core.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503
  1. /*
  2. * Core driver for the pin control subsystem
  3. *
  4. * Copyright (C) 2011-2012 ST-Ericsson SA
  5. * Written on behalf of Linaro for ST-Ericsson
  6. * Based on bits of regulator core, gpio core and clk core
  7. *
  8. * Author: Linus Walleij <linus.walleij@linaro.org>
  9. *
  10. * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11. *
  12. * License terms: GNU General Public License (GPL) version 2
  13. */
  14. #define pr_fmt(fmt) "pinctrl core: " fmt
  15. #include <linux/kernel.h>
  16. #include <linux/export.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/slab.h>
  20. #include <linux/err.h>
  21. #include <linux/list.h>
  22. #include <linux/sysfs.h>
  23. #include <linux/debugfs.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/pinctrl/consumer.h>
  26. #include <linux/pinctrl/pinctrl.h>
  27. #include <linux/pinctrl/machine.h>
  28. #include "core.h"
  29. #include "devicetree.h"
  30. #include "pinmux.h"
  31. #include "pinconf.h"
  32. /**
  33. * struct pinctrl_maps - a list item containing part of the mapping table
  34. * @node: mapping table list node
  35. * @maps: array of mapping table entries
  36. * @num_maps: the number of entries in @maps
  37. */
  38. struct pinctrl_maps {
  39. struct list_head node;
  40. struct pinctrl_map const *maps;
  41. unsigned num_maps;
  42. };
  43. static bool pinctrl_dummy_state;
  44. /* Mutex taken by all entry points */
  45. DEFINE_MUTEX(pinctrl_mutex);
  46. /* Global list of pin control devices (struct pinctrl_dev) */
  47. LIST_HEAD(pinctrldev_list);
  48. /* List of pin controller handles (struct pinctrl) */
  49. static LIST_HEAD(pinctrl_list);
  50. /* List of pinctrl maps (struct pinctrl_maps) */
  51. static LIST_HEAD(pinctrl_maps);
  52. #define for_each_maps(_maps_node_, _i_, _map_) \
  53. list_for_each_entry(_maps_node_, &pinctrl_maps, node) \
  54. for (_i_ = 0, _map_ = &_maps_node_->maps[_i_]; \
  55. _i_ < _maps_node_->num_maps; \
  56. _i_++, _map_ = &_maps_node_->maps[_i_])
  57. /**
  58. * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  59. *
  60. * Usually this function is called by platforms without pinctrl driver support
  61. * but run with some shared drivers using pinctrl APIs.
  62. * After calling this function, the pinctrl core will return successfully
  63. * with creating a dummy state for the driver to keep going smoothly.
  64. */
  65. void pinctrl_provide_dummies(void)
  66. {
  67. pinctrl_dummy_state = true;
  68. }
  69. const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  70. {
  71. /* We're not allowed to register devices without name */
  72. return pctldev->desc->name;
  73. }
  74. EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  75. void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  76. {
  77. return pctldev->driver_data;
  78. }
  79. EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  80. /**
  81. * get_pinctrl_dev_from_devname() - look up pin controller device
  82. * @devname: the name of a device instance, as returned by dev_name()
  83. *
  84. * Looks up a pin control device matching a certain device name or pure device
  85. * pointer, the pure device pointer will take precedence.
  86. */
  87. struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
  88. {
  89. struct pinctrl_dev *pctldev = NULL;
  90. bool found = false;
  91. if (!devname)
  92. return NULL;
  93. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  94. if (!strcmp(dev_name(pctldev->dev), devname)) {
  95. /* Matched on device name */
  96. found = true;
  97. break;
  98. }
  99. }
  100. return found ? pctldev : NULL;
  101. }
  102. /**
  103. * pin_get_from_name() - look up a pin number from a name
  104. * @pctldev: the pin control device to lookup the pin on
  105. * @name: the name of the pin to look up
  106. */
  107. int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
  108. {
  109. unsigned i, pin;
  110. /* The pin number can be retrived from the pin controller descriptor */
  111. for (i = 0; i < pctldev->desc->npins; i++) {
  112. struct pin_desc *desc;
  113. pin = pctldev->desc->pins[i].number;
  114. desc = pin_desc_get(pctldev, pin);
  115. /* Pin space may be sparse */
  116. if (desc == NULL)
  117. continue;
  118. if (desc->name && !strcmp(name, desc->name))
  119. return pin;
  120. }
  121. return -EINVAL;
  122. }
  123. /**
  124. * pin_get_name_from_id() - look up a pin name from a pin id
  125. * @pctldev: the pin control device to lookup the pin on
  126. * @name: the name of the pin to look up
  127. */
  128. const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
  129. {
  130. const struct pin_desc *desc;
  131. desc = pin_desc_get(pctldev, pin);
  132. if (desc == NULL) {
  133. dev_err(pctldev->dev, "failed to get pin(%d) name\n",
  134. pin);
  135. return NULL;
  136. }
  137. return desc->name;
  138. }
  139. /**
  140. * pin_is_valid() - check if pin exists on controller
  141. * @pctldev: the pin control device to check the pin on
  142. * @pin: pin to check, use the local pin controller index number
  143. *
  144. * This tells us whether a certain pin exist on a certain pin controller or
  145. * not. Pin lists may be sparse, so some pins may not exist.
  146. */
  147. bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
  148. {
  149. struct pin_desc *pindesc;
  150. if (pin < 0)
  151. return false;
  152. mutex_lock(&pinctrl_mutex);
  153. pindesc = pin_desc_get(pctldev, pin);
  154. mutex_unlock(&pinctrl_mutex);
  155. return pindesc != NULL;
  156. }
  157. EXPORT_SYMBOL_GPL(pin_is_valid);
  158. /* Deletes a range of pin descriptors */
  159. static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
  160. const struct pinctrl_pin_desc *pins,
  161. unsigned num_pins)
  162. {
  163. int i;
  164. for (i = 0; i < num_pins; i++) {
  165. struct pin_desc *pindesc;
  166. pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
  167. pins[i].number);
  168. if (pindesc != NULL) {
  169. radix_tree_delete(&pctldev->pin_desc_tree,
  170. pins[i].number);
  171. if (pindesc->dynamic_name)
  172. kfree(pindesc->name);
  173. }
  174. kfree(pindesc);
  175. }
  176. }
  177. static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
  178. unsigned number, const char *name)
  179. {
  180. struct pin_desc *pindesc;
  181. pindesc = pin_desc_get(pctldev, number);
  182. if (pindesc != NULL) {
  183. pr_err("pin %d already registered on %s\n", number,
  184. pctldev->desc->name);
  185. return -EINVAL;
  186. }
  187. pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
  188. if (pindesc == NULL) {
  189. dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
  190. return -ENOMEM;
  191. }
  192. /* Set owner */
  193. pindesc->pctldev = pctldev;
  194. /* Copy basic pin info */
  195. if (name) {
  196. pindesc->name = name;
  197. } else {
  198. pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
  199. if (pindesc->name == NULL)
  200. return -ENOMEM;
  201. pindesc->dynamic_name = true;
  202. }
  203. radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
  204. pr_debug("registered pin %d (%s) on %s\n",
  205. number, pindesc->name, pctldev->desc->name);
  206. return 0;
  207. }
  208. static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
  209. struct pinctrl_pin_desc const *pins,
  210. unsigned num_descs)
  211. {
  212. unsigned i;
  213. int ret = 0;
  214. for (i = 0; i < num_descs; i++) {
  215. ret = pinctrl_register_one_pin(pctldev,
  216. pins[i].number, pins[i].name);
  217. if (ret)
  218. return ret;
  219. }
  220. return 0;
  221. }
  222. /**
  223. * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
  224. * @pctldev: pin controller device to check
  225. * @gpio: gpio pin to check taken from the global GPIO pin space
  226. *
  227. * Tries to match a GPIO pin number to the ranges handled by a certain pin
  228. * controller, return the range or NULL
  229. */
  230. static struct pinctrl_gpio_range *
  231. pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
  232. {
  233. struct pinctrl_gpio_range *range = NULL;
  234. /* Loop over the ranges */
  235. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  236. /* Check if we're in the valid range */
  237. if (gpio >= range->base &&
  238. gpio < range->base + range->npins) {
  239. return range;
  240. }
  241. }
  242. return NULL;
  243. }
  244. /**
  245. * pinctrl_get_device_gpio_range() - find device for GPIO range
  246. * @gpio: the pin to locate the pin controller for
  247. * @outdev: the pin control device if found
  248. * @outrange: the GPIO range if found
  249. *
  250. * Find the pin controller handling a certain GPIO pin from the pinspace of
  251. * the GPIO subsystem, return the device and the matching GPIO range. Returns
  252. * -EPROBE_DEFER if the GPIO range could not be found in any device since it
  253. * may still have not been registered.
  254. */
  255. static int pinctrl_get_device_gpio_range(unsigned gpio,
  256. struct pinctrl_dev **outdev,
  257. struct pinctrl_gpio_range **outrange)
  258. {
  259. struct pinctrl_dev *pctldev = NULL;
  260. /* Loop over the pin controllers */
  261. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  262. struct pinctrl_gpio_range *range;
  263. range = pinctrl_match_gpio_range(pctldev, gpio);
  264. if (range != NULL) {
  265. *outdev = pctldev;
  266. *outrange = range;
  267. return 0;
  268. }
  269. }
  270. return -EPROBE_DEFER;
  271. }
  272. /**
  273. * pinctrl_add_gpio_range() - register a GPIO range for a controller
  274. * @pctldev: pin controller device to add the range to
  275. * @range: the GPIO range to add
  276. *
  277. * This adds a range of GPIOs to be handled by a certain pin controller. Call
  278. * this to register handled ranges after registering your pin controller.
  279. */
  280. void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
  281. struct pinctrl_gpio_range *range)
  282. {
  283. mutex_lock(&pinctrl_mutex);
  284. list_add_tail(&range->node, &pctldev->gpio_ranges);
  285. mutex_unlock(&pinctrl_mutex);
  286. }
  287. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
  288. /**
  289. * pinctrl_get_group_selector() - returns the group selector for a group
  290. * @pctldev: the pin controller handling the group
  291. * @pin_group: the pin group to look up
  292. */
  293. int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
  294. const char *pin_group)
  295. {
  296. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  297. unsigned ngroups = pctlops->get_groups_count(pctldev);
  298. unsigned group_selector = 0;
  299. while (group_selector < ngroups) {
  300. const char *gname = pctlops->get_group_name(pctldev,
  301. group_selector);
  302. if (!strcmp(gname, pin_group)) {
  303. dev_dbg(pctldev->dev,
  304. "found group selector %u for %s\n",
  305. group_selector,
  306. pin_group);
  307. return group_selector;
  308. }
  309. group_selector++;
  310. }
  311. dev_err(pctldev->dev, "does not have pin group %s\n",
  312. pin_group);
  313. return -EINVAL;
  314. }
  315. /**
  316. * pinctrl_request_gpio() - request a single pin to be used in as GPIO
  317. * @gpio: the GPIO pin number from the GPIO subsystem number space
  318. *
  319. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  320. * as part of their gpio_request() semantics, platforms and individual drivers
  321. * shall *NOT* request GPIO pins to be muxed in.
  322. */
  323. int pinctrl_request_gpio(unsigned gpio)
  324. {
  325. struct pinctrl_dev *pctldev;
  326. struct pinctrl_gpio_range *range;
  327. int ret;
  328. int pin;
  329. mutex_lock(&pinctrl_mutex);
  330. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  331. if (ret) {
  332. mutex_unlock(&pinctrl_mutex);
  333. return ret;
  334. }
  335. /* Convert to the pin controllers number space */
  336. pin = gpio - range->base + range->pin_base;
  337. ret = pinmux_request_gpio(pctldev, range, pin, gpio);
  338. mutex_unlock(&pinctrl_mutex);
  339. return ret;
  340. }
  341. EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
  342. /**
  343. * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
  344. * @gpio: the GPIO pin number from the GPIO subsystem number space
  345. *
  346. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  347. * as part of their gpio_free() semantics, platforms and individual drivers
  348. * shall *NOT* request GPIO pins to be muxed out.
  349. */
  350. void pinctrl_free_gpio(unsigned gpio)
  351. {
  352. struct pinctrl_dev *pctldev;
  353. struct pinctrl_gpio_range *range;
  354. int ret;
  355. int pin;
  356. mutex_lock(&pinctrl_mutex);
  357. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  358. if (ret) {
  359. mutex_unlock(&pinctrl_mutex);
  360. return;
  361. }
  362. /* Convert to the pin controllers number space */
  363. pin = gpio - range->base + range->pin_base;
  364. pinmux_free_gpio(pctldev, pin, range);
  365. mutex_unlock(&pinctrl_mutex);
  366. }
  367. EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
  368. static int pinctrl_gpio_direction(unsigned gpio, bool input)
  369. {
  370. struct pinctrl_dev *pctldev;
  371. struct pinctrl_gpio_range *range;
  372. int ret;
  373. int pin;
  374. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  375. if (ret)
  376. return ret;
  377. /* Convert to the pin controllers number space */
  378. pin = gpio - range->base + range->pin_base;
  379. return pinmux_gpio_direction(pctldev, range, pin, input);
  380. }
  381. /**
  382. * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
  383. * @gpio: the GPIO pin number from the GPIO subsystem number space
  384. *
  385. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  386. * as part of their gpio_direction_input() semantics, platforms and individual
  387. * drivers shall *NOT* touch pin control GPIO calls.
  388. */
  389. int pinctrl_gpio_direction_input(unsigned gpio)
  390. {
  391. int ret;
  392. mutex_lock(&pinctrl_mutex);
  393. ret = pinctrl_gpio_direction(gpio, true);
  394. mutex_unlock(&pinctrl_mutex);
  395. return ret;
  396. }
  397. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
  398. /**
  399. * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
  400. * @gpio: the GPIO pin number from the GPIO subsystem number space
  401. *
  402. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  403. * as part of their gpio_direction_output() semantics, platforms and individual
  404. * drivers shall *NOT* touch pin control GPIO calls.
  405. */
  406. int pinctrl_gpio_direction_output(unsigned gpio)
  407. {
  408. int ret;
  409. mutex_lock(&pinctrl_mutex);
  410. ret = pinctrl_gpio_direction(gpio, false);
  411. mutex_unlock(&pinctrl_mutex);
  412. return ret;
  413. }
  414. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
  415. static struct pinctrl_state *find_state(struct pinctrl *p,
  416. const char *name)
  417. {
  418. struct pinctrl_state *state;
  419. list_for_each_entry(state, &p->states, node)
  420. if (!strcmp(state->name, name))
  421. return state;
  422. return NULL;
  423. }
  424. static struct pinctrl_state *create_state(struct pinctrl *p,
  425. const char *name)
  426. {
  427. struct pinctrl_state *state;
  428. state = kzalloc(sizeof(*state), GFP_KERNEL);
  429. if (state == NULL) {
  430. dev_err(p->dev,
  431. "failed to alloc struct pinctrl_state\n");
  432. return ERR_PTR(-ENOMEM);
  433. }
  434. state->name = name;
  435. INIT_LIST_HEAD(&state->settings);
  436. list_add_tail(&state->node, &p->states);
  437. return state;
  438. }
  439. static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
  440. {
  441. struct pinctrl_state *state;
  442. struct pinctrl_setting *setting;
  443. int ret;
  444. state = find_state(p, map->name);
  445. if (!state)
  446. state = create_state(p, map->name);
  447. if (IS_ERR(state))
  448. return PTR_ERR(state);
  449. if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
  450. return 0;
  451. setting = kzalloc(sizeof(*setting), GFP_KERNEL);
  452. if (setting == NULL) {
  453. dev_err(p->dev,
  454. "failed to alloc struct pinctrl_setting\n");
  455. return -ENOMEM;
  456. }
  457. setting->type = map->type;
  458. setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
  459. if (setting->pctldev == NULL) {
  460. dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
  461. map->ctrl_dev_name);
  462. kfree(setting);
  463. /*
  464. * OK let us guess that the driver is not there yet, and
  465. * let's defer obtaining this pinctrl handle to later...
  466. */
  467. return -EPROBE_DEFER;
  468. }
  469. switch (map->type) {
  470. case PIN_MAP_TYPE_MUX_GROUP:
  471. ret = pinmux_map_to_setting(map, setting);
  472. break;
  473. case PIN_MAP_TYPE_CONFIGS_PIN:
  474. case PIN_MAP_TYPE_CONFIGS_GROUP:
  475. ret = pinconf_map_to_setting(map, setting);
  476. break;
  477. default:
  478. ret = -EINVAL;
  479. break;
  480. }
  481. if (ret < 0) {
  482. kfree(setting);
  483. return ret;
  484. }
  485. list_add_tail(&setting->node, &state->settings);
  486. return 0;
  487. }
  488. static struct pinctrl *find_pinctrl(struct device *dev)
  489. {
  490. struct pinctrl *p;
  491. list_for_each_entry(p, &pinctrl_list, node)
  492. if (p->dev == dev)
  493. return p;
  494. return NULL;
  495. }
  496. static void pinctrl_put_locked(struct pinctrl *p, bool inlist);
  497. static struct pinctrl *create_pinctrl(struct device *dev)
  498. {
  499. struct pinctrl *p;
  500. const char *devname;
  501. struct pinctrl_maps *maps_node;
  502. int i;
  503. struct pinctrl_map const *map;
  504. int ret;
  505. /*
  506. * create the state cookie holder struct pinctrl for each
  507. * mapping, this is what consumers will get when requesting
  508. * a pin control handle with pinctrl_get()
  509. */
  510. p = kzalloc(sizeof(*p), GFP_KERNEL);
  511. if (p == NULL) {
  512. dev_err(dev, "failed to alloc struct pinctrl\n");
  513. return ERR_PTR(-ENOMEM);
  514. }
  515. p->dev = dev;
  516. INIT_LIST_HEAD(&p->states);
  517. INIT_LIST_HEAD(&p->dt_maps);
  518. ret = pinctrl_dt_to_map(p);
  519. if (ret < 0) {
  520. kfree(p);
  521. return ERR_PTR(ret);
  522. }
  523. devname = dev_name(dev);
  524. /* Iterate over the pin control maps to locate the right ones */
  525. for_each_maps(maps_node, i, map) {
  526. /* Map must be for this device */
  527. if (strcmp(map->dev_name, devname))
  528. continue;
  529. ret = add_setting(p, map);
  530. if (ret < 0) {
  531. pinctrl_put_locked(p, false);
  532. return ERR_PTR(ret);
  533. }
  534. }
  535. /* Add the pinmux to the global list */
  536. list_add_tail(&p->node, &pinctrl_list);
  537. return p;
  538. }
  539. static struct pinctrl *pinctrl_get_locked(struct device *dev)
  540. {
  541. struct pinctrl *p;
  542. if (WARN_ON(!dev))
  543. return ERR_PTR(-EINVAL);
  544. p = find_pinctrl(dev);
  545. if (p != NULL)
  546. return ERR_PTR(-EBUSY);
  547. p = create_pinctrl(dev);
  548. if (IS_ERR(p))
  549. return p;
  550. return p;
  551. }
  552. /**
  553. * pinctrl_get() - retrieves the pinctrl handle for a device
  554. * @dev: the device to obtain the handle for
  555. */
  556. struct pinctrl *pinctrl_get(struct device *dev)
  557. {
  558. struct pinctrl *p;
  559. mutex_lock(&pinctrl_mutex);
  560. p = pinctrl_get_locked(dev);
  561. mutex_unlock(&pinctrl_mutex);
  562. return p;
  563. }
  564. EXPORT_SYMBOL_GPL(pinctrl_get);
  565. static void pinctrl_put_locked(struct pinctrl *p, bool inlist)
  566. {
  567. struct pinctrl_state *state, *n1;
  568. struct pinctrl_setting *setting, *n2;
  569. list_for_each_entry_safe(state, n1, &p->states, node) {
  570. list_for_each_entry_safe(setting, n2, &state->settings, node) {
  571. switch (setting->type) {
  572. case PIN_MAP_TYPE_MUX_GROUP:
  573. if (state == p->state)
  574. pinmux_disable_setting(setting);
  575. pinmux_free_setting(setting);
  576. break;
  577. case PIN_MAP_TYPE_CONFIGS_PIN:
  578. case PIN_MAP_TYPE_CONFIGS_GROUP:
  579. pinconf_free_setting(setting);
  580. break;
  581. default:
  582. break;
  583. }
  584. list_del(&setting->node);
  585. kfree(setting);
  586. }
  587. list_del(&state->node);
  588. kfree(state);
  589. }
  590. pinctrl_dt_free_maps(p);
  591. if (inlist)
  592. list_del(&p->node);
  593. kfree(p);
  594. }
  595. /**
  596. * pinctrl_put() - release a previously claimed pinctrl handle
  597. * @p: the pinctrl handle to release
  598. */
  599. void pinctrl_put(struct pinctrl *p)
  600. {
  601. mutex_lock(&pinctrl_mutex);
  602. pinctrl_put_locked(p, true);
  603. mutex_unlock(&pinctrl_mutex);
  604. }
  605. EXPORT_SYMBOL_GPL(pinctrl_put);
  606. static struct pinctrl_state *pinctrl_lookup_state_locked(struct pinctrl *p,
  607. const char *name)
  608. {
  609. struct pinctrl_state *state;
  610. state = find_state(p, name);
  611. if (!state) {
  612. if (pinctrl_dummy_state) {
  613. /* create dummy state */
  614. dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
  615. name);
  616. state = create_state(p, name);
  617. if (IS_ERR(state))
  618. return state;
  619. } else {
  620. return ERR_PTR(-ENODEV);
  621. }
  622. }
  623. return state;
  624. }
  625. /**
  626. * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
  627. * @p: the pinctrl handle to retrieve the state from
  628. * @name: the state name to retrieve
  629. */
  630. struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name)
  631. {
  632. struct pinctrl_state *s;
  633. mutex_lock(&pinctrl_mutex);
  634. s = pinctrl_lookup_state_locked(p, name);
  635. mutex_unlock(&pinctrl_mutex);
  636. return s;
  637. }
  638. EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
  639. static int pinctrl_select_state_locked(struct pinctrl *p,
  640. struct pinctrl_state *state)
  641. {
  642. struct pinctrl_setting *setting, *setting2;
  643. int ret;
  644. if (p->state == state)
  645. return 0;
  646. if (p->state) {
  647. /*
  648. * The set of groups with a mux configuration in the old state
  649. * may not be identical to the set of groups with a mux setting
  650. * in the new state. While this might be unusual, it's entirely
  651. * possible for the "user"-supplied mapping table to be written
  652. * that way. For each group that was configured in the old state
  653. * but not in the new state, this code puts that group into a
  654. * safe/disabled state.
  655. */
  656. list_for_each_entry(setting, &p->state->settings, node) {
  657. bool found = false;
  658. if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
  659. continue;
  660. list_for_each_entry(setting2, &state->settings, node) {
  661. if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
  662. continue;
  663. if (setting2->data.mux.group ==
  664. setting->data.mux.group) {
  665. found = true;
  666. break;
  667. }
  668. }
  669. if (!found)
  670. pinmux_disable_setting(setting);
  671. }
  672. }
  673. p->state = state;
  674. /* Apply all the settings for the new state */
  675. list_for_each_entry(setting, &state->settings, node) {
  676. switch (setting->type) {
  677. case PIN_MAP_TYPE_MUX_GROUP:
  678. ret = pinmux_enable_setting(setting);
  679. break;
  680. case PIN_MAP_TYPE_CONFIGS_PIN:
  681. case PIN_MAP_TYPE_CONFIGS_GROUP:
  682. ret = pinconf_apply_setting(setting);
  683. break;
  684. default:
  685. ret = -EINVAL;
  686. break;
  687. }
  688. if (ret < 0) {
  689. /* FIXME: Difficult to return to prev state */
  690. return ret;
  691. }
  692. }
  693. return 0;
  694. }
  695. /**
  696. * pinctrl_select() - select/activate/program a pinctrl state to HW
  697. * @p: the pinctrl handle for the device that requests configuratio
  698. * @state: the state handle to select/activate/program
  699. */
  700. int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
  701. {
  702. int ret;
  703. mutex_lock(&pinctrl_mutex);
  704. ret = pinctrl_select_state_locked(p, state);
  705. mutex_unlock(&pinctrl_mutex);
  706. return ret;
  707. }
  708. EXPORT_SYMBOL_GPL(pinctrl_select_state);
  709. static void devm_pinctrl_release(struct device *dev, void *res)
  710. {
  711. pinctrl_put(*(struct pinctrl **)res);
  712. }
  713. /**
  714. * struct devm_pinctrl_get() - Resource managed pinctrl_get()
  715. * @dev: the device to obtain the handle for
  716. *
  717. * If there is a need to explicitly destroy the returned struct pinctrl,
  718. * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
  719. */
  720. struct pinctrl *devm_pinctrl_get(struct device *dev)
  721. {
  722. struct pinctrl **ptr, *p;
  723. ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
  724. if (!ptr)
  725. return ERR_PTR(-ENOMEM);
  726. p = pinctrl_get(dev);
  727. if (!IS_ERR(p)) {
  728. *ptr = p;
  729. devres_add(dev, ptr);
  730. } else {
  731. devres_free(ptr);
  732. }
  733. return p;
  734. }
  735. EXPORT_SYMBOL_GPL(devm_pinctrl_get);
  736. static int devm_pinctrl_match(struct device *dev, void *res, void *data)
  737. {
  738. struct pinctrl **p = res;
  739. return *p == data;
  740. }
  741. /**
  742. * devm_pinctrl_put() - Resource managed pinctrl_put()
  743. * @p: the pinctrl handle to release
  744. *
  745. * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
  746. * this function will not need to be called and the resource management
  747. * code will ensure that the resource is freed.
  748. */
  749. void devm_pinctrl_put(struct pinctrl *p)
  750. {
  751. WARN_ON(devres_destroy(p->dev, devm_pinctrl_release,
  752. devm_pinctrl_match, p));
  753. pinctrl_put(p);
  754. }
  755. EXPORT_SYMBOL_GPL(devm_pinctrl_put);
  756. int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
  757. bool dup, bool locked)
  758. {
  759. int i, ret;
  760. struct pinctrl_maps *maps_node;
  761. pr_debug("add %d pinmux maps\n", num_maps);
  762. /* First sanity check the new mapping */
  763. for (i = 0; i < num_maps; i++) {
  764. if (!maps[i].dev_name) {
  765. pr_err("failed to register map %s (%d): no device given\n",
  766. maps[i].name, i);
  767. return -EINVAL;
  768. }
  769. if (!maps[i].name) {
  770. pr_err("failed to register map %d: no map name given\n",
  771. i);
  772. return -EINVAL;
  773. }
  774. if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
  775. !maps[i].ctrl_dev_name) {
  776. pr_err("failed to register map %s (%d): no pin control device given\n",
  777. maps[i].name, i);
  778. return -EINVAL;
  779. }
  780. switch (maps[i].type) {
  781. case PIN_MAP_TYPE_DUMMY_STATE:
  782. break;
  783. case PIN_MAP_TYPE_MUX_GROUP:
  784. ret = pinmux_validate_map(&maps[i], i);
  785. if (ret < 0)
  786. return ret;
  787. break;
  788. case PIN_MAP_TYPE_CONFIGS_PIN:
  789. case PIN_MAP_TYPE_CONFIGS_GROUP:
  790. ret = pinconf_validate_map(&maps[i], i);
  791. if (ret < 0)
  792. return ret;
  793. break;
  794. default:
  795. pr_err("failed to register map %s (%d): invalid type given\n",
  796. maps[i].name, i);
  797. return -EINVAL;
  798. }
  799. }
  800. maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
  801. if (!maps_node) {
  802. pr_err("failed to alloc struct pinctrl_maps\n");
  803. return -ENOMEM;
  804. }
  805. maps_node->num_maps = num_maps;
  806. if (dup) {
  807. maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
  808. GFP_KERNEL);
  809. if (!maps_node->maps) {
  810. pr_err("failed to duplicate mapping table\n");
  811. kfree(maps_node);
  812. return -ENOMEM;
  813. }
  814. } else {
  815. maps_node->maps = maps;
  816. }
  817. if (!locked)
  818. mutex_lock(&pinctrl_mutex);
  819. list_add_tail(&maps_node->node, &pinctrl_maps);
  820. if (!locked)
  821. mutex_unlock(&pinctrl_mutex);
  822. return 0;
  823. }
  824. /**
  825. * pinctrl_register_mappings() - register a set of pin controller mappings
  826. * @maps: the pincontrol mappings table to register. This should probably be
  827. * marked with __initdata so it can be discarded after boot. This
  828. * function will perform a shallow copy for the mapping entries.
  829. * @num_maps: the number of maps in the mapping table
  830. */
  831. int pinctrl_register_mappings(struct pinctrl_map const *maps,
  832. unsigned num_maps)
  833. {
  834. return pinctrl_register_map(maps, num_maps, true, false);
  835. }
  836. void pinctrl_unregister_map(struct pinctrl_map const *map)
  837. {
  838. struct pinctrl_maps *maps_node;
  839. list_for_each_entry(maps_node, &pinctrl_maps, node) {
  840. if (maps_node->maps == map) {
  841. list_del(&maps_node->node);
  842. return;
  843. }
  844. }
  845. }
  846. #ifdef CONFIG_DEBUG_FS
  847. static int pinctrl_pins_show(struct seq_file *s, void *what)
  848. {
  849. struct pinctrl_dev *pctldev = s->private;
  850. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  851. unsigned i, pin;
  852. seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
  853. mutex_lock(&pinctrl_mutex);
  854. /* The pin number can be retrived from the pin controller descriptor */
  855. for (i = 0; i < pctldev->desc->npins; i++) {
  856. struct pin_desc *desc;
  857. pin = pctldev->desc->pins[i].number;
  858. desc = pin_desc_get(pctldev, pin);
  859. /* Pin space may be sparse */
  860. if (desc == NULL)
  861. continue;
  862. seq_printf(s, "pin %d (%s) ", pin,
  863. desc->name ? desc->name : "unnamed");
  864. /* Driver-specific info per pin */
  865. if (ops->pin_dbg_show)
  866. ops->pin_dbg_show(pctldev, s, pin);
  867. seq_puts(s, "\n");
  868. }
  869. mutex_unlock(&pinctrl_mutex);
  870. return 0;
  871. }
  872. static int pinctrl_groups_show(struct seq_file *s, void *what)
  873. {
  874. struct pinctrl_dev *pctldev = s->private;
  875. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  876. unsigned ngroups, selector = 0;
  877. ngroups = ops->get_groups_count(pctldev);
  878. mutex_lock(&pinctrl_mutex);
  879. seq_puts(s, "registered pin groups:\n");
  880. while (selector < ngroups) {
  881. const unsigned *pins;
  882. unsigned num_pins;
  883. const char *gname = ops->get_group_name(pctldev, selector);
  884. const char *pname;
  885. int ret;
  886. int i;
  887. ret = ops->get_group_pins(pctldev, selector,
  888. &pins, &num_pins);
  889. if (ret)
  890. seq_printf(s, "%s [ERROR GETTING PINS]\n",
  891. gname);
  892. else {
  893. seq_printf(s, "group: %s\n", gname);
  894. for (i = 0; i < num_pins; i++) {
  895. pname = pin_get_name(pctldev, pins[i]);
  896. if (WARN_ON(!pname))
  897. return -EINVAL;
  898. seq_printf(s, "pin %d (%s)\n", pins[i], pname);
  899. }
  900. seq_puts(s, "\n");
  901. }
  902. selector++;
  903. }
  904. mutex_unlock(&pinctrl_mutex);
  905. return 0;
  906. }
  907. static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
  908. {
  909. struct pinctrl_dev *pctldev = s->private;
  910. struct pinctrl_gpio_range *range = NULL;
  911. seq_puts(s, "GPIO ranges handled:\n");
  912. mutex_lock(&pinctrl_mutex);
  913. /* Loop over the ranges */
  914. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  915. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
  916. range->id, range->name,
  917. range->base, (range->base + range->npins - 1),
  918. range->pin_base,
  919. (range->pin_base + range->npins - 1));
  920. }
  921. mutex_unlock(&pinctrl_mutex);
  922. return 0;
  923. }
  924. static int pinctrl_devices_show(struct seq_file *s, void *what)
  925. {
  926. struct pinctrl_dev *pctldev;
  927. seq_puts(s, "name [pinmux] [pinconf]\n");
  928. mutex_lock(&pinctrl_mutex);
  929. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  930. seq_printf(s, "%s ", pctldev->desc->name);
  931. if (pctldev->desc->pmxops)
  932. seq_puts(s, "yes ");
  933. else
  934. seq_puts(s, "no ");
  935. if (pctldev->desc->confops)
  936. seq_puts(s, "yes");
  937. else
  938. seq_puts(s, "no");
  939. seq_puts(s, "\n");
  940. }
  941. mutex_unlock(&pinctrl_mutex);
  942. return 0;
  943. }
  944. static inline const char *map_type(enum pinctrl_map_type type)
  945. {
  946. static const char * const names[] = {
  947. "INVALID",
  948. "DUMMY_STATE",
  949. "MUX_GROUP",
  950. "CONFIGS_PIN",
  951. "CONFIGS_GROUP",
  952. };
  953. if (type >= ARRAY_SIZE(names))
  954. return "UNKNOWN";
  955. return names[type];
  956. }
  957. static int pinctrl_maps_show(struct seq_file *s, void *what)
  958. {
  959. struct pinctrl_maps *maps_node;
  960. int i;
  961. struct pinctrl_map const *map;
  962. seq_puts(s, "Pinctrl maps:\n");
  963. mutex_lock(&pinctrl_mutex);
  964. for_each_maps(maps_node, i, map) {
  965. seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
  966. map->dev_name, map->name, map_type(map->type),
  967. map->type);
  968. if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
  969. seq_printf(s, "controlling device %s\n",
  970. map->ctrl_dev_name);
  971. switch (map->type) {
  972. case PIN_MAP_TYPE_MUX_GROUP:
  973. pinmux_show_map(s, map);
  974. break;
  975. case PIN_MAP_TYPE_CONFIGS_PIN:
  976. case PIN_MAP_TYPE_CONFIGS_GROUP:
  977. pinconf_show_map(s, map);
  978. break;
  979. default:
  980. break;
  981. }
  982. seq_printf(s, "\n");
  983. }
  984. mutex_unlock(&pinctrl_mutex);
  985. return 0;
  986. }
  987. static int pinctrl_show(struct seq_file *s, void *what)
  988. {
  989. struct pinctrl *p;
  990. struct pinctrl_state *state;
  991. struct pinctrl_setting *setting;
  992. seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
  993. mutex_lock(&pinctrl_mutex);
  994. list_for_each_entry(p, &pinctrl_list, node) {
  995. seq_printf(s, "device: %s current state: %s\n",
  996. dev_name(p->dev),
  997. p->state ? p->state->name : "none");
  998. list_for_each_entry(state, &p->states, node) {
  999. seq_printf(s, " state: %s\n", state->name);
  1000. list_for_each_entry(setting, &state->settings, node) {
  1001. struct pinctrl_dev *pctldev = setting->pctldev;
  1002. seq_printf(s, " type: %s controller %s ",
  1003. map_type(setting->type),
  1004. pinctrl_dev_get_name(pctldev));
  1005. switch (setting->type) {
  1006. case PIN_MAP_TYPE_MUX_GROUP:
  1007. pinmux_show_setting(s, setting);
  1008. break;
  1009. case PIN_MAP_TYPE_CONFIGS_PIN:
  1010. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1011. pinconf_show_setting(s, setting);
  1012. break;
  1013. default:
  1014. break;
  1015. }
  1016. }
  1017. }
  1018. }
  1019. mutex_unlock(&pinctrl_mutex);
  1020. return 0;
  1021. }
  1022. static int pinctrl_pins_open(struct inode *inode, struct file *file)
  1023. {
  1024. return single_open(file, pinctrl_pins_show, inode->i_private);
  1025. }
  1026. static int pinctrl_groups_open(struct inode *inode, struct file *file)
  1027. {
  1028. return single_open(file, pinctrl_groups_show, inode->i_private);
  1029. }
  1030. static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
  1031. {
  1032. return single_open(file, pinctrl_gpioranges_show, inode->i_private);
  1033. }
  1034. static int pinctrl_devices_open(struct inode *inode, struct file *file)
  1035. {
  1036. return single_open(file, pinctrl_devices_show, NULL);
  1037. }
  1038. static int pinctrl_maps_open(struct inode *inode, struct file *file)
  1039. {
  1040. return single_open(file, pinctrl_maps_show, NULL);
  1041. }
  1042. static int pinctrl_open(struct inode *inode, struct file *file)
  1043. {
  1044. return single_open(file, pinctrl_show, NULL);
  1045. }
  1046. static const struct file_operations pinctrl_pins_ops = {
  1047. .open = pinctrl_pins_open,
  1048. .read = seq_read,
  1049. .llseek = seq_lseek,
  1050. .release = single_release,
  1051. };
  1052. static const struct file_operations pinctrl_groups_ops = {
  1053. .open = pinctrl_groups_open,
  1054. .read = seq_read,
  1055. .llseek = seq_lseek,
  1056. .release = single_release,
  1057. };
  1058. static const struct file_operations pinctrl_gpioranges_ops = {
  1059. .open = pinctrl_gpioranges_open,
  1060. .read = seq_read,
  1061. .llseek = seq_lseek,
  1062. .release = single_release,
  1063. };
  1064. static const struct file_operations pinctrl_devices_ops = {
  1065. .open = pinctrl_devices_open,
  1066. .read = seq_read,
  1067. .llseek = seq_lseek,
  1068. .release = single_release,
  1069. };
  1070. static const struct file_operations pinctrl_maps_ops = {
  1071. .open = pinctrl_maps_open,
  1072. .read = seq_read,
  1073. .llseek = seq_lseek,
  1074. .release = single_release,
  1075. };
  1076. static const struct file_operations pinctrl_ops = {
  1077. .open = pinctrl_open,
  1078. .read = seq_read,
  1079. .llseek = seq_lseek,
  1080. .release = single_release,
  1081. };
  1082. static struct dentry *debugfs_root;
  1083. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1084. {
  1085. struct dentry *device_root;
  1086. device_root = debugfs_create_dir(dev_name(pctldev->dev),
  1087. debugfs_root);
  1088. pctldev->device_root = device_root;
  1089. if (IS_ERR(device_root) || !device_root) {
  1090. pr_warn("failed to create debugfs directory for %s\n",
  1091. dev_name(pctldev->dev));
  1092. return;
  1093. }
  1094. debugfs_create_file("pins", S_IFREG | S_IRUGO,
  1095. device_root, pctldev, &pinctrl_pins_ops);
  1096. debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
  1097. device_root, pctldev, &pinctrl_groups_ops);
  1098. debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
  1099. device_root, pctldev, &pinctrl_gpioranges_ops);
  1100. pinmux_init_device_debugfs(device_root, pctldev);
  1101. pinconf_init_device_debugfs(device_root, pctldev);
  1102. }
  1103. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1104. {
  1105. debugfs_remove_recursive(pctldev->device_root);
  1106. }
  1107. static void pinctrl_init_debugfs(void)
  1108. {
  1109. debugfs_root = debugfs_create_dir("pinctrl", NULL);
  1110. if (IS_ERR(debugfs_root) || !debugfs_root) {
  1111. pr_warn("failed to create debugfs directory\n");
  1112. debugfs_root = NULL;
  1113. return;
  1114. }
  1115. debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
  1116. debugfs_root, NULL, &pinctrl_devices_ops);
  1117. debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
  1118. debugfs_root, NULL, &pinctrl_maps_ops);
  1119. debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
  1120. debugfs_root, NULL, &pinctrl_ops);
  1121. }
  1122. #else /* CONFIG_DEBUG_FS */
  1123. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1124. {
  1125. }
  1126. static void pinctrl_init_debugfs(void)
  1127. {
  1128. }
  1129. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1130. {
  1131. }
  1132. #endif
  1133. static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
  1134. {
  1135. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1136. if (!ops ||
  1137. !ops->get_groups_count ||
  1138. !ops->get_group_name ||
  1139. !ops->get_group_pins)
  1140. return -EINVAL;
  1141. if (ops->dt_node_to_map && !ops->dt_free_map)
  1142. return -EINVAL;
  1143. return 0;
  1144. }
  1145. /**
  1146. * pinctrl_register() - register a pin controller device
  1147. * @pctldesc: descriptor for this pin controller
  1148. * @dev: parent device for this pin controller
  1149. * @driver_data: private pin controller data for this pin controller
  1150. */
  1151. struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
  1152. struct device *dev, void *driver_data)
  1153. {
  1154. struct pinctrl_dev *pctldev;
  1155. int ret;
  1156. if (!pctldesc)
  1157. return NULL;
  1158. if (!pctldesc->name)
  1159. return NULL;
  1160. pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
  1161. if (pctldev == NULL) {
  1162. dev_err(dev, "failed to alloc struct pinctrl_dev\n");
  1163. return NULL;
  1164. }
  1165. /* Initialize pin control device struct */
  1166. pctldev->owner = pctldesc->owner;
  1167. pctldev->desc = pctldesc;
  1168. pctldev->driver_data = driver_data;
  1169. INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
  1170. INIT_LIST_HEAD(&pctldev->gpio_ranges);
  1171. pctldev->dev = dev;
  1172. /* check core ops for sanity */
  1173. if (pinctrl_check_ops(pctldev)) {
  1174. dev_err(dev, "pinctrl ops lacks necessary functions\n");
  1175. goto out_err;
  1176. }
  1177. /* If we're implementing pinmuxing, check the ops for sanity */
  1178. if (pctldesc->pmxops) {
  1179. if (pinmux_check_ops(pctldev))
  1180. goto out_err;
  1181. }
  1182. /* If we're implementing pinconfig, check the ops for sanity */
  1183. if (pctldesc->confops) {
  1184. if (pinconf_check_ops(pctldev))
  1185. goto out_err;
  1186. }
  1187. /* Register all the pins */
  1188. dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
  1189. ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
  1190. if (ret) {
  1191. dev_err(dev, "error during pin registration\n");
  1192. pinctrl_free_pindescs(pctldev, pctldesc->pins,
  1193. pctldesc->npins);
  1194. goto out_err;
  1195. }
  1196. mutex_lock(&pinctrl_mutex);
  1197. list_add_tail(&pctldev->node, &pinctrldev_list);
  1198. pctldev->p = pinctrl_get_locked(pctldev->dev);
  1199. if (!IS_ERR(pctldev->p)) {
  1200. struct pinctrl_state *s =
  1201. pinctrl_lookup_state_locked(pctldev->p,
  1202. PINCTRL_STATE_DEFAULT);
  1203. if (IS_ERR(s)) {
  1204. dev_dbg(dev, "failed to lookup the default state\n");
  1205. } else {
  1206. if (pinctrl_select_state_locked(pctldev->p, s))
  1207. dev_err(dev,
  1208. "failed to select default state\n");
  1209. }
  1210. }
  1211. mutex_unlock(&pinctrl_mutex);
  1212. pinctrl_init_device_debugfs(pctldev);
  1213. return pctldev;
  1214. out_err:
  1215. kfree(pctldev);
  1216. return NULL;
  1217. }
  1218. EXPORT_SYMBOL_GPL(pinctrl_register);
  1219. /**
  1220. * pinctrl_unregister() - unregister pinmux
  1221. * @pctldev: pin controller to unregister
  1222. *
  1223. * Called by pinmux drivers to unregister a pinmux.
  1224. */
  1225. void pinctrl_unregister(struct pinctrl_dev *pctldev)
  1226. {
  1227. struct pinctrl_gpio_range *range, *n;
  1228. if (pctldev == NULL)
  1229. return;
  1230. pinctrl_remove_device_debugfs(pctldev);
  1231. mutex_lock(&pinctrl_mutex);
  1232. if (!IS_ERR(pctldev->p))
  1233. pinctrl_put_locked(pctldev->p, true);
  1234. /* TODO: check that no pinmuxes are still active? */
  1235. list_del(&pctldev->node);
  1236. /* Destroy descriptor tree */
  1237. pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
  1238. pctldev->desc->npins);
  1239. /* remove gpio ranges map */
  1240. list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
  1241. list_del(&range->node);
  1242. kfree(pctldev);
  1243. mutex_unlock(&pinctrl_mutex);
  1244. }
  1245. EXPORT_SYMBOL_GPL(pinctrl_unregister);
  1246. static int __init pinctrl_init(void)
  1247. {
  1248. pr_info("initialized pinctrl subsystem\n");
  1249. pinctrl_init_debugfs();
  1250. return 0;
  1251. }
  1252. /* init early since many drivers really need to initialized pinmux early */
  1253. core_initcall(pinctrl_init);