_pch_refclk(dev);
  6732. }
  6733. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6734. {
  6735. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6736. drm_framebuffer_cleanup(fb);
  6737. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6738. kfree(intel_fb);
  6739. }
  6740. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6741. struct drm_file *file,
  6742. unsigned int *handle)
  6743. {
  6744. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6745. struct drm_i915_gem_object *obj = intel_fb->obj;
  6746. return drm_gem_handle_create(file, &obj->base, handle);
  6747. }
  6748. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6749. .destroy = intel_user_framebuffer_destroy,
  6750. .create_handle = intel_user_framebuffer_create_handle,
  6751. };
  6752. int intel_framebuffer_init(struct drm_device *dev,
  6753. struct intel_framebuffer *intel_fb,
  6754. struct drm_mode_fb_cmd2 *mode_cmd,
  6755. struct drm_i915_gem_object *obj)
  6756. {
  6757. int ret;
  6758. if (obj->tiling_mode == I915_TILING_Y)
  6759. return -EINVAL;
  6760. if (mode_cmd->pitches[0] & 63)
  6761. return -EINVAL;
  6762. switch (mode_cmd->pixel_format) {
  6763. case DRM_FORMAT_RGB332:
  6764. case DRM_FORMAT_RGB565:
  6765. case DRM_FORMAT_XRGB8888:
  6766. case DRM_FORMAT_XBGR8888:
  6767. case DRM_FORMAT_ARGB8888:
  6768. case DRM_FORMAT_XRGB2101010:
  6769. case DRM_FORMAT_ARGB2101010:
  6770. /* RGB formats are common across chipsets */
  6771. break;
  6772. case DRM_FORMAT_YUYV:
  6773. case DRM_FORMAT_UYVY:
  6774. case DRM_FORMAT_YVYU:
  6775. case DRM_FORMAT_VYUY:
  6776. break;
  6777. default:
  6778. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  6779. mode_cmd->pixel_format);
  6780. return -EINVAL;
  6781. }
  6782. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6783. if (ret) {
  6784. DRM_ERROR("framebuffer init failed %d\n", ret);
  6785. return ret;
  6786. }
  6787. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6788. intel_fb->obj = obj;
  6789. return 0;
  6790. }
  6791. static struct drm_framebuffer *
  6792. intel_user_framebuffer_create(struct drm_device *dev,
  6793. struct drm_file *filp,
  6794. struct drm_mode_fb_cmd2 *mode_cmd)
  6795. {
  6796. struct drm_i915_gem_object *obj;
  6797. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  6798. mode_cmd->handles[0]));
  6799. if (&obj->base == NULL)
  6800. return ERR_PTR(-ENOENT);
  6801. return intel_framebuffer_create(dev, mode_cmd, obj);
  6802. }
  6803. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6804. .fb_create = intel_user_framebuffer_create,
  6805. .output_poll_changed = intel_fb_output_poll_changed,
  6806. };
  6807. /* Set up chip specific display functions */
  6808. static void intel_init_display(struct drm_device *dev)
  6809. {
  6810. struct drm_i915_private *dev_priv = dev->dev_private;
  6811. /* We always want a DPMS function */
  6812. if (IS_HASWELL(dev)) {
  6813. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  6814. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  6815. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  6816. dev_priv->display.off = ironlake_crtc_off;
  6817. dev_priv->display.update_plane = ironlake_update_plane;
  6818. } else if (HAS_PCH_SPLIT(dev)) {
  6819. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  6820. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  6821. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  6822. dev_priv->display.off = ironlake_crtc_off;
  6823. dev_priv->display.update_plane = ironlake_update_plane;
  6824. } else {
  6825. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  6826. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  6827. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  6828. dev_priv->display.off = i9xx_crtc_off;
  6829. dev_priv->display.update_plane = i9xx_update_plane;
  6830. }
  6831. /* Returns the core display clock speed */
  6832. if (IS_VALLEYVIEW(dev))
  6833. dev_priv->display.get_display_clock_speed =
  6834. valleyview_get_display_clock_speed;
  6835. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  6836. dev_priv->display.get_display_clock_speed =
  6837. i945_get_display_clock_speed;
  6838. else if (IS_I915G(dev))
  6839. dev_priv->display.get_display_clock_speed =
  6840. i915_get_display_clock_speed;
  6841. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  6842. dev_priv->display.get_display_clock_speed =
  6843. i9xx_misc_get_display_clock_speed;
  6844. else if (IS_I915GM(dev))
  6845. dev_priv->display.get_display_clock_speed =
  6846. i915gm_get_display_clock_speed;
  6847. else if (IS_I865G(dev))
  6848. dev_priv->display.get_display_clock_speed =
  6849. i865_get_display_clock_speed;
  6850. else if (IS_I85X(dev))
  6851. dev_priv->display.get_display_clock_speed =
  6852. i855_get_display_clock_speed;
  6853. else /* 852, 830 */
  6854. dev_priv->display.get_display_clock_speed =
  6855. i830_get_display_clock_speed;
  6856. if (HAS_PCH_SPLIT(dev)) {
  6857. if (IS_GEN5(dev)) {
  6858. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  6859. dev_priv->display.write_eld = ironlake_write_eld;
  6860. } else if (IS_GEN6(dev)) {
  6861. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  6862. dev_priv->display.write_eld = ironlake_write_eld;
  6863. } else if (IS_IVYBRIDGE(dev)) {
  6864. /* FIXME: detect B0+ stepping and use auto training */
  6865. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  6866. dev_priv->display.write_eld = ironlake_write_eld;
  6867. } else if (IS_HASWELL(dev)) {
  6868. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  6869. dev_priv->display.write_eld = haswell_write_eld;
  6870. } else
  6871. dev_priv->display.update_wm = NULL;
  6872. } else if (IS_G4X(dev)) {
  6873. dev_priv->display.write_eld = g4x_write_eld;
  6874. }
  6875. /* Default just returns -ENODEV to indicate unsupported */
  6876. dev_priv->display.queue_flip = intel_default_queue_flip;
  6877. switch (INTEL_INFO(dev)->gen) {
  6878. case 2:
  6879. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  6880. break;
  6881. case 3:
  6882. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  6883. break;
  6884. case 4:
  6885. case 5:
  6886. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  6887. break;
  6888. case 6:
  6889. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  6890. break;
  6891. case 7:
  6892. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  6893. break;
  6894. }
  6895. }
  6896. /*
  6897. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  6898. * resume, or other times. This quirk makes sure that's the case for
  6899. * affected systems.
  6900. */
  6901. static void quirk_pipea_force(struct drm_device *dev)
  6902. {
  6903. struct drm_i915_private *dev_priv = dev->dev_private;
  6904. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  6905. DRM_INFO("applying pipe a force quirk\n");
  6906. }
  6907. /*
  6908. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  6909. */
  6910. static void quirk_ssc_force_disable(struct drm_device *dev)
  6911. {
  6912. struct drm_i915_private *dev_priv = dev->dev_private;
  6913. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  6914. DRM_INFO("applying lvds SSC disable quirk\n");
  6915. }
  6916. /*
  6917. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  6918. * brightness value
  6919. */
  6920. static void quirk_invert_brightness(struct drm_device *dev)
  6921. {
  6922. struct drm_i915_private *dev_priv = dev->dev_private;
  6923. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  6924. DRM_INFO("applying inverted panel brightness quirk\n");
  6925. }
  6926. struct intel_quirk {
  6927. int device;
  6928. int subsystem_vendor;
  6929. int subsystem_device;
  6930. void (*hook)(struct drm_device *dev);
  6931. };
  6932. static struct intel_quirk intel_quirks[] = {
  6933. /* HP Mini needs pipe A force quirk (LP: #322104) */
  6934. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  6935. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  6936. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  6937. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  6938. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  6939. /* 855 & before need to leave pipe A & dpll A up */
  6940. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6941. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6942. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6943. /* Lenovo U160 cannot use SSC on LVDS */
  6944. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  6945. /* Sony Vaio Y cannot use SSC on LVDS */
  6946. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  6947. /* Acer Aspire 5734Z must invert backlight brightness */
  6948. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  6949. };
  6950. static void intel_init_quirks(struct drm_device *dev)
  6951. {
  6952. struct pci_dev *d = dev->pdev;
  6953. int i;
  6954. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  6955. struct intel_quirk *q = &intel_quirks[i];
  6956. if (d->device == q->device &&
  6957. (d->subsystem_vendor == q->subsystem_vendor ||
  6958. q->subsystem_vendor == PCI_ANY_ID) &&
  6959. (d->subsystem_device == q->subsystem_device ||
  6960. q->subsystem_device == PCI_ANY_ID))
  6961. q->hook(dev);
  6962. }
  6963. }
  6964. /* Disable the VGA plane that we never use */
  6965. static void i915_disable_vga(struct drm_device *dev)
  6966. {
  6967. struct drm_i915_private *dev_priv = dev->dev_private;
  6968. u8 sr1;
  6969. u32 vga_reg;
  6970. if (HAS_PCH_SPLIT(dev))
  6971. vga_reg = CPU_VGACNTRL;
  6972. else
  6973. vga_reg = VGACNTRL;
  6974. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  6975. outb(SR01, VGA_SR_INDEX);
  6976. sr1 = inb(VGA_SR_DATA);
  6977. outb(sr1 | 1<<5, VGA_SR_DATA);
  6978. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  6979. udelay(300);
  6980. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  6981. POSTING_READ(vga_reg);
  6982. }
  6983. void intel_modeset_init_hw(struct drm_device *dev)
  6984. {
  6985. /* We attempt to init the necessary power wells early in the initialization
  6986. * time, so the subsystems that expect power to be enabled can work.
  6987. */
  6988. intel_init_power_wells(dev);
  6989. intel_prepare_ddi(dev);
  6990. intel_init_clock_gating(dev);
  6991. mutex_lock(&dev->struct_mutex);
  6992. intel_enable_gt_powersave(dev);
  6993. mutex_unlock(&dev->struct_mutex);
  6994. }
  6995. void intel_modeset_init(struct drm_device *dev)
  6996. {
  6997. struct drm_i915_private *dev_priv = dev->dev_private;
  6998. int i, ret;
  6999. drm_mode_config_init(dev);
  7000. dev->mode_config.min_width = 0;
  7001. dev->mode_config.min_height = 0;
  7002. dev->mode_config.preferred_depth = 24;
  7003. dev->mode_config.prefer_shadow = 1;
  7004. dev->mode_config.funcs = &intel_mode_funcs;
  7005. intel_init_quirks(dev);
  7006. intel_init_pm(dev);
  7007. intel_init_display(dev);
  7008. if (IS_GEN2(dev)) {
  7009. dev->mode_config.max_width = 2048;
  7010. dev->mode_config.max_height = 2048;
  7011. } else if (IS_GEN3(dev)) {
  7012. dev->mode_config.max_width = 4096;
  7013. dev->mode_config.max_height = 4096;
  7014. } else {
  7015. dev->mode_config.max_width = 8192;
  7016. dev->mode_config.max_height = 8192;
  7017. }
  7018. dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  7019. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7020. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7021. for (i = 0; i < dev_priv->num_pipe; i++) {
  7022. intel_crtc_init(dev, i);
  7023. ret = intel_plane_init(dev, i);
  7024. if (ret)
  7025. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7026. }
  7027. intel_cpu_pll_init(dev);
  7028. intel_pch_pll_init(dev);
  7029. /* Just disable it once at startup */
  7030. i915_disable_vga(dev);
  7031. intel_setup_outputs(dev);
  7032. }
  7033. static void
  7034. intel_connector_break_all_links(struct intel_connector *connector)
  7035. {
  7036. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7037. connector->base.encoder = NULL;
  7038. connector->encoder->connectors_active = false;
  7039. connector->encoder->base.crtc = NULL;
  7040. }
  7041. static void intel_enable_pipe_a(struct drm_device *dev)
  7042. {
  7043. struct intel_connector *connector;
  7044. struct drm_connector *crt = NULL;
  7045. struct intel_load_detect_pipe load_detect_temp;
  7046. /* We can't just switch on the pipe A, we need to set things up with a
  7047. * proper mode and output configuration. As a gross hack, enable pipe A
  7048. * by enabling the load detect pipe once. */
  7049. list_for_each_entry(connector,
  7050. &dev->mode_config.connector_list,
  7051. base.head) {
  7052. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7053. crt = &connector->base;
  7054. break;
  7055. }
  7056. }
  7057. if (!crt)
  7058. return;
  7059. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7060. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7061. }
  7062. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7063. {
  7064. struct drm_device *dev = crtc->base.dev;
  7065. struct drm_i915_private *dev_priv = dev->dev_private;
  7066. u32 reg, val;
  7067. /* Clear any frame start delays used for debugging left by the BIOS */
  7068. reg = PIPECONF(crtc->pipe);
  7069. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7070. /* We need to sanitize the plane -> pipe mapping first because this will
  7071. * disable the crtc (and hence change the state) if it is wrong. */
  7072. if (!HAS_PCH_SPLIT(dev)) {
  7073. struct intel_connector *connector;
  7074. bool plane;
  7075. reg = DSPCNTR(crtc->plane);
  7076. val = I915_READ(reg);
  7077. if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
  7078. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7079. goto ok;
  7080. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7081. crtc->base.base.id);
  7082. /* Pipe has the wrong plane attached and the plane is active.
  7083. * Temporarily change the plane mapping and disable everything
  7084. * ... */
  7085. plane = crtc->plane;
  7086. crtc->plane = !plane;
  7087. dev_priv->display.crtc_disable(&crtc->base);
  7088. crtc->plane = plane;
  7089. /* ... and break all links. */
  7090. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7091. base.head) {
  7092. if (connector->encoder->base.crtc != &crtc->base)
  7093. continue;
  7094. intel_connector_break_all_links(connector);
  7095. }
  7096. WARN_ON(crtc->active);
  7097. crtc->base.enabled = false;
  7098. }
  7099. ok:
  7100. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7101. crtc->pipe == PIPE_A && !crtc->active) {
  7102. /* BIOS forgot to enable pipe A, this mostly happens after
  7103. * resume. Force-enable the pipe to fix this, the update_dpms
  7104. * call below we restore the pipe to the right state, but leave
  7105. * the required bits on. */
  7106. intel_enable_pipe_a(dev);
  7107. }
  7108. /* Adjust the state of the output pipe according to whether we
  7109. * have active connectors/encoders. */
  7110. intel_crtc_update_dpms(&crtc->base);
  7111. if (crtc->active != crtc->base.enabled) {
  7112. struct intel_encoder *encoder;
  7113. /* This can happen either due to bugs in the get_hw_state
  7114. * functions or because the pipe is force-enabled due to the
  7115. * pipe A quirk. */
  7116. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7117. crtc->base.base.id,
  7118. crtc->base.enabled ? "enabled" : "disabled",
  7119. crtc->active ? "enabled" : "disabled");
  7120. crtc->base.enabled = crtc->active;
  7121. /* Because we only establish the connector -> encoder ->
  7122. * crtc links if something is active, this means the
  7123. * crtc is now deactivated. Break the links. connector
  7124. * -> encoder links are only establish when things are
  7125. * actually up, hence no need to break them. */
  7126. WARN_ON(crtc->active);
  7127. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7128. WARN_ON(encoder->connectors_active);
  7129. encoder->base.crtc = NULL;
  7130. }
  7131. }
  7132. }
  7133. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7134. {
  7135. struct intel_connector *connector;
  7136. struct drm_device *dev = encoder->base.dev;
  7137. /* We need to check both for a crtc link (meaning that the
  7138. * encoder is active and trying to read from a pipe) and the
  7139. * pipe itself being active. */
  7140. bool has_active_crtc = encoder->base.crtc &&
  7141. to_intel_crtc(encoder->base.crtc)->active;
  7142. if (encoder->connectors_active && !has_active_crtc) {
  7143. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7144. encoder->base.base.id,
  7145. drm_get_encoder_name(&encoder->base));
  7146. /* Connector is active, but has no active pipe. This is
  7147. * fallout from our resume register restoring. Disable
  7148. * the encoder manually again. */
  7149. if (encoder->base.crtc) {
  7150. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7151. encoder->base.base.id,
  7152. drm_get_encoder_name(&encoder->base));
  7153. encoder->disable(encoder);
  7154. }
  7155. /* Inconsistent output/port/pipe state happens presumably due to
  7156. * a bug in one of the get_hw_state functions. Or someplace else
  7157. * in our code, like the register restore mess on resume. Clamp
  7158. * things to off as a safer default. */
  7159. list_for_each_entry(connector,
  7160. &dev->mode_config.connector_list,
  7161. base.head) {
  7162. if (connector->encoder != encoder)
  7163. continue;
  7164. intel_connector_break_all_links(connector);
  7165. }
  7166. }
  7167. /* Enabled encoders without active connectors will be fixed in
  7168. * the crtc fixup. */
  7169. }
  7170. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7171. * and i915 state tracking structures. */
  7172. void intel_modeset_setup_hw_state(struct drm_device *dev)
  7173. {
  7174. struct drm_i915_private *dev_priv = dev->dev_private;
  7175. enum pipe pipe;
  7176. u32 tmp;
  7177. struct intel_crtc *crtc;
  7178. struct intel_encoder *encoder;
  7179. struct intel_connector *connector;
  7180. for_each_pipe(pipe) {
  7181. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7182. tmp = I915_READ(PIPECONF(pipe));
  7183. if (tmp & PIPECONF_ENABLE)
  7184. crtc->active = true;
  7185. else
  7186. crtc->active = false;
  7187. crtc->base.enabled = crtc->active;
  7188. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7189. crtc->base.base.id,
  7190. crtc->active ? "enabled" : "disabled");
  7191. }
  7192. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7193. base.head) {
  7194. pipe = 0;
  7195. if (encoder->get_hw_state(encoder, &pipe)) {
  7196. encoder->base.crtc =
  7197. dev_priv->pipe_to_crtc_mapping[pipe];
  7198. } else {
  7199. encoder->base.crtc = NULL;
  7200. }
  7201. encoder->connectors_active = false;
  7202. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7203. encoder->base.base.id,
  7204. drm_get_encoder_name(&encoder->base),
  7205. encoder->base.crtc ? "enabled" : "disabled",
  7206. pipe);
  7207. }
  7208. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7209. base.head) {
  7210. if (connector->get_hw_state(connector)) {
  7211. connector->base.dpms = DRM_MODE_DPMS_ON;
  7212. connector->encoder->connectors_active = true;
  7213. connector->base.encoder = &connector->encoder->base;
  7214. } else {
  7215. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7216. connector->base.encoder = NULL;
  7217. }
  7218. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7219. connector->base.base.id,
  7220. drm_get_connector_name(&connector->base),
  7221. connector->base.encoder ? "enabled" : "disabled");
  7222. }
  7223. /* HW state is read out, now we need to sanitize this mess. */
  7224. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7225. base.head) {
  7226. intel_sanitize_encoder(encoder);
  7227. }
  7228. for_each_pipe(pipe) {
  7229. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7230. intel_sanitize_crtc(crtc);
  7231. }
  7232. intel_modeset_update_staged_output_state(dev);
  7233. intel_modeset_check_state(dev);
  7234. }
  7235. void intel_modeset_gem_init(struct drm_device *dev)
  7236. {
  7237. intel_modeset_init_hw(dev);
  7238. intel_setup_overlay(dev);
  7239. intel_modeset_setup_hw_state(dev);
  7240. }
  7241. void intel_modeset_cleanup(struct drm_device *dev)
  7242. {
  7243. struct drm_i915_private *dev_priv = dev->dev_private;
  7244. struct drm_crtc *crtc;
  7245. struct intel_crtc *intel_crtc;
  7246. drm_kms_helper_poll_fini(dev);
  7247. mutex_lock(&dev->struct_mutex);
  7248. intel_unregister_dsm_handler();
  7249. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7250. /* Skip inactive CRTCs */
  7251. if (!crtc->fb)
  7252. continue;
  7253. intel_crtc = to_intel_crtc(crtc);
  7254. intel_increase_pllclock(crtc);
  7255. }
  7256. intel_disable_fbc(dev);
  7257. intel_disable_gt_powersave(dev);
  7258. ironlake_teardown_rc6(dev);
  7259. if (IS_VALLEYVIEW(dev))
  7260. vlv_init_dpio(dev);
  7261. mutex_unlock(&dev->struct_mutex);
  7262. /* Disable the irq before mode object teardown, for the irq might
  7263. * enqueue unpin/hotplug work. */
  7264. drm_irq_uninstall(dev);
  7265. cancel_work_sync(&dev_priv->hotplug_work);
  7266. cancel_work_sync(&dev_priv->rps.work);
  7267. /* flush any delayed tasks or pending work */
  7268. flush_scheduled_work();
  7269. drm_mode_config_cleanup(dev);
  7270. }
  7271. /*
  7272. * Return which encoder is currently attached for connector.
  7273. */
  7274. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7275. {
  7276. return &intel_attached_encoder(connector)->base;
  7277. }
  7278. void intel_connector_attach_encoder(struct intel_connector *connector,
  7279. struct intel_encoder *encoder)
  7280. {
  7281. connector->encoder = encoder;
  7282. drm_mode_connector_attach_encoder(&connector->base,
  7283. &encoder->base);
  7284. }
  7285. /*
  7286. * set vga decode state - true == enable VGA decode
  7287. */
  7288. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7289. {
  7290. struct drm_i915_private *dev_priv = dev->dev_private;
  7291. u16 gmch_ctrl;
  7292. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7293. if (state)
  7294. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7295. else
  7296. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7297. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7298. return 0;
  7299. }
  7300. #ifdef CONFIG_DEBUG_FS
  7301. #include <linux/seq_file.h>
  7302. struct intel_display_error_state {
  7303. struct intel_cursor_error_state {
  7304. u32 control;
  7305. u32 position;
  7306. u32 base;
  7307. u32 size;
  7308. } cursor[I915_MAX_PIPES];
  7309. struct intel_pipe_error_state {
  7310. u32 conf;
  7311. u32 source;
  7312. u32 htotal;
  7313. u32 hblank;
  7314. u32 hsync;
  7315. u32 vtotal;
  7316. u32 vblank;
  7317. u32 vsync;
  7318. } pipe[I915_MAX_PIPES];
  7319. struct intel_plane_error_state {
  7320. u32 control;
  7321. u32 stride;
  7322. u32 size;
  7323. u32 pos;
  7324. u32 addr;
  7325. u32 surface;
  7326. u32 tile_offset;
  7327. } plane[I915_MAX_PIPES];
  7328. };
  7329. struct intel_display_error_state *
  7330. intel_display_capture_error_state(struct drm_device *dev)
  7331. {
  7332. drm_i915_private_t *dev_priv = dev->dev_private;
  7333. struct intel_display_error_state *error;
  7334. int i;
  7335. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7336. if (error == NULL)
  7337. return NULL;
  7338. for_each_pipe(i) {
  7339. error->cursor[i].control = I915_READ(CURCNTR(i));
  7340. error->cursor[i].position = I915_READ(CURPOS(i));
  7341. error->cursor[i].base = I915_READ(CURBASE(i));
  7342. error->plane[i].control = I915_READ(DSPCNTR(i));
  7343. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7344. error->plane[i].size = I915_READ(DSPSIZE(i));
  7345. error->plane[i].pos = I915_READ(DSPPOS(i));
  7346. error->plane[i].addr = I915_READ(DSPADDR(i));
  7347. if (INTEL_INFO(dev)->gen >= 4) {
  7348. error->plane[i].surface = I915_READ(DSPSURF(i));
  7349. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7350. }
  7351. error->pipe[i].conf = I915_READ(PIPECONF(i));
  7352. error->pipe[i].source = I915_READ(PIPESRC(i));
  7353. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  7354. error->pipe[i].hblank = I915_READ(HBLANK(i));
  7355. error->pipe[i].hsync = I915_READ(HSYNC(i));
  7356. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  7357. error->pipe[i].vblank = I915_READ(VBLANK(i));
  7358. error->pipe[i].vsync = I915_READ(VSYNC(i));
  7359. }
  7360. return error;
  7361. }
  7362. void
  7363. intel_display_print_error_state(struct seq_file *m,
  7364. struct drm_device *dev,
  7365. struct intel_display_error_state *error)
  7366. {
  7367. drm_i915_private_t *dev_priv = dev->dev_private;
  7368. int i;
  7369. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  7370. for_each_pipe(i) {
  7371. seq_printf(m, "Pipe [%d]:\n", i);
  7372. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7373. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7374. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7375. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7376. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7377. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7378. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7379. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7380. seq_printf(m, "Plane [%d]:\n", i);
  7381. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7382. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7383. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7384. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7385. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7386. if (INTEL_INFO(dev)->gen >= 4) {
  7387. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7388. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7389. }
  7390. seq_printf(m, "Cursor [%d]:\n", i);
  7391. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7392. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7393. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7394. }
  7395. }
  7396. #endif