rcutree_plugin.h 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion (tree-based version)
  3. * Internal non-public definitions that provide either classic
  4. * or preemptible semantics.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19. *
  20. * Copyright Red Hat, 2009
  21. * Copyright IBM Corporation, 2009
  22. *
  23. * Author: Ingo Molnar <mingo@elte.hu>
  24. * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/gfp.h>
  28. #include <linux/oom.h>
  29. #include <linux/smpboot.h>
  30. #include "time/tick-internal.h"
  31. #define RCU_KTHREAD_PRIO 1
  32. #ifdef CONFIG_RCU_BOOST
  33. #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
  34. #else
  35. #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
  36. #endif
  37. #ifdef CONFIG_RCU_NOCB_CPU
  38. static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  39. static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
  40. static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
  41. static char __initdata nocb_buf[NR_CPUS * 5];
  42. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  43. /*
  44. * Check the RCU kernel configuration parameters and print informative
  45. * messages about anything out of the ordinary. If you like #ifdef, you
  46. * will love this function.
  47. */
  48. static void __init rcu_bootup_announce_oddness(void)
  49. {
  50. #ifdef CONFIG_RCU_TRACE
  51. pr_info("\tRCU debugfs-based tracing is enabled.\n");
  52. #endif
  53. #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
  54. pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  55. CONFIG_RCU_FANOUT);
  56. #endif
  57. #ifdef CONFIG_RCU_FANOUT_EXACT
  58. pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  59. #endif
  60. #ifdef CONFIG_RCU_FAST_NO_HZ
  61. pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  62. #endif
  63. #ifdef CONFIG_PROVE_RCU
  64. pr_info("\tRCU lockdep checking is enabled.\n");
  65. #endif
  66. #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
  67. pr_info("\tRCU torture testing starts during boot.\n");
  68. #endif
  69. #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
  70. pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
  71. #endif
  72. #if defined(CONFIG_RCU_CPU_STALL_INFO)
  73. pr_info("\tAdditional per-CPU info printed with stalls.\n");
  74. #endif
  75. #if NUM_RCU_LVL_4 != 0
  76. pr_info("\tFour-level hierarchy is enabled.\n");
  77. #endif
  78. if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
  79. pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  80. if (nr_cpu_ids != NR_CPUS)
  81. pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  82. #ifdef CONFIG_RCU_NOCB_CPU
  83. #ifndef CONFIG_RCU_NOCB_CPU_NONE
  84. if (!have_rcu_nocb_mask) {
  85. zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
  86. have_rcu_nocb_mask = true;
  87. }
  88. #ifdef CONFIG_RCU_NOCB_CPU_ZERO
  89. pr_info("\tOffload RCU callbacks from CPU 0\n");
  90. cpumask_set_cpu(0, rcu_nocb_mask);
  91. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
  92. #ifdef CONFIG_RCU_NOCB_CPU_ALL
  93. pr_info("\tOffload RCU callbacks from all CPUs\n");
  94. cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
  95. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
  96. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
  97. if (have_rcu_nocb_mask) {
  98. if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
  99. pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
  100. cpumask_and(rcu_nocb_mask, cpu_possible_mask,
  101. rcu_nocb_mask);
  102. }
  103. cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
  104. pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
  105. if (rcu_nocb_poll)
  106. pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
  107. }
  108. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  109. }
  110. #ifdef CONFIG_TREE_PREEMPT_RCU
  111. RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  112. static struct rcu_state *rcu_state = &rcu_preempt_state;
  113. static int rcu_preempted_readers_exp(struct rcu_node *rnp);
  114. /*
  115. * Tell them what RCU they are running.
  116. */
  117. static void __init rcu_bootup_announce(void)
  118. {
  119. pr_info("Preemptible hierarchical RCU implementation.\n");
  120. rcu_bootup_announce_oddness();
  121. }
  122. /*
  123. * Return the number of RCU-preempt batches processed thus far
  124. * for debug and statistics.
  125. */
  126. long rcu_batches_completed_preempt(void)
  127. {
  128. return rcu_preempt_state.completed;
  129. }
  130. EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
  131. /*
  132. * Return the number of RCU batches processed thus far for debug & stats.
  133. */
  134. long rcu_batches_completed(void)
  135. {
  136. return rcu_batches_completed_preempt();
  137. }
  138. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  139. /*
  140. * Force a quiescent state for preemptible RCU.
  141. */
  142. void rcu_force_quiescent_state(void)
  143. {
  144. force_quiescent_state(&rcu_preempt_state);
  145. }
  146. EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
  147. /*
  148. * Record a preemptible-RCU quiescent state for the specified CPU. Note
  149. * that this just means that the task currently running on the CPU is
  150. * not in a quiescent state. There might be any number of tasks blocked
  151. * while in an RCU read-side critical section.
  152. *
  153. * Unlike the other rcu_*_qs() functions, callers to this function
  154. * must disable irqs in order to protect the assignment to
  155. * ->rcu_read_unlock_special.
  156. */
  157. static void rcu_preempt_qs(int cpu)
  158. {
  159. struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
  160. if (rdp->passed_quiesce == 0)
  161. trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
  162. rdp->passed_quiesce = 1;
  163. current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
  164. }
  165. /*
  166. * We have entered the scheduler, and the current task might soon be
  167. * context-switched away from. If this task is in an RCU read-side
  168. * critical section, we will no longer be able to rely on the CPU to
  169. * record that fact, so we enqueue the task on the blkd_tasks list.
  170. * The task will dequeue itself when it exits the outermost enclosing
  171. * RCU read-side critical section. Therefore, the current grace period
  172. * cannot be permitted to complete until the blkd_tasks list entries
  173. * predating the current grace period drain, in other words, until
  174. * rnp->gp_tasks becomes NULL.
  175. *
  176. * Caller must disable preemption.
  177. */
  178. static void rcu_preempt_note_context_switch(int cpu)
  179. {
  180. struct task_struct *t = current;
  181. unsigned long flags;
  182. struct rcu_data *rdp;
  183. struct rcu_node *rnp;
  184. if (t->rcu_read_lock_nesting > 0 &&
  185. (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
  186. /* Possibly blocking in an RCU read-side critical section. */
  187. rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
  188. rnp = rdp->mynode;
  189. raw_spin_lock_irqsave(&rnp->lock, flags);
  190. t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
  191. t->rcu_blocked_node = rnp;
  192. /*
  193. * If this CPU has already checked in, then this task
  194. * will hold up the next grace period rather than the
  195. * current grace period. Queue the task accordingly.
  196. * If the task is queued for the current grace period
  197. * (i.e., this CPU has not yet passed through a quiescent
  198. * state for the current grace period), then as long
  199. * as that task remains queued, the current grace period
  200. * cannot end. Note that there is some uncertainty as
  201. * to exactly when the current grace period started.
  202. * We take a conservative approach, which can result
  203. * in unnecessarily waiting on tasks that started very
  204. * slightly after the current grace period began. C'est
  205. * la vie!!!
  206. *
  207. * But first, note that the current CPU must still be
  208. * on line!
  209. */
  210. WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
  211. WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
  212. if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
  213. list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
  214. rnp->gp_tasks = &t->rcu_node_entry;
  215. #ifdef CONFIG_RCU_BOOST
  216. if (rnp->boost_tasks != NULL)
  217. rnp->boost_tasks = rnp->gp_tasks;
  218. #endif /* #ifdef CONFIG_RCU_BOOST */
  219. } else {
  220. list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
  221. if (rnp->qsmask & rdp->grpmask)
  222. rnp->gp_tasks = &t->rcu_node_entry;
  223. }
  224. trace_rcu_preempt_task(rdp->rsp->name,
  225. t->pid,
  226. (rnp->qsmask & rdp->grpmask)
  227. ? rnp->gpnum
  228. : rnp->gpnum + 1);
  229. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  230. } else if (t->rcu_read_lock_nesting < 0 &&
  231. t->rcu_read_unlock_special) {
  232. /*
  233. * Complete exit from RCU read-side critical section on
  234. * behalf of preempted instance of __rcu_read_unlock().
  235. */
  236. rcu_read_unlock_special(t);
  237. }
  238. /*
  239. * Either we were not in an RCU read-side critical section to
  240. * begin with, or we have now recorded that critical section
  241. * globally. Either way, we can now note a quiescent state
  242. * for this CPU. Again, if we were in an RCU read-side critical
  243. * section, and if that critical section was blocking the current
  244. * grace period, then the fact that the task has been enqueued
  245. * means that we continue to block the current grace period.
  246. */
  247. local_irq_save(flags);
  248. rcu_preempt_qs(cpu);
  249. local_irq_restore(flags);
  250. }
  251. /*
  252. * Check for preempted RCU readers blocking the current grace period
  253. * for the specified rcu_node structure. If the caller needs a reliable
  254. * answer, it must hold the rcu_node's ->lock.
  255. */
  256. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  257. {
  258. return rnp->gp_tasks != NULL;
  259. }
  260. /*
  261. * Record a quiescent state for all tasks that were previously queued
  262. * on the specified rcu_node structure and that were blocking the current
  263. * RCU grace period. The caller must hold the specified rnp->lock with
  264. * irqs disabled, and this lock is released upon return, but irqs remain
  265. * disabled.
  266. */
  267. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  268. __releases(rnp->lock)
  269. {
  270. unsigned long mask;
  271. struct rcu_node *rnp_p;
  272. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  273. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  274. return; /* Still need more quiescent states! */
  275. }
  276. rnp_p = rnp->parent;
  277. if (rnp_p == NULL) {
  278. /*
  279. * Either there is only one rcu_node in the tree,
  280. * or tasks were kicked up to root rcu_node due to
  281. * CPUs going offline.
  282. */
  283. rcu_report_qs_rsp(&rcu_preempt_state, flags);
  284. return;
  285. }
  286. /* Report up the rest of the hierarchy. */
  287. mask = rnp->grpmask;
  288. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  289. raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
  290. rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
  291. }
  292. /*
  293. * Advance a ->blkd_tasks-list pointer to the next entry, instead
  294. * returning NULL if at the end of the list.
  295. */
  296. static struct list_head *rcu_next_node_entry(struct task_struct *t,
  297. struct rcu_node *rnp)
  298. {
  299. struct list_head *np;
  300. np = t->rcu_node_entry.next;
  301. if (np == &rnp->blkd_tasks)
  302. np = NULL;
  303. return np;
  304. }
  305. /*
  306. * Handle special cases during rcu_read_unlock(), such as needing to
  307. * notify RCU core processing or task having blocked during the RCU
  308. * read-side critical section.
  309. */
  310. void rcu_read_unlock_special(struct task_struct *t)
  311. {
  312. int empty;
  313. int empty_exp;
  314. int empty_exp_now;
  315. unsigned long flags;
  316. struct list_head *np;
  317. #ifdef CONFIG_RCU_BOOST
  318. struct rt_mutex *rbmp = NULL;
  319. #endif /* #ifdef CONFIG_RCU_BOOST */
  320. struct rcu_node *rnp;
  321. int special;
  322. /* NMI handlers cannot block and cannot safely manipulate state. */
  323. if (in_nmi())
  324. return;
  325. local_irq_save(flags);
  326. /*
  327. * If RCU core is waiting for this CPU to exit critical section,
  328. * let it know that we have done so.
  329. */
  330. special = t->rcu_read_unlock_special;
  331. if (special & RCU_READ_UNLOCK_NEED_QS) {
  332. rcu_preempt_qs(smp_processor_id());
  333. }
  334. /* Hardware IRQ handlers cannot block. */
  335. if (in_irq() || in_serving_softirq()) {
  336. local_irq_restore(flags);
  337. return;
  338. }
  339. /* Clean up if blocked during RCU read-side critical section. */
  340. if (special & RCU_READ_UNLOCK_BLOCKED) {
  341. t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
  342. /*
  343. * Remove this task from the list it blocked on. The
  344. * task can migrate while we acquire the lock, but at
  345. * most one time. So at most two passes through loop.
  346. */
  347. for (;;) {
  348. rnp = t->rcu_blocked_node;
  349. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  350. if (rnp == t->rcu_blocked_node)
  351. break;
  352. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  353. }
  354. empty = !rcu_preempt_blocked_readers_cgp(rnp);
  355. empty_exp = !rcu_preempted_readers_exp(rnp);
  356. smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
  357. np = rcu_next_node_entry(t, rnp);
  358. list_del_init(&t->rcu_node_entry);
  359. t->rcu_blocked_node = NULL;
  360. trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
  361. rnp->gpnum, t->pid);
  362. if (&t->rcu_node_entry == rnp->gp_tasks)
  363. rnp->gp_tasks = np;
  364. if (&t->rcu_node_entry == rnp->exp_tasks)
  365. rnp->exp_tasks = np;
  366. #ifdef CONFIG_RCU_BOOST
  367. if (&t->rcu_node_entry == rnp->boost_tasks)
  368. rnp->boost_tasks = np;
  369. /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
  370. if (t->rcu_boost_mutex) {
  371. rbmp = t->rcu_boost_mutex;
  372. t->rcu_boost_mutex = NULL;
  373. }
  374. #endif /* #ifdef CONFIG_RCU_BOOST */
  375. /*
  376. * If this was the last task on the current list, and if
  377. * we aren't waiting on any CPUs, report the quiescent state.
  378. * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
  379. * so we must take a snapshot of the expedited state.
  380. */
  381. empty_exp_now = !rcu_preempted_readers_exp(rnp);
  382. if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
  383. trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
  384. rnp->gpnum,
  385. 0, rnp->qsmask,
  386. rnp->level,
  387. rnp->grplo,
  388. rnp->grphi,
  389. !!rnp->gp_tasks);
  390. rcu_report_unblock_qs_rnp(rnp, flags);
  391. } else {
  392. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  393. }
  394. #ifdef CONFIG_RCU_BOOST
  395. /* Unboost if we were boosted. */
  396. if (rbmp)
  397. rt_mutex_unlock(rbmp);
  398. #endif /* #ifdef CONFIG_RCU_BOOST */
  399. /*
  400. * If this was the last task on the expedited lists,
  401. * then we need to report up the rcu_node hierarchy.
  402. */
  403. if (!empty_exp && empty_exp_now)
  404. rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
  405. } else {
  406. local_irq_restore(flags);
  407. }
  408. }
  409. #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
  410. /*
  411. * Dump detailed information for all tasks blocking the current RCU
  412. * grace period on the specified rcu_node structure.
  413. */
  414. static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
  415. {
  416. unsigned long flags;
  417. struct task_struct *t;
  418. raw_spin_lock_irqsave(&rnp->lock, flags);
  419. if (!rcu_preempt_blocked_readers_cgp(rnp)) {
  420. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  421. return;
  422. }
  423. t = list_entry(rnp->gp_tasks,
  424. struct task_struct, rcu_node_entry);
  425. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
  426. sched_show_task(t);
  427. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  428. }
  429. /*
  430. * Dump detailed information for all tasks blocking the current RCU
  431. * grace period.
  432. */
  433. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  434. {
  435. struct rcu_node *rnp = rcu_get_root(rsp);
  436. rcu_print_detail_task_stall_rnp(rnp);
  437. rcu_for_each_leaf_node(rsp, rnp)
  438. rcu_print_detail_task_stall_rnp(rnp);
  439. }
  440. #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
  441. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  442. {
  443. }
  444. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
  445. #ifdef CONFIG_RCU_CPU_STALL_INFO
  446. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  447. {
  448. pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
  449. rnp->level, rnp->grplo, rnp->grphi);
  450. }
  451. static void rcu_print_task_stall_end(void)
  452. {
  453. pr_cont("\n");
  454. }
  455. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  456. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  457. {
  458. }
  459. static void rcu_print_task_stall_end(void)
  460. {
  461. }
  462. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  463. /*
  464. * Scan the current list of tasks blocked within RCU read-side critical
  465. * sections, printing out the tid of each.
  466. */
  467. static int rcu_print_task_stall(struct rcu_node *rnp)
  468. {
  469. struct task_struct *t;
  470. int ndetected = 0;
  471. if (!rcu_preempt_blocked_readers_cgp(rnp))
  472. return 0;
  473. rcu_print_task_stall_begin(rnp);
  474. t = list_entry(rnp->gp_tasks,
  475. struct task_struct, rcu_node_entry);
  476. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  477. pr_cont(" P%d", t->pid);
  478. ndetected++;
  479. }
  480. rcu_print_task_stall_end();
  481. return ndetected;
  482. }
  483. /*
  484. * Check that the list of blocked tasks for the newly completed grace
  485. * period is in fact empty. It is a serious bug to complete a grace
  486. * period that still has RCU readers blocked! This function must be
  487. * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
  488. * must be held by the caller.
  489. *
  490. * Also, if there are blocked tasks on the list, they automatically
  491. * block the newly created grace period, so set up ->gp_tasks accordingly.
  492. */
  493. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  494. {
  495. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  496. if (!list_empty(&rnp->blkd_tasks))
  497. rnp->gp_tasks = rnp->blkd_tasks.next;
  498. WARN_ON_ONCE(rnp->qsmask);
  499. }
  500. #ifdef CONFIG_HOTPLUG_CPU
  501. /*
  502. * Handle tasklist migration for case in which all CPUs covered by the
  503. * specified rcu_node have gone offline. Move them up to the root
  504. * rcu_node. The reason for not just moving them to the immediate
  505. * parent is to remove the need for rcu_read_unlock_special() to
  506. * make more than two attempts to acquire the target rcu_node's lock.
  507. * Returns true if there were tasks blocking the current RCU grace
  508. * period.
  509. *
  510. * Returns 1 if there was previously a task blocking the current grace
  511. * period on the specified rcu_node structure.
  512. *
  513. * The caller must hold rnp->lock with irqs disabled.
  514. */
  515. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  516. struct rcu_node *rnp,
  517. struct rcu_data *rdp)
  518. {
  519. struct list_head *lp;
  520. struct list_head *lp_root;
  521. int retval = 0;
  522. struct rcu_node *rnp_root = rcu_get_root(rsp);
  523. struct task_struct *t;
  524. if (rnp == rnp_root) {
  525. WARN_ONCE(1, "Last CPU thought to be offlined?");
  526. return 0; /* Shouldn't happen: at least one CPU online. */
  527. }
  528. /* If we are on an internal node, complain bitterly. */
  529. WARN_ON_ONCE(rnp != rdp->mynode);
  530. /*
  531. * Move tasks up to root rcu_node. Don't try to get fancy for
  532. * this corner-case operation -- just put this node's tasks
  533. * at the head of the root node's list, and update the root node's
  534. * ->gp_tasks and ->exp_tasks pointers to those of this node's,
  535. * if non-NULL. This might result in waiting for more tasks than
  536. * absolutely necessary, but this is a good performance/complexity
  537. * tradeoff.
  538. */
  539. if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
  540. retval |= RCU_OFL_TASKS_NORM_GP;
  541. if (rcu_preempted_readers_exp(rnp))
  542. retval |= RCU_OFL_TASKS_EXP_GP;
  543. lp = &rnp->blkd_tasks;
  544. lp_root = &rnp_root->blkd_tasks;
  545. while (!list_empty(lp)) {
  546. t = list_entry(lp->next, typeof(*t), rcu_node_entry);
  547. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  548. list_del(&t->rcu_node_entry);
  549. t->rcu_blocked_node = rnp_root;
  550. list_add(&t->rcu_node_entry, lp_root);
  551. if (&t->rcu_node_entry == rnp->gp_tasks)
  552. rnp_root->gp_tasks = rnp->gp_tasks;
  553. if (&t->rcu_node_entry == rnp->exp_tasks)
  554. rnp_root->exp_tasks = rnp->exp_tasks;
  555. #ifdef CONFIG_RCU_BOOST
  556. if (&t->rcu_node_entry == rnp->boost_tasks)
  557. rnp_root->boost_tasks = rnp->boost_tasks;
  558. #endif /* #ifdef CONFIG_RCU_BOOST */
  559. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  560. }
  561. rnp->gp_tasks = NULL;
  562. rnp->exp_tasks = NULL;
  563. #ifdef CONFIG_RCU_BOOST
  564. rnp->boost_tasks = NULL;
  565. /*
  566. * In case root is being boosted and leaf was not. Make sure
  567. * that we boost the tasks blocking the current grace period
  568. * in this case.
  569. */
  570. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  571. if (rnp_root->boost_tasks != NULL &&
  572. rnp_root->boost_tasks != rnp_root->gp_tasks &&
  573. rnp_root->boost_tasks != rnp_root->exp_tasks)
  574. rnp_root->boost_tasks = rnp_root->gp_tasks;
  575. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  576. #endif /* #ifdef CONFIG_RCU_BOOST */
  577. return retval;
  578. }
  579. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  580. /*
  581. * Check for a quiescent state from the current CPU. When a task blocks,
  582. * the task is recorded in the corresponding CPU's rcu_node structure,
  583. * which is checked elsewhere.
  584. *
  585. * Caller must disable hard irqs.
  586. */
  587. static void rcu_preempt_check_callbacks(int cpu)
  588. {
  589. struct task_struct *t = current;
  590. if (t->rcu_read_lock_nesting == 0) {
  591. rcu_preempt_qs(cpu);
  592. return;
  593. }
  594. if (t->rcu_read_lock_nesting > 0 &&
  595. per_cpu(rcu_preempt_data, cpu).qs_pending)
  596. t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
  597. }
  598. #ifdef CONFIG_RCU_BOOST
  599. static void rcu_preempt_do_callbacks(void)
  600. {
  601. rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
  602. }
  603. #endif /* #ifdef CONFIG_RCU_BOOST */
  604. /*
  605. * Queue a preemptible-RCU callback for invocation after a grace period.
  606. */
  607. void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  608. {
  609. __call_rcu(head, func, &rcu_preempt_state, -1, 0);
  610. }
  611. EXPORT_SYMBOL_GPL(call_rcu);
  612. /*
  613. * Queue an RCU callback for lazy invocation after a grace period.
  614. * This will likely be later named something like "call_rcu_lazy()",
  615. * but this change will require some way of tagging the lazy RCU
  616. * callbacks in the list of pending callbacks. Until then, this
  617. * function may only be called from __kfree_rcu().
  618. */
  619. void kfree_call_rcu(struct rcu_head *head,
  620. void (*func)(struct rcu_head *rcu))
  621. {
  622. __call_rcu(head, func, &rcu_preempt_state, -1, 1);
  623. }
  624. EXPORT_SYMBOL_GPL(kfree_call_rcu);
  625. /**
  626. * synchronize_rcu - wait until a grace period has elapsed.
  627. *
  628. * Control will return to the caller some time after a full grace
  629. * period has elapsed, in other words after all currently executing RCU
  630. * read-side critical sections have completed. Note, however, that
  631. * upon return from synchronize_rcu(), the caller might well be executing
  632. * concurrently with new RCU read-side critical sections that began while
  633. * synchronize_rcu() was waiting. RCU read-side critical sections are
  634. * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
  635. *
  636. * See the description of synchronize_sched() for more detailed information
  637. * on memory ordering guarantees.
  638. */
  639. void synchronize_rcu(void)
  640. {
  641. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  642. !lock_is_held(&rcu_lock_map) &&
  643. !lock_is_held(&rcu_sched_lock_map),
  644. "Illegal synchronize_rcu() in RCU read-side critical section");
  645. if (!rcu_scheduler_active)
  646. return;
  647. if (rcu_expedited)
  648. synchronize_rcu_expedited();
  649. else
  650. wait_rcu_gp(call_rcu);
  651. }
  652. EXPORT_SYMBOL_GPL(synchronize_rcu);
  653. static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
  654. static unsigned long sync_rcu_preempt_exp_count;
  655. static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
  656. /*
  657. * Return non-zero if there are any tasks in RCU read-side critical
  658. * sections blocking the current preemptible-RCU expedited grace period.
  659. * If there is no preemptible-RCU expedited grace period currently in
  660. * progress, returns zero unconditionally.
  661. */
  662. static int rcu_preempted_readers_exp(struct rcu_node *rnp)
  663. {
  664. return rnp->exp_tasks != NULL;
  665. }
  666. /*
  667. * return non-zero if there is no RCU expedited grace period in progress
  668. * for the specified rcu_node structure, in other words, if all CPUs and
  669. * tasks covered by the specified rcu_node structure have done their bit
  670. * for the current expedited grace period. Works only for preemptible
  671. * RCU -- other RCU implementation use other means.
  672. *
  673. * Caller must hold sync_rcu_preempt_exp_mutex.
  674. */
  675. static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
  676. {
  677. return !rcu_preempted_readers_exp(rnp) &&
  678. ACCESS_ONCE(rnp->expmask) == 0;
  679. }
  680. /*
  681. * Report the exit from RCU read-side critical section for the last task
  682. * that queued itself during or before the current expedited preemptible-RCU
  683. * grace period. This event is reported either to the rcu_node structure on
  684. * which the task was queued or to one of that rcu_node structure's ancestors,
  685. * recursively up the tree. (Calm down, calm down, we do the recursion
  686. * iteratively!)
  687. *
  688. * Most callers will set the "wake" flag, but the task initiating the
  689. * expedited grace period need not wake itself.
  690. *
  691. * Caller must hold sync_rcu_preempt_exp_mutex.
  692. */
  693. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  694. bool wake)
  695. {
  696. unsigned long flags;
  697. unsigned long mask;
  698. raw_spin_lock_irqsave(&rnp->lock, flags);
  699. for (;;) {
  700. if (!sync_rcu_preempt_exp_done(rnp)) {
  701. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  702. break;
  703. }
  704. if (rnp->parent == NULL) {
  705. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  706. if (wake)
  707. wake_up(&sync_rcu_preempt_exp_wq);
  708. break;
  709. }
  710. mask = rnp->grpmask;
  711. raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
  712. rnp = rnp->parent;
  713. raw_spin_lock(&rnp->lock); /* irqs already disabled */
  714. rnp->expmask &= ~mask;
  715. }
  716. }
  717. /*
  718. * Snapshot the tasks blocking the newly started preemptible-RCU expedited
  719. * grace period for the specified rcu_node structure. If there are no such
  720. * tasks, report it up the rcu_node hierarchy.
  721. *
  722. * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
  723. * CPU hotplug operations.
  724. */
  725. static void
  726. sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
  727. {
  728. unsigned long flags;
  729. int must_wait = 0;
  730. raw_spin_lock_irqsave(&rnp->lock, flags);
  731. if (list_empty(&rnp->blkd_tasks)) {
  732. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  733. } else {
  734. rnp->exp_tasks = rnp->blkd_tasks.next;
  735. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  736. must_wait = 1;
  737. }
  738. if (!must_wait)
  739. rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
  740. }
  741. /**
  742. * synchronize_rcu_expedited - Brute-force RCU grace period
  743. *
  744. * Wait for an RCU-preempt grace period, but expedite it. The basic
  745. * idea is to invoke synchronize_sched_expedited() to push all the tasks to
  746. * the ->blkd_tasks lists and wait for this list to drain. This consumes
  747. * significant time on all CPUs and is unfriendly to real-time workloads,
  748. * so is thus not recommended for any sort of common-case code.
  749. * In fact, if you are using synchronize_rcu_expedited() in a loop,
  750. * please restructure your code to batch your updates, and then Use a
  751. * single synchronize_rcu() instead.
  752. *
  753. * Note that it is illegal to call this function while holding any lock
  754. * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
  755. * to call this function from a CPU-hotplug notifier. Failing to observe
  756. * these restriction will result in deadlock.
  757. */
  758. void synchronize_rcu_expedited(void)
  759. {
  760. unsigned long flags;
  761. struct rcu_node *rnp;
  762. struct rcu_state *rsp = &rcu_preempt_state;
  763. unsigned long snap;
  764. int trycount = 0;
  765. smp_mb(); /* Caller's modifications seen first by other CPUs. */
  766. snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
  767. smp_mb(); /* Above access cannot bleed into critical section. */
  768. /*
  769. * Block CPU-hotplug operations. This means that any CPU-hotplug
  770. * operation that finds an rcu_node structure with tasks in the
  771. * process of being boosted will know that all tasks blocking
  772. * this expedited grace period will already be in the process of
  773. * being boosted. This simplifies the process of moving tasks
  774. * from leaf to root rcu_node structures.
  775. */
  776. get_online_cpus();
  777. /*
  778. * Acquire lock, falling back to synchronize_rcu() if too many
  779. * lock-acquisition failures. Of course, if someone does the
  780. * expedited grace period for us, just leave.
  781. */
  782. while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
  783. if (ULONG_CMP_LT(snap,
  784. ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  785. put_online_cpus();
  786. goto mb_ret; /* Others did our work for us. */
  787. }
  788. if (trycount++ < 10) {
  789. udelay(trycount * num_online_cpus());
  790. } else {
  791. put_online_cpus();
  792. wait_rcu_gp(call_rcu);
  793. return;
  794. }
  795. }
  796. if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  797. put_online_cpus();
  798. goto unlock_mb_ret; /* Others did our work for us. */
  799. }
  800. /* force all RCU readers onto ->blkd_tasks lists. */
  801. synchronize_sched_expedited();
  802. /* Initialize ->expmask for all non-leaf rcu_node structures. */
  803. rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
  804. raw_spin_lock_irqsave(&rnp->lock, flags);
  805. rnp->expmask = rnp->qsmaskinit;
  806. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  807. }
  808. /* Snapshot current state of ->blkd_tasks lists. */
  809. rcu_for_each_leaf_node(rsp, rnp)
  810. sync_rcu_preempt_exp_init(rsp, rnp);
  811. if (NUM_RCU_NODES > 1)
  812. sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
  813. put_online_cpus();
  814. /* Wait for snapshotted ->blkd_tasks lists to drain. */
  815. rnp = rcu_get_root(rsp);
  816. wait_event(sync_rcu_preempt_exp_wq,
  817. sync_rcu_preempt_exp_done(rnp));
  818. /* Clean up and exit. */
  819. smp_mb(); /* ensure expedited GP seen before counter increment. */
  820. ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
  821. unlock_mb_ret:
  822. mutex_unlock(&sync_rcu_preempt_exp_mutex);
  823. mb_ret:
  824. smp_mb(); /* ensure subsequent action seen after grace period. */
  825. }
  826. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  827. /**
  828. * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
  829. *
  830. * Note that this primitive does not necessarily wait for an RCU grace period
  831. * to complete. For example, if there are no RCU callbacks queued anywhere
  832. * in the system, then rcu_barrier() is within its rights to return
  833. * immediately, without waiting for anything, much less an RCU grace period.
  834. */
  835. void rcu_barrier(void)
  836. {
  837. _rcu_barrier(&rcu_preempt_state);
  838. }
  839. EXPORT_SYMBOL_GPL(rcu_barrier);
  840. /*
  841. * Initialize preemptible RCU's state structures.
  842. */
  843. static void __init __rcu_init_preempt(void)
  844. {
  845. rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
  846. }
  847. /*
  848. * Check for a task exiting while in a preemptible-RCU read-side
  849. * critical section, clean up if so. No need to issue warnings,
  850. * as debug_check_no_locks_held() already does this if lockdep
  851. * is enabled.
  852. */
  853. void exit_rcu(void)
  854. {
  855. struct task_struct *t = current;
  856. if (likely(list_empty(&current->rcu_node_entry)))
  857. return;
  858. t->rcu_read_lock_nesting = 1;
  859. barrier();
  860. t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
  861. __rcu_read_unlock();
  862. }
  863. #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
  864. static struct rcu_state *rcu_state = &rcu_sched_state;
  865. /*
  866. * Tell them what RCU they are running.
  867. */
  868. static void __init rcu_bootup_announce(void)
  869. {
  870. pr_info("Hierarchical RCU implementation.\n");
  871. rcu_bootup_announce_oddness();
  872. }
  873. /*
  874. * Return the number of RCU batches processed thus far for debug & stats.
  875. */
  876. long rcu_batches_completed(void)
  877. {
  878. return rcu_batches_completed_sched();
  879. }
  880. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  881. /*
  882. * Force a quiescent state for RCU, which, because there is no preemptible
  883. * RCU, becomes the same as rcu-sched.
  884. */
  885. void rcu_force_quiescent_state(void)
  886. {
  887. rcu_sched_force_quiescent_state();
  888. }
  889. EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
  890. /*
  891. * Because preemptible RCU does not exist, we never have to check for
  892. * CPUs being in quiescent states.
  893. */
  894. static void rcu_preempt_note_context_switch(int cpu)
  895. {
  896. }
  897. /*
  898. * Because preemptible RCU does not exist, there are never any preempted
  899. * RCU readers.
  900. */
  901. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  902. {
  903. return 0;
  904. }
  905. #ifdef CONFIG_HOTPLUG_CPU
  906. /* Because preemptible RCU does not exist, no quieting of tasks. */
  907. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  908. {
  909. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  910. }
  911. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  912. /*
  913. * Because preemptible RCU does not exist, we never have to check for
  914. * tasks blocked within RCU read-side critical sections.
  915. */
  916. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  917. {
  918. }
  919. /*
  920. * Because preemptible RCU does not exist, we never have to check for
  921. * tasks blocked within RCU read-side critical sections.
  922. */
  923. static int rcu_print_task_stall(struct rcu_node *rnp)
  924. {
  925. return 0;
  926. }
  927. /*
  928. * Because there is no preemptible RCU, there can be no readers blocked,
  929. * so there is no need to check for blocked tasks. So check only for
  930. * bogus qsmask values.
  931. */
  932. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  933. {
  934. WARN_ON_ONCE(rnp->qsmask);
  935. }
  936. #ifdef CONFIG_HOTPLUG_CPU
  937. /*
  938. * Because preemptible RCU does not exist, it never needs to migrate
  939. * tasks that were blocked within RCU read-side critical sections, and
  940. * such non-existent tasks cannot possibly have been blocking the current
  941. * grace period.
  942. */
  943. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  944. struct rcu_node *rnp,
  945. struct rcu_data *rdp)
  946. {
  947. return 0;
  948. }
  949. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  950. /*
  951. * Because preemptible RCU does not exist, it never has any callbacks
  952. * to check.
  953. */
  954. static void rcu_preempt_check_callbacks(int cpu)
  955. {
  956. }
  957. /*
  958. * Queue an RCU callback for lazy invocation after a grace period.
  959. * This will likely be later named something like "call_rcu_lazy()",
  960. * but this change will require some way of tagging the lazy RCU
  961. * callbacks in the list of pending callbacks. Until then, this
  962. * function may only be called from __kfree_rcu().
  963. *
  964. * Because there is no preemptible RCU, we use RCU-sched instead.
  965. */
  966. void kfree_call_rcu(struct rcu_head *head,
  967. void (*func)(struct rcu_head *rcu))
  968. {
  969. __call_rcu(head, func, &rcu_sched_state, -1, 1);
  970. }
  971. EXPORT_SYMBOL_GPL(kfree_call_rcu);
  972. /*
  973. * Wait for an rcu-preempt grace period, but make it happen quickly.
  974. * But because preemptible RCU does not exist, map to rcu-sched.
  975. */
  976. void synchronize_rcu_expedited(void)
  977. {
  978. synchronize_sched_expedited();
  979. }
  980. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  981. #ifdef CONFIG_HOTPLUG_CPU
  982. /*
  983. * Because preemptible RCU does not exist, there is never any need to
  984. * report on tasks preempted in RCU read-side critical sections during
  985. * expedited RCU grace periods.
  986. */
  987. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  988. bool wake)
  989. {
  990. }
  991. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  992. /*
  993. * Because preemptible RCU does not exist, rcu_barrier() is just
  994. * another name for rcu_barrier_sched().
  995. */
  996. void rcu_barrier(void)
  997. {
  998. rcu_barrier_sched();
  999. }
  1000. EXPORT_SYMBOL_GPL(rcu_barrier);
  1001. /*
  1002. * Because preemptible RCU does not exist, it need not be initialized.
  1003. */
  1004. static void __init __rcu_init_preempt(void)
  1005. {
  1006. }
  1007. /*
  1008. * Because preemptible RCU does not exist, tasks cannot possibly exit
  1009. * while in preemptible RCU read-side critical sections.
  1010. */
  1011. void exit_rcu(void)
  1012. {
  1013. }
  1014. #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
  1015. #ifdef CONFIG_RCU_BOOST
  1016. #include "rtmutex_common.h"
  1017. #ifdef CONFIG_RCU_TRACE
  1018. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  1019. {
  1020. if (list_empty(&rnp->blkd_tasks))
  1021. rnp->n_balk_blkd_tasks++;
  1022. else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
  1023. rnp->n_balk_exp_gp_tasks++;
  1024. else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
  1025. rnp->n_balk_boost_tasks++;
  1026. else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
  1027. rnp->n_balk_notblocked++;
  1028. else if (rnp->gp_tasks != NULL &&
  1029. ULONG_CMP_LT(jiffies, rnp->boost_time))
  1030. rnp->n_balk_notyet++;
  1031. else
  1032. rnp->n_balk_nos++;
  1033. }
  1034. #else /* #ifdef CONFIG_RCU_TRACE */
  1035. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  1036. {
  1037. }
  1038. #endif /* #else #ifdef CONFIG_RCU_TRACE */
  1039. static void rcu_wake_cond(struct task_struct *t, int status)
  1040. {
  1041. /*
  1042. * If the thread is yielding, only wake it when this
  1043. * is invoked from idle
  1044. */
  1045. if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
  1046. wake_up_process(t);
  1047. }
  1048. /*
  1049. * Carry out RCU priority boosting on the task indicated by ->exp_tasks
  1050. * or ->boost_tasks, advancing the pointer to the next task in the
  1051. * ->blkd_tasks list.
  1052. *
  1053. * Note that irqs must be enabled: boosting the task can block.
  1054. * Returns 1 if there are more tasks needing to be boosted.
  1055. */
  1056. static int rcu_boost(struct rcu_node *rnp)
  1057. {
  1058. unsigned long flags;
  1059. struct rt_mutex mtx;
  1060. struct task_struct *t;
  1061. struct list_head *tb;
  1062. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
  1063. return 0; /* Nothing left to boost. */
  1064. raw_spin_lock_irqsave(&rnp->lock, flags);
  1065. /*
  1066. * Recheck under the lock: all tasks in need of boosting
  1067. * might exit their RCU read-side critical sections on their own.
  1068. */
  1069. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
  1070. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1071. return 0;
  1072. }
  1073. /*
  1074. * Preferentially boost tasks blocking expedited grace periods.
  1075. * This cannot starve the normal grace periods because a second
  1076. * expedited grace period must boost all blocked tasks, including
  1077. * those blocking the pre-existing normal grace period.
  1078. */
  1079. if (rnp->exp_tasks != NULL) {
  1080. tb = rnp->exp_tasks;
  1081. rnp->n_exp_boosts++;
  1082. } else {
  1083. tb = rnp->boost_tasks;
  1084. rnp->n_normal_boosts++;
  1085. }
  1086. rnp->n_tasks_boosted++;
  1087. /*
  1088. * We boost task t by manufacturing an rt_mutex that appears to
  1089. * be held by task t. We leave a pointer to that rt_mutex where
  1090. * task t can find it, and task t will release the mutex when it
  1091. * exits its outermost RCU read-side critical section. Then
  1092. * simply acquiring this artificial rt_mutex will boost task
  1093. * t's priority. (Thanks to tglx for suggesting this approach!)
  1094. *
  1095. * Note that task t must acquire rnp->lock to remove itself from
  1096. * the ->blkd_tasks list, which it will do from exit() if from
  1097. * nowhere else. We therefore are guaranteed that task t will
  1098. * stay around at least until we drop rnp->lock. Note that
  1099. * rnp->lock also resolves races between our priority boosting
  1100. * and task t's exiting its outermost RCU read-side critical
  1101. * section.
  1102. */
  1103. t = container_of(tb, struct task_struct, rcu_node_entry);
  1104. rt_mutex_init_proxy_locked(&mtx, t);
  1105. t->rcu_boost_mutex = &mtx;
  1106. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1107. rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
  1108. rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
  1109. return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
  1110. ACCESS_ONCE(rnp->boost_tasks) != NULL;
  1111. }
  1112. /*
  1113. * Priority-boosting kthread. One per leaf rcu_node and one for the
  1114. * root rcu_node.
  1115. */
  1116. static int rcu_boost_kthread(void *arg)
  1117. {
  1118. struct rcu_node *rnp = (struct rcu_node *)arg;
  1119. int spincnt = 0;
  1120. int more2boost;
  1121. trace_rcu_utilization(TPS("Start boost kthread@init"));
  1122. for (;;) {
  1123. rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
  1124. trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
  1125. rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
  1126. trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
  1127. rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
  1128. more2boost = rcu_boost(rnp);
  1129. if (more2boost)
  1130. spincnt++;
  1131. else
  1132. spincnt = 0;
  1133. if (spincnt > 10) {
  1134. rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
  1135. trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
  1136. schedule_timeout_interruptible(2);
  1137. trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
  1138. spincnt = 0;
  1139. }
  1140. }
  1141. /* NOTREACHED */
  1142. trace_rcu_utilization(TPS("End boost kthread@notreached"));
  1143. return 0;
  1144. }
  1145. /*
  1146. * Check to see if it is time to start boosting RCU readers that are
  1147. * blocking the current grace period, and, if so, tell the per-rcu_node
  1148. * kthread to start boosting them. If there is an expedited grace
  1149. * period in progress, it is always time to boost.
  1150. *
  1151. * The caller must hold rnp->lock, which this function releases.
  1152. * The ->boost_kthread_task is immortal, so we don't need to worry
  1153. * about it going away.
  1154. */
  1155. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1156. {
  1157. struct task_struct *t;
  1158. if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
  1159. rnp->n_balk_exp_gp_tasks++;
  1160. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1161. return;
  1162. }
  1163. if (rnp->exp_tasks != NULL ||
  1164. (rnp->gp_tasks != NULL &&
  1165. rnp->boost_tasks == NULL &&
  1166. rnp->qsmask == 0 &&
  1167. ULONG_CMP_GE(jiffies, rnp->boost_time))) {
  1168. if (rnp->exp_tasks == NULL)
  1169. rnp->boost_tasks = rnp->gp_tasks;
  1170. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1171. t = rnp->boost_kthread_task;
  1172. if (t)
  1173. rcu_wake_cond(t, rnp->boost_kthread_status);
  1174. } else {
  1175. rcu_initiate_boost_trace(rnp);
  1176. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1177. }
  1178. }
  1179. /*
  1180. * Wake up the per-CPU kthread to invoke RCU callbacks.
  1181. */
  1182. static void invoke_rcu_callbacks_kthread(void)
  1183. {
  1184. unsigned long flags;
  1185. local_irq_save(flags);
  1186. __this_cpu_write(rcu_cpu_has_work, 1);
  1187. if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
  1188. current != __this_cpu_read(rcu_cpu_kthread_task)) {
  1189. rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
  1190. __this_cpu_read(rcu_cpu_kthread_status));
  1191. }
  1192. local_irq_restore(flags);
  1193. }
  1194. /*
  1195. * Is the current CPU running the RCU-callbacks kthread?
  1196. * Caller must have preemption disabled.
  1197. */
  1198. static bool rcu_is_callbacks_kthread(void)
  1199. {
  1200. return __this_cpu_read(rcu_cpu_kthread_task) == current;
  1201. }
  1202. #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
  1203. /*
  1204. * Do priority-boost accounting for the start of a new grace period.
  1205. */
  1206. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1207. {
  1208. rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
  1209. }
  1210. /*
  1211. * Create an RCU-boost kthread for the specified node if one does not
  1212. * already exist. We only create this kthread for preemptible RCU.
  1213. * Returns zero if all is well, a negated errno otherwise.
  1214. */
  1215. static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
  1216. struct rcu_node *rnp)
  1217. {
  1218. int rnp_index = rnp - &rsp->node[0];
  1219. unsigned long flags;
  1220. struct sched_param sp;
  1221. struct task_struct *t;
  1222. if (&rcu_preempt_state != rsp)
  1223. return 0;
  1224. if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
  1225. return 0;
  1226. rsp->boost = 1;
  1227. if (rnp->boost_kthread_task != NULL)
  1228. return 0;
  1229. t = kthread_create(rcu_boost_kthread, (void *)rnp,
  1230. "rcub/%d", rnp_index);
  1231. if (IS_ERR(t))
  1232. return PTR_ERR(t);
  1233. raw_spin_lock_irqsave(&rnp->lock, flags);
  1234. rnp->boost_kthread_task = t;
  1235. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1236. sp.sched_priority = RCU_BOOST_PRIO;
  1237. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  1238. wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
  1239. return 0;
  1240. }
  1241. static void rcu_kthread_do_work(void)
  1242. {
  1243. rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
  1244. rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
  1245. rcu_preempt_do_callbacks();
  1246. }
  1247. static void rcu_cpu_kthread_setup(unsigned int cpu)
  1248. {
  1249. struct sched_param sp;
  1250. sp.sched_priority = RCU_KTHREAD_PRIO;
  1251. sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
  1252. }
  1253. static void rcu_cpu_kthread_park(unsigned int cpu)
  1254. {
  1255. per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
  1256. }
  1257. static int rcu_cpu_kthread_should_run(unsigned int cpu)
  1258. {
  1259. return __this_cpu_read(rcu_cpu_has_work);
  1260. }
  1261. /*
  1262. * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
  1263. * RCU softirq used in flavors and configurations of RCU that do not
  1264. * support RCU priority boosting.
  1265. */
  1266. static void rcu_cpu_kthread(unsigned int cpu)
  1267. {
  1268. unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
  1269. char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
  1270. int spincnt;
  1271. for (spincnt = 0; spincnt < 10; spincnt++) {
  1272. trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
  1273. local_bh_disable();
  1274. *statusp = RCU_KTHREAD_RUNNING;
  1275. this_cpu_inc(rcu_cpu_kthread_loops);
  1276. local_irq_disable();
  1277. work = *workp;
  1278. *workp = 0;
  1279. local_irq_enable();
  1280. if (work)
  1281. rcu_kthread_do_work();
  1282. local_bh_enable();
  1283. if (*workp == 0) {
  1284. trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
  1285. *statusp = RCU_KTHREAD_WAITING;
  1286. return;
  1287. }
  1288. }
  1289. *statusp = RCU_KTHREAD_YIELDING;
  1290. trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
  1291. schedule_timeout_interruptible(2);
  1292. trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
  1293. *statusp = RCU_KTHREAD_WAITING;
  1294. }
  1295. /*
  1296. * Set the per-rcu_node kthread's affinity to cover all CPUs that are
  1297. * served by the rcu_node in question. The CPU hotplug lock is still
  1298. * held, so the value of rnp->qsmaskinit will be stable.
  1299. *
  1300. * We don't include outgoingcpu in the affinity set, use -1 if there is
  1301. * no outgoing CPU. If there are no CPUs left in the affinity set,
  1302. * this function allows the kthread to execute on any CPU.
  1303. */
  1304. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1305. {
  1306. struct task_struct *t = rnp->boost_kthread_task;
  1307. unsigned long mask = rnp->qsmaskinit;
  1308. cpumask_var_t cm;
  1309. int cpu;
  1310. if (!t)
  1311. return;
  1312. if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
  1313. return;
  1314. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
  1315. if ((mask & 0x1) && cpu != outgoingcpu)
  1316. cpumask_set_cpu(cpu, cm);
  1317. if (cpumask_weight(cm) == 0) {
  1318. cpumask_setall(cm);
  1319. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
  1320. cpumask_clear_cpu(cpu, cm);
  1321. WARN_ON_ONCE(cpumask_weight(cm) == 0);
  1322. }
  1323. set_cpus_allowed_ptr(t, cm);
  1324. free_cpumask_var(cm);
  1325. }
  1326. static struct smp_hotplug_thread rcu_cpu_thread_spec = {
  1327. .store = &rcu_cpu_kthread_task,
  1328. .thread_should_run = rcu_cpu_kthread_should_run,
  1329. .thread_fn = rcu_cpu_kthread,
  1330. .thread_comm = "rcuc/%u",
  1331. .setup = rcu_cpu_kthread_setup,
  1332. .park = rcu_cpu_kthread_park,
  1333. };
  1334. /*
  1335. * Spawn all kthreads -- called as soon as the scheduler is running.
  1336. */
  1337. static int __init rcu_spawn_kthreads(void)
  1338. {
  1339. struct rcu_node *rnp;
  1340. int cpu;
  1341. rcu_scheduler_fully_active = 1;
  1342. for_each_possible_cpu(cpu)
  1343. per_cpu(rcu_cpu_has_work, cpu) = 0;
  1344. BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
  1345. rnp = rcu_get_root(rcu_state);
  1346. (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
  1347. if (NUM_RCU_NODES > 1) {
  1348. rcu_for_each_leaf_node(rcu_state, rnp)
  1349. (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
  1350. }
  1351. return 0;
  1352. }
  1353. early_initcall(rcu_spawn_kthreads);
  1354. static void rcu_prepare_kthreads(int cpu)
  1355. {
  1356. struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
  1357. struct rcu_node *rnp = rdp->mynode;
  1358. /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
  1359. if (rcu_scheduler_fully_active)
  1360. (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
  1361. }
  1362. #else /* #ifdef CONFIG_RCU_BOOST */
  1363. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1364. {
  1365. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1366. }
  1367. static void invoke_rcu_callbacks_kthread(void)
  1368. {
  1369. WARN_ON_ONCE(1);
  1370. }
  1371. static bool rcu_is_callbacks_kthread(void)
  1372. {
  1373. return false;
  1374. }
  1375. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1376. {
  1377. }
  1378. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1379. {
  1380. }
  1381. static int __init rcu_scheduler_really_started(void)
  1382. {
  1383. rcu_scheduler_fully_active = 1;
  1384. return 0;
  1385. }
  1386. early_initcall(rcu_scheduler_really_started);
  1387. static void rcu_prepare_kthreads(int cpu)
  1388. {
  1389. }
  1390. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  1391. #if !defined(CONFIG_RCU_FAST_NO_HZ)
  1392. /*
  1393. * Check to see if any future RCU-related work will need to be done
  1394. * by the current CPU, even if none need be done immediately, returning
  1395. * 1 if so. This function is part of the RCU implementation; it is -not-
  1396. * an exported member of the RCU API.
  1397. *
  1398. * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
  1399. * any flavor of RCU.
  1400. */
  1401. int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
  1402. {
  1403. *delta_jiffies = ULONG_MAX;
  1404. return rcu_cpu_has_callbacks(cpu, NULL);
  1405. }
  1406. /*
  1407. * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
  1408. * after it.
  1409. */
  1410. static void rcu_cleanup_after_idle(int cpu)
  1411. {
  1412. }
  1413. /*
  1414. * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
  1415. * is nothing.
  1416. */
  1417. static void rcu_prepare_for_idle(int cpu)
  1418. {
  1419. }
  1420. /*
  1421. * Don't bother keeping a running count of the number of RCU callbacks
  1422. * posted because CONFIG_RCU_FAST_NO_HZ=n.
  1423. */
  1424. static void rcu_idle_count_callbacks_posted(void)
  1425. {
  1426. }
  1427. #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1428. /*
  1429. * This code is invoked when a CPU goes idle, at which point we want
  1430. * to have the CPU do everything required for RCU so that it can enter
  1431. * the energy-efficient dyntick-idle mode. This is handled by a
  1432. * state machine implemented by rcu_prepare_for_idle() below.
  1433. *
  1434. * The following three proprocessor symbols control this state machine:
  1435. *
  1436. * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
  1437. * to sleep in dyntick-idle mode with RCU callbacks pending. This
  1438. * is sized to be roughly one RCU grace period. Those energy-efficiency
  1439. * benchmarkers who might otherwise be tempted to set this to a large
  1440. * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
  1441. * system. And if you are -that- concerned about energy efficiency,
  1442. * just power the system down and be done with it!
  1443. * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
  1444. * permitted to sleep in dyntick-idle mode with only lazy RCU
  1445. * callbacks pending. Setting this too high can OOM your system.
  1446. *
  1447. * The values below work well in practice. If future workloads require
  1448. * adjustment, they can be converted into kernel config parameters, though
  1449. * making the state machine smarter might be a better option.
  1450. */
  1451. #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
  1452. #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
  1453. static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
  1454. module_param(rcu_idle_gp_delay, int, 0644);
  1455. static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
  1456. module_param(rcu_idle_lazy_gp_delay, int, 0644);
  1457. extern int tick_nohz_enabled;
  1458. /*
  1459. * Try to advance callbacks for all flavors of RCU on the current CPU.
  1460. * Afterwards, if there are any callbacks ready for immediate invocation,
  1461. * return true.
  1462. */
  1463. static bool rcu_try_advance_all_cbs(void)
  1464. {
  1465. bool cbs_ready = false;
  1466. struct rcu_data *rdp;
  1467. struct rcu_node *rnp;
  1468. struct rcu_state *rsp;
  1469. for_each_rcu_flavor(rsp) {
  1470. rdp = this_cpu_ptr(rsp->rda);
  1471. rnp = rdp->mynode;
  1472. /*
  1473. * Don't bother checking unless a grace period has
  1474. * completed since we last checked and there are
  1475. * callbacks not yet ready to invoke.
  1476. */
  1477. if (rdp->completed != rnp->completed &&
  1478. rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
  1479. note_gp_changes(rsp, rdp);
  1480. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1481. cbs_ready = true;
  1482. }
  1483. return cbs_ready;
  1484. }
  1485. /*
  1486. * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
  1487. * to invoke. If the CPU has callbacks, try to advance them. Tell the
  1488. * caller to set the timeout based on whether or not there are non-lazy
  1489. * callbacks.
  1490. *
  1491. * The caller must have disabled interrupts.
  1492. */
  1493. int rcu_needs_cpu(int cpu, unsigned long *dj)
  1494. {
  1495. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1496. /* Snapshot to detect later posting of non-lazy callback. */
  1497. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1498. /* If no callbacks, RCU doesn't need the CPU. */
  1499. if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
  1500. *dj = ULONG_MAX;
  1501. return 0;
  1502. }
  1503. /* Attempt to advance callbacks. */
  1504. if (rcu_try_advance_all_cbs()) {
  1505. /* Some ready to invoke, so initiate later invocation. */
  1506. invoke_rcu_core();
  1507. return 1;
  1508. }
  1509. rdtp->last_accelerate = jiffies;
  1510. /* Request timer delay depending on laziness, and round. */
  1511. if (!rdtp->all_lazy) {
  1512. *dj = round_up(rcu_idle_gp_delay + jiffies,
  1513. rcu_idle_gp_delay) - jiffies;
  1514. } else {
  1515. *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
  1516. }
  1517. return 0;
  1518. }
  1519. /*
  1520. * Prepare a CPU for idle from an RCU perspective. The first major task
  1521. * is to sense whether nohz mode has been enabled or disabled via sysfs.
  1522. * The second major task is to check to see if a non-lazy callback has
  1523. * arrived at a CPU that previously had only lazy callbacks. The third
  1524. * major task is to accelerate (that is, assign grace-period numbers to)
  1525. * any recently arrived callbacks.
  1526. *
  1527. * The caller must have disabled interrupts.
  1528. */
  1529. static void rcu_prepare_for_idle(int cpu)
  1530. {
  1531. struct rcu_data *rdp;
  1532. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1533. struct rcu_node *rnp;
  1534. struct rcu_state *rsp;
  1535. int tne;
  1536. /* Handle nohz enablement switches conservatively. */
  1537. tne = ACCESS_ONCE(tick_nohz_enabled);
  1538. if (tne != rdtp->tick_nohz_enabled_snap) {
  1539. if (rcu_cpu_has_callbacks(cpu, NULL))
  1540. invoke_rcu_core(); /* force nohz to see update. */
  1541. rdtp->tick_nohz_enabled_snap = tne;
  1542. return;
  1543. }
  1544. if (!tne)
  1545. return;
  1546. /* If this is a no-CBs CPU, no callbacks, just return. */
  1547. if (rcu_is_nocb_cpu(cpu))
  1548. return;
  1549. /*
  1550. * If a non-lazy callback arrived at a CPU having only lazy
  1551. * callbacks, invoke RCU core for the side-effect of recalculating
  1552. * idle duration on re-entry to idle.
  1553. */
  1554. if (rdtp->all_lazy &&
  1555. rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
  1556. invoke_rcu_core();
  1557. return;
  1558. }
  1559. /*
  1560. * If we have not yet accelerated this jiffy, accelerate all
  1561. * callbacks on this CPU.
  1562. */
  1563. if (rdtp->last_accelerate == jiffies)
  1564. return;
  1565. rdtp->last_accelerate = jiffies;
  1566. for_each_rcu_flavor(rsp) {
  1567. rdp = per_cpu_ptr(rsp->rda, cpu);
  1568. if (!*rdp->nxttail[RCU_DONE_TAIL])
  1569. continue;
  1570. rnp = rdp->mynode;
  1571. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  1572. rcu_accelerate_cbs(rsp, rnp, rdp);
  1573. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1574. }
  1575. }
  1576. /*
  1577. * Clean up for exit from idle. Attempt to advance callbacks based on
  1578. * any grace periods that elapsed while the CPU was idle, and if any
  1579. * callbacks are now ready to invoke, initiate invocation.
  1580. */
  1581. static void rcu_cleanup_after_idle(int cpu)
  1582. {
  1583. struct rcu_data *rdp;
  1584. struct rcu_state *rsp;
  1585. if (rcu_is_nocb_cpu(cpu))
  1586. return;
  1587. rcu_try_advance_all_cbs();
  1588. for_each_rcu_flavor(rsp) {
  1589. rdp = per_cpu_ptr(rsp->rda, cpu);
  1590. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1591. invoke_rcu_core();
  1592. }
  1593. }
  1594. /*
  1595. * Keep a running count of the number of non-lazy callbacks posted
  1596. * on this CPU. This running counter (which is never decremented) allows
  1597. * rcu_prepare_for_idle() to detect when something out of the idle loop
  1598. * posts a callback, even if an equal number of callbacks are invoked.
  1599. * Of course, callbacks should only be posted from within a trace event
  1600. * designed to be called from idle or from within RCU_NONIDLE().
  1601. */
  1602. static void rcu_idle_count_callbacks_posted(void)
  1603. {
  1604. __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
  1605. }
  1606. /*
  1607. * Data for flushing lazy RCU callbacks at OOM time.
  1608. */
  1609. static atomic_t oom_callback_count;
  1610. static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
  1611. /*
  1612. * RCU OOM callback -- decrement the outstanding count and deliver the
  1613. * wake-up if we are the last one.
  1614. */
  1615. static void rcu_oom_callback(struct rcu_head *rhp)
  1616. {
  1617. if (atomic_dec_and_test(&oom_callback_count))
  1618. wake_up(&oom_callback_wq);
  1619. }
  1620. /*
  1621. * Post an rcu_oom_notify callback on the current CPU if it has at
  1622. * least one lazy callback. This will unnecessarily post callbacks
  1623. * to CPUs that already have a non-lazy callback at the end of their
  1624. * callback list, but this is an infrequent operation, so accept some
  1625. * extra overhead to keep things simple.
  1626. */
  1627. static void rcu_oom_notify_cpu(void *unused)
  1628. {
  1629. struct rcu_state *rsp;
  1630. struct rcu_data *rdp;
  1631. for_each_rcu_flavor(rsp) {
  1632. rdp = __this_cpu_ptr(rsp->rda);
  1633. if (rdp->qlen_lazy != 0) {
  1634. atomic_inc(&oom_callback_count);
  1635. rsp->call(&rdp->oom_head, rcu_oom_callback);
  1636. }
  1637. }
  1638. }
  1639. /*
  1640. * If low on memory, ensure that each CPU has a non-lazy callback.
  1641. * This will wake up CPUs that have only lazy callbacks, in turn
  1642. * ensuring that they free up the corresponding memory in a timely manner.
  1643. * Because an uncertain amount of memory will be freed in some uncertain
  1644. * timeframe, we do not claim to have freed anything.
  1645. */
  1646. static int rcu_oom_notify(struct notifier_block *self,
  1647. unsigned long notused, void *nfreed)
  1648. {
  1649. int cpu;
  1650. /* Wait for callbacks from earlier instance to complete. */
  1651. wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
  1652. /*
  1653. * Prevent premature wakeup: ensure that all increments happen
  1654. * before there is a chance of the counter reaching zero.
  1655. */
  1656. atomic_set(&oom_callback_count, 1);
  1657. get_online_cpus();
  1658. for_each_online_cpu(cpu) {
  1659. smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
  1660. cond_resched();
  1661. }
  1662. put_online_cpus();
  1663. /* Unconditionally decrement: no need to wake ourselves up. */
  1664. atomic_dec(&oom_callback_count);
  1665. return NOTIFY_OK;
  1666. }
  1667. static struct notifier_block rcu_oom_nb = {
  1668. .notifier_call = rcu_oom_notify
  1669. };
  1670. static int __init rcu_register_oom_notifier(void)
  1671. {
  1672. register_oom_notifier(&rcu_oom_nb);
  1673. return 0;
  1674. }
  1675. early_initcall(rcu_register_oom_notifier);
  1676. #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1677. #ifdef CONFIG_RCU_CPU_STALL_INFO
  1678. #ifdef CONFIG_RCU_FAST_NO_HZ
  1679. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1680. {
  1681. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1682. unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
  1683. sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
  1684. rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
  1685. ulong2long(nlpd),
  1686. rdtp->all_lazy ? 'L' : '.',
  1687. rdtp->tick_nohz_enabled_snap ? '.' : 'D');
  1688. }
  1689. #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
  1690. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1691. {
  1692. *cp = '\0';
  1693. }
  1694. #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
  1695. /* Initiate the stall-info list. */
  1696. static void print_cpu_stall_info_begin(void)
  1697. {
  1698. pr_cont("\n");
  1699. }
  1700. /*
  1701. * Print out diagnostic information for the specified stalled CPU.
  1702. *
  1703. * If the specified CPU is aware of the current RCU grace period
  1704. * (flavor specified by rsp), then print the number of scheduling
  1705. * clock interrupts the CPU has taken during the time that it has
  1706. * been aware. Otherwise, print the number of RCU grace periods
  1707. * that this CPU is ignorant of, for example, "1" if the CPU was
  1708. * aware of the previous grace period.
  1709. *
  1710. * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
  1711. */
  1712. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1713. {
  1714. char fast_no_hz[72];
  1715. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1716. struct rcu_dynticks *rdtp = rdp->dynticks;
  1717. char *ticks_title;
  1718. unsigned long ticks_value;
  1719. if (rsp->gpnum == rdp->gpnum) {
  1720. ticks_title = "ticks this GP";
  1721. ticks_value = rdp->ticks_this_gp;
  1722. } else {
  1723. ticks_title = "GPs behind";
  1724. ticks_value = rsp->gpnum - rdp->gpnum;
  1725. }
  1726. print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
  1727. pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
  1728. cpu, ticks_value, ticks_title,
  1729. atomic_read(&rdtp->dynticks) & 0xfff,
  1730. rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
  1731. rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
  1732. fast_no_hz);
  1733. }
  1734. /* Terminate the stall-info list. */
  1735. static void print_cpu_stall_info_end(void)
  1736. {
  1737. pr_err("\t");
  1738. }
  1739. /* Zero ->ticks_this_gp for all flavors of RCU. */
  1740. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1741. {
  1742. rdp->ticks_this_gp = 0;
  1743. rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
  1744. }
  1745. /* Increment ->ticks_this_gp for all flavors of RCU. */
  1746. static void increment_cpu_stall_ticks(void)
  1747. {
  1748. struct rcu_state *rsp;
  1749. for_each_rcu_flavor(rsp)
  1750. __this_cpu_ptr(rsp->rda)->ticks_this_gp++;
  1751. }
  1752. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1753. static void print_cpu_stall_info_begin(void)
  1754. {
  1755. pr_cont(" {");
  1756. }
  1757. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1758. {
  1759. pr_cont(" %d", cpu);
  1760. }
  1761. static void print_cpu_stall_info_end(void)
  1762. {
  1763. pr_cont("} ");
  1764. }
  1765. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1766. {
  1767. }
  1768. static void increment_cpu_stall_ticks(void)
  1769. {
  1770. }
  1771. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1772. #ifdef CONFIG_RCU_NOCB_CPU
  1773. /*
  1774. * Offload callback processing from the boot-time-specified set of CPUs
  1775. * specified by rcu_nocb_mask. For each CPU in the set, there is a
  1776. * kthread created that pulls the callbacks from the corresponding CPU,
  1777. * waits for a grace period to elapse, and invokes the callbacks.
  1778. * The no-CBs CPUs do a wake_up() on their kthread when they insert
  1779. * a callback into any empty list, unless the rcu_nocb_poll boot parameter
  1780. * has been specified, in which case each kthread actively polls its
  1781. * CPU. (Which isn't so great for energy efficiency, but which does
  1782. * reduce RCU's overhead on that CPU.)
  1783. *
  1784. * This is intended to be used in conjunction with Frederic Weisbecker's
  1785. * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  1786. * running CPU-bound user-mode computations.
  1787. *
  1788. * Offloading of callback processing could also in theory be used as
  1789. * an energy-efficiency measure because CPUs with no RCU callbacks
  1790. * queued are more aggressive about entering dyntick-idle mode.
  1791. */
  1792. /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
  1793. static int __init rcu_nocb_setup(char *str)
  1794. {
  1795. alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  1796. have_rcu_nocb_mask = true;
  1797. cpulist_parse(str, rcu_nocb_mask);
  1798. return 1;
  1799. }
  1800. __setup("rcu_nocbs=", rcu_nocb_setup);
  1801. static int __init parse_rcu_nocb_poll(char *arg)
  1802. {
  1803. rcu_nocb_poll = 1;
  1804. return 0;
  1805. }
  1806. early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
  1807. /*
  1808. * Do any no-CBs CPUs need another grace period?
  1809. *
  1810. * Interrupts must be disabled. If the caller does not hold the root
  1811. * rnp_node structure's ->lock, the results are advisory only.
  1812. */
  1813. static int rcu_nocb_needs_gp(struct rcu_state *rsp)
  1814. {
  1815. struct rcu_node *rnp = rcu_get_root(rsp);
  1816. return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
  1817. }
  1818. /*
  1819. * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
  1820. * grace period.
  1821. */
  1822. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1823. {
  1824. wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
  1825. }
  1826. /*
  1827. * Set the root rcu_node structure's ->need_future_gp field
  1828. * based on the sum of those of all rcu_node structures. This does
  1829. * double-count the root rcu_node structure's requests, but this
  1830. * is necessary to handle the possibility of a rcu_nocb_kthread()
  1831. * having awakened during the time that the rcu_node structures
  1832. * were being updated for the end of the previous grace period.
  1833. */
  1834. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  1835. {
  1836. rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
  1837. }
  1838. static void rcu_init_one_nocb(struct rcu_node *rnp)
  1839. {
  1840. init_waitqueue_head(&rnp->nocb_gp_wq[0]);
  1841. init_waitqueue_head(&rnp->nocb_gp_wq[1]);
  1842. }
  1843. /* Is the specified CPU a no-CPUs CPU? */
  1844. bool rcu_is_nocb_cpu(int cpu)
  1845. {
  1846. if (have_rcu_nocb_mask)
  1847. return cpumask_test_cpu(cpu, rcu_nocb_mask);
  1848. return false;
  1849. }
  1850. /*
  1851. * Enqueue the specified string of rcu_head structures onto the specified
  1852. * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
  1853. * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
  1854. * counts are supplied by rhcount and rhcount_lazy.
  1855. *
  1856. * If warranted, also wake up the kthread servicing this CPUs queues.
  1857. */
  1858. static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
  1859. struct rcu_head *rhp,
  1860. struct rcu_head **rhtp,
  1861. int rhcount, int rhcount_lazy)
  1862. {
  1863. int len;
  1864. struct rcu_head **old_rhpp;
  1865. struct task_struct *t;
  1866. /* Enqueue the callback on the nocb list and update counts. */
  1867. old_rhpp = xchg(&rdp->nocb_tail, rhtp);
  1868. ACCESS_ONCE(*old_rhpp) = rhp;
  1869. atomic_long_add(rhcount, &rdp->nocb_q_count);
  1870. atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
  1871. /* If we are not being polled and there is a kthread, awaken it ... */
  1872. t = ACCESS_ONCE(rdp->nocb_kthread);
  1873. if (rcu_nocb_poll || !t)
  1874. return;
  1875. len = atomic_long_read(&rdp->nocb_q_count);
  1876. if (old_rhpp == &rdp->nocb_head) {
  1877. wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
  1878. rdp->qlen_last_fqs_check = 0;
  1879. } else if (len > rdp->qlen_last_fqs_check + qhimark) {
  1880. wake_up_process(t); /* ... or if many callbacks queued. */
  1881. rdp->qlen_last_fqs_check = LONG_MAX / 2;
  1882. }
  1883. return;
  1884. }
  1885. /*
  1886. * This is a helper for __call_rcu(), which invokes this when the normal
  1887. * callback queue is inoperable. If this is not a no-CBs CPU, this
  1888. * function returns failure back to __call_rcu(), which can complain
  1889. * appropriately.
  1890. *
  1891. * Otherwise, this function queues the callback where the corresponding
  1892. * "rcuo" kthread can find it.
  1893. */
  1894. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  1895. bool lazy)
  1896. {
  1897. if (!rcu_is_nocb_cpu(rdp->cpu))
  1898. return 0;
  1899. __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
  1900. if (__is_kfree_rcu_offset((unsigned long)rhp->func))
  1901. trace_rcu_kfree_callback(rdp->rsp->name, rhp,
  1902. (unsigned long)rhp->func,
  1903. rdp->qlen_lazy, rdp->qlen);
  1904. else
  1905. trace_rcu_callback(rdp->rsp->name, rhp,
  1906. rdp->qlen_lazy, rdp->qlen);
  1907. return 1;
  1908. }
  1909. /*
  1910. * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
  1911. * not a no-CBs CPU.
  1912. */
  1913. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  1914. struct rcu_data *rdp)
  1915. {
  1916. long ql = rsp->qlen;
  1917. long qll = rsp->qlen_lazy;
  1918. /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
  1919. if (!rcu_is_nocb_cpu(smp_processor_id()))
  1920. return 0;
  1921. rsp->qlen = 0;
  1922. rsp->qlen_lazy = 0;
  1923. /* First, enqueue the donelist, if any. This preserves CB ordering. */
  1924. if (rsp->orphan_donelist != NULL) {
  1925. __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
  1926. rsp->orphan_donetail, ql, qll);
  1927. ql = qll = 0;
  1928. rsp->orphan_donelist = NULL;
  1929. rsp->orphan_donetail = &rsp->orphan_donelist;
  1930. }
  1931. if (rsp->orphan_nxtlist != NULL) {
  1932. __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
  1933. rsp->orphan_nxttail, ql, qll);
  1934. ql = qll = 0;
  1935. rsp->orphan_nxtlist = NULL;
  1936. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1937. }
  1938. return 1;
  1939. }
  1940. /*
  1941. * If necessary, kick off a new grace period, and either way wait
  1942. * for a subsequent grace period to complete.
  1943. */
  1944. static void rcu_nocb_wait_gp(struct rcu_data *rdp)
  1945. {
  1946. unsigned long c;
  1947. bool d;
  1948. unsigned long flags;
  1949. struct rcu_node *rnp = rdp->mynode;
  1950. raw_spin_lock_irqsave(&rnp->lock, flags);
  1951. c = rcu_start_future_gp(rnp, rdp);
  1952. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1953. /*
  1954. * Wait for the grace period. Do so interruptibly to avoid messing
  1955. * up the load average.
  1956. */
  1957. trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
  1958. for (;;) {
  1959. wait_event_interruptible(
  1960. rnp->nocb_gp_wq[c & 0x1],
  1961. (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
  1962. if (likely(d))
  1963. break;
  1964. flush_signals(current);
  1965. trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
  1966. }
  1967. trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
  1968. smp_mb(); /* Ensure that CB invocation happens after GP end. */
  1969. }
  1970. /*
  1971. * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
  1972. * callbacks queued by the corresponding no-CBs CPU.
  1973. */
  1974. static int rcu_nocb_kthread(void *arg)
  1975. {
  1976. int c, cl;
  1977. struct rcu_head *list;
  1978. struct rcu_head *next;
  1979. struct rcu_head **tail;
  1980. struct rcu_data *rdp = arg;
  1981. /* Each pass through this loop invokes one batch of callbacks */
  1982. for (;;) {
  1983. /* If not polling, wait for next batch of callbacks. */
  1984. if (!rcu_nocb_poll)
  1985. wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
  1986. list = ACCESS_ONCE(rdp->nocb_head);
  1987. if (!list) {
  1988. schedule_timeout_interruptible(1);
  1989. flush_signals(current);
  1990. continue;
  1991. }
  1992. /*
  1993. * Extract queued callbacks, update counts, and wait
  1994. * for a grace period to elapse.
  1995. */
  1996. ACCESS_ONCE(rdp->nocb_head) = NULL;
  1997. tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
  1998. c = atomic_long_xchg(&rdp->nocb_q_count, 0);
  1999. cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
  2000. ACCESS_ONCE(rdp->nocb_p_count) += c;
  2001. ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
  2002. rcu_nocb_wait_gp(rdp);
  2003. /* Each pass through the following loop invokes a callback. */
  2004. trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
  2005. c = cl = 0;
  2006. while (list) {
  2007. next = list->next;
  2008. /* Wait for enqueuing to complete, if needed. */
  2009. while (next == NULL && &list->next != tail) {
  2010. schedule_timeout_interruptible(1);
  2011. next = list->next;
  2012. }
  2013. debug_rcu_head_unqueue(list);
  2014. local_bh_disable();
  2015. if (__rcu_reclaim(rdp->rsp->name, list))
  2016. cl++;
  2017. c++;
  2018. local_bh_enable();
  2019. list = next;
  2020. }
  2021. trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
  2022. ACCESS_ONCE(rdp->nocb_p_count) -= c;
  2023. ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
  2024. rdp->n_nocbs_invoked += c;
  2025. }
  2026. return 0;
  2027. }
  2028. /* Initialize per-rcu_data variables for no-CBs CPUs. */
  2029. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2030. {
  2031. rdp->nocb_tail = &rdp->nocb_head;
  2032. init_waitqueue_head(&rdp->nocb_wq);
  2033. }
  2034. /* Create a kthread for each RCU flavor for each no-CBs CPU. */
  2035. static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
  2036. {
  2037. int cpu;
  2038. struct rcu_data *rdp;
  2039. struct task_struct *t;
  2040. if (rcu_nocb_mask == NULL)
  2041. return;
  2042. for_each_cpu(cpu, rcu_nocb_mask) {
  2043. rdp = per_cpu_ptr(rsp->rda, cpu);
  2044. t = kthread_run(rcu_nocb_kthread, rdp,
  2045. "rcuo%c/%d", rsp->abbr, cpu);
  2046. BUG_ON(IS_ERR(t));
  2047. ACCESS_ONCE(rdp->nocb_kthread) = t;
  2048. }
  2049. }
  2050. /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
  2051. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2052. {
  2053. if (rcu_nocb_mask == NULL ||
  2054. !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
  2055. return false;
  2056. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2057. return true;
  2058. }
  2059. #else /* #ifdef CONFIG_RCU_NOCB_CPU */
  2060. static int rcu_nocb_needs_gp(struct rcu_state *rsp)
  2061. {
  2062. return 0;
  2063. }
  2064. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  2065. {
  2066. }
  2067. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  2068. {
  2069. }
  2070. static void rcu_init_one_nocb(struct rcu_node *rnp)
  2071. {
  2072. }
  2073. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  2074. bool lazy)
  2075. {
  2076. return 0;
  2077. }
  2078. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  2079. struct rcu_data *rdp)
  2080. {
  2081. return 0;
  2082. }
  2083. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2084. {
  2085. }
  2086. static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
  2087. {
  2088. }
  2089. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2090. {
  2091. return false;
  2092. }
  2093. #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
  2094. /*
  2095. * An adaptive-ticks CPU can potentially execute in kernel mode for an
  2096. * arbitrarily long period of time with the scheduling-clock tick turned
  2097. * off. RCU will be paying attention to this CPU because it is in the
  2098. * kernel, but the CPU cannot be guaranteed to be executing the RCU state
  2099. * machine because the scheduling-clock tick has been disabled. Therefore,
  2100. * if an adaptive-ticks CPU is failing to respond to the current grace
  2101. * period and has not be idle from an RCU perspective, kick it.
  2102. */
  2103. static void rcu_kick_nohz_cpu(int cpu)
  2104. {
  2105. #ifdef CONFIG_NO_HZ_FULL
  2106. if (tick_nohz_full_cpu(cpu))
  2107. smp_send_reschedule(cpu);
  2108. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2109. }
  2110. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2111. /*
  2112. * Define RCU flavor that holds sysidle state. This needs to be the
  2113. * most active flavor of RCU.
  2114. */
  2115. #ifdef CONFIG_PREEMPT_RCU
  2116. static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
  2117. #else /* #ifdef CONFIG_PREEMPT_RCU */
  2118. static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
  2119. #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  2120. static int full_sysidle_state; /* Current system-idle state. */
  2121. #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
  2122. #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
  2123. #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
  2124. #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
  2125. #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
  2126. /*
  2127. * Invoked to note exit from irq or task transition to idle. Note that
  2128. * usermode execution does -not- count as idle here! After all, we want
  2129. * to detect full-system idle states, not RCU quiescent states and grace
  2130. * periods. The caller must have disabled interrupts.
  2131. */
  2132. static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
  2133. {
  2134. unsigned long j;
  2135. /* Adjust nesting, check for fully idle. */
  2136. if (irq) {
  2137. rdtp->dynticks_idle_nesting--;
  2138. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2139. if (rdtp->dynticks_idle_nesting != 0)
  2140. return; /* Still not fully idle. */
  2141. } else {
  2142. if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
  2143. DYNTICK_TASK_NEST_VALUE) {
  2144. rdtp->dynticks_idle_nesting = 0;
  2145. } else {
  2146. rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
  2147. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2148. return; /* Still not fully idle. */
  2149. }
  2150. }
  2151. /* Record start of fully idle period. */
  2152. j = jiffies;
  2153. ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
  2154. smp_mb__before_atomic_inc();
  2155. atomic_inc(&rdtp->dynticks_idle);
  2156. smp_mb__after_atomic_inc();
  2157. WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
  2158. }
  2159. /*
  2160. * Unconditionally force exit from full system-idle state. This is
  2161. * invoked when a normal CPU exits idle, but must be called separately
  2162. * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
  2163. * is that the timekeeping CPU is permitted to take scheduling-clock
  2164. * interrupts while the system is in system-idle state, and of course
  2165. * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
  2166. * interrupt from any other type of interrupt.
  2167. */
  2168. void rcu_sysidle_force_exit(void)
  2169. {
  2170. int oldstate = ACCESS_ONCE(full_sysidle_state);
  2171. int newoldstate;
  2172. /*
  2173. * Each pass through the following loop attempts to exit full
  2174. * system-idle state. If contention proves to be a problem,
  2175. * a trylock-based contention tree could be used here.
  2176. */
  2177. while (oldstate > RCU_SYSIDLE_SHORT) {
  2178. newoldstate = cmpxchg(&full_sysidle_state,
  2179. oldstate, RCU_SYSIDLE_NOT);
  2180. if (oldstate == newoldstate &&
  2181. oldstate == RCU_SYSIDLE_FULL_NOTED) {
  2182. rcu_kick_nohz_cpu(tick_do_timer_cpu);
  2183. return; /* We cleared it, done! */
  2184. }
  2185. oldstate = newoldstate;
  2186. }
  2187. smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
  2188. }
  2189. /*
  2190. * Invoked to note entry to irq or task transition from idle. Note that
  2191. * usermode execution does -not- count as idle here! The caller must
  2192. * have disabled interrupts.
  2193. */
  2194. static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
  2195. {
  2196. /* Adjust nesting, check for already non-idle. */
  2197. if (irq) {
  2198. rdtp->dynticks_idle_nesting++;
  2199. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2200. if (rdtp->dynticks_idle_nesting != 1)
  2201. return; /* Already non-idle. */
  2202. } else {
  2203. /*
  2204. * Allow for irq misnesting. Yes, it really is possible
  2205. * to enter an irq handler then never leave it, and maybe
  2206. * also vice versa. Handle both possibilities.
  2207. */
  2208. if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
  2209. rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
  2210. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2211. return; /* Already non-idle. */
  2212. } else {
  2213. rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
  2214. }
  2215. }
  2216. /* Record end of idle period. */
  2217. smp_mb__before_atomic_inc();
  2218. atomic_inc(&rdtp->dynticks_idle);
  2219. smp_mb__after_atomic_inc();
  2220. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
  2221. /*
  2222. * If we are the timekeeping CPU, we are permitted to be non-idle
  2223. * during a system-idle state. This must be the case, because
  2224. * the timekeeping CPU has to take scheduling-clock interrupts
  2225. * during the time that the system is transitioning to full
  2226. * system-idle state. This means that the timekeeping CPU must
  2227. * invoke rcu_sysidle_force_exit() directly if it does anything
  2228. * more than take a scheduling-clock interrupt.
  2229. */
  2230. if (smp_processor_id() == tick_do_timer_cpu)
  2231. return;
  2232. /* Update system-idle state: We are clearly no longer fully idle! */
  2233. rcu_sysidle_force_exit();
  2234. }
  2235. /*
  2236. * Check to see if the current CPU is idle. Note that usermode execution
  2237. * does not count as idle. The caller must have disabled interrupts.
  2238. */
  2239. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2240. unsigned long *maxj)
  2241. {
  2242. int cur;
  2243. unsigned long j;
  2244. struct rcu_dynticks *rdtp = rdp->dynticks;
  2245. /*
  2246. * If some other CPU has already reported non-idle, if this is
  2247. * not the flavor of RCU that tracks sysidle state, or if this
  2248. * is an offline or the timekeeping CPU, nothing to do.
  2249. */
  2250. if (!*isidle || rdp->rsp != rcu_sysidle_state ||
  2251. cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
  2252. return;
  2253. if (rcu_gp_in_progress(rdp->rsp))
  2254. WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
  2255. /* Pick up current idle and NMI-nesting counter and check. */
  2256. cur = atomic_read(&rdtp->dynticks_idle);
  2257. if (cur & 0x1) {
  2258. *isidle = false; /* We are not idle! */
  2259. return;
  2260. }
  2261. smp_mb(); /* Read counters before timestamps. */
  2262. /* Pick up timestamps. */
  2263. j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
  2264. /* If this CPU entered idle more recently, update maxj timestamp. */
  2265. if (ULONG_CMP_LT(*maxj, j))
  2266. *maxj = j;
  2267. }
  2268. /*
  2269. * Is this the flavor of RCU that is handling full-system idle?
  2270. */
  2271. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2272. {
  2273. return rsp == rcu_sysidle_state;
  2274. }
  2275. /*
  2276. * Bind the grace-period kthread for the sysidle flavor of RCU to the
  2277. * timekeeping CPU.
  2278. */
  2279. static void rcu_bind_gp_kthread(void)
  2280. {
  2281. int cpu = ACCESS_ONCE(tick_do_timer_cpu);
  2282. if (cpu < 0 || cpu >= nr_cpu_ids)
  2283. return;
  2284. if (raw_smp_processor_id() != cpu)
  2285. set_cpus_allowed_ptr(current, cpumask_of(cpu));
  2286. }
  2287. /*
  2288. * Return a delay in jiffies based on the number of CPUs, rcu_node
  2289. * leaf fanout, and jiffies tick rate. The idea is to allow larger
  2290. * systems more time to transition to full-idle state in order to
  2291. * avoid the cache thrashing that otherwise occur on the state variable.
  2292. * Really small systems (less than a couple of tens of CPUs) should
  2293. * instead use a single global atomically incremented counter, and later
  2294. * versions of this will automatically reconfigure themselves accordingly.
  2295. */
  2296. static unsigned long rcu_sysidle_delay(void)
  2297. {
  2298. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2299. return 0;
  2300. return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
  2301. }
  2302. /*
  2303. * Advance the full-system-idle state. This is invoked when all of
  2304. * the non-timekeeping CPUs are idle.
  2305. */
  2306. static void rcu_sysidle(unsigned long j)
  2307. {
  2308. /* Check the current state. */
  2309. switch (ACCESS_ONCE(full_sysidle_state)) {
  2310. case RCU_SYSIDLE_NOT:
  2311. /* First time all are idle, so note a short idle period. */
  2312. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
  2313. break;
  2314. case RCU_SYSIDLE_SHORT:
  2315. /*
  2316. * Idle for a bit, time to advance to next state?
  2317. * cmpxchg failure means race with non-idle, let them win.
  2318. */
  2319. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2320. (void)cmpxchg(&full_sysidle_state,
  2321. RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
  2322. break;
  2323. case RCU_SYSIDLE_LONG:
  2324. /*
  2325. * Do an additional check pass before advancing to full.
  2326. * cmpxchg failure means race with non-idle, let them win.
  2327. */
  2328. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2329. (void)cmpxchg(&full_sysidle_state,
  2330. RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
  2331. break;
  2332. default:
  2333. break;
  2334. }
  2335. }
  2336. /*
  2337. * Found a non-idle non-timekeeping CPU, so kick the system-idle state
  2338. * back to the beginning.
  2339. */
  2340. static void rcu_sysidle_cancel(void)
  2341. {
  2342. smp_mb();
  2343. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
  2344. }
  2345. /*
  2346. * Update the sysidle state based on the results of a force-quiescent-state
  2347. * scan of the CPUs' dyntick-idle state.
  2348. */
  2349. static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
  2350. unsigned long maxj, bool gpkt)
  2351. {
  2352. if (rsp != rcu_sysidle_state)
  2353. return; /* Wrong flavor, ignore. */
  2354. if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2355. return; /* Running state machine from timekeeping CPU. */
  2356. if (isidle)
  2357. rcu_sysidle(maxj); /* More idle! */
  2358. else
  2359. rcu_sysidle_cancel(); /* Idle is over. */
  2360. }
  2361. /*
  2362. * Wrapper for rcu_sysidle_report() when called from the grace-period
  2363. * kthread's context.
  2364. */
  2365. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2366. unsigned long maxj)
  2367. {
  2368. rcu_sysidle_report(rsp, isidle, maxj, true);
  2369. }
  2370. /* Callback and function for forcing an RCU grace period. */
  2371. struct rcu_sysidle_head {
  2372. struct rcu_head rh;
  2373. int inuse;
  2374. };
  2375. static void rcu_sysidle_cb(struct rcu_head *rhp)
  2376. {
  2377. struct rcu_sysidle_head *rshp;
  2378. /*
  2379. * The following memory barrier is needed to replace the
  2380. * memory barriers that would normally be in the memory
  2381. * allocator.
  2382. */
  2383. smp_mb(); /* grace period precedes setting inuse. */
  2384. rshp = container_of(rhp, struct rcu_sysidle_head, rh);
  2385. ACCESS_ONCE(rshp->inuse) = 0;
  2386. }
  2387. /*
  2388. * Check to see if the system is fully idle, other than the timekeeping CPU.
  2389. * The caller must have disabled interrupts.
  2390. */
  2391. bool rcu_sys_is_idle(void)
  2392. {
  2393. static struct rcu_sysidle_head rsh;
  2394. int rss = ACCESS_ONCE(full_sysidle_state);
  2395. if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
  2396. return false;
  2397. /* Handle small-system case by doing a full scan of CPUs. */
  2398. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
  2399. int oldrss = rss - 1;
  2400. /*
  2401. * One pass to advance to each state up to _FULL.
  2402. * Give up if any pass fails to advance the state.
  2403. */
  2404. while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
  2405. int cpu;
  2406. bool isidle = true;
  2407. unsigned long maxj = jiffies - ULONG_MAX / 4;
  2408. struct rcu_data *rdp;
  2409. /* Scan all the CPUs looking for nonidle CPUs. */
  2410. for_each_possible_cpu(cpu) {
  2411. rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
  2412. rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
  2413. if (!isidle)
  2414. break;
  2415. }
  2416. rcu_sysidle_report(rcu_sysidle_state,
  2417. isidle, maxj, false);
  2418. oldrss = rss;
  2419. rss = ACCESS_ONCE(full_sysidle_state);
  2420. }
  2421. }
  2422. /* If this is the first observation of an idle period, record it. */
  2423. if (rss == RCU_SYSIDLE_FULL) {
  2424. rss = cmpxchg(&full_sysidle_state,
  2425. RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
  2426. return rss == RCU_SYSIDLE_FULL;
  2427. }
  2428. smp_mb(); /* ensure rss load happens before later caller actions. */
  2429. /* If already fully idle, tell the caller (in case of races). */
  2430. if (rss == RCU_SYSIDLE_FULL_NOTED)
  2431. return true;
  2432. /*
  2433. * If we aren't there yet, and a grace period is not in flight,
  2434. * initiate a grace period. Either way, tell the caller that
  2435. * we are not there yet. We use an xchg() rather than an assignment
  2436. * to make up for the memory barriers that would otherwise be
  2437. * provided by the memory allocator.
  2438. */
  2439. if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
  2440. !rcu_gp_in_progress(rcu_sysidle_state) &&
  2441. !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
  2442. call_rcu(&rsh.rh, rcu_sysidle_cb);
  2443. return false;
  2444. }
  2445. /*
  2446. * Initialize dynticks sysidle state for CPUs coming online.
  2447. */
  2448. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2449. {
  2450. rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
  2451. }
  2452. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2453. static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
  2454. {
  2455. }
  2456. static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
  2457. {
  2458. }
  2459. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2460. unsigned long *maxj)
  2461. {
  2462. }
  2463. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2464. {
  2465. return false;
  2466. }
  2467. static void rcu_bind_gp_kthread(void)
  2468. {
  2469. }
  2470. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2471. unsigned long maxj)
  2472. {
  2473. }
  2474. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2475. {
  2476. }
  2477. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */