dn_neigh.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Neighbour Functions (Adjacency Database and
  7. * On-Ethernet Cache)
  8. *
  9. * Author: Steve Whitehouse <SteveW@ACM.org>
  10. *
  11. *
  12. * Changes:
  13. * Steve Whitehouse : Fixed router listing routine
  14. * Steve Whitehouse : Added error_report functions
  15. * Steve Whitehouse : Added default router detection
  16. * Steve Whitehouse : Hop counts in outgoing messages
  17. * Steve Whitehouse : Fixed src/dst in outgoing messages so
  18. * forwarding now stands a good chance of
  19. * working.
  20. * Steve Whitehouse : Fixed neighbour states (for now anyway).
  21. * Steve Whitehouse : Made error_report functions dummies. This
  22. * is not the right place to return skbs.
  23. * Steve Whitehouse : Convert to seq_file
  24. *
  25. */
  26. #include <linux/net.h>
  27. #include <linux/module.h>
  28. #include <linux/socket.h>
  29. #include <linux/if_arp.h>
  30. #include <linux/if_ether.h>
  31. #include <linux/init.h>
  32. #include <linux/proc_fs.h>
  33. #include <linux/string.h>
  34. #include <linux/netfilter_decnet.h>
  35. #include <linux/spinlock.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/jhash.h>
  39. #include <asm/atomic.h>
  40. #include <net/net_namespace.h>
  41. #include <net/neighbour.h>
  42. #include <net/dst.h>
  43. #include <net/flow.h>
  44. #include <net/dn.h>
  45. #include <net/dn_dev.h>
  46. #include <net/dn_neigh.h>
  47. #include <net/dn_route.h>
  48. static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev);
  49. static int dn_neigh_construct(struct neighbour *);
  50. static void dn_long_error_report(struct neighbour *, struct sk_buff *);
  51. static void dn_short_error_report(struct neighbour *, struct sk_buff *);
  52. static int dn_long_output(struct sk_buff *);
  53. static int dn_short_output(struct sk_buff *);
  54. static int dn_phase3_output(struct sk_buff *);
  55. /*
  56. * For talking to broadcast devices: Ethernet & PPP
  57. */
  58. static const struct neigh_ops dn_long_ops = {
  59. .family = AF_DECnet,
  60. .error_report = dn_long_error_report,
  61. .output = dn_long_output,
  62. .connected_output = dn_long_output,
  63. .hh_output = dev_queue_xmit,
  64. .queue_xmit = dev_queue_xmit,
  65. };
  66. /*
  67. * For talking to pointopoint and multidrop devices: DDCMP and X.25
  68. */
  69. static const struct neigh_ops dn_short_ops = {
  70. .family = AF_DECnet,
  71. .error_report = dn_short_error_report,
  72. .output = dn_short_output,
  73. .connected_output = dn_short_output,
  74. .hh_output = dev_queue_xmit,
  75. .queue_xmit = dev_queue_xmit,
  76. };
  77. /*
  78. * For talking to DECnet phase III nodes
  79. */
  80. static const struct neigh_ops dn_phase3_ops = {
  81. .family = AF_DECnet,
  82. .error_report = dn_short_error_report, /* Can use short version here */
  83. .output = dn_phase3_output,
  84. .connected_output = dn_phase3_output,
  85. .hh_output = dev_queue_xmit,
  86. .queue_xmit = dev_queue_xmit
  87. };
  88. struct neigh_table dn_neigh_table = {
  89. .family = PF_DECnet,
  90. .entry_size = sizeof(struct dn_neigh),
  91. .key_len = sizeof(__le16),
  92. .hash = dn_neigh_hash,
  93. .constructor = dn_neigh_construct,
  94. .id = "dn_neigh_cache",
  95. .parms ={
  96. .tbl = &dn_neigh_table,
  97. .base_reachable_time = 30 * HZ,
  98. .retrans_time = 1 * HZ,
  99. .gc_staletime = 60 * HZ,
  100. .reachable_time = 30 * HZ,
  101. .delay_probe_time = 5 * HZ,
  102. .queue_len = 3,
  103. .ucast_probes = 0,
  104. .app_probes = 0,
  105. .mcast_probes = 0,
  106. .anycast_delay = 0,
  107. .proxy_delay = 0,
  108. .proxy_qlen = 0,
  109. .locktime = 1 * HZ,
  110. },
  111. .gc_interval = 30 * HZ,
  112. .gc_thresh1 = 128,
  113. .gc_thresh2 = 512,
  114. .gc_thresh3 = 1024,
  115. };
  116. static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev)
  117. {
  118. return jhash_2words(*(__u16 *)pkey, 0, dn_neigh_table.hash_rnd);
  119. }
  120. static int dn_neigh_construct(struct neighbour *neigh)
  121. {
  122. struct net_device *dev = neigh->dev;
  123. struct dn_neigh *dn = (struct dn_neigh *)neigh;
  124. struct dn_dev *dn_db;
  125. struct neigh_parms *parms;
  126. rcu_read_lock();
  127. dn_db = rcu_dereference(dev->dn_ptr);
  128. if (dn_db == NULL) {
  129. rcu_read_unlock();
  130. return -EINVAL;
  131. }
  132. parms = dn_db->neigh_parms;
  133. if (!parms) {
  134. rcu_read_unlock();
  135. return -EINVAL;
  136. }
  137. __neigh_parms_put(neigh->parms);
  138. neigh->parms = neigh_parms_clone(parms);
  139. if (dn_db->use_long)
  140. neigh->ops = &dn_long_ops;
  141. else
  142. neigh->ops = &dn_short_ops;
  143. rcu_read_unlock();
  144. if (dn->flags & DN_NDFLAG_P3)
  145. neigh->ops = &dn_phase3_ops;
  146. neigh->nud_state = NUD_NOARP;
  147. neigh->output = neigh->ops->connected_output;
  148. if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
  149. memcpy(neigh->ha, dev->broadcast, dev->addr_len);
  150. else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
  151. dn_dn2eth(neigh->ha, dn->addr);
  152. else {
  153. if (net_ratelimit())
  154. printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
  155. return -EINVAL;
  156. }
  157. /*
  158. * Make an estimate of the remote block size by assuming that its
  159. * two less then the device mtu, which it true for ethernet (and
  160. * other things which support long format headers) since there is
  161. * an extra length field (of 16 bits) which isn't part of the
  162. * ethernet headers and which the DECnet specs won't admit is part
  163. * of the DECnet routing headers either.
  164. *
  165. * If we over estimate here its no big deal, the NSP negotiations
  166. * will prevent us from sending packets which are too large for the
  167. * remote node to handle. In any case this figure is normally updated
  168. * by a hello message in most cases.
  169. */
  170. dn->blksize = dev->mtu - 2;
  171. return 0;
  172. }
  173. static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
  174. {
  175. printk(KERN_DEBUG "dn_long_error_report: called\n");
  176. kfree_skb(skb);
  177. }
  178. static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
  179. {
  180. printk(KERN_DEBUG "dn_short_error_report: called\n");
  181. kfree_skb(skb);
  182. }
  183. static int dn_neigh_output_packet(struct sk_buff *skb)
  184. {
  185. struct dst_entry *dst = skb_dst(skb);
  186. struct dn_route *rt = (struct dn_route *)dst;
  187. struct neighbour *neigh = dst->neighbour;
  188. struct net_device *dev = neigh->dev;
  189. char mac_addr[ETH_ALEN];
  190. dn_dn2eth(mac_addr, rt->rt_local_src);
  191. if (dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha,
  192. mac_addr, skb->len) >= 0)
  193. return neigh->ops->queue_xmit(skb);
  194. if (net_ratelimit())
  195. printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
  196. kfree_skb(skb);
  197. return -EINVAL;
  198. }
  199. static int dn_long_output(struct sk_buff *skb)
  200. {
  201. struct dst_entry *dst = skb_dst(skb);
  202. struct neighbour *neigh = dst->neighbour;
  203. struct net_device *dev = neigh->dev;
  204. int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
  205. unsigned char *data;
  206. struct dn_long_packet *lp;
  207. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  208. if (skb_headroom(skb) < headroom) {
  209. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  210. if (skb2 == NULL) {
  211. if (net_ratelimit())
  212. printk(KERN_CRIT "dn_long_output: no memory\n");
  213. kfree_skb(skb);
  214. return -ENOBUFS;
  215. }
  216. kfree_skb(skb);
  217. skb = skb2;
  218. if (net_ratelimit())
  219. printk(KERN_INFO "dn_long_output: Increasing headroom\n");
  220. }
  221. data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
  222. lp = (struct dn_long_packet *)(data+3);
  223. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  224. *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
  225. lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
  226. lp->d_area = lp->d_subarea = 0;
  227. dn_dn2eth(lp->d_id, cb->dst);
  228. lp->s_area = lp->s_subarea = 0;
  229. dn_dn2eth(lp->s_id, cb->src);
  230. lp->nl2 = 0;
  231. lp->visit_ct = cb->hops & 0x3f;
  232. lp->s_class = 0;
  233. lp->pt = 0;
  234. skb_reset_network_header(skb);
  235. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  236. neigh->dev, dn_neigh_output_packet);
  237. }
  238. static int dn_short_output(struct sk_buff *skb)
  239. {
  240. struct dst_entry *dst = skb_dst(skb);
  241. struct neighbour *neigh = dst->neighbour;
  242. struct net_device *dev = neigh->dev;
  243. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  244. struct dn_short_packet *sp;
  245. unsigned char *data;
  246. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  247. if (skb_headroom(skb) < headroom) {
  248. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  249. if (skb2 == NULL) {
  250. if (net_ratelimit())
  251. printk(KERN_CRIT "dn_short_output: no memory\n");
  252. kfree_skb(skb);
  253. return -ENOBUFS;
  254. }
  255. kfree_skb(skb);
  256. skb = skb2;
  257. if (net_ratelimit())
  258. printk(KERN_INFO "dn_short_output: Increasing headroom\n");
  259. }
  260. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  261. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  262. sp = (struct dn_short_packet *)(data+2);
  263. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  264. sp->dstnode = cb->dst;
  265. sp->srcnode = cb->src;
  266. sp->forward = cb->hops & 0x3f;
  267. skb_reset_network_header(skb);
  268. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  269. neigh->dev, dn_neigh_output_packet);
  270. }
  271. /*
  272. * Phase 3 output is the same is short output, execpt that
  273. * it clears the area bits before transmission.
  274. */
  275. static int dn_phase3_output(struct sk_buff *skb)
  276. {
  277. struct dst_entry *dst = skb_dst(skb);
  278. struct neighbour *neigh = dst->neighbour;
  279. struct net_device *dev = neigh->dev;
  280. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  281. struct dn_short_packet *sp;
  282. unsigned char *data;
  283. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  284. if (skb_headroom(skb) < headroom) {
  285. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  286. if (skb2 == NULL) {
  287. if (net_ratelimit())
  288. printk(KERN_CRIT "dn_phase3_output: no memory\n");
  289. kfree_skb(skb);
  290. return -ENOBUFS;
  291. }
  292. kfree_skb(skb);
  293. skb = skb2;
  294. if (net_ratelimit())
  295. printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
  296. }
  297. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  298. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  299. sp = (struct dn_short_packet *)(data + 2);
  300. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  301. sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
  302. sp->srcnode = cb->src & cpu_to_le16(0x03ff);
  303. sp->forward = cb->hops & 0x3f;
  304. skb_reset_network_header(skb);
  305. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  306. neigh->dev, dn_neigh_output_packet);
  307. }
  308. /*
  309. * Unfortunately, the neighbour code uses the device in its hash
  310. * function, so we don't get any advantage from it. This function
  311. * basically does a neigh_lookup(), but without comparing the device
  312. * field. This is required for the On-Ethernet cache
  313. */
  314. /*
  315. * Pointopoint link receives a hello message
  316. */
  317. void dn_neigh_pointopoint_hello(struct sk_buff *skb)
  318. {
  319. kfree_skb(skb);
  320. }
  321. /*
  322. * Ethernet router hello message received
  323. */
  324. int dn_neigh_router_hello(struct sk_buff *skb)
  325. {
  326. struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
  327. struct neighbour *neigh;
  328. struct dn_neigh *dn;
  329. struct dn_dev *dn_db;
  330. __le16 src;
  331. src = dn_eth2dn(msg->id);
  332. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  333. dn = (struct dn_neigh *)neigh;
  334. if (neigh) {
  335. write_lock(&neigh->lock);
  336. neigh->used = jiffies;
  337. dn_db = (struct dn_dev *)neigh->dev->dn_ptr;
  338. if (!(neigh->nud_state & NUD_PERMANENT)) {
  339. neigh->updated = jiffies;
  340. if (neigh->dev->type == ARPHRD_ETHER)
  341. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  342. dn->blksize = le16_to_cpu(msg->blksize);
  343. dn->priority = msg->priority;
  344. dn->flags &= ~DN_NDFLAG_P3;
  345. switch(msg->iinfo & DN_RT_INFO_TYPE) {
  346. case DN_RT_INFO_L1RT:
  347. dn->flags &=~DN_NDFLAG_R2;
  348. dn->flags |= DN_NDFLAG_R1;
  349. break;
  350. case DN_RT_INFO_L2RT:
  351. dn->flags |= DN_NDFLAG_R2;
  352. }
  353. }
  354. /* Only use routers in our area */
  355. if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
  356. if (!dn_db->router) {
  357. dn_db->router = neigh_clone(neigh);
  358. } else {
  359. if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
  360. neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
  361. }
  362. }
  363. write_unlock(&neigh->lock);
  364. neigh_release(neigh);
  365. }
  366. kfree_skb(skb);
  367. return 0;
  368. }
  369. /*
  370. * Endnode hello message received
  371. */
  372. int dn_neigh_endnode_hello(struct sk_buff *skb)
  373. {
  374. struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
  375. struct neighbour *neigh;
  376. struct dn_neigh *dn;
  377. __le16 src;
  378. src = dn_eth2dn(msg->id);
  379. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  380. dn = (struct dn_neigh *)neigh;
  381. if (neigh) {
  382. write_lock(&neigh->lock);
  383. neigh->used = jiffies;
  384. if (!(neigh->nud_state & NUD_PERMANENT)) {
  385. neigh->updated = jiffies;
  386. if (neigh->dev->type == ARPHRD_ETHER)
  387. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  388. dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
  389. dn->blksize = le16_to_cpu(msg->blksize);
  390. dn->priority = 0;
  391. }
  392. write_unlock(&neigh->lock);
  393. neigh_release(neigh);
  394. }
  395. kfree_skb(skb);
  396. return 0;
  397. }
  398. static char *dn_find_slot(char *base, int max, int priority)
  399. {
  400. int i;
  401. unsigned char *min = NULL;
  402. base += 6; /* skip first id */
  403. for(i = 0; i < max; i++) {
  404. if (!min || (*base < *min))
  405. min = base;
  406. base += 7; /* find next priority */
  407. }
  408. if (!min)
  409. return NULL;
  410. return (*min < priority) ? (min - 6) : NULL;
  411. }
  412. struct elist_cb_state {
  413. struct net_device *dev;
  414. unsigned char *ptr;
  415. unsigned char *rs;
  416. int t, n;
  417. };
  418. static void neigh_elist_cb(struct neighbour *neigh, void *_info)
  419. {
  420. struct elist_cb_state *s = _info;
  421. struct dn_neigh *dn;
  422. if (neigh->dev != s->dev)
  423. return;
  424. dn = (struct dn_neigh *) neigh;
  425. if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
  426. return;
  427. if (s->t == s->n)
  428. s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
  429. else
  430. s->t++;
  431. if (s->rs == NULL)
  432. return;
  433. dn_dn2eth(s->rs, dn->addr);
  434. s->rs += 6;
  435. *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
  436. *(s->rs) |= dn->priority;
  437. s->rs++;
  438. }
  439. int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
  440. {
  441. struct elist_cb_state state;
  442. state.dev = dev;
  443. state.t = 0;
  444. state.n = n;
  445. state.ptr = ptr;
  446. state.rs = ptr;
  447. neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
  448. return state.t;
  449. }
  450. #ifdef CONFIG_PROC_FS
  451. static inline void dn_neigh_format_entry(struct seq_file *seq,
  452. struct neighbour *n)
  453. {
  454. struct dn_neigh *dn = (struct dn_neigh *) n;
  455. char buf[DN_ASCBUF_LEN];
  456. read_lock(&n->lock);
  457. seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
  458. dn_addr2asc(le16_to_cpu(dn->addr), buf),
  459. (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
  460. (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
  461. (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
  462. dn->n.nud_state,
  463. atomic_read(&dn->n.refcnt),
  464. dn->blksize,
  465. (dn->n.dev) ? dn->n.dev->name : "?");
  466. read_unlock(&n->lock);
  467. }
  468. static int dn_neigh_seq_show(struct seq_file *seq, void *v)
  469. {
  470. if (v == SEQ_START_TOKEN) {
  471. seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
  472. } else {
  473. dn_neigh_format_entry(seq, v);
  474. }
  475. return 0;
  476. }
  477. static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
  478. {
  479. return neigh_seq_start(seq, pos, &dn_neigh_table,
  480. NEIGH_SEQ_NEIGH_ONLY);
  481. }
  482. static const struct seq_operations dn_neigh_seq_ops = {
  483. .start = dn_neigh_seq_start,
  484. .next = neigh_seq_next,
  485. .stop = neigh_seq_stop,
  486. .show = dn_neigh_seq_show,
  487. };
  488. static int dn_neigh_seq_open(struct inode *inode, struct file *file)
  489. {
  490. return seq_open_net(inode, file, &dn_neigh_seq_ops,
  491. sizeof(struct neigh_seq_state));
  492. }
  493. static const struct file_operations dn_neigh_seq_fops = {
  494. .owner = THIS_MODULE,
  495. .open = dn_neigh_seq_open,
  496. .read = seq_read,
  497. .llseek = seq_lseek,
  498. .release = seq_release_net,
  499. };
  500. #endif
  501. void __init dn_neigh_init(void)
  502. {
  503. neigh_table_init(&dn_neigh_table);
  504. proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
  505. }
  506. void __exit dn_neigh_cleanup(void)
  507. {
  508. proc_net_remove(&init_net, "decnet_neigh");
  509. neigh_table_clear(&dn_neigh_table);
  510. }