rmap.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <linux/hugetlb.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  65. }
  66. void anon_vma_free(struct anon_vma *anon_vma)
  67. {
  68. kmem_cache_free(anon_vma_cachep, anon_vma);
  69. }
  70. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  71. {
  72. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  73. }
  74. void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  75. {
  76. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  77. }
  78. /**
  79. * anon_vma_prepare - attach an anon_vma to a memory region
  80. * @vma: the memory region in question
  81. *
  82. * This makes sure the memory mapping described by 'vma' has
  83. * an 'anon_vma' attached to it, so that we can associate the
  84. * anonymous pages mapped into it with that anon_vma.
  85. *
  86. * The common case will be that we already have one, but if
  87. * if not we either need to find an adjacent mapping that we
  88. * can re-use the anon_vma from (very common when the only
  89. * reason for splitting a vma has been mprotect()), or we
  90. * allocate a new one.
  91. *
  92. * Anon-vma allocations are very subtle, because we may have
  93. * optimistically looked up an anon_vma in page_lock_anon_vma()
  94. * and that may actually touch the spinlock even in the newly
  95. * allocated vma (it depends on RCU to make sure that the
  96. * anon_vma isn't actually destroyed).
  97. *
  98. * As a result, we need to do proper anon_vma locking even
  99. * for the new allocation. At the same time, we do not want
  100. * to do any locking for the common case of already having
  101. * an anon_vma.
  102. *
  103. * This must be called with the mmap_sem held for reading.
  104. */
  105. int anon_vma_prepare(struct vm_area_struct *vma)
  106. {
  107. struct anon_vma *anon_vma = vma->anon_vma;
  108. struct anon_vma_chain *avc;
  109. might_sleep();
  110. if (unlikely(!anon_vma)) {
  111. struct mm_struct *mm = vma->vm_mm;
  112. struct anon_vma *allocated;
  113. avc = anon_vma_chain_alloc();
  114. if (!avc)
  115. goto out_enomem;
  116. anon_vma = find_mergeable_anon_vma(vma);
  117. allocated = NULL;
  118. if (!anon_vma) {
  119. anon_vma = anon_vma_alloc();
  120. if (unlikely(!anon_vma))
  121. goto out_enomem_free_avc;
  122. allocated = anon_vma;
  123. /*
  124. * This VMA had no anon_vma yet. This anon_vma is
  125. * the root of any anon_vma tree that might form.
  126. */
  127. anon_vma->root = anon_vma;
  128. }
  129. anon_vma_lock(anon_vma);
  130. /* page_table_lock to protect against threads */
  131. spin_lock(&mm->page_table_lock);
  132. if (likely(!vma->anon_vma)) {
  133. vma->anon_vma = anon_vma;
  134. avc->anon_vma = anon_vma;
  135. avc->vma = vma;
  136. list_add(&avc->same_vma, &vma->anon_vma_chain);
  137. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  138. allocated = NULL;
  139. avc = NULL;
  140. }
  141. spin_unlock(&mm->page_table_lock);
  142. anon_vma_unlock(anon_vma);
  143. if (unlikely(allocated))
  144. anon_vma_free(allocated);
  145. if (unlikely(avc))
  146. anon_vma_chain_free(avc);
  147. }
  148. return 0;
  149. out_enomem_free_avc:
  150. anon_vma_chain_free(avc);
  151. out_enomem:
  152. return -ENOMEM;
  153. }
  154. static void anon_vma_chain_link(struct vm_area_struct *vma,
  155. struct anon_vma_chain *avc,
  156. struct anon_vma *anon_vma)
  157. {
  158. avc->vma = vma;
  159. avc->anon_vma = anon_vma;
  160. list_add(&avc->same_vma, &vma->anon_vma_chain);
  161. anon_vma_lock(anon_vma);
  162. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  163. anon_vma_unlock(anon_vma);
  164. }
  165. /*
  166. * Attach the anon_vmas from src to dst.
  167. * Returns 0 on success, -ENOMEM on failure.
  168. */
  169. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  170. {
  171. struct anon_vma_chain *avc, *pavc;
  172. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  173. avc = anon_vma_chain_alloc();
  174. if (!avc)
  175. goto enomem_failure;
  176. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  177. }
  178. return 0;
  179. enomem_failure:
  180. unlink_anon_vmas(dst);
  181. return -ENOMEM;
  182. }
  183. /*
  184. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  185. * the corresponding VMA in the parent process is attached to.
  186. * Returns 0 on success, non-zero on failure.
  187. */
  188. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  189. {
  190. struct anon_vma_chain *avc;
  191. struct anon_vma *anon_vma;
  192. /* Don't bother if the parent process has no anon_vma here. */
  193. if (!pvma->anon_vma)
  194. return 0;
  195. /*
  196. * First, attach the new VMA to the parent VMA's anon_vmas,
  197. * so rmap can find non-COWed pages in child processes.
  198. */
  199. if (anon_vma_clone(vma, pvma))
  200. return -ENOMEM;
  201. /* Then add our own anon_vma. */
  202. anon_vma = anon_vma_alloc();
  203. if (!anon_vma)
  204. goto out_error;
  205. avc = anon_vma_chain_alloc();
  206. if (!avc)
  207. goto out_error_free_anon_vma;
  208. /*
  209. * The root anon_vma's spinlock is the lock actually used when we
  210. * lock any of the anon_vmas in this anon_vma tree.
  211. */
  212. anon_vma->root = pvma->anon_vma->root;
  213. /*
  214. * With KSM refcounts, an anon_vma can stay around longer than the
  215. * process it belongs to. The root anon_vma needs to be pinned
  216. * until this anon_vma is freed, because the lock lives in the root.
  217. */
  218. get_anon_vma(anon_vma->root);
  219. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  220. vma->anon_vma = anon_vma;
  221. anon_vma_chain_link(vma, avc, anon_vma);
  222. return 0;
  223. out_error_free_anon_vma:
  224. anon_vma_free(anon_vma);
  225. out_error:
  226. unlink_anon_vmas(vma);
  227. return -ENOMEM;
  228. }
  229. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  230. {
  231. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  232. int empty;
  233. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  234. if (!anon_vma)
  235. return;
  236. anon_vma_lock(anon_vma);
  237. list_del(&anon_vma_chain->same_anon_vma);
  238. /* We must garbage collect the anon_vma if it's empty */
  239. empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
  240. anon_vma_unlock(anon_vma);
  241. if (empty) {
  242. /* We no longer need the root anon_vma */
  243. if (anon_vma->root != anon_vma)
  244. drop_anon_vma(anon_vma->root);
  245. anon_vma_free(anon_vma);
  246. }
  247. }
  248. void unlink_anon_vmas(struct vm_area_struct *vma)
  249. {
  250. struct anon_vma_chain *avc, *next;
  251. /*
  252. * Unlink each anon_vma chained to the VMA. This list is ordered
  253. * from newest to oldest, ensuring the root anon_vma gets freed last.
  254. */
  255. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  256. anon_vma_unlink(avc);
  257. list_del(&avc->same_vma);
  258. anon_vma_chain_free(avc);
  259. }
  260. }
  261. static void anon_vma_ctor(void *data)
  262. {
  263. struct anon_vma *anon_vma = data;
  264. spin_lock_init(&anon_vma->lock);
  265. anonvma_external_refcount_init(anon_vma);
  266. INIT_LIST_HEAD(&anon_vma->head);
  267. }
  268. void __init anon_vma_init(void)
  269. {
  270. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  271. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  272. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  273. }
  274. /*
  275. * Getting a lock on a stable anon_vma from a page off the LRU is
  276. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  277. */
  278. struct anon_vma *page_lock_anon_vma(struct page *page)
  279. {
  280. struct anon_vma *anon_vma;
  281. unsigned long anon_mapping;
  282. rcu_read_lock();
  283. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  284. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  285. goto out;
  286. if (!page_mapped(page))
  287. goto out;
  288. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  289. anon_vma_lock(anon_vma);
  290. return anon_vma;
  291. out:
  292. rcu_read_unlock();
  293. return NULL;
  294. }
  295. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  296. {
  297. anon_vma_unlock(anon_vma);
  298. rcu_read_unlock();
  299. }
  300. /*
  301. * At what user virtual address is page expected in @vma?
  302. * Returns virtual address or -EFAULT if page's index/offset is not
  303. * within the range mapped the @vma.
  304. */
  305. static inline unsigned long
  306. vma_address(struct page *page, struct vm_area_struct *vma)
  307. {
  308. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  309. unsigned long address;
  310. if (unlikely(is_vm_hugetlb_page(vma)))
  311. pgoff = page->index << huge_page_order(page_hstate(page));
  312. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  313. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  314. /* page should be within @vma mapping range */
  315. return -EFAULT;
  316. }
  317. return address;
  318. }
  319. /*
  320. * At what user virtual address is page expected in vma?
  321. * Caller should check the page is actually part of the vma.
  322. */
  323. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  324. {
  325. if (PageAnon(page)) {
  326. if (vma->anon_vma->root != page_anon_vma(page)->root)
  327. return -EFAULT;
  328. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  329. if (!vma->vm_file ||
  330. vma->vm_file->f_mapping != page->mapping)
  331. return -EFAULT;
  332. } else
  333. return -EFAULT;
  334. return vma_address(page, vma);
  335. }
  336. /*
  337. * Check that @page is mapped at @address into @mm.
  338. *
  339. * If @sync is false, page_check_address may perform a racy check to avoid
  340. * the page table lock when the pte is not present (helpful when reclaiming
  341. * highly shared pages).
  342. *
  343. * On success returns with pte mapped and locked.
  344. */
  345. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  346. unsigned long address, spinlock_t **ptlp, int sync)
  347. {
  348. pgd_t *pgd;
  349. pud_t *pud;
  350. pmd_t *pmd;
  351. pte_t *pte;
  352. spinlock_t *ptl;
  353. if (unlikely(PageHuge(page))) {
  354. pte = huge_pte_offset(mm, address);
  355. ptl = &mm->page_table_lock;
  356. goto check;
  357. }
  358. pgd = pgd_offset(mm, address);
  359. if (!pgd_present(*pgd))
  360. return NULL;
  361. pud = pud_offset(pgd, address);
  362. if (!pud_present(*pud))
  363. return NULL;
  364. pmd = pmd_offset(pud, address);
  365. if (!pmd_present(*pmd))
  366. return NULL;
  367. pte = pte_offset_map(pmd, address);
  368. /* Make a quick check before getting the lock */
  369. if (!sync && !pte_present(*pte)) {
  370. pte_unmap(pte);
  371. return NULL;
  372. }
  373. ptl = pte_lockptr(mm, pmd);
  374. check:
  375. spin_lock(ptl);
  376. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  377. *ptlp = ptl;
  378. return pte;
  379. }
  380. pte_unmap_unlock(pte, ptl);
  381. return NULL;
  382. }
  383. /**
  384. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  385. * @page: the page to test
  386. * @vma: the VMA to test
  387. *
  388. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  389. * if the page is not mapped into the page tables of this VMA. Only
  390. * valid for normal file or anonymous VMAs.
  391. */
  392. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  393. {
  394. unsigned long address;
  395. pte_t *pte;
  396. spinlock_t *ptl;
  397. address = vma_address(page, vma);
  398. if (address == -EFAULT) /* out of vma range */
  399. return 0;
  400. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  401. if (!pte) /* the page is not in this mm */
  402. return 0;
  403. pte_unmap_unlock(pte, ptl);
  404. return 1;
  405. }
  406. /*
  407. * Subfunctions of page_referenced: page_referenced_one called
  408. * repeatedly from either page_referenced_anon or page_referenced_file.
  409. */
  410. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  411. unsigned long address, unsigned int *mapcount,
  412. unsigned long *vm_flags)
  413. {
  414. struct mm_struct *mm = vma->vm_mm;
  415. pte_t *pte;
  416. spinlock_t *ptl;
  417. int referenced = 0;
  418. pte = page_check_address(page, mm, address, &ptl, 0);
  419. if (!pte)
  420. goto out;
  421. /*
  422. * Don't want to elevate referenced for mlocked page that gets this far,
  423. * in order that it progresses to try_to_unmap and is moved to the
  424. * unevictable list.
  425. */
  426. if (vma->vm_flags & VM_LOCKED) {
  427. *mapcount = 1; /* break early from loop */
  428. *vm_flags |= VM_LOCKED;
  429. goto out_unmap;
  430. }
  431. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  432. /*
  433. * Don't treat a reference through a sequentially read
  434. * mapping as such. If the page has been used in
  435. * another mapping, we will catch it; if this other
  436. * mapping is already gone, the unmap path will have
  437. * set PG_referenced or activated the page.
  438. */
  439. if (likely(!VM_SequentialReadHint(vma)))
  440. referenced++;
  441. }
  442. /* Pretend the page is referenced if the task has the
  443. swap token and is in the middle of a page fault. */
  444. if (mm != current->mm && has_swap_token(mm) &&
  445. rwsem_is_locked(&mm->mmap_sem))
  446. referenced++;
  447. out_unmap:
  448. (*mapcount)--;
  449. pte_unmap_unlock(pte, ptl);
  450. if (referenced)
  451. *vm_flags |= vma->vm_flags;
  452. out:
  453. return referenced;
  454. }
  455. static int page_referenced_anon(struct page *page,
  456. struct mem_cgroup *mem_cont,
  457. unsigned long *vm_flags)
  458. {
  459. unsigned int mapcount;
  460. struct anon_vma *anon_vma;
  461. struct anon_vma_chain *avc;
  462. int referenced = 0;
  463. anon_vma = page_lock_anon_vma(page);
  464. if (!anon_vma)
  465. return referenced;
  466. mapcount = page_mapcount(page);
  467. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  468. struct vm_area_struct *vma = avc->vma;
  469. unsigned long address = vma_address(page, vma);
  470. if (address == -EFAULT)
  471. continue;
  472. /*
  473. * If we are reclaiming on behalf of a cgroup, skip
  474. * counting on behalf of references from different
  475. * cgroups
  476. */
  477. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  478. continue;
  479. referenced += page_referenced_one(page, vma, address,
  480. &mapcount, vm_flags);
  481. if (!mapcount)
  482. break;
  483. }
  484. page_unlock_anon_vma(anon_vma);
  485. return referenced;
  486. }
  487. /**
  488. * page_referenced_file - referenced check for object-based rmap
  489. * @page: the page we're checking references on.
  490. * @mem_cont: target memory controller
  491. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  492. *
  493. * For an object-based mapped page, find all the places it is mapped and
  494. * check/clear the referenced flag. This is done by following the page->mapping
  495. * pointer, then walking the chain of vmas it holds. It returns the number
  496. * of references it found.
  497. *
  498. * This function is only called from page_referenced for object-based pages.
  499. */
  500. static int page_referenced_file(struct page *page,
  501. struct mem_cgroup *mem_cont,
  502. unsigned long *vm_flags)
  503. {
  504. unsigned int mapcount;
  505. struct address_space *mapping = page->mapping;
  506. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  507. struct vm_area_struct *vma;
  508. struct prio_tree_iter iter;
  509. int referenced = 0;
  510. /*
  511. * The caller's checks on page->mapping and !PageAnon have made
  512. * sure that this is a file page: the check for page->mapping
  513. * excludes the case just before it gets set on an anon page.
  514. */
  515. BUG_ON(PageAnon(page));
  516. /*
  517. * The page lock not only makes sure that page->mapping cannot
  518. * suddenly be NULLified by truncation, it makes sure that the
  519. * structure at mapping cannot be freed and reused yet,
  520. * so we can safely take mapping->i_mmap_lock.
  521. */
  522. BUG_ON(!PageLocked(page));
  523. spin_lock(&mapping->i_mmap_lock);
  524. /*
  525. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  526. * is more likely to be accurate if we note it after spinning.
  527. */
  528. mapcount = page_mapcount(page);
  529. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  530. unsigned long address = vma_address(page, vma);
  531. if (address == -EFAULT)
  532. continue;
  533. /*
  534. * If we are reclaiming on behalf of a cgroup, skip
  535. * counting on behalf of references from different
  536. * cgroups
  537. */
  538. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  539. continue;
  540. referenced += page_referenced_one(page, vma, address,
  541. &mapcount, vm_flags);
  542. if (!mapcount)
  543. break;
  544. }
  545. spin_unlock(&mapping->i_mmap_lock);
  546. return referenced;
  547. }
  548. /**
  549. * page_referenced - test if the page was referenced
  550. * @page: the page to test
  551. * @is_locked: caller holds lock on the page
  552. * @mem_cont: target memory controller
  553. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  554. *
  555. * Quick test_and_clear_referenced for all mappings to a page,
  556. * returns the number of ptes which referenced the page.
  557. */
  558. int page_referenced(struct page *page,
  559. int is_locked,
  560. struct mem_cgroup *mem_cont,
  561. unsigned long *vm_flags)
  562. {
  563. int referenced = 0;
  564. int we_locked = 0;
  565. *vm_flags = 0;
  566. if (page_mapped(page) && page_rmapping(page)) {
  567. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  568. we_locked = trylock_page(page);
  569. if (!we_locked) {
  570. referenced++;
  571. goto out;
  572. }
  573. }
  574. if (unlikely(PageKsm(page)))
  575. referenced += page_referenced_ksm(page, mem_cont,
  576. vm_flags);
  577. else if (PageAnon(page))
  578. referenced += page_referenced_anon(page, mem_cont,
  579. vm_flags);
  580. else if (page->mapping)
  581. referenced += page_referenced_file(page, mem_cont,
  582. vm_flags);
  583. if (we_locked)
  584. unlock_page(page);
  585. }
  586. out:
  587. if (page_test_and_clear_young(page))
  588. referenced++;
  589. return referenced;
  590. }
  591. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  592. unsigned long address)
  593. {
  594. struct mm_struct *mm = vma->vm_mm;
  595. pte_t *pte;
  596. spinlock_t *ptl;
  597. int ret = 0;
  598. pte = page_check_address(page, mm, address, &ptl, 1);
  599. if (!pte)
  600. goto out;
  601. if (pte_dirty(*pte) || pte_write(*pte)) {
  602. pte_t entry;
  603. flush_cache_page(vma, address, pte_pfn(*pte));
  604. entry = ptep_clear_flush_notify(vma, address, pte);
  605. entry = pte_wrprotect(entry);
  606. entry = pte_mkclean(entry);
  607. set_pte_at(mm, address, pte, entry);
  608. ret = 1;
  609. }
  610. pte_unmap_unlock(pte, ptl);
  611. out:
  612. return ret;
  613. }
  614. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  615. {
  616. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  617. struct vm_area_struct *vma;
  618. struct prio_tree_iter iter;
  619. int ret = 0;
  620. BUG_ON(PageAnon(page));
  621. spin_lock(&mapping->i_mmap_lock);
  622. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  623. if (vma->vm_flags & VM_SHARED) {
  624. unsigned long address = vma_address(page, vma);
  625. if (address == -EFAULT)
  626. continue;
  627. ret += page_mkclean_one(page, vma, address);
  628. }
  629. }
  630. spin_unlock(&mapping->i_mmap_lock);
  631. return ret;
  632. }
  633. int page_mkclean(struct page *page)
  634. {
  635. int ret = 0;
  636. BUG_ON(!PageLocked(page));
  637. if (page_mapped(page)) {
  638. struct address_space *mapping = page_mapping(page);
  639. if (mapping) {
  640. ret = page_mkclean_file(mapping, page);
  641. if (page_test_dirty(page)) {
  642. page_clear_dirty(page);
  643. ret = 1;
  644. }
  645. }
  646. }
  647. return ret;
  648. }
  649. EXPORT_SYMBOL_GPL(page_mkclean);
  650. /**
  651. * page_move_anon_rmap - move a page to our anon_vma
  652. * @page: the page to move to our anon_vma
  653. * @vma: the vma the page belongs to
  654. * @address: the user virtual address mapped
  655. *
  656. * When a page belongs exclusively to one process after a COW event,
  657. * that page can be moved into the anon_vma that belongs to just that
  658. * process, so the rmap code will not search the parent or sibling
  659. * processes.
  660. */
  661. void page_move_anon_rmap(struct page *page,
  662. struct vm_area_struct *vma, unsigned long address)
  663. {
  664. struct anon_vma *anon_vma = vma->anon_vma;
  665. VM_BUG_ON(!PageLocked(page));
  666. VM_BUG_ON(!anon_vma);
  667. VM_BUG_ON(page->index != linear_page_index(vma, address));
  668. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  669. page->mapping = (struct address_space *) anon_vma;
  670. }
  671. /**
  672. * __page_set_anon_rmap - setup new anonymous rmap
  673. * @page: the page to add the mapping to
  674. * @vma: the vm area in which the mapping is added
  675. * @address: the user virtual address mapped
  676. * @exclusive: the page is exclusively owned by the current process
  677. */
  678. static void __page_set_anon_rmap(struct page *page,
  679. struct vm_area_struct *vma, unsigned long address, int exclusive)
  680. {
  681. struct anon_vma *anon_vma = vma->anon_vma;
  682. BUG_ON(!anon_vma);
  683. /*
  684. * If the page isn't exclusively mapped into this vma,
  685. * we must use the _oldest_ possible anon_vma for the
  686. * page mapping!
  687. */
  688. if (!exclusive) {
  689. if (PageAnon(page))
  690. return;
  691. anon_vma = anon_vma->root;
  692. } else {
  693. /*
  694. * In this case, swapped-out-but-not-discarded swap-cache
  695. * is remapped. So, no need to update page->mapping here.
  696. * We convice anon_vma poitned by page->mapping is not obsolete
  697. * because vma->anon_vma is necessary to be a family of it.
  698. */
  699. if (PageAnon(page))
  700. return;
  701. }
  702. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  703. page->mapping = (struct address_space *) anon_vma;
  704. page->index = linear_page_index(vma, address);
  705. }
  706. /**
  707. * __page_check_anon_rmap - sanity check anonymous rmap addition
  708. * @page: the page to add the mapping to
  709. * @vma: the vm area in which the mapping is added
  710. * @address: the user virtual address mapped
  711. */
  712. static void __page_check_anon_rmap(struct page *page,
  713. struct vm_area_struct *vma, unsigned long address)
  714. {
  715. #ifdef CONFIG_DEBUG_VM
  716. /*
  717. * The page's anon-rmap details (mapping and index) are guaranteed to
  718. * be set up correctly at this point.
  719. *
  720. * We have exclusion against page_add_anon_rmap because the caller
  721. * always holds the page locked, except if called from page_dup_rmap,
  722. * in which case the page is already known to be setup.
  723. *
  724. * We have exclusion against page_add_new_anon_rmap because those pages
  725. * are initially only visible via the pagetables, and the pte is locked
  726. * over the call to page_add_new_anon_rmap.
  727. */
  728. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  729. BUG_ON(page->index != linear_page_index(vma, address));
  730. #endif
  731. }
  732. /**
  733. * page_add_anon_rmap - add pte mapping to an anonymous page
  734. * @page: the page to add the mapping to
  735. * @vma: the vm area in which the mapping is added
  736. * @address: the user virtual address mapped
  737. *
  738. * The caller needs to hold the pte lock, and the page must be locked in
  739. * the anon_vma case: to serialize mapping,index checking after setting,
  740. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  741. * (but PageKsm is never downgraded to PageAnon).
  742. */
  743. void page_add_anon_rmap(struct page *page,
  744. struct vm_area_struct *vma, unsigned long address)
  745. {
  746. do_page_add_anon_rmap(page, vma, address, 0);
  747. }
  748. /*
  749. * Special version of the above for do_swap_page, which often runs
  750. * into pages that are exclusively owned by the current process.
  751. * Everybody else should continue to use page_add_anon_rmap above.
  752. */
  753. void do_page_add_anon_rmap(struct page *page,
  754. struct vm_area_struct *vma, unsigned long address, int exclusive)
  755. {
  756. int first = atomic_inc_and_test(&page->_mapcount);
  757. if (first)
  758. __inc_zone_page_state(page, NR_ANON_PAGES);
  759. if (unlikely(PageKsm(page)))
  760. return;
  761. VM_BUG_ON(!PageLocked(page));
  762. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  763. if (first)
  764. __page_set_anon_rmap(page, vma, address, exclusive);
  765. else
  766. __page_check_anon_rmap(page, vma, address);
  767. }
  768. /**
  769. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  770. * @page: the page to add the mapping to
  771. * @vma: the vm area in which the mapping is added
  772. * @address: the user virtual address mapped
  773. *
  774. * Same as page_add_anon_rmap but must only be called on *new* pages.
  775. * This means the inc-and-test can be bypassed.
  776. * Page does not have to be locked.
  777. */
  778. void page_add_new_anon_rmap(struct page *page,
  779. struct vm_area_struct *vma, unsigned long address)
  780. {
  781. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  782. SetPageSwapBacked(page);
  783. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  784. __inc_zone_page_state(page, NR_ANON_PAGES);
  785. __page_set_anon_rmap(page, vma, address, 1);
  786. if (page_evictable(page, vma))
  787. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  788. else
  789. add_page_to_unevictable_list(page);
  790. }
  791. /**
  792. * page_add_file_rmap - add pte mapping to a file page
  793. * @page: the page to add the mapping to
  794. *
  795. * The caller needs to hold the pte lock.
  796. */
  797. void page_add_file_rmap(struct page *page)
  798. {
  799. if (atomic_inc_and_test(&page->_mapcount)) {
  800. __inc_zone_page_state(page, NR_FILE_MAPPED);
  801. mem_cgroup_update_file_mapped(page, 1);
  802. }
  803. }
  804. /**
  805. * page_remove_rmap - take down pte mapping from a page
  806. * @page: page to remove mapping from
  807. *
  808. * The caller needs to hold the pte lock.
  809. */
  810. void page_remove_rmap(struct page *page)
  811. {
  812. /* page still mapped by someone else? */
  813. if (!atomic_add_negative(-1, &page->_mapcount))
  814. return;
  815. /*
  816. * Now that the last pte has gone, s390 must transfer dirty
  817. * flag from storage key to struct page. We can usually skip
  818. * this if the page is anon, so about to be freed; but perhaps
  819. * not if it's in swapcache - there might be another pte slot
  820. * containing the swap entry, but page not yet written to swap.
  821. */
  822. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  823. page_clear_dirty(page);
  824. set_page_dirty(page);
  825. }
  826. /*
  827. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  828. * and not charged by memcg for now.
  829. */
  830. if (unlikely(PageHuge(page)))
  831. return;
  832. if (PageAnon(page)) {
  833. mem_cgroup_uncharge_page(page);
  834. __dec_zone_page_state(page, NR_ANON_PAGES);
  835. } else {
  836. __dec_zone_page_state(page, NR_FILE_MAPPED);
  837. mem_cgroup_update_file_mapped(page, -1);
  838. }
  839. /*
  840. * It would be tidy to reset the PageAnon mapping here,
  841. * but that might overwrite a racing page_add_anon_rmap
  842. * which increments mapcount after us but sets mapping
  843. * before us: so leave the reset to free_hot_cold_page,
  844. * and remember that it's only reliable while mapped.
  845. * Leaving it set also helps swapoff to reinstate ptes
  846. * faster for those pages still in swapcache.
  847. */
  848. }
  849. /*
  850. * Subfunctions of try_to_unmap: try_to_unmap_one called
  851. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  852. */
  853. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  854. unsigned long address, enum ttu_flags flags)
  855. {
  856. struct mm_struct *mm = vma->vm_mm;
  857. pte_t *pte;
  858. pte_t pteval;
  859. spinlock_t *ptl;
  860. int ret = SWAP_AGAIN;
  861. pte = page_check_address(page, mm, address, &ptl, 0);
  862. if (!pte)
  863. goto out;
  864. /*
  865. * If the page is mlock()d, we cannot swap it out.
  866. * If it's recently referenced (perhaps page_referenced
  867. * skipped over this mm) then we should reactivate it.
  868. */
  869. if (!(flags & TTU_IGNORE_MLOCK)) {
  870. if (vma->vm_flags & VM_LOCKED)
  871. goto out_mlock;
  872. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  873. goto out_unmap;
  874. }
  875. if (!(flags & TTU_IGNORE_ACCESS)) {
  876. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  877. ret = SWAP_FAIL;
  878. goto out_unmap;
  879. }
  880. }
  881. /* Nuke the page table entry. */
  882. flush_cache_page(vma, address, page_to_pfn(page));
  883. pteval = ptep_clear_flush_notify(vma, address, pte);
  884. /* Move the dirty bit to the physical page now the pte is gone. */
  885. if (pte_dirty(pteval))
  886. set_page_dirty(page);
  887. /* Update high watermark before we lower rss */
  888. update_hiwater_rss(mm);
  889. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  890. if (PageAnon(page))
  891. dec_mm_counter(mm, MM_ANONPAGES);
  892. else
  893. dec_mm_counter(mm, MM_FILEPAGES);
  894. set_pte_at(mm, address, pte,
  895. swp_entry_to_pte(make_hwpoison_entry(page)));
  896. } else if (PageAnon(page)) {
  897. swp_entry_t entry = { .val = page_private(page) };
  898. if (PageSwapCache(page)) {
  899. /*
  900. * Store the swap location in the pte.
  901. * See handle_pte_fault() ...
  902. */
  903. if (swap_duplicate(entry) < 0) {
  904. set_pte_at(mm, address, pte, pteval);
  905. ret = SWAP_FAIL;
  906. goto out_unmap;
  907. }
  908. if (list_empty(&mm->mmlist)) {
  909. spin_lock(&mmlist_lock);
  910. if (list_empty(&mm->mmlist))
  911. list_add(&mm->mmlist, &init_mm.mmlist);
  912. spin_unlock(&mmlist_lock);
  913. }
  914. dec_mm_counter(mm, MM_ANONPAGES);
  915. inc_mm_counter(mm, MM_SWAPENTS);
  916. } else if (PAGE_MIGRATION) {
  917. /*
  918. * Store the pfn of the page in a special migration
  919. * pte. do_swap_page() will wait until the migration
  920. * pte is removed and then restart fault handling.
  921. */
  922. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  923. entry = make_migration_entry(page, pte_write(pteval));
  924. }
  925. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  926. BUG_ON(pte_file(*pte));
  927. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  928. /* Establish migration entry for a file page */
  929. swp_entry_t entry;
  930. entry = make_migration_entry(page, pte_write(pteval));
  931. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  932. } else
  933. dec_mm_counter(mm, MM_FILEPAGES);
  934. page_remove_rmap(page);
  935. page_cache_release(page);
  936. out_unmap:
  937. pte_unmap_unlock(pte, ptl);
  938. out:
  939. return ret;
  940. out_mlock:
  941. pte_unmap_unlock(pte, ptl);
  942. /*
  943. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  944. * unstable result and race. Plus, We can't wait here because
  945. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  946. * if trylock failed, the page remain in evictable lru and later
  947. * vmscan could retry to move the page to unevictable lru if the
  948. * page is actually mlocked.
  949. */
  950. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  951. if (vma->vm_flags & VM_LOCKED) {
  952. mlock_vma_page(page);
  953. ret = SWAP_MLOCK;
  954. }
  955. up_read(&vma->vm_mm->mmap_sem);
  956. }
  957. return ret;
  958. }
  959. /*
  960. * objrmap doesn't work for nonlinear VMAs because the assumption that
  961. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  962. * Consequently, given a particular page and its ->index, we cannot locate the
  963. * ptes which are mapping that page without an exhaustive linear search.
  964. *
  965. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  966. * maps the file to which the target page belongs. The ->vm_private_data field
  967. * holds the current cursor into that scan. Successive searches will circulate
  968. * around the vma's virtual address space.
  969. *
  970. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  971. * more scanning pressure is placed against them as well. Eventually pages
  972. * will become fully unmapped and are eligible for eviction.
  973. *
  974. * For very sparsely populated VMAs this is a little inefficient - chances are
  975. * there there won't be many ptes located within the scan cluster. In this case
  976. * maybe we could scan further - to the end of the pte page, perhaps.
  977. *
  978. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  979. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  980. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  981. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  982. */
  983. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  984. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  985. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  986. struct vm_area_struct *vma, struct page *check_page)
  987. {
  988. struct mm_struct *mm = vma->vm_mm;
  989. pgd_t *pgd;
  990. pud_t *pud;
  991. pmd_t *pmd;
  992. pte_t *pte;
  993. pte_t pteval;
  994. spinlock_t *ptl;
  995. struct page *page;
  996. unsigned long address;
  997. unsigned long end;
  998. int ret = SWAP_AGAIN;
  999. int locked_vma = 0;
  1000. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1001. end = address + CLUSTER_SIZE;
  1002. if (address < vma->vm_start)
  1003. address = vma->vm_start;
  1004. if (end > vma->vm_end)
  1005. end = vma->vm_end;
  1006. pgd = pgd_offset(mm, address);
  1007. if (!pgd_present(*pgd))
  1008. return ret;
  1009. pud = pud_offset(pgd, address);
  1010. if (!pud_present(*pud))
  1011. return ret;
  1012. pmd = pmd_offset(pud, address);
  1013. if (!pmd_present(*pmd))
  1014. return ret;
  1015. /*
  1016. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1017. * keep the sem while scanning the cluster for mlocking pages.
  1018. */
  1019. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1020. locked_vma = (vma->vm_flags & VM_LOCKED);
  1021. if (!locked_vma)
  1022. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1023. }
  1024. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1025. /* Update high watermark before we lower rss */
  1026. update_hiwater_rss(mm);
  1027. for (; address < end; pte++, address += PAGE_SIZE) {
  1028. if (!pte_present(*pte))
  1029. continue;
  1030. page = vm_normal_page(vma, address, *pte);
  1031. BUG_ON(!page || PageAnon(page));
  1032. if (locked_vma) {
  1033. mlock_vma_page(page); /* no-op if already mlocked */
  1034. if (page == check_page)
  1035. ret = SWAP_MLOCK;
  1036. continue; /* don't unmap */
  1037. }
  1038. if (ptep_clear_flush_young_notify(vma, address, pte))
  1039. continue;
  1040. /* Nuke the page table entry. */
  1041. flush_cache_page(vma, address, pte_pfn(*pte));
  1042. pteval = ptep_clear_flush_notify(vma, address, pte);
  1043. /* If nonlinear, store the file page offset in the pte. */
  1044. if (page->index != linear_page_index(vma, address))
  1045. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1046. /* Move the dirty bit to the physical page now the pte is gone. */
  1047. if (pte_dirty(pteval))
  1048. set_page_dirty(page);
  1049. page_remove_rmap(page);
  1050. page_cache_release(page);
  1051. dec_mm_counter(mm, MM_FILEPAGES);
  1052. (*mapcount)--;
  1053. }
  1054. pte_unmap_unlock(pte - 1, ptl);
  1055. if (locked_vma)
  1056. up_read(&vma->vm_mm->mmap_sem);
  1057. return ret;
  1058. }
  1059. static bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1060. {
  1061. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1062. if (!maybe_stack)
  1063. return false;
  1064. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1065. VM_STACK_INCOMPLETE_SETUP)
  1066. return true;
  1067. return false;
  1068. }
  1069. /**
  1070. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1071. * rmap method
  1072. * @page: the page to unmap/unlock
  1073. * @flags: action and flags
  1074. *
  1075. * Find all the mappings of a page using the mapping pointer and the vma chains
  1076. * contained in the anon_vma struct it points to.
  1077. *
  1078. * This function is only called from try_to_unmap/try_to_munlock for
  1079. * anonymous pages.
  1080. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1081. * where the page was found will be held for write. So, we won't recheck
  1082. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1083. * 'LOCKED.
  1084. */
  1085. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1086. {
  1087. struct anon_vma *anon_vma;
  1088. struct anon_vma_chain *avc;
  1089. int ret = SWAP_AGAIN;
  1090. anon_vma = page_lock_anon_vma(page);
  1091. if (!anon_vma)
  1092. return ret;
  1093. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1094. struct vm_area_struct *vma = avc->vma;
  1095. unsigned long address;
  1096. /*
  1097. * During exec, a temporary VMA is setup and later moved.
  1098. * The VMA is moved under the anon_vma lock but not the
  1099. * page tables leading to a race where migration cannot
  1100. * find the migration ptes. Rather than increasing the
  1101. * locking requirements of exec(), migration skips
  1102. * temporary VMAs until after exec() completes.
  1103. */
  1104. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1105. is_vma_temporary_stack(vma))
  1106. continue;
  1107. address = vma_address(page, vma);
  1108. if (address == -EFAULT)
  1109. continue;
  1110. ret = try_to_unmap_one(page, vma, address, flags);
  1111. if (ret != SWAP_AGAIN || !page_mapped(page))
  1112. break;
  1113. }
  1114. page_unlock_anon_vma(anon_vma);
  1115. return ret;
  1116. }
  1117. /**
  1118. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1119. * @page: the page to unmap/unlock
  1120. * @flags: action and flags
  1121. *
  1122. * Find all the mappings of a page using the mapping pointer and the vma chains
  1123. * contained in the address_space struct it points to.
  1124. *
  1125. * This function is only called from try_to_unmap/try_to_munlock for
  1126. * object-based pages.
  1127. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1128. * where the page was found will be held for write. So, we won't recheck
  1129. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1130. * 'LOCKED.
  1131. */
  1132. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1133. {
  1134. struct address_space *mapping = page->mapping;
  1135. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1136. struct vm_area_struct *vma;
  1137. struct prio_tree_iter iter;
  1138. int ret = SWAP_AGAIN;
  1139. unsigned long cursor;
  1140. unsigned long max_nl_cursor = 0;
  1141. unsigned long max_nl_size = 0;
  1142. unsigned int mapcount;
  1143. spin_lock(&mapping->i_mmap_lock);
  1144. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1145. unsigned long address = vma_address(page, vma);
  1146. if (address == -EFAULT)
  1147. continue;
  1148. ret = try_to_unmap_one(page, vma, address, flags);
  1149. if (ret != SWAP_AGAIN || !page_mapped(page))
  1150. goto out;
  1151. }
  1152. if (list_empty(&mapping->i_mmap_nonlinear))
  1153. goto out;
  1154. /*
  1155. * We don't bother to try to find the munlocked page in nonlinears.
  1156. * It's costly. Instead, later, page reclaim logic may call
  1157. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1158. */
  1159. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1160. goto out;
  1161. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1162. shared.vm_set.list) {
  1163. cursor = (unsigned long) vma->vm_private_data;
  1164. if (cursor > max_nl_cursor)
  1165. max_nl_cursor = cursor;
  1166. cursor = vma->vm_end - vma->vm_start;
  1167. if (cursor > max_nl_size)
  1168. max_nl_size = cursor;
  1169. }
  1170. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1171. ret = SWAP_FAIL;
  1172. goto out;
  1173. }
  1174. /*
  1175. * We don't try to search for this page in the nonlinear vmas,
  1176. * and page_referenced wouldn't have found it anyway. Instead
  1177. * just walk the nonlinear vmas trying to age and unmap some.
  1178. * The mapcount of the page we came in with is irrelevant,
  1179. * but even so use it as a guide to how hard we should try?
  1180. */
  1181. mapcount = page_mapcount(page);
  1182. if (!mapcount)
  1183. goto out;
  1184. cond_resched_lock(&mapping->i_mmap_lock);
  1185. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1186. if (max_nl_cursor == 0)
  1187. max_nl_cursor = CLUSTER_SIZE;
  1188. do {
  1189. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1190. shared.vm_set.list) {
  1191. cursor = (unsigned long) vma->vm_private_data;
  1192. while ( cursor < max_nl_cursor &&
  1193. cursor < vma->vm_end - vma->vm_start) {
  1194. if (try_to_unmap_cluster(cursor, &mapcount,
  1195. vma, page) == SWAP_MLOCK)
  1196. ret = SWAP_MLOCK;
  1197. cursor += CLUSTER_SIZE;
  1198. vma->vm_private_data = (void *) cursor;
  1199. if ((int)mapcount <= 0)
  1200. goto out;
  1201. }
  1202. vma->vm_private_data = (void *) max_nl_cursor;
  1203. }
  1204. cond_resched_lock(&mapping->i_mmap_lock);
  1205. max_nl_cursor += CLUSTER_SIZE;
  1206. } while (max_nl_cursor <= max_nl_size);
  1207. /*
  1208. * Don't loop forever (perhaps all the remaining pages are
  1209. * in locked vmas). Reset cursor on all unreserved nonlinear
  1210. * vmas, now forgetting on which ones it had fallen behind.
  1211. */
  1212. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1213. vma->vm_private_data = NULL;
  1214. out:
  1215. spin_unlock(&mapping->i_mmap_lock);
  1216. return ret;
  1217. }
  1218. /**
  1219. * try_to_unmap - try to remove all page table mappings to a page
  1220. * @page: the page to get unmapped
  1221. * @flags: action and flags
  1222. *
  1223. * Tries to remove all the page table entries which are mapping this
  1224. * page, used in the pageout path. Caller must hold the page lock.
  1225. * Return values are:
  1226. *
  1227. * SWAP_SUCCESS - we succeeded in removing all mappings
  1228. * SWAP_AGAIN - we missed a mapping, try again later
  1229. * SWAP_FAIL - the page is unswappable
  1230. * SWAP_MLOCK - page is mlocked.
  1231. */
  1232. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1233. {
  1234. int ret;
  1235. BUG_ON(!PageLocked(page));
  1236. if (unlikely(PageKsm(page)))
  1237. ret = try_to_unmap_ksm(page, flags);
  1238. else if (PageAnon(page))
  1239. ret = try_to_unmap_anon(page, flags);
  1240. else
  1241. ret = try_to_unmap_file(page, flags);
  1242. if (ret != SWAP_MLOCK && !page_mapped(page))
  1243. ret = SWAP_SUCCESS;
  1244. return ret;
  1245. }
  1246. /**
  1247. * try_to_munlock - try to munlock a page
  1248. * @page: the page to be munlocked
  1249. *
  1250. * Called from munlock code. Checks all of the VMAs mapping the page
  1251. * to make sure nobody else has this page mlocked. The page will be
  1252. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1253. *
  1254. * Return values are:
  1255. *
  1256. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1257. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1258. * SWAP_FAIL - page cannot be located at present
  1259. * SWAP_MLOCK - page is now mlocked.
  1260. */
  1261. int try_to_munlock(struct page *page)
  1262. {
  1263. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1264. if (unlikely(PageKsm(page)))
  1265. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1266. else if (PageAnon(page))
  1267. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1268. else
  1269. return try_to_unmap_file(page, TTU_MUNLOCK);
  1270. }
  1271. #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
  1272. /*
  1273. * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
  1274. * if necessary. Be careful to do all the tests under the lock. Once
  1275. * we know we are the last user, nobody else can get a reference and we
  1276. * can do the freeing without the lock.
  1277. */
  1278. void drop_anon_vma(struct anon_vma *anon_vma)
  1279. {
  1280. BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
  1281. if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
  1282. struct anon_vma *root = anon_vma->root;
  1283. int empty = list_empty(&anon_vma->head);
  1284. int last_root_user = 0;
  1285. int root_empty = 0;
  1286. /*
  1287. * The refcount on a non-root anon_vma got dropped. Drop
  1288. * the refcount on the root and check if we need to free it.
  1289. */
  1290. if (empty && anon_vma != root) {
  1291. BUG_ON(atomic_read(&root->external_refcount) <= 0);
  1292. last_root_user = atomic_dec_and_test(&root->external_refcount);
  1293. root_empty = list_empty(&root->head);
  1294. }
  1295. anon_vma_unlock(anon_vma);
  1296. if (empty) {
  1297. anon_vma_free(anon_vma);
  1298. if (root_empty && last_root_user)
  1299. anon_vma_free(root);
  1300. }
  1301. }
  1302. }
  1303. #endif
  1304. #ifdef CONFIG_MIGRATION
  1305. /*
  1306. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1307. * Called by migrate.c to remove migration ptes, but might be used more later.
  1308. */
  1309. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1310. struct vm_area_struct *, unsigned long, void *), void *arg)
  1311. {
  1312. struct anon_vma *anon_vma;
  1313. struct anon_vma_chain *avc;
  1314. int ret = SWAP_AGAIN;
  1315. /*
  1316. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1317. * because that depends on page_mapped(); but not all its usages
  1318. * are holding mmap_sem. Users without mmap_sem are required to
  1319. * take a reference count to prevent the anon_vma disappearing
  1320. */
  1321. anon_vma = page_anon_vma(page);
  1322. if (!anon_vma)
  1323. return ret;
  1324. anon_vma_lock(anon_vma);
  1325. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1326. struct vm_area_struct *vma = avc->vma;
  1327. unsigned long address = vma_address(page, vma);
  1328. if (address == -EFAULT)
  1329. continue;
  1330. ret = rmap_one(page, vma, address, arg);
  1331. if (ret != SWAP_AGAIN)
  1332. break;
  1333. }
  1334. anon_vma_unlock(anon_vma);
  1335. return ret;
  1336. }
  1337. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1338. struct vm_area_struct *, unsigned long, void *), void *arg)
  1339. {
  1340. struct address_space *mapping = page->mapping;
  1341. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1342. struct vm_area_struct *vma;
  1343. struct prio_tree_iter iter;
  1344. int ret = SWAP_AGAIN;
  1345. if (!mapping)
  1346. return ret;
  1347. spin_lock(&mapping->i_mmap_lock);
  1348. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1349. unsigned long address = vma_address(page, vma);
  1350. if (address == -EFAULT)
  1351. continue;
  1352. ret = rmap_one(page, vma, address, arg);
  1353. if (ret != SWAP_AGAIN)
  1354. break;
  1355. }
  1356. /*
  1357. * No nonlinear handling: being always shared, nonlinear vmas
  1358. * never contain migration ptes. Decide what to do about this
  1359. * limitation to linear when we need rmap_walk() on nonlinear.
  1360. */
  1361. spin_unlock(&mapping->i_mmap_lock);
  1362. return ret;
  1363. }
  1364. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1365. struct vm_area_struct *, unsigned long, void *), void *arg)
  1366. {
  1367. VM_BUG_ON(!PageLocked(page));
  1368. if (unlikely(PageKsm(page)))
  1369. return rmap_walk_ksm(page, rmap_one, arg);
  1370. else if (PageAnon(page))
  1371. return rmap_walk_anon(page, rmap_one, arg);
  1372. else
  1373. return rmap_walk_file(page, rmap_one, arg);
  1374. }
  1375. #endif /* CONFIG_MIGRATION */
  1376. #ifdef CONFIG_HUGETLB_PAGE
  1377. /*
  1378. * The following three functions are for anonymous (private mapped) hugepages.
  1379. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1380. * and no lru code, because we handle hugepages differently from common pages.
  1381. */
  1382. static void __hugepage_set_anon_rmap(struct page *page,
  1383. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1384. {
  1385. struct anon_vma *anon_vma = vma->anon_vma;
  1386. BUG_ON(!anon_vma);
  1387. if (!exclusive) {
  1388. struct anon_vma_chain *avc;
  1389. avc = list_entry(vma->anon_vma_chain.prev,
  1390. struct anon_vma_chain, same_vma);
  1391. anon_vma = avc->anon_vma;
  1392. }
  1393. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1394. page->mapping = (struct address_space *) anon_vma;
  1395. page->index = linear_page_index(vma, address);
  1396. }
  1397. void hugepage_add_anon_rmap(struct page *page,
  1398. struct vm_area_struct *vma, unsigned long address)
  1399. {
  1400. struct anon_vma *anon_vma = vma->anon_vma;
  1401. int first;
  1402. BUG_ON(!anon_vma);
  1403. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1404. first = atomic_inc_and_test(&page->_mapcount);
  1405. if (first)
  1406. __hugepage_set_anon_rmap(page, vma, address, 0);
  1407. }
  1408. void hugepage_add_new_anon_rmap(struct page *page,
  1409. struct vm_area_struct *vma, unsigned long address)
  1410. {
  1411. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1412. atomic_set(&page->_mapcount, 0);
  1413. __hugepage_set_anon_rmap(page, vma, address, 1);
  1414. }
  1415. #endif /* CONFIG_HUGETLB_PAGE */