xmit.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. #include "ar9003_mac.h"
  18. #define BITS_PER_BYTE 8
  19. #define OFDM_PLCP_BITS 22
  20. #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f)
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. #define OFDM_SIFS_TIME 16
  33. static u16 bits_per_symbol[][2] = {
  34. /* 20MHz 40MHz */
  35. { 26, 54 }, /* 0: BPSK */
  36. { 52, 108 }, /* 1: QPSK 1/2 */
  37. { 78, 162 }, /* 2: QPSK 3/4 */
  38. { 104, 216 }, /* 3: 16-QAM 1/2 */
  39. { 156, 324 }, /* 4: 16-QAM 3/4 */
  40. { 208, 432 }, /* 5: 64-QAM 2/3 */
  41. { 234, 486 }, /* 6: 64-QAM 3/4 */
  42. { 260, 540 }, /* 7: 64-QAM 5/6 */
  43. };
  44. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  45. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  46. struct ath_atx_tid *tid,
  47. struct list_head *bf_head);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok, int sendbar);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head);
  53. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
  54. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  55. struct ath_tx_status *ts, int txok);
  56. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  57. int nbad, int txok, bool update_rc);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. enum {
  61. MCS_HT20,
  62. MCS_HT20_SGI,
  63. MCS_HT40,
  64. MCS_HT40_SGI,
  65. };
  66. static int ath_max_4ms_framelen[4][32] = {
  67. [MCS_HT20] = {
  68. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  69. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  70. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  71. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  72. },
  73. [MCS_HT20_SGI] = {
  74. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  75. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  76. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  77. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  78. },
  79. [MCS_HT40] = {
  80. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  81. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  82. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  83. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  84. },
  85. [MCS_HT40_SGI] = {
  86. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  87. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  88. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  89. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  90. }
  91. };
  92. /*********************/
  93. /* Aggregation logic */
  94. /*********************/
  95. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  96. {
  97. struct ath_atx_ac *ac = tid->ac;
  98. if (tid->paused)
  99. return;
  100. if (tid->sched)
  101. return;
  102. tid->sched = true;
  103. list_add_tail(&tid->list, &ac->tid_q);
  104. if (ac->sched)
  105. return;
  106. ac->sched = true;
  107. list_add_tail(&ac->list, &txq->axq_acq);
  108. }
  109. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  110. {
  111. struct ath_txq *txq = tid->ac->txq;
  112. WARN_ON(!tid->paused);
  113. spin_lock_bh(&txq->axq_lock);
  114. tid->paused = false;
  115. if (list_empty(&tid->buf_q))
  116. goto unlock;
  117. ath_tx_queue_tid(txq, tid);
  118. ath_txq_schedule(sc, txq);
  119. unlock:
  120. spin_unlock_bh(&txq->axq_lock);
  121. }
  122. static u16 ath_frame_seqno(struct sk_buff *skb)
  123. {
  124. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  125. return le16_to_cpu(hdr->seq_ctrl) >> IEEE80211_SEQ_SEQ_SHIFT;
  126. }
  127. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  128. {
  129. struct ath_txq *txq = tid->ac->txq;
  130. struct ath_buf *bf;
  131. struct list_head bf_head;
  132. struct ath_tx_status ts;
  133. INIT_LIST_HEAD(&bf_head);
  134. memset(&ts, 0, sizeof(ts));
  135. spin_lock_bh(&txq->axq_lock);
  136. while (!list_empty(&tid->buf_q)) {
  137. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  138. list_move_tail(&bf->list, &bf_head);
  139. if (bf_isretried(bf)) {
  140. ath_tx_update_baw(sc, tid, ath_frame_seqno(bf->bf_mpdu));
  141. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  142. } else {
  143. ath_tx_send_normal(sc, txq, tid, &bf_head);
  144. }
  145. }
  146. spin_unlock_bh(&txq->axq_lock);
  147. }
  148. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  149. int seqno)
  150. {
  151. int index, cindex;
  152. index = ATH_BA_INDEX(tid->seq_start, seqno);
  153. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  154. __clear_bit(cindex, tid->tx_buf);
  155. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  156. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  157. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  158. }
  159. }
  160. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  161. u16 seqno)
  162. {
  163. int index, cindex;
  164. index = ATH_BA_INDEX(tid->seq_start, seqno);
  165. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  166. __set_bit(cindex, tid->tx_buf);
  167. if (index >= ((tid->baw_tail - tid->baw_head) &
  168. (ATH_TID_MAX_BUFS - 1))) {
  169. tid->baw_tail = cindex;
  170. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  171. }
  172. }
  173. /*
  174. * TODO: For frame(s) that are in the retry state, we will reuse the
  175. * sequence number(s) without setting the retry bit. The
  176. * alternative is to give up on these and BAR the receiver's window
  177. * forward.
  178. */
  179. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  180. struct ath_atx_tid *tid)
  181. {
  182. struct ath_buf *bf;
  183. struct list_head bf_head;
  184. struct ath_tx_status ts;
  185. u16 bf_seqno;
  186. memset(&ts, 0, sizeof(ts));
  187. INIT_LIST_HEAD(&bf_head);
  188. for (;;) {
  189. if (list_empty(&tid->buf_q))
  190. break;
  191. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  192. list_move_tail(&bf->list, &bf_head);
  193. bf_seqno = ath_frame_seqno(bf->bf_mpdu);
  194. if (bf_isretried(bf))
  195. ath_tx_update_baw(sc, tid, bf_seqno);
  196. spin_unlock(&txq->axq_lock);
  197. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  198. spin_lock(&txq->axq_lock);
  199. }
  200. tid->seq_next = tid->seq_start;
  201. tid->baw_tail = tid->baw_head;
  202. }
  203. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  204. struct ath_buf *bf)
  205. {
  206. struct sk_buff *skb;
  207. struct ieee80211_hdr *hdr;
  208. bf->bf_state.bf_type |= BUF_RETRY;
  209. bf->bf_retries++;
  210. TX_STAT_INC(txq->axq_qnum, a_retries);
  211. skb = bf->bf_mpdu;
  212. hdr = (struct ieee80211_hdr *)skb->data;
  213. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  214. }
  215. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  216. {
  217. struct ath_buf *bf = NULL;
  218. spin_lock_bh(&sc->tx.txbuflock);
  219. if (unlikely(list_empty(&sc->tx.txbuf))) {
  220. spin_unlock_bh(&sc->tx.txbuflock);
  221. return NULL;
  222. }
  223. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  224. list_del(&bf->list);
  225. spin_unlock_bh(&sc->tx.txbuflock);
  226. return bf;
  227. }
  228. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  229. {
  230. spin_lock_bh(&sc->tx.txbuflock);
  231. list_add_tail(&bf->list, &sc->tx.txbuf);
  232. spin_unlock_bh(&sc->tx.txbuflock);
  233. }
  234. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  235. {
  236. struct ath_buf *tbf;
  237. tbf = ath_tx_get_buffer(sc);
  238. if (WARN_ON(!tbf))
  239. return NULL;
  240. ATH_TXBUF_RESET(tbf);
  241. tbf->aphy = bf->aphy;
  242. tbf->bf_mpdu = bf->bf_mpdu;
  243. tbf->bf_buf_addr = bf->bf_buf_addr;
  244. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  245. tbf->bf_state = bf->bf_state;
  246. return tbf;
  247. }
  248. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  249. struct ath_buf *bf, struct list_head *bf_q,
  250. struct ath_tx_status *ts, int txok)
  251. {
  252. struct ath_node *an = NULL;
  253. struct sk_buff *skb;
  254. struct ieee80211_sta *sta;
  255. struct ieee80211_hw *hw;
  256. struct ieee80211_hdr *hdr;
  257. struct ieee80211_tx_info *tx_info;
  258. struct ath_atx_tid *tid = NULL;
  259. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  260. struct list_head bf_head, bf_pending;
  261. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
  262. u32 ba[WME_BA_BMP_SIZE >> 5];
  263. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  264. bool rc_update = true;
  265. struct ieee80211_tx_rate rates[4];
  266. u16 bf_seqno;
  267. int nframes;
  268. u8 tidno;
  269. skb = bf->bf_mpdu;
  270. hdr = (struct ieee80211_hdr *)skb->data;
  271. tx_info = IEEE80211_SKB_CB(skb);
  272. hw = bf->aphy->hw;
  273. memcpy(rates, tx_info->control.rates, sizeof(rates));
  274. nframes = bf->bf_nframes;
  275. rcu_read_lock();
  276. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  277. if (!sta) {
  278. rcu_read_unlock();
  279. INIT_LIST_HEAD(&bf_head);
  280. while (bf) {
  281. bf_next = bf->bf_next;
  282. bf->bf_state.bf_type |= BUF_XRETRY;
  283. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  284. !bf->bf_stale || bf_next != NULL)
  285. list_move_tail(&bf->list, &bf_head);
  286. ath_tx_rc_status(bf, ts, 1, 0, false);
  287. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  288. 0, 0);
  289. bf = bf_next;
  290. }
  291. return;
  292. }
  293. an = (struct ath_node *)sta->drv_priv;
  294. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  295. tid = ATH_AN_2_TID(an, tidno);
  296. /*
  297. * The hardware occasionally sends a tx status for the wrong TID.
  298. * In this case, the BA status cannot be considered valid and all
  299. * subframes need to be retransmitted
  300. */
  301. if (tidno != ts->tid)
  302. txok = false;
  303. isaggr = bf_isaggr(bf);
  304. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  305. if (isaggr && txok) {
  306. if (ts->ts_flags & ATH9K_TX_BA) {
  307. seq_st = ts->ts_seqnum;
  308. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  309. } else {
  310. /*
  311. * AR5416 can become deaf/mute when BA
  312. * issue happens. Chip needs to be reset.
  313. * But AP code may have sychronization issues
  314. * when perform internal reset in this routine.
  315. * Only enable reset in STA mode for now.
  316. */
  317. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  318. needreset = 1;
  319. }
  320. }
  321. INIT_LIST_HEAD(&bf_pending);
  322. INIT_LIST_HEAD(&bf_head);
  323. nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
  324. while (bf) {
  325. txfail = txpending = 0;
  326. bf_next = bf->bf_next;
  327. skb = bf->bf_mpdu;
  328. tx_info = IEEE80211_SKB_CB(skb);
  329. bf_seqno = ath_frame_seqno(skb);
  330. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf_seqno))) {
  331. /* transmit completion, subframe is
  332. * acked by block ack */
  333. acked_cnt++;
  334. } else if (!isaggr && txok) {
  335. /* transmit completion */
  336. acked_cnt++;
  337. } else {
  338. if (!(tid->state & AGGR_CLEANUP) &&
  339. !bf_last->bf_tx_aborted) {
  340. if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
  341. ath_tx_set_retry(sc, txq, bf);
  342. txpending = 1;
  343. } else {
  344. bf->bf_state.bf_type |= BUF_XRETRY;
  345. txfail = 1;
  346. sendbar = 1;
  347. txfail_cnt++;
  348. }
  349. } else {
  350. /*
  351. * cleanup in progress, just fail
  352. * the un-acked sub-frames
  353. */
  354. txfail = 1;
  355. }
  356. }
  357. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  358. bf_next == NULL) {
  359. /*
  360. * Make sure the last desc is reclaimed if it
  361. * not a holding desc.
  362. */
  363. if (!bf_last->bf_stale)
  364. list_move_tail(&bf->list, &bf_head);
  365. else
  366. INIT_LIST_HEAD(&bf_head);
  367. } else {
  368. BUG_ON(list_empty(bf_q));
  369. list_move_tail(&bf->list, &bf_head);
  370. }
  371. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  372. /*
  373. * complete the acked-ones/xretried ones; update
  374. * block-ack window
  375. */
  376. spin_lock_bh(&txq->axq_lock);
  377. ath_tx_update_baw(sc, tid, bf_seqno);
  378. spin_unlock_bh(&txq->axq_lock);
  379. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  380. memcpy(tx_info->control.rates, rates, sizeof(rates));
  381. bf->bf_nframes = nframes;
  382. ath_tx_rc_status(bf, ts, nbad, txok, true);
  383. rc_update = false;
  384. } else {
  385. ath_tx_rc_status(bf, ts, nbad, txok, false);
  386. }
  387. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  388. !txfail, sendbar);
  389. } else {
  390. /* retry the un-acked ones */
  391. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
  392. if (bf->bf_next == NULL && bf_last->bf_stale) {
  393. struct ath_buf *tbf;
  394. tbf = ath_clone_txbuf(sc, bf_last);
  395. /*
  396. * Update tx baw and complete the
  397. * frame with failed status if we
  398. * run out of tx buf.
  399. */
  400. if (!tbf) {
  401. spin_lock_bh(&txq->axq_lock);
  402. ath_tx_update_baw(sc, tid,
  403. bf_seqno);
  404. spin_unlock_bh(&txq->axq_lock);
  405. bf->bf_state.bf_type |=
  406. BUF_XRETRY;
  407. ath_tx_rc_status(bf, ts, nbad,
  408. 0, false);
  409. ath_tx_complete_buf(sc, bf, txq,
  410. &bf_head,
  411. ts, 0, 0);
  412. break;
  413. }
  414. ath9k_hw_cleartxdesc(sc->sc_ah,
  415. tbf->bf_desc);
  416. list_add_tail(&tbf->list, &bf_head);
  417. } else {
  418. /*
  419. * Clear descriptor status words for
  420. * software retry
  421. */
  422. ath9k_hw_cleartxdesc(sc->sc_ah,
  423. bf->bf_desc);
  424. }
  425. }
  426. /*
  427. * Put this buffer to the temporary pending
  428. * queue to retain ordering
  429. */
  430. list_splice_tail_init(&bf_head, &bf_pending);
  431. }
  432. bf = bf_next;
  433. }
  434. /* prepend un-acked frames to the beginning of the pending frame queue */
  435. if (!list_empty(&bf_pending)) {
  436. spin_lock_bh(&txq->axq_lock);
  437. list_splice(&bf_pending, &tid->buf_q);
  438. ath_tx_queue_tid(txq, tid);
  439. spin_unlock_bh(&txq->axq_lock);
  440. }
  441. if (tid->state & AGGR_CLEANUP) {
  442. ath_tx_flush_tid(sc, tid);
  443. if (tid->baw_head == tid->baw_tail) {
  444. tid->state &= ~AGGR_ADDBA_COMPLETE;
  445. tid->state &= ~AGGR_CLEANUP;
  446. }
  447. }
  448. rcu_read_unlock();
  449. if (needreset)
  450. ath_reset(sc, false);
  451. }
  452. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  453. struct ath_atx_tid *tid)
  454. {
  455. struct sk_buff *skb;
  456. struct ieee80211_tx_info *tx_info;
  457. struct ieee80211_tx_rate *rates;
  458. u32 max_4ms_framelen, frmlen;
  459. u16 aggr_limit, legacy = 0;
  460. int i;
  461. skb = bf->bf_mpdu;
  462. tx_info = IEEE80211_SKB_CB(skb);
  463. rates = tx_info->control.rates;
  464. /*
  465. * Find the lowest frame length among the rate series that will have a
  466. * 4ms transmit duration.
  467. * TODO - TXOP limit needs to be considered.
  468. */
  469. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  470. for (i = 0; i < 4; i++) {
  471. if (rates[i].count) {
  472. int modeidx;
  473. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  474. legacy = 1;
  475. break;
  476. }
  477. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  478. modeidx = MCS_HT40;
  479. else
  480. modeidx = MCS_HT20;
  481. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  482. modeidx++;
  483. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  484. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  485. }
  486. }
  487. /*
  488. * limit aggregate size by the minimum rate if rate selected is
  489. * not a probe rate, if rate selected is a probe rate then
  490. * avoid aggregation of this packet.
  491. */
  492. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  493. return 0;
  494. if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  495. aggr_limit = min((max_4ms_framelen * 3) / 8,
  496. (u32)ATH_AMPDU_LIMIT_MAX);
  497. else
  498. aggr_limit = min(max_4ms_framelen,
  499. (u32)ATH_AMPDU_LIMIT_MAX);
  500. /*
  501. * h/w can accept aggregates upto 16 bit lengths (65535).
  502. * The IE, however can hold upto 65536, which shows up here
  503. * as zero. Ignore 65536 since we are constrained by hw.
  504. */
  505. if (tid->an->maxampdu)
  506. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  507. return aggr_limit;
  508. }
  509. /*
  510. * Returns the number of delimiters to be added to
  511. * meet the minimum required mpdudensity.
  512. */
  513. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  514. struct ath_buf *bf, u16 frmlen)
  515. {
  516. struct sk_buff *skb = bf->bf_mpdu;
  517. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  518. u32 nsymbits, nsymbols;
  519. u16 minlen;
  520. u8 flags, rix;
  521. int width, streams, half_gi, ndelim, mindelim;
  522. /* Select standard number of delimiters based on frame length alone */
  523. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  524. /*
  525. * If encryption enabled, hardware requires some more padding between
  526. * subframes.
  527. * TODO - this could be improved to be dependent on the rate.
  528. * The hardware can keep up at lower rates, but not higher rates
  529. */
  530. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
  531. ndelim += ATH_AGGR_ENCRYPTDELIM;
  532. /*
  533. * Convert desired mpdu density from microeconds to bytes based
  534. * on highest rate in rate series (i.e. first rate) to determine
  535. * required minimum length for subframe. Take into account
  536. * whether high rate is 20 or 40Mhz and half or full GI.
  537. *
  538. * If there is no mpdu density restriction, no further calculation
  539. * is needed.
  540. */
  541. if (tid->an->mpdudensity == 0)
  542. return ndelim;
  543. rix = tx_info->control.rates[0].idx;
  544. flags = tx_info->control.rates[0].flags;
  545. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  546. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  547. if (half_gi)
  548. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  549. else
  550. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  551. if (nsymbols == 0)
  552. nsymbols = 1;
  553. streams = HT_RC_2_STREAMS(rix);
  554. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  555. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  556. if (frmlen < minlen) {
  557. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  558. ndelim = max(mindelim, ndelim);
  559. }
  560. return ndelim;
  561. }
  562. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  563. struct ath_txq *txq,
  564. struct ath_atx_tid *tid,
  565. struct list_head *bf_q)
  566. {
  567. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  568. struct ath_buf *bf, *bf_first, *bf_prev = NULL;
  569. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  570. u16 aggr_limit = 0, al = 0, bpad = 0,
  571. al_delta, h_baw = tid->baw_size / 2;
  572. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  573. struct ieee80211_tx_info *tx_info;
  574. u16 bf_seqno;
  575. bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
  576. do {
  577. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  578. bf_seqno = ath_frame_seqno(bf->bf_mpdu);
  579. /* do not step over block-ack window */
  580. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf_seqno)) {
  581. status = ATH_AGGR_BAW_CLOSED;
  582. break;
  583. }
  584. if (!rl) {
  585. aggr_limit = ath_lookup_rate(sc, bf, tid);
  586. rl = 1;
  587. }
  588. /* do not exceed aggregation limit */
  589. al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
  590. if (nframes &&
  591. (aggr_limit < (al + bpad + al_delta + prev_al))) {
  592. status = ATH_AGGR_LIMITED;
  593. break;
  594. }
  595. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  596. if (nframes && ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  597. !(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS)))
  598. break;
  599. /* do not exceed subframe limit */
  600. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  601. status = ATH_AGGR_LIMITED;
  602. break;
  603. }
  604. nframes++;
  605. /* add padding for previous frame to aggregation length */
  606. al += bpad + al_delta;
  607. /*
  608. * Get the delimiters needed to meet the MPDU
  609. * density for this node.
  610. */
  611. ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
  612. bpad = PADBYTES(al_delta) + (ndelim << 2);
  613. bf->bf_next = NULL;
  614. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
  615. /* link buffers of this frame to the aggregate */
  616. if (!bf_isretried(bf))
  617. ath_tx_addto_baw(sc, tid, bf_seqno);
  618. ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
  619. list_move_tail(&bf->list, bf_q);
  620. if (bf_prev) {
  621. bf_prev->bf_next = bf;
  622. ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
  623. bf->bf_daddr);
  624. }
  625. bf_prev = bf;
  626. } while (!list_empty(&tid->buf_q));
  627. bf_first->bf_al = al;
  628. bf_first->bf_nframes = nframes;
  629. return status;
  630. #undef PADBYTES
  631. }
  632. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  633. struct ath_atx_tid *tid)
  634. {
  635. struct ath_buf *bf;
  636. enum ATH_AGGR_STATUS status;
  637. struct list_head bf_q;
  638. do {
  639. if (list_empty(&tid->buf_q))
  640. return;
  641. INIT_LIST_HEAD(&bf_q);
  642. status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
  643. /*
  644. * no frames picked up to be aggregated;
  645. * block-ack window is not open.
  646. */
  647. if (list_empty(&bf_q))
  648. break;
  649. bf = list_first_entry(&bf_q, struct ath_buf, list);
  650. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  651. /* if only one frame, send as non-aggregate */
  652. if (bf->bf_nframes == 1) {
  653. bf->bf_state.bf_type &= ~BUF_AGGR;
  654. ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
  655. ath_buf_set_rate(sc, bf);
  656. ath_tx_txqaddbuf(sc, txq, &bf_q);
  657. continue;
  658. }
  659. /* setup first desc of aggregate */
  660. bf->bf_state.bf_type |= BUF_AGGR;
  661. ath_buf_set_rate(sc, bf);
  662. ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
  663. /* anchor last desc of aggregate */
  664. ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
  665. ath_tx_txqaddbuf(sc, txq, &bf_q);
  666. TX_STAT_INC(txq->axq_qnum, a_aggr);
  667. } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
  668. status != ATH_AGGR_BAW_CLOSED);
  669. }
  670. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  671. u16 tid, u16 *ssn)
  672. {
  673. struct ath_atx_tid *txtid;
  674. struct ath_node *an;
  675. an = (struct ath_node *)sta->drv_priv;
  676. txtid = ATH_AN_2_TID(an, tid);
  677. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  678. return -EAGAIN;
  679. txtid->state |= AGGR_ADDBA_PROGRESS;
  680. txtid->paused = true;
  681. *ssn = txtid->seq_start;
  682. return 0;
  683. }
  684. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  685. {
  686. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  687. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  688. struct ath_txq *txq = txtid->ac->txq;
  689. if (txtid->state & AGGR_CLEANUP)
  690. return;
  691. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  692. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  693. return;
  694. }
  695. spin_lock_bh(&txq->axq_lock);
  696. txtid->paused = true;
  697. /*
  698. * If frames are still being transmitted for this TID, they will be
  699. * cleaned up during tx completion. To prevent race conditions, this
  700. * TID can only be reused after all in-progress subframes have been
  701. * completed.
  702. */
  703. if (txtid->baw_head != txtid->baw_tail)
  704. txtid->state |= AGGR_CLEANUP;
  705. else
  706. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  707. spin_unlock_bh(&txq->axq_lock);
  708. ath_tx_flush_tid(sc, txtid);
  709. }
  710. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  711. {
  712. struct ath_atx_tid *txtid;
  713. struct ath_node *an;
  714. an = (struct ath_node *)sta->drv_priv;
  715. if (sc->sc_flags & SC_OP_TXAGGR) {
  716. txtid = ATH_AN_2_TID(an, tid);
  717. txtid->baw_size =
  718. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  719. txtid->state |= AGGR_ADDBA_COMPLETE;
  720. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  721. ath_tx_resume_tid(sc, txtid);
  722. }
  723. }
  724. /********************/
  725. /* Queue Management */
  726. /********************/
  727. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  728. struct ath_txq *txq)
  729. {
  730. struct ath_atx_ac *ac, *ac_tmp;
  731. struct ath_atx_tid *tid, *tid_tmp;
  732. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  733. list_del(&ac->list);
  734. ac->sched = false;
  735. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  736. list_del(&tid->list);
  737. tid->sched = false;
  738. ath_tid_drain(sc, txq, tid);
  739. }
  740. }
  741. }
  742. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  743. {
  744. struct ath_hw *ah = sc->sc_ah;
  745. struct ath_common *common = ath9k_hw_common(ah);
  746. struct ath9k_tx_queue_info qi;
  747. static const int subtype_txq_to_hwq[] = {
  748. [WME_AC_BE] = ATH_TXQ_AC_BE,
  749. [WME_AC_BK] = ATH_TXQ_AC_BK,
  750. [WME_AC_VI] = ATH_TXQ_AC_VI,
  751. [WME_AC_VO] = ATH_TXQ_AC_VO,
  752. };
  753. int qnum, i;
  754. memset(&qi, 0, sizeof(qi));
  755. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  756. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  757. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  758. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  759. qi.tqi_physCompBuf = 0;
  760. /*
  761. * Enable interrupts only for EOL and DESC conditions.
  762. * We mark tx descriptors to receive a DESC interrupt
  763. * when a tx queue gets deep; otherwise waiting for the
  764. * EOL to reap descriptors. Note that this is done to
  765. * reduce interrupt load and this only defers reaping
  766. * descriptors, never transmitting frames. Aside from
  767. * reducing interrupts this also permits more concurrency.
  768. * The only potential downside is if the tx queue backs
  769. * up in which case the top half of the kernel may backup
  770. * due to a lack of tx descriptors.
  771. *
  772. * The UAPSD queue is an exception, since we take a desc-
  773. * based intr on the EOSP frames.
  774. */
  775. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  776. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  777. TXQ_FLAG_TXERRINT_ENABLE;
  778. } else {
  779. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  780. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  781. else
  782. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  783. TXQ_FLAG_TXDESCINT_ENABLE;
  784. }
  785. qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  786. if (qnum == -1) {
  787. /*
  788. * NB: don't print a message, this happens
  789. * normally on parts with too few tx queues
  790. */
  791. return NULL;
  792. }
  793. if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
  794. ath_print(common, ATH_DBG_FATAL,
  795. "qnum %u out of range, max %u!\n",
  796. qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
  797. ath9k_hw_releasetxqueue(ah, qnum);
  798. return NULL;
  799. }
  800. if (!ATH_TXQ_SETUP(sc, qnum)) {
  801. struct ath_txq *txq = &sc->tx.txq[qnum];
  802. txq->axq_qnum = qnum;
  803. txq->axq_link = NULL;
  804. INIT_LIST_HEAD(&txq->axq_q);
  805. INIT_LIST_HEAD(&txq->axq_acq);
  806. spin_lock_init(&txq->axq_lock);
  807. txq->axq_depth = 0;
  808. txq->axq_tx_inprogress = false;
  809. sc->tx.txqsetup |= 1<<qnum;
  810. txq->txq_headidx = txq->txq_tailidx = 0;
  811. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  812. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  813. INIT_LIST_HEAD(&txq->txq_fifo_pending);
  814. }
  815. return &sc->tx.txq[qnum];
  816. }
  817. int ath_txq_update(struct ath_softc *sc, int qnum,
  818. struct ath9k_tx_queue_info *qinfo)
  819. {
  820. struct ath_hw *ah = sc->sc_ah;
  821. int error = 0;
  822. struct ath9k_tx_queue_info qi;
  823. if (qnum == sc->beacon.beaconq) {
  824. /*
  825. * XXX: for beacon queue, we just save the parameter.
  826. * It will be picked up by ath_beaconq_config when
  827. * it's necessary.
  828. */
  829. sc->beacon.beacon_qi = *qinfo;
  830. return 0;
  831. }
  832. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  833. ath9k_hw_get_txq_props(ah, qnum, &qi);
  834. qi.tqi_aifs = qinfo->tqi_aifs;
  835. qi.tqi_cwmin = qinfo->tqi_cwmin;
  836. qi.tqi_cwmax = qinfo->tqi_cwmax;
  837. qi.tqi_burstTime = qinfo->tqi_burstTime;
  838. qi.tqi_readyTime = qinfo->tqi_readyTime;
  839. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  840. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  841. "Unable to update hardware queue %u!\n", qnum);
  842. error = -EIO;
  843. } else {
  844. ath9k_hw_resettxqueue(ah, qnum);
  845. }
  846. return error;
  847. }
  848. int ath_cabq_update(struct ath_softc *sc)
  849. {
  850. struct ath9k_tx_queue_info qi;
  851. int qnum = sc->beacon.cabq->axq_qnum;
  852. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  853. /*
  854. * Ensure the readytime % is within the bounds.
  855. */
  856. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  857. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  858. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  859. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  860. qi.tqi_readyTime = (sc->beacon_interval *
  861. sc->config.cabqReadytime) / 100;
  862. ath_txq_update(sc, qnum, &qi);
  863. return 0;
  864. }
  865. /*
  866. * Drain a given TX queue (could be Beacon or Data)
  867. *
  868. * This assumes output has been stopped and
  869. * we do not need to block ath_tx_tasklet.
  870. */
  871. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  872. {
  873. struct ath_buf *bf, *lastbf;
  874. struct list_head bf_head;
  875. struct ath_tx_status ts;
  876. memset(&ts, 0, sizeof(ts));
  877. INIT_LIST_HEAD(&bf_head);
  878. for (;;) {
  879. spin_lock_bh(&txq->axq_lock);
  880. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  881. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  882. txq->txq_headidx = txq->txq_tailidx = 0;
  883. spin_unlock_bh(&txq->axq_lock);
  884. break;
  885. } else {
  886. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  887. struct ath_buf, list);
  888. }
  889. } else {
  890. if (list_empty(&txq->axq_q)) {
  891. txq->axq_link = NULL;
  892. spin_unlock_bh(&txq->axq_lock);
  893. break;
  894. }
  895. bf = list_first_entry(&txq->axq_q, struct ath_buf,
  896. list);
  897. if (bf->bf_stale) {
  898. list_del(&bf->list);
  899. spin_unlock_bh(&txq->axq_lock);
  900. ath_tx_return_buffer(sc, bf);
  901. continue;
  902. }
  903. }
  904. lastbf = bf->bf_lastbf;
  905. if (!retry_tx)
  906. lastbf->bf_tx_aborted = true;
  907. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  908. list_cut_position(&bf_head,
  909. &txq->txq_fifo[txq->txq_tailidx],
  910. &lastbf->list);
  911. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  912. } else {
  913. /* remove ath_buf's of the same mpdu from txq */
  914. list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
  915. }
  916. txq->axq_depth--;
  917. spin_unlock_bh(&txq->axq_lock);
  918. if (bf_isampdu(bf))
  919. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
  920. else
  921. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  922. }
  923. spin_lock_bh(&txq->axq_lock);
  924. txq->axq_tx_inprogress = false;
  925. spin_unlock_bh(&txq->axq_lock);
  926. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  927. spin_lock_bh(&txq->axq_lock);
  928. while (!list_empty(&txq->txq_fifo_pending)) {
  929. bf = list_first_entry(&txq->txq_fifo_pending,
  930. struct ath_buf, list);
  931. list_cut_position(&bf_head,
  932. &txq->txq_fifo_pending,
  933. &bf->bf_lastbf->list);
  934. spin_unlock_bh(&txq->axq_lock);
  935. if (bf_isampdu(bf))
  936. ath_tx_complete_aggr(sc, txq, bf, &bf_head,
  937. &ts, 0);
  938. else
  939. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  940. &ts, 0, 0);
  941. spin_lock_bh(&txq->axq_lock);
  942. }
  943. spin_unlock_bh(&txq->axq_lock);
  944. }
  945. /* flush any pending frames if aggregation is enabled */
  946. if (sc->sc_flags & SC_OP_TXAGGR) {
  947. if (!retry_tx) {
  948. spin_lock_bh(&txq->axq_lock);
  949. ath_txq_drain_pending_buffers(sc, txq);
  950. spin_unlock_bh(&txq->axq_lock);
  951. }
  952. }
  953. }
  954. void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  955. {
  956. struct ath_hw *ah = sc->sc_ah;
  957. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  958. struct ath_txq *txq;
  959. int i, npend = 0;
  960. if (sc->sc_flags & SC_OP_INVALID)
  961. return;
  962. /* Stop beacon queue */
  963. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  964. /* Stop data queues */
  965. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  966. if (ATH_TXQ_SETUP(sc, i)) {
  967. txq = &sc->tx.txq[i];
  968. ath9k_hw_stoptxdma(ah, txq->axq_qnum);
  969. npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
  970. }
  971. }
  972. if (npend) {
  973. int r;
  974. ath_print(common, ATH_DBG_FATAL,
  975. "Failed to stop TX DMA. Resetting hardware!\n");
  976. r = ath9k_hw_reset(ah, sc->sc_ah->curchan, ah->caldata, false);
  977. if (r)
  978. ath_print(common, ATH_DBG_FATAL,
  979. "Unable to reset hardware; reset status %d\n",
  980. r);
  981. }
  982. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  983. if (ATH_TXQ_SETUP(sc, i))
  984. ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
  985. }
  986. }
  987. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  988. {
  989. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  990. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  991. }
  992. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  993. {
  994. struct ath_atx_ac *ac;
  995. struct ath_atx_tid *tid;
  996. if (list_empty(&txq->axq_acq))
  997. return;
  998. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  999. list_del(&ac->list);
  1000. ac->sched = false;
  1001. do {
  1002. if (list_empty(&ac->tid_q))
  1003. return;
  1004. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
  1005. list_del(&tid->list);
  1006. tid->sched = false;
  1007. if (tid->paused)
  1008. continue;
  1009. ath_tx_sched_aggr(sc, txq, tid);
  1010. /*
  1011. * add tid to round-robin queue if more frames
  1012. * are pending for the tid
  1013. */
  1014. if (!list_empty(&tid->buf_q))
  1015. ath_tx_queue_tid(txq, tid);
  1016. break;
  1017. } while (!list_empty(&ac->tid_q));
  1018. if (!list_empty(&ac->tid_q)) {
  1019. if (!ac->sched) {
  1020. ac->sched = true;
  1021. list_add_tail(&ac->list, &txq->axq_acq);
  1022. }
  1023. }
  1024. }
  1025. /***********/
  1026. /* TX, DMA */
  1027. /***********/
  1028. /*
  1029. * Insert a chain of ath_buf (descriptors) on a txq and
  1030. * assume the descriptors are already chained together by caller.
  1031. */
  1032. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1033. struct list_head *head)
  1034. {
  1035. struct ath_hw *ah = sc->sc_ah;
  1036. struct ath_common *common = ath9k_hw_common(ah);
  1037. struct ath_buf *bf;
  1038. /*
  1039. * Insert the frame on the outbound list and
  1040. * pass it on to the hardware.
  1041. */
  1042. if (list_empty(head))
  1043. return;
  1044. bf = list_first_entry(head, struct ath_buf, list);
  1045. ath_print(common, ATH_DBG_QUEUE,
  1046. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1047. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1048. if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
  1049. list_splice_tail_init(head, &txq->txq_fifo_pending);
  1050. return;
  1051. }
  1052. if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
  1053. ath_print(common, ATH_DBG_XMIT,
  1054. "Initializing tx fifo %d which "
  1055. "is non-empty\n",
  1056. txq->txq_headidx);
  1057. INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
  1058. list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1059. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1060. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1061. ath_print(common, ATH_DBG_XMIT,
  1062. "TXDP[%u] = %llx (%p)\n",
  1063. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1064. } else {
  1065. list_splice_tail_init(head, &txq->axq_q);
  1066. if (txq->axq_link == NULL) {
  1067. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1068. ath_print(common, ATH_DBG_XMIT,
  1069. "TXDP[%u] = %llx (%p)\n",
  1070. txq->axq_qnum, ito64(bf->bf_daddr),
  1071. bf->bf_desc);
  1072. } else {
  1073. *txq->axq_link = bf->bf_daddr;
  1074. ath_print(common, ATH_DBG_XMIT,
  1075. "link[%u] (%p)=%llx (%p)\n",
  1076. txq->axq_qnum, txq->axq_link,
  1077. ito64(bf->bf_daddr), bf->bf_desc);
  1078. }
  1079. ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
  1080. &txq->axq_link);
  1081. ath9k_hw_txstart(ah, txq->axq_qnum);
  1082. }
  1083. txq->axq_depth++;
  1084. }
  1085. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1086. struct list_head *bf_head,
  1087. struct ath_tx_control *txctl)
  1088. {
  1089. struct ath_buf *bf;
  1090. u16 bf_seqno;
  1091. bf = list_first_entry(bf_head, struct ath_buf, list);
  1092. bf->bf_state.bf_type |= BUF_AMPDU;
  1093. TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
  1094. bf_seqno = ath_frame_seqno(bf->bf_mpdu);
  1095. /*
  1096. * Do not queue to h/w when any of the following conditions is true:
  1097. * - there are pending frames in software queue
  1098. * - the TID is currently paused for ADDBA/BAR request
  1099. * - seqno is not within block-ack window
  1100. * - h/w queue depth exceeds low water mark
  1101. */
  1102. if (!list_empty(&tid->buf_q) || tid->paused ||
  1103. !BAW_WITHIN(tid->seq_start, tid->baw_size, bf_seqno) ||
  1104. txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
  1105. /*
  1106. * Add this frame to software queue for scheduling later
  1107. * for aggregation.
  1108. */
  1109. list_move_tail(&bf->list, &tid->buf_q);
  1110. ath_tx_queue_tid(txctl->txq, tid);
  1111. return;
  1112. }
  1113. /* Add sub-frame to BAW */
  1114. if (!bf_isretried(bf))
  1115. ath_tx_addto_baw(sc, tid, bf_seqno);
  1116. /* Queue to h/w without aggregation */
  1117. bf->bf_nframes = 1;
  1118. bf->bf_lastbf = bf;
  1119. ath_buf_set_rate(sc, bf);
  1120. ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
  1121. }
  1122. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1123. struct ath_atx_tid *tid,
  1124. struct list_head *bf_head)
  1125. {
  1126. struct ath_buf *bf;
  1127. bf = list_first_entry(bf_head, struct ath_buf, list);
  1128. bf->bf_state.bf_type &= ~BUF_AMPDU;
  1129. /* update starting sequence number for subsequent ADDBA request */
  1130. if (tid)
  1131. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  1132. bf->bf_nframes = 1;
  1133. bf->bf_lastbf = bf;
  1134. ath_buf_set_rate(sc, bf);
  1135. ath_tx_txqaddbuf(sc, txq, bf_head);
  1136. TX_STAT_INC(txq->axq_qnum, queued);
  1137. }
  1138. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1139. {
  1140. struct ieee80211_hdr *hdr;
  1141. enum ath9k_pkt_type htype;
  1142. __le16 fc;
  1143. hdr = (struct ieee80211_hdr *)skb->data;
  1144. fc = hdr->frame_control;
  1145. if (ieee80211_is_beacon(fc))
  1146. htype = ATH9K_PKT_TYPE_BEACON;
  1147. else if (ieee80211_is_probe_resp(fc))
  1148. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1149. else if (ieee80211_is_atim(fc))
  1150. htype = ATH9K_PKT_TYPE_ATIM;
  1151. else if (ieee80211_is_pspoll(fc))
  1152. htype = ATH9K_PKT_TYPE_PSPOLL;
  1153. else
  1154. htype = ATH9K_PKT_TYPE_NORMAL;
  1155. return htype;
  1156. }
  1157. static void assign_aggr_tid_seqno(struct sk_buff *skb,
  1158. struct ath_buf *bf)
  1159. {
  1160. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1161. struct ieee80211_hdr *hdr;
  1162. struct ath_node *an;
  1163. struct ath_atx_tid *tid;
  1164. __le16 fc;
  1165. u8 tidno;
  1166. if (!tx_info->control.sta)
  1167. return;
  1168. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1169. hdr = (struct ieee80211_hdr *)skb->data;
  1170. fc = hdr->frame_control;
  1171. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  1172. /*
  1173. * Override seqno set by upper layer with the one
  1174. * in tx aggregation state.
  1175. */
  1176. tid = ATH_AN_2_TID(an, tidno);
  1177. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1178. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1179. }
  1180. static int setup_tx_flags(struct sk_buff *skb)
  1181. {
  1182. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1183. int flags = 0;
  1184. flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
  1185. flags |= ATH9K_TXDESC_INTREQ;
  1186. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1187. flags |= ATH9K_TXDESC_NOACK;
  1188. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1189. flags |= ATH9K_TXDESC_LDPC;
  1190. return flags;
  1191. }
  1192. /*
  1193. * rix - rate index
  1194. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  1195. * width - 0 for 20 MHz, 1 for 40 MHz
  1196. * half_gi - to use 4us v/s 3.6 us for symbol time
  1197. */
  1198. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
  1199. int width, int half_gi, bool shortPreamble)
  1200. {
  1201. u32 nbits, nsymbits, duration, nsymbols;
  1202. int streams, pktlen;
  1203. pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
  1204. /* find number of symbols: PLCP + data */
  1205. streams = HT_RC_2_STREAMS(rix);
  1206. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  1207. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  1208. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  1209. if (!half_gi)
  1210. duration = SYMBOL_TIME(nsymbols);
  1211. else
  1212. duration = SYMBOL_TIME_HALFGI(nsymbols);
  1213. /* addup duration for legacy/ht training and signal fields */
  1214. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  1215. return duration;
  1216. }
  1217. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
  1218. {
  1219. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1220. struct ath9k_11n_rate_series series[4];
  1221. struct sk_buff *skb;
  1222. struct ieee80211_tx_info *tx_info;
  1223. struct ieee80211_tx_rate *rates;
  1224. const struct ieee80211_rate *rate;
  1225. struct ieee80211_hdr *hdr;
  1226. int i, flags = 0;
  1227. u8 rix = 0, ctsrate = 0;
  1228. bool is_pspoll;
  1229. memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
  1230. skb = bf->bf_mpdu;
  1231. tx_info = IEEE80211_SKB_CB(skb);
  1232. rates = tx_info->control.rates;
  1233. hdr = (struct ieee80211_hdr *)skb->data;
  1234. is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
  1235. /*
  1236. * We check if Short Preamble is needed for the CTS rate by
  1237. * checking the BSS's global flag.
  1238. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1239. */
  1240. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  1241. ctsrate = rate->hw_value;
  1242. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  1243. ctsrate |= rate->hw_value_short;
  1244. for (i = 0; i < 4; i++) {
  1245. bool is_40, is_sgi, is_sp;
  1246. int phy;
  1247. if (!rates[i].count || (rates[i].idx < 0))
  1248. continue;
  1249. rix = rates[i].idx;
  1250. series[i].Tries = rates[i].count;
  1251. series[i].ChSel = common->tx_chainmask;
  1252. if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
  1253. (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
  1254. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1255. flags |= ATH9K_TXDESC_RTSENA;
  1256. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  1257. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1258. flags |= ATH9K_TXDESC_CTSENA;
  1259. }
  1260. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  1261. series[i].RateFlags |= ATH9K_RATESERIES_2040;
  1262. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  1263. series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  1264. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  1265. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  1266. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1267. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  1268. /* MCS rates */
  1269. series[i].Rate = rix | 0x80;
  1270. series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
  1271. is_40, is_sgi, is_sp);
  1272. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  1273. series[i].RateFlags |= ATH9K_RATESERIES_STBC;
  1274. continue;
  1275. }
  1276. /* legcay rates */
  1277. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  1278. !(rate->flags & IEEE80211_RATE_ERP_G))
  1279. phy = WLAN_RC_PHY_CCK;
  1280. else
  1281. phy = WLAN_RC_PHY_OFDM;
  1282. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  1283. series[i].Rate = rate->hw_value;
  1284. if (rate->hw_value_short) {
  1285. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  1286. series[i].Rate |= rate->hw_value_short;
  1287. } else {
  1288. is_sp = false;
  1289. }
  1290. series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1291. phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
  1292. }
  1293. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1294. if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
  1295. flags &= ~ATH9K_TXDESC_RTSENA;
  1296. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1297. if (flags & ATH9K_TXDESC_RTSENA)
  1298. flags &= ~ATH9K_TXDESC_CTSENA;
  1299. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  1300. ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
  1301. bf->bf_lastbf->bf_desc,
  1302. !is_pspoll, ctsrate,
  1303. 0, series, 4, flags);
  1304. if (sc->config.ath_aggr_prot && flags)
  1305. ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
  1306. }
  1307. static struct ath_buf *ath_tx_setup_buffer(struct ieee80211_hw *hw,
  1308. struct sk_buff *skb)
  1309. {
  1310. struct ath_wiphy *aphy = hw->priv;
  1311. struct ath_softc *sc = aphy->sc;
  1312. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1313. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1314. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1315. struct ath_buf *bf;
  1316. int hdrlen;
  1317. __le16 fc;
  1318. int padpos, padsize;
  1319. bf = ath_tx_get_buffer(sc);
  1320. if (!bf) {
  1321. ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1322. return NULL;
  1323. }
  1324. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  1325. fc = hdr->frame_control;
  1326. ATH_TXBUF_RESET(bf);
  1327. bf->aphy = aphy;
  1328. bf->bf_frmlen = skb->len + FCS_LEN;
  1329. /* Remove the padding size from bf_frmlen, if any */
  1330. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1331. padsize = padpos & 3;
  1332. if (padsize && skb->len>padpos+padsize) {
  1333. bf->bf_frmlen -= padsize;
  1334. }
  1335. if (ieee80211_is_data_qos(fc) && conf_is_ht(&hw->conf)) {
  1336. bf->bf_state.bf_type |= BUF_HT;
  1337. if (sc->sc_flags & SC_OP_TXAGGR)
  1338. assign_aggr_tid_seqno(skb, bf);
  1339. }
  1340. bf->bf_flags = setup_tx_flags(skb);
  1341. bf->bf_keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1342. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
  1343. bf->bf_frmlen += tx_info->control.hw_key->icv_len;
  1344. bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
  1345. } else {
  1346. bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
  1347. }
  1348. bf->bf_mpdu = skb;
  1349. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1350. skb->len, DMA_TO_DEVICE);
  1351. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1352. bf->bf_mpdu = NULL;
  1353. bf->bf_buf_addr = 0;
  1354. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1355. "dma_mapping_error() on TX\n");
  1356. ath_tx_return_buffer(sc, bf);
  1357. return NULL;
  1358. }
  1359. bf->bf_tx_aborted = false;
  1360. return bf;
  1361. }
  1362. /* FIXME: tx power */
  1363. static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
  1364. struct ath_tx_control *txctl)
  1365. {
  1366. struct sk_buff *skb = bf->bf_mpdu;
  1367. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1368. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1369. struct ath_node *an = NULL;
  1370. struct list_head bf_head;
  1371. struct ath_desc *ds;
  1372. struct ath_atx_tid *tid;
  1373. struct ath_hw *ah = sc->sc_ah;
  1374. int frm_type;
  1375. __le16 fc;
  1376. u8 tidno;
  1377. frm_type = get_hw_packet_type(skb);
  1378. fc = hdr->frame_control;
  1379. INIT_LIST_HEAD(&bf_head);
  1380. list_add_tail(&bf->list, &bf_head);
  1381. ds = bf->bf_desc;
  1382. ath9k_hw_set_desc_link(ah, ds, 0);
  1383. ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
  1384. bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
  1385. ath9k_hw_filltxdesc(ah, ds,
  1386. skb->len, /* segment length */
  1387. true, /* first segment */
  1388. true, /* last segment */
  1389. ds, /* first descriptor */
  1390. bf->bf_buf_addr,
  1391. txctl->txq->axq_qnum);
  1392. spin_lock_bh(&txctl->txq->axq_lock);
  1393. if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
  1394. tx_info->control.sta) {
  1395. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1396. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1397. IEEE80211_QOS_CTL_TID_MASK;
  1398. tid = ATH_AN_2_TID(an, tidno);
  1399. WARN_ON(tid->ac->txq != txctl->txq);
  1400. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1401. /*
  1402. * Try aggregation if it's a unicast data frame
  1403. * and the destination is HT capable.
  1404. */
  1405. ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
  1406. } else {
  1407. /*
  1408. * Send this frame as regular when ADDBA
  1409. * exchange is neither complete nor pending.
  1410. */
  1411. ath_tx_send_normal(sc, txctl->txq, tid, &bf_head);
  1412. }
  1413. } else {
  1414. bf->bf_state.bfs_ftype = txctl->frame_type;
  1415. bf->bf_state.bfs_paprd = txctl->paprd;
  1416. if (bf->bf_state.bfs_paprd)
  1417. ar9003_hw_set_paprd_txdesc(ah, ds, bf->bf_state.bfs_paprd);
  1418. if (txctl->paprd)
  1419. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1420. ath_tx_send_normal(sc, txctl->txq, NULL, &bf_head);
  1421. }
  1422. spin_unlock_bh(&txctl->txq->axq_lock);
  1423. }
  1424. /* Upon failure caller should free skb */
  1425. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1426. struct ath_tx_control *txctl)
  1427. {
  1428. struct ath_wiphy *aphy = hw->priv;
  1429. struct ath_softc *sc = aphy->sc;
  1430. struct ath_txq *txq = txctl->txq;
  1431. struct ath_buf *bf;
  1432. int q;
  1433. bf = ath_tx_setup_buffer(hw, skb);
  1434. if (unlikely(!bf))
  1435. return -ENOMEM;
  1436. q = skb_get_queue_mapping(skb);
  1437. spin_lock_bh(&txq->axq_lock);
  1438. if (txq == sc->tx.txq_map[q] &&
  1439. ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1440. ath_mac80211_stop_queue(sc, q);
  1441. txq->stopped = 1;
  1442. }
  1443. spin_unlock_bh(&txq->axq_lock);
  1444. ath_tx_start_dma(sc, bf, txctl);
  1445. return 0;
  1446. }
  1447. void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
  1448. {
  1449. struct ath_wiphy *aphy = hw->priv;
  1450. struct ath_softc *sc = aphy->sc;
  1451. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1452. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1453. int padpos, padsize;
  1454. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1455. struct ath_tx_control txctl;
  1456. memset(&txctl, 0, sizeof(struct ath_tx_control));
  1457. /*
  1458. * As a temporary workaround, assign seq# here; this will likely need
  1459. * to be cleaned up to work better with Beacon transmission and virtual
  1460. * BSSes.
  1461. */
  1462. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1463. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1464. sc->tx.seq_no += 0x10;
  1465. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1466. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1467. }
  1468. /* Add the padding after the header if this is not already done */
  1469. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1470. padsize = padpos & 3;
  1471. if (padsize && skb->len>padpos) {
  1472. if (skb_headroom(skb) < padsize) {
  1473. ath_print(common, ATH_DBG_XMIT,
  1474. "TX CABQ padding failed\n");
  1475. dev_kfree_skb_any(skb);
  1476. return;
  1477. }
  1478. skb_push(skb, padsize);
  1479. memmove(skb->data, skb->data + padsize, padpos);
  1480. }
  1481. txctl.txq = sc->beacon.cabq;
  1482. ath_print(common, ATH_DBG_XMIT,
  1483. "transmitting CABQ packet, skb: %p\n", skb);
  1484. if (ath_tx_start(hw, skb, &txctl) != 0) {
  1485. ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
  1486. goto exit;
  1487. }
  1488. return;
  1489. exit:
  1490. dev_kfree_skb_any(skb);
  1491. }
  1492. /*****************/
  1493. /* TX Completion */
  1494. /*****************/
  1495. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1496. struct ath_wiphy *aphy, int tx_flags, int ftype,
  1497. struct ath_txq *txq)
  1498. {
  1499. struct ieee80211_hw *hw = sc->hw;
  1500. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1501. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1502. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1503. int q, padpos, padsize;
  1504. ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1505. if (aphy)
  1506. hw = aphy->hw;
  1507. if (tx_flags & ATH_TX_BAR)
  1508. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1509. if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
  1510. /* Frame was ACKed */
  1511. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1512. }
  1513. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1514. padsize = padpos & 3;
  1515. if (padsize && skb->len>padpos+padsize) {
  1516. /*
  1517. * Remove MAC header padding before giving the frame back to
  1518. * mac80211.
  1519. */
  1520. memmove(skb->data + padsize, skb->data, padpos);
  1521. skb_pull(skb, padsize);
  1522. }
  1523. if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
  1524. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1525. ath_print(common, ATH_DBG_PS,
  1526. "Going back to sleep after having "
  1527. "received TX status (0x%lx)\n",
  1528. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1529. PS_WAIT_FOR_CAB |
  1530. PS_WAIT_FOR_PSPOLL_DATA |
  1531. PS_WAIT_FOR_TX_ACK));
  1532. }
  1533. if (unlikely(ftype))
  1534. ath9k_tx_status(hw, skb, ftype);
  1535. else {
  1536. q = skb_get_queue_mapping(skb);
  1537. if (txq == sc->tx.txq_map[q]) {
  1538. spin_lock_bh(&txq->axq_lock);
  1539. if (WARN_ON(--txq->pending_frames < 0))
  1540. txq->pending_frames = 0;
  1541. spin_unlock_bh(&txq->axq_lock);
  1542. }
  1543. ieee80211_tx_status(hw, skb);
  1544. }
  1545. }
  1546. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1547. struct ath_txq *txq, struct list_head *bf_q,
  1548. struct ath_tx_status *ts, int txok, int sendbar)
  1549. {
  1550. struct sk_buff *skb = bf->bf_mpdu;
  1551. unsigned long flags;
  1552. int tx_flags = 0;
  1553. if (sendbar)
  1554. tx_flags = ATH_TX_BAR;
  1555. if (!txok) {
  1556. tx_flags |= ATH_TX_ERROR;
  1557. if (bf_isxretried(bf))
  1558. tx_flags |= ATH_TX_XRETRY;
  1559. }
  1560. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1561. bf->bf_buf_addr = 0;
  1562. if (bf->bf_state.bfs_paprd) {
  1563. if (time_after(jiffies,
  1564. bf->bf_state.bfs_paprd_timestamp +
  1565. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1566. dev_kfree_skb_any(skb);
  1567. else
  1568. complete(&sc->paprd_complete);
  1569. } else {
  1570. ath_debug_stat_tx(sc, bf, ts);
  1571. ath_tx_complete(sc, skb, bf->aphy, tx_flags,
  1572. bf->bf_state.bfs_ftype, txq);
  1573. }
  1574. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1575. * accidentally reference it later.
  1576. */
  1577. bf->bf_mpdu = NULL;
  1578. /*
  1579. * Return the list of ath_buf of this mpdu to free queue
  1580. */
  1581. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1582. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1583. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1584. }
  1585. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  1586. struct ath_tx_status *ts, int txok)
  1587. {
  1588. u16 seq_st = 0;
  1589. u32 ba[WME_BA_BMP_SIZE >> 5];
  1590. int ba_index;
  1591. int nbad = 0;
  1592. int isaggr = 0;
  1593. if (bf->bf_lastbf->bf_tx_aborted)
  1594. return 0;
  1595. isaggr = bf_isaggr(bf);
  1596. if (isaggr) {
  1597. seq_st = ts->ts_seqnum;
  1598. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  1599. }
  1600. while (bf) {
  1601. ba_index = ATH_BA_INDEX(seq_st, ath_frame_seqno(bf->bf_mpdu));
  1602. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  1603. nbad++;
  1604. bf = bf->bf_next;
  1605. }
  1606. return nbad;
  1607. }
  1608. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  1609. int nbad, int txok, bool update_rc)
  1610. {
  1611. struct sk_buff *skb = bf->bf_mpdu;
  1612. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1613. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1614. struct ieee80211_hw *hw = bf->aphy->hw;
  1615. struct ath_softc *sc = bf->aphy->sc;
  1616. struct ath_hw *ah = sc->sc_ah;
  1617. u8 i, tx_rateindex;
  1618. if (txok)
  1619. tx_info->status.ack_signal = ts->ts_rssi;
  1620. tx_rateindex = ts->ts_rateindex;
  1621. WARN_ON(tx_rateindex >= hw->max_rates);
  1622. if (ts->ts_status & ATH9K_TXERR_FILT)
  1623. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1624. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc) {
  1625. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1626. BUG_ON(nbad > bf->bf_nframes);
  1627. tx_info->status.ampdu_len = bf->bf_nframes;
  1628. tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
  1629. }
  1630. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1631. (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
  1632. /*
  1633. * If an underrun error is seen assume it as an excessive
  1634. * retry only if max frame trigger level has been reached
  1635. * (2 KB for single stream, and 4 KB for dual stream).
  1636. * Adjust the long retry as if the frame was tried
  1637. * hw->max_rate_tries times to affect how rate control updates
  1638. * PER for the failed rate.
  1639. * In case of congestion on the bus penalizing this type of
  1640. * underruns should help hardware actually transmit new frames
  1641. * successfully by eventually preferring slower rates.
  1642. * This itself should also alleviate congestion on the bus.
  1643. */
  1644. if (ieee80211_is_data(hdr->frame_control) &&
  1645. (ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1646. ATH9K_TX_DELIM_UNDERRUN)) &&
  1647. ah->tx_trig_level >= sc->sc_ah->caps.tx_triglevel_max)
  1648. tx_info->status.rates[tx_rateindex].count =
  1649. hw->max_rate_tries;
  1650. }
  1651. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1652. tx_info->status.rates[i].count = 0;
  1653. tx_info->status.rates[i].idx = -1;
  1654. }
  1655. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1656. }
  1657. static void ath_wake_mac80211_queue(struct ath_softc *sc, int qnum)
  1658. {
  1659. struct ath_txq *txq;
  1660. txq = sc->tx.txq_map[qnum];
  1661. spin_lock_bh(&txq->axq_lock);
  1662. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1663. if (ath_mac80211_start_queue(sc, qnum))
  1664. txq->stopped = 0;
  1665. }
  1666. spin_unlock_bh(&txq->axq_lock);
  1667. }
  1668. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1669. {
  1670. struct ath_hw *ah = sc->sc_ah;
  1671. struct ath_common *common = ath9k_hw_common(ah);
  1672. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1673. struct list_head bf_head;
  1674. struct ath_desc *ds;
  1675. struct ath_tx_status ts;
  1676. int txok;
  1677. int status;
  1678. int qnum;
  1679. ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1680. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1681. txq->axq_link);
  1682. for (;;) {
  1683. spin_lock_bh(&txq->axq_lock);
  1684. if (list_empty(&txq->axq_q)) {
  1685. txq->axq_link = NULL;
  1686. spin_unlock_bh(&txq->axq_lock);
  1687. break;
  1688. }
  1689. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1690. /*
  1691. * There is a race condition that a BH gets scheduled
  1692. * after sw writes TxE and before hw re-load the last
  1693. * descriptor to get the newly chained one.
  1694. * Software must keep the last DONE descriptor as a
  1695. * holding descriptor - software does so by marking
  1696. * it with the STALE flag.
  1697. */
  1698. bf_held = NULL;
  1699. if (bf->bf_stale) {
  1700. bf_held = bf;
  1701. if (list_is_last(&bf_held->list, &txq->axq_q)) {
  1702. spin_unlock_bh(&txq->axq_lock);
  1703. break;
  1704. } else {
  1705. bf = list_entry(bf_held->list.next,
  1706. struct ath_buf, list);
  1707. }
  1708. }
  1709. lastbf = bf->bf_lastbf;
  1710. ds = lastbf->bf_desc;
  1711. memset(&ts, 0, sizeof(ts));
  1712. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1713. if (status == -EINPROGRESS) {
  1714. spin_unlock_bh(&txq->axq_lock);
  1715. break;
  1716. }
  1717. /*
  1718. * Remove ath_buf's of the same transmit unit from txq,
  1719. * however leave the last descriptor back as the holding
  1720. * descriptor for hw.
  1721. */
  1722. lastbf->bf_stale = true;
  1723. INIT_LIST_HEAD(&bf_head);
  1724. if (!list_is_singular(&lastbf->list))
  1725. list_cut_position(&bf_head,
  1726. &txq->axq_q, lastbf->list.prev);
  1727. txq->axq_depth--;
  1728. txok = !(ts.ts_status & ATH9K_TXERR_MASK);
  1729. txq->axq_tx_inprogress = false;
  1730. if (bf_held)
  1731. list_del(&bf_held->list);
  1732. spin_unlock_bh(&txq->axq_lock);
  1733. if (bf_held)
  1734. ath_tx_return_buffer(sc, bf_held);
  1735. if (!bf_isampdu(bf)) {
  1736. /*
  1737. * This frame is sent out as a single frame.
  1738. * Use hardware retry status for this frame.
  1739. */
  1740. if (ts.ts_status & ATH9K_TXERR_XRETRY)
  1741. bf->bf_state.bf_type |= BUF_XRETRY;
  1742. ath_tx_rc_status(bf, &ts, txok ? 0 : 1, txok, true);
  1743. }
  1744. qnum = skb_get_queue_mapping(bf->bf_mpdu);
  1745. if (bf_isampdu(bf))
  1746. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
  1747. else
  1748. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
  1749. if (txq == sc->tx.txq_map[qnum])
  1750. ath_wake_mac80211_queue(sc, qnum);
  1751. spin_lock_bh(&txq->axq_lock);
  1752. if (sc->sc_flags & SC_OP_TXAGGR)
  1753. ath_txq_schedule(sc, txq);
  1754. spin_unlock_bh(&txq->axq_lock);
  1755. }
  1756. }
  1757. static void ath_tx_complete_poll_work(struct work_struct *work)
  1758. {
  1759. struct ath_softc *sc = container_of(work, struct ath_softc,
  1760. tx_complete_work.work);
  1761. struct ath_txq *txq;
  1762. int i;
  1763. bool needreset = false;
  1764. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1765. if (ATH_TXQ_SETUP(sc, i)) {
  1766. txq = &sc->tx.txq[i];
  1767. spin_lock_bh(&txq->axq_lock);
  1768. if (txq->axq_depth) {
  1769. if (txq->axq_tx_inprogress) {
  1770. needreset = true;
  1771. spin_unlock_bh(&txq->axq_lock);
  1772. break;
  1773. } else {
  1774. txq->axq_tx_inprogress = true;
  1775. }
  1776. }
  1777. spin_unlock_bh(&txq->axq_lock);
  1778. }
  1779. if (needreset) {
  1780. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1781. "tx hung, resetting the chip\n");
  1782. ath9k_ps_wakeup(sc);
  1783. ath_reset(sc, true);
  1784. ath9k_ps_restore(sc);
  1785. }
  1786. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1787. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1788. }
  1789. void ath_tx_tasklet(struct ath_softc *sc)
  1790. {
  1791. int i;
  1792. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1793. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1794. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1795. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1796. ath_tx_processq(sc, &sc->tx.txq[i]);
  1797. }
  1798. }
  1799. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1800. {
  1801. struct ath_tx_status txs;
  1802. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1803. struct ath_hw *ah = sc->sc_ah;
  1804. struct ath_txq *txq;
  1805. struct ath_buf *bf, *lastbf;
  1806. struct list_head bf_head;
  1807. int status;
  1808. int txok;
  1809. int qnum;
  1810. for (;;) {
  1811. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
  1812. if (status == -EINPROGRESS)
  1813. break;
  1814. if (status == -EIO) {
  1815. ath_print(common, ATH_DBG_XMIT,
  1816. "Error processing tx status\n");
  1817. break;
  1818. }
  1819. /* Skip beacon completions */
  1820. if (txs.qid == sc->beacon.beaconq)
  1821. continue;
  1822. txq = &sc->tx.txq[txs.qid];
  1823. spin_lock_bh(&txq->axq_lock);
  1824. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1825. spin_unlock_bh(&txq->axq_lock);
  1826. return;
  1827. }
  1828. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1829. struct ath_buf, list);
  1830. lastbf = bf->bf_lastbf;
  1831. INIT_LIST_HEAD(&bf_head);
  1832. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1833. &lastbf->list);
  1834. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1835. txq->axq_depth--;
  1836. txq->axq_tx_inprogress = false;
  1837. spin_unlock_bh(&txq->axq_lock);
  1838. txok = !(txs.ts_status & ATH9K_TXERR_MASK);
  1839. if (!bf_isampdu(bf)) {
  1840. if (txs.ts_status & ATH9K_TXERR_XRETRY)
  1841. bf->bf_state.bf_type |= BUF_XRETRY;
  1842. ath_tx_rc_status(bf, &txs, txok ? 0 : 1, txok, true);
  1843. }
  1844. qnum = skb_get_queue_mapping(bf->bf_mpdu);
  1845. if (bf_isampdu(bf))
  1846. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok);
  1847. else
  1848. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  1849. &txs, txok, 0);
  1850. if (txq == sc->tx.txq_map[qnum])
  1851. ath_wake_mac80211_queue(sc, qnum);
  1852. spin_lock_bh(&txq->axq_lock);
  1853. if (!list_empty(&txq->txq_fifo_pending)) {
  1854. INIT_LIST_HEAD(&bf_head);
  1855. bf = list_first_entry(&txq->txq_fifo_pending,
  1856. struct ath_buf, list);
  1857. list_cut_position(&bf_head, &txq->txq_fifo_pending,
  1858. &bf->bf_lastbf->list);
  1859. ath_tx_txqaddbuf(sc, txq, &bf_head);
  1860. } else if (sc->sc_flags & SC_OP_TXAGGR)
  1861. ath_txq_schedule(sc, txq);
  1862. spin_unlock_bh(&txq->axq_lock);
  1863. }
  1864. }
  1865. /*****************/
  1866. /* Init, Cleanup */
  1867. /*****************/
  1868. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1869. {
  1870. struct ath_descdma *dd = &sc->txsdma;
  1871. u8 txs_len = sc->sc_ah->caps.txs_len;
  1872. dd->dd_desc_len = size * txs_len;
  1873. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1874. &dd->dd_desc_paddr, GFP_KERNEL);
  1875. if (!dd->dd_desc)
  1876. return -ENOMEM;
  1877. return 0;
  1878. }
  1879. static int ath_tx_edma_init(struct ath_softc *sc)
  1880. {
  1881. int err;
  1882. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1883. if (!err)
  1884. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1885. sc->txsdma.dd_desc_paddr,
  1886. ATH_TXSTATUS_RING_SIZE);
  1887. return err;
  1888. }
  1889. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1890. {
  1891. struct ath_descdma *dd = &sc->txsdma;
  1892. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1893. dd->dd_desc_paddr);
  1894. }
  1895. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1896. {
  1897. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1898. int error = 0;
  1899. spin_lock_init(&sc->tx.txbuflock);
  1900. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1901. "tx", nbufs, 1, 1);
  1902. if (error != 0) {
  1903. ath_print(common, ATH_DBG_FATAL,
  1904. "Failed to allocate tx descriptors: %d\n", error);
  1905. goto err;
  1906. }
  1907. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1908. "beacon", ATH_BCBUF, 1, 1);
  1909. if (error != 0) {
  1910. ath_print(common, ATH_DBG_FATAL,
  1911. "Failed to allocate beacon descriptors: %d\n", error);
  1912. goto err;
  1913. }
  1914. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1915. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1916. error = ath_tx_edma_init(sc);
  1917. if (error)
  1918. goto err;
  1919. }
  1920. err:
  1921. if (error != 0)
  1922. ath_tx_cleanup(sc);
  1923. return error;
  1924. }
  1925. void ath_tx_cleanup(struct ath_softc *sc)
  1926. {
  1927. if (sc->beacon.bdma.dd_desc_len != 0)
  1928. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1929. if (sc->tx.txdma.dd_desc_len != 0)
  1930. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1931. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1932. ath_tx_edma_cleanup(sc);
  1933. }
  1934. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1935. {
  1936. struct ath_atx_tid *tid;
  1937. struct ath_atx_ac *ac;
  1938. int tidno, acno;
  1939. for (tidno = 0, tid = &an->tid[tidno];
  1940. tidno < WME_NUM_TID;
  1941. tidno++, tid++) {
  1942. tid->an = an;
  1943. tid->tidno = tidno;
  1944. tid->seq_start = tid->seq_next = 0;
  1945. tid->baw_size = WME_MAX_BA;
  1946. tid->baw_head = tid->baw_tail = 0;
  1947. tid->sched = false;
  1948. tid->paused = false;
  1949. tid->state &= ~AGGR_CLEANUP;
  1950. INIT_LIST_HEAD(&tid->buf_q);
  1951. acno = TID_TO_WME_AC(tidno);
  1952. tid->ac = &an->ac[acno];
  1953. tid->state &= ~AGGR_ADDBA_COMPLETE;
  1954. tid->state &= ~AGGR_ADDBA_PROGRESS;
  1955. }
  1956. for (acno = 0, ac = &an->ac[acno];
  1957. acno < WME_NUM_AC; acno++, ac++) {
  1958. ac->sched = false;
  1959. ac->txq = sc->tx.txq_map[acno];
  1960. INIT_LIST_HEAD(&ac->tid_q);
  1961. }
  1962. }
  1963. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  1964. {
  1965. struct ath_atx_ac *ac;
  1966. struct ath_atx_tid *tid;
  1967. struct ath_txq *txq;
  1968. int tidno;
  1969. for (tidno = 0, tid = &an->tid[tidno];
  1970. tidno < WME_NUM_TID; tidno++, tid++) {
  1971. ac = tid->ac;
  1972. txq = ac->txq;
  1973. spin_lock_bh(&txq->axq_lock);
  1974. if (tid->sched) {
  1975. list_del(&tid->list);
  1976. tid->sched = false;
  1977. }
  1978. if (ac->sched) {
  1979. list_del(&ac->list);
  1980. tid->ac->sched = false;
  1981. }
  1982. ath_tid_drain(sc, txq, tid);
  1983. tid->state &= ~AGGR_ADDBA_COMPLETE;
  1984. tid->state &= ~AGGR_CLEANUP;
  1985. spin_unlock_bh(&txq->axq_lock);
  1986. }
  1987. }