xfs_inode.c 138 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_acl.h"
  51. #include "xfs_filestream.h"
  52. #include "xfs_vnodeops.h"
  53. kmem_zone_t *xfs_ifork_zone;
  54. kmem_zone_t *xfs_inode_zone;
  55. kmem_zone_t *xfs_icluster_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_irec_t irec;
  77. xfs_bmbt_rec_host_t rec;
  78. int i;
  79. for (i = 0; i < nrecs; i++) {
  80. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81. rec.l0 = get_unaligned(&ep->l0);
  82. rec.l1 = get_unaligned(&ep->l1);
  83. xfs_bmbt_get_all(&rec, &irec);
  84. if (fmt == XFS_EXTFMT_NOSTATE)
  85. ASSERT(irec.br_state == XFS_EXT_NORM);
  86. }
  87. }
  88. #else /* DEBUG */
  89. #define xfs_validate_extents(ifp, nrecs, fmt)
  90. #endif /* DEBUG */
  91. /*
  92. * Check that none of the inode's in the buffer have a next
  93. * unlinked field of 0.
  94. */
  95. #if defined(DEBUG)
  96. void
  97. xfs_inobp_check(
  98. xfs_mount_t *mp,
  99. xfs_buf_t *bp)
  100. {
  101. int i;
  102. int j;
  103. xfs_dinode_t *dip;
  104. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  105. for (i = 0; i < j; i++) {
  106. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  107. i * mp->m_sb.sb_inodesize);
  108. if (!dip->di_next_unlinked) {
  109. xfs_fs_cmn_err(CE_ALERT, mp,
  110. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  111. bp);
  112. ASSERT(dip->di_next_unlinked);
  113. }
  114. }
  115. }
  116. #endif
  117. /*
  118. * This routine is called to map an inode number within a file
  119. * system to the buffer containing the on-disk version of the
  120. * inode. It returns a pointer to the buffer containing the
  121. * on-disk inode in the bpp parameter, and in the dip parameter
  122. * it returns a pointer to the on-disk inode within that buffer.
  123. *
  124. * If a non-zero error is returned, then the contents of bpp and
  125. * dipp are undefined.
  126. *
  127. * Use xfs_imap() to determine the size and location of the
  128. * buffer to read from disk.
  129. */
  130. STATIC int
  131. xfs_inotobp(
  132. xfs_mount_t *mp,
  133. xfs_trans_t *tp,
  134. xfs_ino_t ino,
  135. xfs_dinode_t **dipp,
  136. xfs_buf_t **bpp,
  137. int *offset)
  138. {
  139. int di_ok;
  140. xfs_imap_t imap;
  141. xfs_buf_t *bp;
  142. int error;
  143. xfs_dinode_t *dip;
  144. /*
  145. * Call the space management code to find the location of the
  146. * inode on disk.
  147. */
  148. imap.im_blkno = 0;
  149. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  150. if (error != 0) {
  151. cmn_err(CE_WARN,
  152. "xfs_inotobp: xfs_imap() returned an "
  153. "error %d on %s. Returning error.", error, mp->m_fsname);
  154. return error;
  155. }
  156. /*
  157. * If the inode number maps to a block outside the bounds of the
  158. * file system then return NULL rather than calling read_buf
  159. * and panicing when we get an error from the driver.
  160. */
  161. if ((imap.im_blkno + imap.im_len) >
  162. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  163. cmn_err(CE_WARN,
  164. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  165. "of the file system %s. Returning EINVAL.",
  166. (unsigned long long)imap.im_blkno,
  167. imap.im_len, mp->m_fsname);
  168. return XFS_ERROR(EINVAL);
  169. }
  170. /*
  171. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  172. * default to just a read_buf() call.
  173. */
  174. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  175. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  176. if (error) {
  177. cmn_err(CE_WARN,
  178. "xfs_inotobp: xfs_trans_read_buf() returned an "
  179. "error %d on %s. Returning error.", error, mp->m_fsname);
  180. return error;
  181. }
  182. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  183. di_ok =
  184. be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  185. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  186. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  187. XFS_RANDOM_ITOBP_INOTOBP))) {
  188. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  189. xfs_trans_brelse(tp, bp);
  190. cmn_err(CE_WARN,
  191. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  192. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  193. return XFS_ERROR(EFSCORRUPTED);
  194. }
  195. xfs_inobp_check(mp, bp);
  196. /*
  197. * Set *dipp to point to the on-disk inode in the buffer.
  198. */
  199. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  200. *bpp = bp;
  201. *offset = imap.im_boffset;
  202. return 0;
  203. }
  204. /*
  205. * This routine is called to map an inode to the buffer containing
  206. * the on-disk version of the inode. It returns a pointer to the
  207. * buffer containing the on-disk inode in the bpp parameter, and in
  208. * the dip parameter it returns a pointer to the on-disk inode within
  209. * that buffer.
  210. *
  211. * If a non-zero error is returned, then the contents of bpp and
  212. * dipp are undefined.
  213. *
  214. * If the inode is new and has not yet been initialized, use xfs_imap()
  215. * to determine the size and location of the buffer to read from disk.
  216. * If the inode has already been mapped to its buffer and read in once,
  217. * then use the mapping information stored in the inode rather than
  218. * calling xfs_imap(). This allows us to avoid the overhead of looking
  219. * at the inode btree for small block file systems (see xfs_dilocate()).
  220. * We can tell whether the inode has been mapped in before by comparing
  221. * its disk block address to 0. Only uninitialized inodes will have
  222. * 0 for the disk block address.
  223. */
  224. int
  225. xfs_itobp(
  226. xfs_mount_t *mp,
  227. xfs_trans_t *tp,
  228. xfs_inode_t *ip,
  229. xfs_dinode_t **dipp,
  230. xfs_buf_t **bpp,
  231. xfs_daddr_t bno,
  232. uint imap_flags)
  233. {
  234. xfs_imap_t imap;
  235. xfs_buf_t *bp;
  236. int error;
  237. int i;
  238. int ni;
  239. if (ip->i_blkno == (xfs_daddr_t)0) {
  240. /*
  241. * Call the space management code to find the location of the
  242. * inode on disk.
  243. */
  244. imap.im_blkno = bno;
  245. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  246. XFS_IMAP_LOOKUP | imap_flags)))
  247. return error;
  248. /*
  249. * If the inode number maps to a block outside the bounds
  250. * of the file system then return NULL rather than calling
  251. * read_buf and panicing when we get an error from the
  252. * driver.
  253. */
  254. if ((imap.im_blkno + imap.im_len) >
  255. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  256. #ifdef DEBUG
  257. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  258. "(imap.im_blkno (0x%llx) "
  259. "+ imap.im_len (0x%llx)) > "
  260. " XFS_FSB_TO_BB(mp, "
  261. "mp->m_sb.sb_dblocks) (0x%llx)",
  262. (unsigned long long) imap.im_blkno,
  263. (unsigned long long) imap.im_len,
  264. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  265. #endif /* DEBUG */
  266. return XFS_ERROR(EINVAL);
  267. }
  268. /*
  269. * Fill in the fields in the inode that will be used to
  270. * map the inode to its buffer from now on.
  271. */
  272. ip->i_blkno = imap.im_blkno;
  273. ip->i_len = imap.im_len;
  274. ip->i_boffset = imap.im_boffset;
  275. } else {
  276. /*
  277. * We've already mapped the inode once, so just use the
  278. * mapping that we saved the first time.
  279. */
  280. imap.im_blkno = ip->i_blkno;
  281. imap.im_len = ip->i_len;
  282. imap.im_boffset = ip->i_boffset;
  283. }
  284. ASSERT(bno == 0 || bno == imap.im_blkno);
  285. /*
  286. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  287. * default to just a read_buf() call.
  288. */
  289. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  290. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  291. if (error) {
  292. #ifdef DEBUG
  293. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  294. "xfs_trans_read_buf() returned error %d, "
  295. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  296. error, (unsigned long long) imap.im_blkno,
  297. (unsigned long long) imap.im_len);
  298. #endif /* DEBUG */
  299. return error;
  300. }
  301. /*
  302. * Validate the magic number and version of every inode in the buffer
  303. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  304. * No validation is done here in userspace (xfs_repair).
  305. */
  306. #if !defined(__KERNEL__)
  307. ni = 0;
  308. #elif defined(DEBUG)
  309. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  310. #else /* usual case */
  311. ni = 1;
  312. #endif
  313. for (i = 0; i < ni; i++) {
  314. int di_ok;
  315. xfs_dinode_t *dip;
  316. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  317. (i << mp->m_sb.sb_inodelog));
  318. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  319. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  320. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  321. XFS_ERRTAG_ITOBP_INOTOBP,
  322. XFS_RANDOM_ITOBP_INOTOBP))) {
  323. if (imap_flags & XFS_IMAP_BULKSTAT) {
  324. xfs_trans_brelse(tp, bp);
  325. return XFS_ERROR(EINVAL);
  326. }
  327. #ifdef DEBUG
  328. cmn_err(CE_ALERT,
  329. "Device %s - bad inode magic/vsn "
  330. "daddr %lld #%d (magic=%x)",
  331. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  332. (unsigned long long)imap.im_blkno, i,
  333. be16_to_cpu(dip->di_core.di_magic));
  334. #endif
  335. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  336. mp, dip);
  337. xfs_trans_brelse(tp, bp);
  338. return XFS_ERROR(EFSCORRUPTED);
  339. }
  340. }
  341. xfs_inobp_check(mp, bp);
  342. /*
  343. * Mark the buffer as an inode buffer now that it looks good
  344. */
  345. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  346. /*
  347. * Set *dipp to point to the on-disk inode in the buffer.
  348. */
  349. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  350. *bpp = bp;
  351. return 0;
  352. }
  353. /*
  354. * Move inode type and inode format specific information from the
  355. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  356. * this means set if_rdev to the proper value. For files, directories,
  357. * and symlinks this means to bring in the in-line data or extent
  358. * pointers. For a file in B-tree format, only the root is immediately
  359. * brought in-core. The rest will be in-lined in if_extents when it
  360. * is first referenced (see xfs_iread_extents()).
  361. */
  362. STATIC int
  363. xfs_iformat(
  364. xfs_inode_t *ip,
  365. xfs_dinode_t *dip)
  366. {
  367. xfs_attr_shortform_t *atp;
  368. int size;
  369. int error;
  370. xfs_fsize_t di_size;
  371. ip->i_df.if_ext_max =
  372. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  373. error = 0;
  374. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  375. be16_to_cpu(dip->di_core.di_anextents) >
  376. be64_to_cpu(dip->di_core.di_nblocks))) {
  377. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  378. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  379. (unsigned long long)ip->i_ino,
  380. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  381. be16_to_cpu(dip->di_core.di_anextents)),
  382. (unsigned long long)
  383. be64_to_cpu(dip->di_core.di_nblocks));
  384. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  385. ip->i_mount, dip);
  386. return XFS_ERROR(EFSCORRUPTED);
  387. }
  388. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  389. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  390. "corrupt dinode %Lu, forkoff = 0x%x.",
  391. (unsigned long long)ip->i_ino,
  392. dip->di_core.di_forkoff);
  393. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  394. ip->i_mount, dip);
  395. return XFS_ERROR(EFSCORRUPTED);
  396. }
  397. switch (ip->i_d.di_mode & S_IFMT) {
  398. case S_IFIFO:
  399. case S_IFCHR:
  400. case S_IFBLK:
  401. case S_IFSOCK:
  402. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  403. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  404. ip->i_mount, dip);
  405. return XFS_ERROR(EFSCORRUPTED);
  406. }
  407. ip->i_d.di_size = 0;
  408. ip->i_size = 0;
  409. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  410. break;
  411. case S_IFREG:
  412. case S_IFLNK:
  413. case S_IFDIR:
  414. switch (dip->di_core.di_format) {
  415. case XFS_DINODE_FMT_LOCAL:
  416. /*
  417. * no local regular files yet
  418. */
  419. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  420. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  421. "corrupt inode %Lu "
  422. "(local format for regular file).",
  423. (unsigned long long) ip->i_ino);
  424. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  425. XFS_ERRLEVEL_LOW,
  426. ip->i_mount, dip);
  427. return XFS_ERROR(EFSCORRUPTED);
  428. }
  429. di_size = be64_to_cpu(dip->di_core.di_size);
  430. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  431. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  432. "corrupt inode %Lu "
  433. "(bad size %Ld for local inode).",
  434. (unsigned long long) ip->i_ino,
  435. (long long) di_size);
  436. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  437. XFS_ERRLEVEL_LOW,
  438. ip->i_mount, dip);
  439. return XFS_ERROR(EFSCORRUPTED);
  440. }
  441. size = (int)di_size;
  442. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  443. break;
  444. case XFS_DINODE_FMT_EXTENTS:
  445. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  446. break;
  447. case XFS_DINODE_FMT_BTREE:
  448. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  449. break;
  450. default:
  451. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  452. ip->i_mount);
  453. return XFS_ERROR(EFSCORRUPTED);
  454. }
  455. break;
  456. default:
  457. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  458. return XFS_ERROR(EFSCORRUPTED);
  459. }
  460. if (error) {
  461. return error;
  462. }
  463. if (!XFS_DFORK_Q(dip))
  464. return 0;
  465. ASSERT(ip->i_afp == NULL);
  466. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  467. ip->i_afp->if_ext_max =
  468. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  469. switch (dip->di_core.di_aformat) {
  470. case XFS_DINODE_FMT_LOCAL:
  471. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  472. size = be16_to_cpu(atp->hdr.totsize);
  473. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  474. break;
  475. case XFS_DINODE_FMT_EXTENTS:
  476. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  477. break;
  478. case XFS_DINODE_FMT_BTREE:
  479. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  480. break;
  481. default:
  482. error = XFS_ERROR(EFSCORRUPTED);
  483. break;
  484. }
  485. if (error) {
  486. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  487. ip->i_afp = NULL;
  488. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  489. }
  490. return error;
  491. }
  492. /*
  493. * The file is in-lined in the on-disk inode.
  494. * If it fits into if_inline_data, then copy
  495. * it there, otherwise allocate a buffer for it
  496. * and copy the data there. Either way, set
  497. * if_data to point at the data.
  498. * If we allocate a buffer for the data, make
  499. * sure that its size is a multiple of 4 and
  500. * record the real size in i_real_bytes.
  501. */
  502. STATIC int
  503. xfs_iformat_local(
  504. xfs_inode_t *ip,
  505. xfs_dinode_t *dip,
  506. int whichfork,
  507. int size)
  508. {
  509. xfs_ifork_t *ifp;
  510. int real_size;
  511. /*
  512. * If the size is unreasonable, then something
  513. * is wrong and we just bail out rather than crash in
  514. * kmem_alloc() or memcpy() below.
  515. */
  516. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  517. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  518. "corrupt inode %Lu "
  519. "(bad size %d for local fork, size = %d).",
  520. (unsigned long long) ip->i_ino, size,
  521. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  522. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  523. ip->i_mount, dip);
  524. return XFS_ERROR(EFSCORRUPTED);
  525. }
  526. ifp = XFS_IFORK_PTR(ip, whichfork);
  527. real_size = 0;
  528. if (size == 0)
  529. ifp->if_u1.if_data = NULL;
  530. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  531. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  532. else {
  533. real_size = roundup(size, 4);
  534. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  535. }
  536. ifp->if_bytes = size;
  537. ifp->if_real_bytes = real_size;
  538. if (size)
  539. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  540. ifp->if_flags &= ~XFS_IFEXTENTS;
  541. ifp->if_flags |= XFS_IFINLINE;
  542. return 0;
  543. }
  544. /*
  545. * The file consists of a set of extents all
  546. * of which fit into the on-disk inode.
  547. * If there are few enough extents to fit into
  548. * the if_inline_ext, then copy them there.
  549. * Otherwise allocate a buffer for them and copy
  550. * them into it. Either way, set if_extents
  551. * to point at the extents.
  552. */
  553. STATIC int
  554. xfs_iformat_extents(
  555. xfs_inode_t *ip,
  556. xfs_dinode_t *dip,
  557. int whichfork)
  558. {
  559. xfs_bmbt_rec_t *dp;
  560. xfs_ifork_t *ifp;
  561. int nex;
  562. int size;
  563. int i;
  564. ifp = XFS_IFORK_PTR(ip, whichfork);
  565. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  566. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  567. /*
  568. * If the number of extents is unreasonable, then something
  569. * is wrong and we just bail out rather than crash in
  570. * kmem_alloc() or memcpy() below.
  571. */
  572. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  573. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  574. "corrupt inode %Lu ((a)extents = %d).",
  575. (unsigned long long) ip->i_ino, nex);
  576. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  577. ip->i_mount, dip);
  578. return XFS_ERROR(EFSCORRUPTED);
  579. }
  580. ifp->if_real_bytes = 0;
  581. if (nex == 0)
  582. ifp->if_u1.if_extents = NULL;
  583. else if (nex <= XFS_INLINE_EXTS)
  584. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  585. else
  586. xfs_iext_add(ifp, 0, nex);
  587. ifp->if_bytes = size;
  588. if (size) {
  589. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  590. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  591. for (i = 0; i < nex; i++, dp++) {
  592. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  593. ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
  594. ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
  595. }
  596. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  597. if (whichfork != XFS_DATA_FORK ||
  598. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  599. if (unlikely(xfs_check_nostate_extents(
  600. ifp, 0, nex))) {
  601. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  602. XFS_ERRLEVEL_LOW,
  603. ip->i_mount);
  604. return XFS_ERROR(EFSCORRUPTED);
  605. }
  606. }
  607. ifp->if_flags |= XFS_IFEXTENTS;
  608. return 0;
  609. }
  610. /*
  611. * The file has too many extents to fit into
  612. * the inode, so they are in B-tree format.
  613. * Allocate a buffer for the root of the B-tree
  614. * and copy the root into it. The i_extents
  615. * field will remain NULL until all of the
  616. * extents are read in (when they are needed).
  617. */
  618. STATIC int
  619. xfs_iformat_btree(
  620. xfs_inode_t *ip,
  621. xfs_dinode_t *dip,
  622. int whichfork)
  623. {
  624. xfs_bmdr_block_t *dfp;
  625. xfs_ifork_t *ifp;
  626. /* REFERENCED */
  627. int nrecs;
  628. int size;
  629. ifp = XFS_IFORK_PTR(ip, whichfork);
  630. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  631. size = XFS_BMAP_BROOT_SPACE(dfp);
  632. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  633. /*
  634. * blow out if -- fork has less extents than can fit in
  635. * fork (fork shouldn't be a btree format), root btree
  636. * block has more records than can fit into the fork,
  637. * or the number of extents is greater than the number of
  638. * blocks.
  639. */
  640. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  641. || XFS_BMDR_SPACE_CALC(nrecs) >
  642. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  643. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  644. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  645. "corrupt inode %Lu (btree).",
  646. (unsigned long long) ip->i_ino);
  647. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  648. ip->i_mount);
  649. return XFS_ERROR(EFSCORRUPTED);
  650. }
  651. ifp->if_broot_bytes = size;
  652. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  653. ASSERT(ifp->if_broot != NULL);
  654. /*
  655. * Copy and convert from the on-disk structure
  656. * to the in-memory structure.
  657. */
  658. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  659. ifp->if_broot, size);
  660. ifp->if_flags &= ~XFS_IFEXTENTS;
  661. ifp->if_flags |= XFS_IFBROOT;
  662. return 0;
  663. }
  664. void
  665. xfs_dinode_from_disk(
  666. xfs_icdinode_t *to,
  667. xfs_dinode_core_t *from)
  668. {
  669. to->di_magic = be16_to_cpu(from->di_magic);
  670. to->di_mode = be16_to_cpu(from->di_mode);
  671. to->di_version = from ->di_version;
  672. to->di_format = from->di_format;
  673. to->di_onlink = be16_to_cpu(from->di_onlink);
  674. to->di_uid = be32_to_cpu(from->di_uid);
  675. to->di_gid = be32_to_cpu(from->di_gid);
  676. to->di_nlink = be32_to_cpu(from->di_nlink);
  677. to->di_projid = be16_to_cpu(from->di_projid);
  678. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  679. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  680. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  681. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  682. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  683. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  684. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  685. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  686. to->di_size = be64_to_cpu(from->di_size);
  687. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  688. to->di_extsize = be32_to_cpu(from->di_extsize);
  689. to->di_nextents = be32_to_cpu(from->di_nextents);
  690. to->di_anextents = be16_to_cpu(from->di_anextents);
  691. to->di_forkoff = from->di_forkoff;
  692. to->di_aformat = from->di_aformat;
  693. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  694. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  695. to->di_flags = be16_to_cpu(from->di_flags);
  696. to->di_gen = be32_to_cpu(from->di_gen);
  697. }
  698. void
  699. xfs_dinode_to_disk(
  700. xfs_dinode_core_t *to,
  701. xfs_icdinode_t *from)
  702. {
  703. to->di_magic = cpu_to_be16(from->di_magic);
  704. to->di_mode = cpu_to_be16(from->di_mode);
  705. to->di_version = from ->di_version;
  706. to->di_format = from->di_format;
  707. to->di_onlink = cpu_to_be16(from->di_onlink);
  708. to->di_uid = cpu_to_be32(from->di_uid);
  709. to->di_gid = cpu_to_be32(from->di_gid);
  710. to->di_nlink = cpu_to_be32(from->di_nlink);
  711. to->di_projid = cpu_to_be16(from->di_projid);
  712. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  713. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  714. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  715. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  716. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  717. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  718. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  719. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  720. to->di_size = cpu_to_be64(from->di_size);
  721. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  722. to->di_extsize = cpu_to_be32(from->di_extsize);
  723. to->di_nextents = cpu_to_be32(from->di_nextents);
  724. to->di_anextents = cpu_to_be16(from->di_anextents);
  725. to->di_forkoff = from->di_forkoff;
  726. to->di_aformat = from->di_aformat;
  727. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  728. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  729. to->di_flags = cpu_to_be16(from->di_flags);
  730. to->di_gen = cpu_to_be32(from->di_gen);
  731. }
  732. STATIC uint
  733. _xfs_dic2xflags(
  734. __uint16_t di_flags)
  735. {
  736. uint flags = 0;
  737. if (di_flags & XFS_DIFLAG_ANY) {
  738. if (di_flags & XFS_DIFLAG_REALTIME)
  739. flags |= XFS_XFLAG_REALTIME;
  740. if (di_flags & XFS_DIFLAG_PREALLOC)
  741. flags |= XFS_XFLAG_PREALLOC;
  742. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  743. flags |= XFS_XFLAG_IMMUTABLE;
  744. if (di_flags & XFS_DIFLAG_APPEND)
  745. flags |= XFS_XFLAG_APPEND;
  746. if (di_flags & XFS_DIFLAG_SYNC)
  747. flags |= XFS_XFLAG_SYNC;
  748. if (di_flags & XFS_DIFLAG_NOATIME)
  749. flags |= XFS_XFLAG_NOATIME;
  750. if (di_flags & XFS_DIFLAG_NODUMP)
  751. flags |= XFS_XFLAG_NODUMP;
  752. if (di_flags & XFS_DIFLAG_RTINHERIT)
  753. flags |= XFS_XFLAG_RTINHERIT;
  754. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  755. flags |= XFS_XFLAG_PROJINHERIT;
  756. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  757. flags |= XFS_XFLAG_NOSYMLINKS;
  758. if (di_flags & XFS_DIFLAG_EXTSIZE)
  759. flags |= XFS_XFLAG_EXTSIZE;
  760. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  761. flags |= XFS_XFLAG_EXTSZINHERIT;
  762. if (di_flags & XFS_DIFLAG_NODEFRAG)
  763. flags |= XFS_XFLAG_NODEFRAG;
  764. if (di_flags & XFS_DIFLAG_FILESTREAM)
  765. flags |= XFS_XFLAG_FILESTREAM;
  766. }
  767. return flags;
  768. }
  769. uint
  770. xfs_ip2xflags(
  771. xfs_inode_t *ip)
  772. {
  773. xfs_icdinode_t *dic = &ip->i_d;
  774. return _xfs_dic2xflags(dic->di_flags) |
  775. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  776. }
  777. uint
  778. xfs_dic2xflags(
  779. xfs_dinode_core_t *dic)
  780. {
  781. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  782. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  783. }
  784. /*
  785. * Given a mount structure and an inode number, return a pointer
  786. * to a newly allocated in-core inode corresponding to the given
  787. * inode number.
  788. *
  789. * Initialize the inode's attributes and extent pointers if it
  790. * already has them (it will not if the inode has no links).
  791. */
  792. int
  793. xfs_iread(
  794. xfs_mount_t *mp,
  795. xfs_trans_t *tp,
  796. xfs_ino_t ino,
  797. xfs_inode_t **ipp,
  798. xfs_daddr_t bno,
  799. uint imap_flags)
  800. {
  801. xfs_buf_t *bp;
  802. xfs_dinode_t *dip;
  803. xfs_inode_t *ip;
  804. int error;
  805. ASSERT(xfs_inode_zone != NULL);
  806. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  807. ip->i_ino = ino;
  808. ip->i_mount = mp;
  809. atomic_set(&ip->i_iocount, 0);
  810. spin_lock_init(&ip->i_flags_lock);
  811. /*
  812. * Get pointer's to the on-disk inode and the buffer containing it.
  813. * If the inode number refers to a block outside the file system
  814. * then xfs_itobp() will return NULL. In this case we should
  815. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  816. * know that this is a new incore inode.
  817. */
  818. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  819. if (error) {
  820. kmem_zone_free(xfs_inode_zone, ip);
  821. return error;
  822. }
  823. /*
  824. * Initialize inode's trace buffers.
  825. * Do this before xfs_iformat in case it adds entries.
  826. */
  827. #ifdef XFS_INODE_TRACE
  828. ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
  829. #endif
  830. #ifdef XFS_BMAP_TRACE
  831. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  832. #endif
  833. #ifdef XFS_BMBT_TRACE
  834. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  835. #endif
  836. #ifdef XFS_RW_TRACE
  837. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  838. #endif
  839. #ifdef XFS_ILOCK_TRACE
  840. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  841. #endif
  842. #ifdef XFS_DIR2_TRACE
  843. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  844. #endif
  845. /*
  846. * If we got something that isn't an inode it means someone
  847. * (nfs or dmi) has a stale handle.
  848. */
  849. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  850. kmem_zone_free(xfs_inode_zone, ip);
  851. xfs_trans_brelse(tp, bp);
  852. #ifdef DEBUG
  853. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  854. "dip->di_core.di_magic (0x%x) != "
  855. "XFS_DINODE_MAGIC (0x%x)",
  856. be16_to_cpu(dip->di_core.di_magic),
  857. XFS_DINODE_MAGIC);
  858. #endif /* DEBUG */
  859. return XFS_ERROR(EINVAL);
  860. }
  861. /*
  862. * If the on-disk inode is already linked to a directory
  863. * entry, copy all of the inode into the in-core inode.
  864. * xfs_iformat() handles copying in the inode format
  865. * specific information.
  866. * Otherwise, just get the truly permanent information.
  867. */
  868. if (dip->di_core.di_mode) {
  869. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  870. error = xfs_iformat(ip, dip);
  871. if (error) {
  872. kmem_zone_free(xfs_inode_zone, ip);
  873. xfs_trans_brelse(tp, bp);
  874. #ifdef DEBUG
  875. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  876. "xfs_iformat() returned error %d",
  877. error);
  878. #endif /* DEBUG */
  879. return error;
  880. }
  881. } else {
  882. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  883. ip->i_d.di_version = dip->di_core.di_version;
  884. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  885. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  886. /*
  887. * Make sure to pull in the mode here as well in
  888. * case the inode is released without being used.
  889. * This ensures that xfs_inactive() will see that
  890. * the inode is already free and not try to mess
  891. * with the uninitialized part of it.
  892. */
  893. ip->i_d.di_mode = 0;
  894. /*
  895. * Initialize the per-fork minima and maxima for a new
  896. * inode here. xfs_iformat will do it for old inodes.
  897. */
  898. ip->i_df.if_ext_max =
  899. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  900. }
  901. INIT_LIST_HEAD(&ip->i_reclaim);
  902. /*
  903. * The inode format changed when we moved the link count and
  904. * made it 32 bits long. If this is an old format inode,
  905. * convert it in memory to look like a new one. If it gets
  906. * flushed to disk we will convert back before flushing or
  907. * logging it. We zero out the new projid field and the old link
  908. * count field. We'll handle clearing the pad field (the remains
  909. * of the old uuid field) when we actually convert the inode to
  910. * the new format. We don't change the version number so that we
  911. * can distinguish this from a real new format inode.
  912. */
  913. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  914. ip->i_d.di_nlink = ip->i_d.di_onlink;
  915. ip->i_d.di_onlink = 0;
  916. ip->i_d.di_projid = 0;
  917. }
  918. ip->i_delayed_blks = 0;
  919. ip->i_size = ip->i_d.di_size;
  920. /*
  921. * Mark the buffer containing the inode as something to keep
  922. * around for a while. This helps to keep recently accessed
  923. * meta-data in-core longer.
  924. */
  925. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  926. /*
  927. * Use xfs_trans_brelse() to release the buffer containing the
  928. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  929. * in xfs_itobp() above. If tp is NULL, this is just a normal
  930. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  931. * will only release the buffer if it is not dirty within the
  932. * transaction. It will be OK to release the buffer in this case,
  933. * because inodes on disk are never destroyed and we will be
  934. * locking the new in-core inode before putting it in the hash
  935. * table where other processes can find it. Thus we don't have
  936. * to worry about the inode being changed just because we released
  937. * the buffer.
  938. */
  939. xfs_trans_brelse(tp, bp);
  940. *ipp = ip;
  941. return 0;
  942. }
  943. /*
  944. * Read in extents from a btree-format inode.
  945. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  946. */
  947. int
  948. xfs_iread_extents(
  949. xfs_trans_t *tp,
  950. xfs_inode_t *ip,
  951. int whichfork)
  952. {
  953. int error;
  954. xfs_ifork_t *ifp;
  955. xfs_extnum_t nextents;
  956. size_t size;
  957. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  958. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  959. ip->i_mount);
  960. return XFS_ERROR(EFSCORRUPTED);
  961. }
  962. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  963. size = nextents * sizeof(xfs_bmbt_rec_t);
  964. ifp = XFS_IFORK_PTR(ip, whichfork);
  965. /*
  966. * We know that the size is valid (it's checked in iformat_btree)
  967. */
  968. ifp->if_lastex = NULLEXTNUM;
  969. ifp->if_bytes = ifp->if_real_bytes = 0;
  970. ifp->if_flags |= XFS_IFEXTENTS;
  971. xfs_iext_add(ifp, 0, nextents);
  972. error = xfs_bmap_read_extents(tp, ip, whichfork);
  973. if (error) {
  974. xfs_iext_destroy(ifp);
  975. ifp->if_flags &= ~XFS_IFEXTENTS;
  976. return error;
  977. }
  978. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  979. return 0;
  980. }
  981. /*
  982. * Allocate an inode on disk and return a copy of its in-core version.
  983. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  984. * appropriately within the inode. The uid and gid for the inode are
  985. * set according to the contents of the given cred structure.
  986. *
  987. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  988. * has a free inode available, call xfs_iget()
  989. * to obtain the in-core version of the allocated inode. Finally,
  990. * fill in the inode and log its initial contents. In this case,
  991. * ialloc_context would be set to NULL and call_again set to false.
  992. *
  993. * If xfs_dialloc() does not have an available inode,
  994. * it will replenish its supply by doing an allocation. Since we can
  995. * only do one allocation within a transaction without deadlocks, we
  996. * must commit the current transaction before returning the inode itself.
  997. * In this case, therefore, we will set call_again to true and return.
  998. * The caller should then commit the current transaction, start a new
  999. * transaction, and call xfs_ialloc() again to actually get the inode.
  1000. *
  1001. * To ensure that some other process does not grab the inode that
  1002. * was allocated during the first call to xfs_ialloc(), this routine
  1003. * also returns the [locked] bp pointing to the head of the freelist
  1004. * as ialloc_context. The caller should hold this buffer across
  1005. * the commit and pass it back into this routine on the second call.
  1006. *
  1007. * If we are allocating quota inodes, we do not have a parent inode
  1008. * to attach to or associate with (i.e. pip == NULL) because they
  1009. * are not linked into the directory structure - they are attached
  1010. * directly to the superblock - and so have no parent.
  1011. */
  1012. int
  1013. xfs_ialloc(
  1014. xfs_trans_t *tp,
  1015. xfs_inode_t *pip,
  1016. mode_t mode,
  1017. xfs_nlink_t nlink,
  1018. xfs_dev_t rdev,
  1019. cred_t *cr,
  1020. xfs_prid_t prid,
  1021. int okalloc,
  1022. xfs_buf_t **ialloc_context,
  1023. boolean_t *call_again,
  1024. xfs_inode_t **ipp)
  1025. {
  1026. xfs_ino_t ino;
  1027. xfs_inode_t *ip;
  1028. bhv_vnode_t *vp;
  1029. uint flags;
  1030. int error;
  1031. /*
  1032. * Call the space management code to pick
  1033. * the on-disk inode to be allocated.
  1034. */
  1035. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1036. ialloc_context, call_again, &ino);
  1037. if (error != 0) {
  1038. return error;
  1039. }
  1040. if (*call_again || ino == NULLFSINO) {
  1041. *ipp = NULL;
  1042. return 0;
  1043. }
  1044. ASSERT(*ialloc_context == NULL);
  1045. /*
  1046. * Get the in-core inode with the lock held exclusively.
  1047. * This is because we're setting fields here we need
  1048. * to prevent others from looking at until we're done.
  1049. */
  1050. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1051. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1052. if (error != 0) {
  1053. return error;
  1054. }
  1055. ASSERT(ip != NULL);
  1056. vp = XFS_ITOV(ip);
  1057. ip->i_d.di_mode = (__uint16_t)mode;
  1058. ip->i_d.di_onlink = 0;
  1059. ip->i_d.di_nlink = nlink;
  1060. ASSERT(ip->i_d.di_nlink == nlink);
  1061. ip->i_d.di_uid = current_fsuid(cr);
  1062. ip->i_d.di_gid = current_fsgid(cr);
  1063. ip->i_d.di_projid = prid;
  1064. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1065. /*
  1066. * If the superblock version is up to where we support new format
  1067. * inodes and this is currently an old format inode, then change
  1068. * the inode version number now. This way we only do the conversion
  1069. * here rather than here and in the flush/logging code.
  1070. */
  1071. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1072. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1073. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1074. /*
  1075. * We've already zeroed the old link count, the projid field,
  1076. * and the pad field.
  1077. */
  1078. }
  1079. /*
  1080. * Project ids won't be stored on disk if we are using a version 1 inode.
  1081. */
  1082. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1083. xfs_bump_ino_vers2(tp, ip);
  1084. if (pip && XFS_INHERIT_GID(pip)) {
  1085. ip->i_d.di_gid = pip->i_d.di_gid;
  1086. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1087. ip->i_d.di_mode |= S_ISGID;
  1088. }
  1089. }
  1090. /*
  1091. * If the group ID of the new file does not match the effective group
  1092. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1093. * (and only if the irix_sgid_inherit compatibility variable is set).
  1094. */
  1095. if ((irix_sgid_inherit) &&
  1096. (ip->i_d.di_mode & S_ISGID) &&
  1097. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1098. ip->i_d.di_mode &= ~S_ISGID;
  1099. }
  1100. ip->i_d.di_size = 0;
  1101. ip->i_size = 0;
  1102. ip->i_d.di_nextents = 0;
  1103. ASSERT(ip->i_d.di_nblocks == 0);
  1104. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1105. /*
  1106. * di_gen will have been taken care of in xfs_iread.
  1107. */
  1108. ip->i_d.di_extsize = 0;
  1109. ip->i_d.di_dmevmask = 0;
  1110. ip->i_d.di_dmstate = 0;
  1111. ip->i_d.di_flags = 0;
  1112. flags = XFS_ILOG_CORE;
  1113. switch (mode & S_IFMT) {
  1114. case S_IFIFO:
  1115. case S_IFCHR:
  1116. case S_IFBLK:
  1117. case S_IFSOCK:
  1118. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1119. ip->i_df.if_u2.if_rdev = rdev;
  1120. ip->i_df.if_flags = 0;
  1121. flags |= XFS_ILOG_DEV;
  1122. break;
  1123. case S_IFREG:
  1124. if (pip && xfs_inode_is_filestream(pip)) {
  1125. error = xfs_filestream_associate(pip, ip);
  1126. if (error < 0)
  1127. return -error;
  1128. if (!error)
  1129. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1130. }
  1131. /* fall through */
  1132. case S_IFDIR:
  1133. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1134. uint di_flags = 0;
  1135. if ((mode & S_IFMT) == S_IFDIR) {
  1136. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1137. di_flags |= XFS_DIFLAG_RTINHERIT;
  1138. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1139. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1140. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1141. }
  1142. } else if ((mode & S_IFMT) == S_IFREG) {
  1143. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1144. di_flags |= XFS_DIFLAG_REALTIME;
  1145. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1146. di_flags |= XFS_DIFLAG_EXTSIZE;
  1147. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1148. }
  1149. }
  1150. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1151. xfs_inherit_noatime)
  1152. di_flags |= XFS_DIFLAG_NOATIME;
  1153. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1154. xfs_inherit_nodump)
  1155. di_flags |= XFS_DIFLAG_NODUMP;
  1156. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1157. xfs_inherit_sync)
  1158. di_flags |= XFS_DIFLAG_SYNC;
  1159. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1160. xfs_inherit_nosymlinks)
  1161. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1162. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1163. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1164. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1165. xfs_inherit_nodefrag)
  1166. di_flags |= XFS_DIFLAG_NODEFRAG;
  1167. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1168. di_flags |= XFS_DIFLAG_FILESTREAM;
  1169. ip->i_d.di_flags |= di_flags;
  1170. }
  1171. /* FALLTHROUGH */
  1172. case S_IFLNK:
  1173. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1174. ip->i_df.if_flags = XFS_IFEXTENTS;
  1175. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1176. ip->i_df.if_u1.if_extents = NULL;
  1177. break;
  1178. default:
  1179. ASSERT(0);
  1180. }
  1181. /*
  1182. * Attribute fork settings for new inode.
  1183. */
  1184. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1185. ip->i_d.di_anextents = 0;
  1186. /*
  1187. * Log the new values stuffed into the inode.
  1188. */
  1189. xfs_trans_log_inode(tp, ip, flags);
  1190. /* now that we have an i_mode we can setup inode ops and unlock */
  1191. xfs_initialize_vnode(tp->t_mountp, vp, ip);
  1192. *ipp = ip;
  1193. return 0;
  1194. }
  1195. /*
  1196. * Check to make sure that there are no blocks allocated to the
  1197. * file beyond the size of the file. We don't check this for
  1198. * files with fixed size extents or real time extents, but we
  1199. * at least do it for regular files.
  1200. */
  1201. #ifdef DEBUG
  1202. void
  1203. xfs_isize_check(
  1204. xfs_mount_t *mp,
  1205. xfs_inode_t *ip,
  1206. xfs_fsize_t isize)
  1207. {
  1208. xfs_fileoff_t map_first;
  1209. int nimaps;
  1210. xfs_bmbt_irec_t imaps[2];
  1211. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1212. return;
  1213. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1214. return;
  1215. nimaps = 2;
  1216. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1217. /*
  1218. * The filesystem could be shutting down, so bmapi may return
  1219. * an error.
  1220. */
  1221. if (xfs_bmapi(NULL, ip, map_first,
  1222. (XFS_B_TO_FSB(mp,
  1223. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1224. map_first),
  1225. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1226. NULL, NULL))
  1227. return;
  1228. ASSERT(nimaps == 1);
  1229. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1230. }
  1231. #endif /* DEBUG */
  1232. /*
  1233. * Calculate the last possible buffered byte in a file. This must
  1234. * include data that was buffered beyond the EOF by the write code.
  1235. * This also needs to deal with overflowing the xfs_fsize_t type
  1236. * which can happen for sizes near the limit.
  1237. *
  1238. * We also need to take into account any blocks beyond the EOF. It
  1239. * may be the case that they were buffered by a write which failed.
  1240. * In that case the pages will still be in memory, but the inode size
  1241. * will never have been updated.
  1242. */
  1243. xfs_fsize_t
  1244. xfs_file_last_byte(
  1245. xfs_inode_t *ip)
  1246. {
  1247. xfs_mount_t *mp;
  1248. xfs_fsize_t last_byte;
  1249. xfs_fileoff_t last_block;
  1250. xfs_fileoff_t size_last_block;
  1251. int error;
  1252. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1253. mp = ip->i_mount;
  1254. /*
  1255. * Only check for blocks beyond the EOF if the extents have
  1256. * been read in. This eliminates the need for the inode lock,
  1257. * and it also saves us from looking when it really isn't
  1258. * necessary.
  1259. */
  1260. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1261. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1262. XFS_DATA_FORK);
  1263. if (error) {
  1264. last_block = 0;
  1265. }
  1266. } else {
  1267. last_block = 0;
  1268. }
  1269. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1270. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1271. last_byte = XFS_FSB_TO_B(mp, last_block);
  1272. if (last_byte < 0) {
  1273. return XFS_MAXIOFFSET(mp);
  1274. }
  1275. last_byte += (1 << mp->m_writeio_log);
  1276. if (last_byte < 0) {
  1277. return XFS_MAXIOFFSET(mp);
  1278. }
  1279. return last_byte;
  1280. }
  1281. #if defined(XFS_RW_TRACE)
  1282. STATIC void
  1283. xfs_itrunc_trace(
  1284. int tag,
  1285. xfs_inode_t *ip,
  1286. int flag,
  1287. xfs_fsize_t new_size,
  1288. xfs_off_t toss_start,
  1289. xfs_off_t toss_finish)
  1290. {
  1291. if (ip->i_rwtrace == NULL) {
  1292. return;
  1293. }
  1294. ktrace_enter(ip->i_rwtrace,
  1295. (void*)((long)tag),
  1296. (void*)ip,
  1297. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1298. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1299. (void*)((long)flag),
  1300. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1301. (void*)(unsigned long)(new_size & 0xffffffff),
  1302. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1303. (void*)(unsigned long)(toss_start & 0xffffffff),
  1304. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1305. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1306. (void*)(unsigned long)current_cpu(),
  1307. (void*)(unsigned long)current_pid(),
  1308. (void*)NULL,
  1309. (void*)NULL,
  1310. (void*)NULL);
  1311. }
  1312. #else
  1313. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1314. #endif
  1315. /*
  1316. * Start the truncation of the file to new_size. The new size
  1317. * must be smaller than the current size. This routine will
  1318. * clear the buffer and page caches of file data in the removed
  1319. * range, and xfs_itruncate_finish() will remove the underlying
  1320. * disk blocks.
  1321. *
  1322. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1323. * must NOT have the inode lock held at all. This is because we're
  1324. * calling into the buffer/page cache code and we can't hold the
  1325. * inode lock when we do so.
  1326. *
  1327. * We need to wait for any direct I/Os in flight to complete before we
  1328. * proceed with the truncate. This is needed to prevent the extents
  1329. * being read or written by the direct I/Os from being removed while the
  1330. * I/O is in flight as there is no other method of synchronising
  1331. * direct I/O with the truncate operation. Also, because we hold
  1332. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1333. * started until the truncate completes and drops the lock. Essentially,
  1334. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1335. * between direct I/Os and the truncate operation.
  1336. *
  1337. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1338. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1339. * in the case that the caller is locking things out of order and
  1340. * may not be able to call xfs_itruncate_finish() with the inode lock
  1341. * held without dropping the I/O lock. If the caller must drop the
  1342. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1343. * must be called again with all the same restrictions as the initial
  1344. * call.
  1345. */
  1346. int
  1347. xfs_itruncate_start(
  1348. xfs_inode_t *ip,
  1349. uint flags,
  1350. xfs_fsize_t new_size)
  1351. {
  1352. xfs_fsize_t last_byte;
  1353. xfs_off_t toss_start;
  1354. xfs_mount_t *mp;
  1355. bhv_vnode_t *vp;
  1356. int error = 0;
  1357. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1358. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1359. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1360. (flags == XFS_ITRUNC_MAYBE));
  1361. mp = ip->i_mount;
  1362. vp = XFS_ITOV(ip);
  1363. /* wait for the completion of any pending DIOs */
  1364. if (new_size < ip->i_size)
  1365. vn_iowait(ip);
  1366. /*
  1367. * Call toss_pages or flushinval_pages to get rid of pages
  1368. * overlapping the region being removed. We have to use
  1369. * the less efficient flushinval_pages in the case that the
  1370. * caller may not be able to finish the truncate without
  1371. * dropping the inode's I/O lock. Make sure
  1372. * to catch any pages brought in by buffers overlapping
  1373. * the EOF by searching out beyond the isize by our
  1374. * block size. We round new_size up to a block boundary
  1375. * so that we don't toss things on the same block as
  1376. * new_size but before it.
  1377. *
  1378. * Before calling toss_page or flushinval_pages, make sure to
  1379. * call remapf() over the same region if the file is mapped.
  1380. * This frees up mapped file references to the pages in the
  1381. * given range and for the flushinval_pages case it ensures
  1382. * that we get the latest mapped changes flushed out.
  1383. */
  1384. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1385. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1386. if (toss_start < 0) {
  1387. /*
  1388. * The place to start tossing is beyond our maximum
  1389. * file size, so there is no way that the data extended
  1390. * out there.
  1391. */
  1392. return 0;
  1393. }
  1394. last_byte = xfs_file_last_byte(ip);
  1395. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1396. last_byte);
  1397. if (last_byte > toss_start) {
  1398. if (flags & XFS_ITRUNC_DEFINITE) {
  1399. xfs_tosspages(ip, toss_start,
  1400. -1, FI_REMAPF_LOCKED);
  1401. } else {
  1402. error = xfs_flushinval_pages(ip, toss_start,
  1403. -1, FI_REMAPF_LOCKED);
  1404. }
  1405. }
  1406. #ifdef DEBUG
  1407. if (new_size == 0) {
  1408. ASSERT(VN_CACHED(vp) == 0);
  1409. }
  1410. #endif
  1411. return error;
  1412. }
  1413. /*
  1414. * Shrink the file to the given new_size. The new
  1415. * size must be smaller than the current size.
  1416. * This will free up the underlying blocks
  1417. * in the removed range after a call to xfs_itruncate_start()
  1418. * or xfs_atruncate_start().
  1419. *
  1420. * The transaction passed to this routine must have made
  1421. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1422. * This routine may commit the given transaction and
  1423. * start new ones, so make sure everything involved in
  1424. * the transaction is tidy before calling here.
  1425. * Some transaction will be returned to the caller to be
  1426. * committed. The incoming transaction must already include
  1427. * the inode, and both inode locks must be held exclusively.
  1428. * The inode must also be "held" within the transaction. On
  1429. * return the inode will be "held" within the returned transaction.
  1430. * This routine does NOT require any disk space to be reserved
  1431. * for it within the transaction.
  1432. *
  1433. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1434. * and it indicates the fork which is to be truncated. For the
  1435. * attribute fork we only support truncation to size 0.
  1436. *
  1437. * We use the sync parameter to indicate whether or not the first
  1438. * transaction we perform might have to be synchronous. For the attr fork,
  1439. * it needs to be so if the unlink of the inode is not yet known to be
  1440. * permanent in the log. This keeps us from freeing and reusing the
  1441. * blocks of the attribute fork before the unlink of the inode becomes
  1442. * permanent.
  1443. *
  1444. * For the data fork, we normally have to run synchronously if we're
  1445. * being called out of the inactive path or we're being called
  1446. * out of the create path where we're truncating an existing file.
  1447. * Either way, the truncate needs to be sync so blocks don't reappear
  1448. * in the file with altered data in case of a crash. wsync filesystems
  1449. * can run the first case async because anything that shrinks the inode
  1450. * has to run sync so by the time we're called here from inactive, the
  1451. * inode size is permanently set to 0.
  1452. *
  1453. * Calls from the truncate path always need to be sync unless we're
  1454. * in a wsync filesystem and the file has already been unlinked.
  1455. *
  1456. * The caller is responsible for correctly setting the sync parameter.
  1457. * It gets too hard for us to guess here which path we're being called
  1458. * out of just based on inode state.
  1459. */
  1460. int
  1461. xfs_itruncate_finish(
  1462. xfs_trans_t **tp,
  1463. xfs_inode_t *ip,
  1464. xfs_fsize_t new_size,
  1465. int fork,
  1466. int sync)
  1467. {
  1468. xfs_fsblock_t first_block;
  1469. xfs_fileoff_t first_unmap_block;
  1470. xfs_fileoff_t last_block;
  1471. xfs_filblks_t unmap_len=0;
  1472. xfs_mount_t *mp;
  1473. xfs_trans_t *ntp;
  1474. int done;
  1475. int committed;
  1476. xfs_bmap_free_t free_list;
  1477. int error;
  1478. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1479. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1480. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1481. ASSERT(*tp != NULL);
  1482. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1483. ASSERT(ip->i_transp == *tp);
  1484. ASSERT(ip->i_itemp != NULL);
  1485. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1486. ntp = *tp;
  1487. mp = (ntp)->t_mountp;
  1488. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1489. /*
  1490. * We only support truncating the entire attribute fork.
  1491. */
  1492. if (fork == XFS_ATTR_FORK) {
  1493. new_size = 0LL;
  1494. }
  1495. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1496. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1497. /*
  1498. * The first thing we do is set the size to new_size permanently
  1499. * on disk. This way we don't have to worry about anyone ever
  1500. * being able to look at the data being freed even in the face
  1501. * of a crash. What we're getting around here is the case where
  1502. * we free a block, it is allocated to another file, it is written
  1503. * to, and then we crash. If the new data gets written to the
  1504. * file but the log buffers containing the free and reallocation
  1505. * don't, then we'd end up with garbage in the blocks being freed.
  1506. * As long as we make the new_size permanent before actually
  1507. * freeing any blocks it doesn't matter if they get writtten to.
  1508. *
  1509. * The callers must signal into us whether or not the size
  1510. * setting here must be synchronous. There are a few cases
  1511. * where it doesn't have to be synchronous. Those cases
  1512. * occur if the file is unlinked and we know the unlink is
  1513. * permanent or if the blocks being truncated are guaranteed
  1514. * to be beyond the inode eof (regardless of the link count)
  1515. * and the eof value is permanent. Both of these cases occur
  1516. * only on wsync-mounted filesystems. In those cases, we're
  1517. * guaranteed that no user will ever see the data in the blocks
  1518. * that are being truncated so the truncate can run async.
  1519. * In the free beyond eof case, the file may wind up with
  1520. * more blocks allocated to it than it needs if we crash
  1521. * and that won't get fixed until the next time the file
  1522. * is re-opened and closed but that's ok as that shouldn't
  1523. * be too many blocks.
  1524. *
  1525. * However, we can't just make all wsync xactions run async
  1526. * because there's one call out of the create path that needs
  1527. * to run sync where it's truncating an existing file to size
  1528. * 0 whose size is > 0.
  1529. *
  1530. * It's probably possible to come up with a test in this
  1531. * routine that would correctly distinguish all the above
  1532. * cases from the values of the function parameters and the
  1533. * inode state but for sanity's sake, I've decided to let the
  1534. * layers above just tell us. It's simpler to correctly figure
  1535. * out in the layer above exactly under what conditions we
  1536. * can run async and I think it's easier for others read and
  1537. * follow the logic in case something has to be changed.
  1538. * cscope is your friend -- rcc.
  1539. *
  1540. * The attribute fork is much simpler.
  1541. *
  1542. * For the attribute fork we allow the caller to tell us whether
  1543. * the unlink of the inode that led to this call is yet permanent
  1544. * in the on disk log. If it is not and we will be freeing extents
  1545. * in this inode then we make the first transaction synchronous
  1546. * to make sure that the unlink is permanent by the time we free
  1547. * the blocks.
  1548. */
  1549. if (fork == XFS_DATA_FORK) {
  1550. if (ip->i_d.di_nextents > 0) {
  1551. /*
  1552. * If we are not changing the file size then do
  1553. * not update the on-disk file size - we may be
  1554. * called from xfs_inactive_free_eofblocks(). If we
  1555. * update the on-disk file size and then the system
  1556. * crashes before the contents of the file are
  1557. * flushed to disk then the files may be full of
  1558. * holes (ie NULL files bug).
  1559. */
  1560. if (ip->i_size != new_size) {
  1561. ip->i_d.di_size = new_size;
  1562. ip->i_size = new_size;
  1563. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1564. }
  1565. }
  1566. } else if (sync) {
  1567. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1568. if (ip->i_d.di_anextents > 0)
  1569. xfs_trans_set_sync(ntp);
  1570. }
  1571. ASSERT(fork == XFS_DATA_FORK ||
  1572. (fork == XFS_ATTR_FORK &&
  1573. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1574. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1575. /*
  1576. * Since it is possible for space to become allocated beyond
  1577. * the end of the file (in a crash where the space is allocated
  1578. * but the inode size is not yet updated), simply remove any
  1579. * blocks which show up between the new EOF and the maximum
  1580. * possible file size. If the first block to be removed is
  1581. * beyond the maximum file size (ie it is the same as last_block),
  1582. * then there is nothing to do.
  1583. */
  1584. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1585. ASSERT(first_unmap_block <= last_block);
  1586. done = 0;
  1587. if (last_block == first_unmap_block) {
  1588. done = 1;
  1589. } else {
  1590. unmap_len = last_block - first_unmap_block + 1;
  1591. }
  1592. while (!done) {
  1593. /*
  1594. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1595. * will tell us whether it freed the entire range or
  1596. * not. If this is a synchronous mount (wsync),
  1597. * then we can tell bunmapi to keep all the
  1598. * transactions asynchronous since the unlink
  1599. * transaction that made this inode inactive has
  1600. * already hit the disk. There's no danger of
  1601. * the freed blocks being reused, there being a
  1602. * crash, and the reused blocks suddenly reappearing
  1603. * in this file with garbage in them once recovery
  1604. * runs.
  1605. */
  1606. XFS_BMAP_INIT(&free_list, &first_block);
  1607. error = xfs_bunmapi(ntp, ip,
  1608. first_unmap_block, unmap_len,
  1609. XFS_BMAPI_AFLAG(fork) |
  1610. (sync ? 0 : XFS_BMAPI_ASYNC),
  1611. XFS_ITRUNC_MAX_EXTENTS,
  1612. &first_block, &free_list,
  1613. NULL, &done);
  1614. if (error) {
  1615. /*
  1616. * If the bunmapi call encounters an error,
  1617. * return to the caller where the transaction
  1618. * can be properly aborted. We just need to
  1619. * make sure we're not holding any resources
  1620. * that we were not when we came in.
  1621. */
  1622. xfs_bmap_cancel(&free_list);
  1623. return error;
  1624. }
  1625. /*
  1626. * Duplicate the transaction that has the permanent
  1627. * reservation and commit the old transaction.
  1628. */
  1629. error = xfs_bmap_finish(tp, &free_list, &committed);
  1630. ntp = *tp;
  1631. if (error) {
  1632. /*
  1633. * If the bmap finish call encounters an error,
  1634. * return to the caller where the transaction
  1635. * can be properly aborted. We just need to
  1636. * make sure we're not holding any resources
  1637. * that we were not when we came in.
  1638. *
  1639. * Aborting from this point might lose some
  1640. * blocks in the file system, but oh well.
  1641. */
  1642. xfs_bmap_cancel(&free_list);
  1643. if (committed) {
  1644. /*
  1645. * If the passed in transaction committed
  1646. * in xfs_bmap_finish(), then we want to
  1647. * add the inode to this one before returning.
  1648. * This keeps things simple for the higher
  1649. * level code, because it always knows that
  1650. * the inode is locked and held in the
  1651. * transaction that returns to it whether
  1652. * errors occur or not. We don't mark the
  1653. * inode dirty so that this transaction can
  1654. * be easily aborted if possible.
  1655. */
  1656. xfs_trans_ijoin(ntp, ip,
  1657. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1658. xfs_trans_ihold(ntp, ip);
  1659. }
  1660. return error;
  1661. }
  1662. if (committed) {
  1663. /*
  1664. * The first xact was committed,
  1665. * so add the inode to the new one.
  1666. * Mark it dirty so it will be logged
  1667. * and moved forward in the log as
  1668. * part of every commit.
  1669. */
  1670. xfs_trans_ijoin(ntp, ip,
  1671. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1672. xfs_trans_ihold(ntp, ip);
  1673. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1674. }
  1675. ntp = xfs_trans_dup(ntp);
  1676. (void) xfs_trans_commit(*tp, 0);
  1677. *tp = ntp;
  1678. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1679. XFS_TRANS_PERM_LOG_RES,
  1680. XFS_ITRUNCATE_LOG_COUNT);
  1681. /*
  1682. * Add the inode being truncated to the next chained
  1683. * transaction.
  1684. */
  1685. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1686. xfs_trans_ihold(ntp, ip);
  1687. if (error)
  1688. return (error);
  1689. }
  1690. /*
  1691. * Only update the size in the case of the data fork, but
  1692. * always re-log the inode so that our permanent transaction
  1693. * can keep on rolling it forward in the log.
  1694. */
  1695. if (fork == XFS_DATA_FORK) {
  1696. xfs_isize_check(mp, ip, new_size);
  1697. /*
  1698. * If we are not changing the file size then do
  1699. * not update the on-disk file size - we may be
  1700. * called from xfs_inactive_free_eofblocks(). If we
  1701. * update the on-disk file size and then the system
  1702. * crashes before the contents of the file are
  1703. * flushed to disk then the files may be full of
  1704. * holes (ie NULL files bug).
  1705. */
  1706. if (ip->i_size != new_size) {
  1707. ip->i_d.di_size = new_size;
  1708. ip->i_size = new_size;
  1709. }
  1710. }
  1711. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1712. ASSERT((new_size != 0) ||
  1713. (fork == XFS_ATTR_FORK) ||
  1714. (ip->i_delayed_blks == 0));
  1715. ASSERT((new_size != 0) ||
  1716. (fork == XFS_ATTR_FORK) ||
  1717. (ip->i_d.di_nextents == 0));
  1718. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1719. return 0;
  1720. }
  1721. /*
  1722. * xfs_igrow_start
  1723. *
  1724. * Do the first part of growing a file: zero any data in the last
  1725. * block that is beyond the old EOF. We need to do this before
  1726. * the inode is joined to the transaction to modify the i_size.
  1727. * That way we can drop the inode lock and call into the buffer
  1728. * cache to get the buffer mapping the EOF.
  1729. */
  1730. int
  1731. xfs_igrow_start(
  1732. xfs_inode_t *ip,
  1733. xfs_fsize_t new_size,
  1734. cred_t *credp)
  1735. {
  1736. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1737. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1738. ASSERT(new_size > ip->i_size);
  1739. /*
  1740. * Zero any pages that may have been created by
  1741. * xfs_write_file() beyond the end of the file
  1742. * and any blocks between the old and new file sizes.
  1743. */
  1744. return xfs_zero_eof(ip, new_size, ip->i_size);
  1745. }
  1746. /*
  1747. * xfs_igrow_finish
  1748. *
  1749. * This routine is called to extend the size of a file.
  1750. * The inode must have both the iolock and the ilock locked
  1751. * for update and it must be a part of the current transaction.
  1752. * The xfs_igrow_start() function must have been called previously.
  1753. * If the change_flag is not zero, the inode change timestamp will
  1754. * be updated.
  1755. */
  1756. void
  1757. xfs_igrow_finish(
  1758. xfs_trans_t *tp,
  1759. xfs_inode_t *ip,
  1760. xfs_fsize_t new_size,
  1761. int change_flag)
  1762. {
  1763. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1764. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1765. ASSERT(ip->i_transp == tp);
  1766. ASSERT(new_size > ip->i_size);
  1767. /*
  1768. * Update the file size. Update the inode change timestamp
  1769. * if change_flag set.
  1770. */
  1771. ip->i_d.di_size = new_size;
  1772. ip->i_size = new_size;
  1773. if (change_flag)
  1774. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1775. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1776. }
  1777. /*
  1778. * This is called when the inode's link count goes to 0.
  1779. * We place the on-disk inode on a list in the AGI. It
  1780. * will be pulled from this list when the inode is freed.
  1781. */
  1782. int
  1783. xfs_iunlink(
  1784. xfs_trans_t *tp,
  1785. xfs_inode_t *ip)
  1786. {
  1787. xfs_mount_t *mp;
  1788. xfs_agi_t *agi;
  1789. xfs_dinode_t *dip;
  1790. xfs_buf_t *agibp;
  1791. xfs_buf_t *ibp;
  1792. xfs_agnumber_t agno;
  1793. xfs_daddr_t agdaddr;
  1794. xfs_agino_t agino;
  1795. short bucket_index;
  1796. int offset;
  1797. int error;
  1798. int agi_ok;
  1799. ASSERT(ip->i_d.di_nlink == 0);
  1800. ASSERT(ip->i_d.di_mode != 0);
  1801. ASSERT(ip->i_transp == tp);
  1802. mp = tp->t_mountp;
  1803. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1804. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1805. /*
  1806. * Get the agi buffer first. It ensures lock ordering
  1807. * on the list.
  1808. */
  1809. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1810. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1811. if (error)
  1812. return error;
  1813. /*
  1814. * Validate the magic number of the agi block.
  1815. */
  1816. agi = XFS_BUF_TO_AGI(agibp);
  1817. agi_ok =
  1818. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1819. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1820. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1821. XFS_RANDOM_IUNLINK))) {
  1822. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1823. xfs_trans_brelse(tp, agibp);
  1824. return XFS_ERROR(EFSCORRUPTED);
  1825. }
  1826. /*
  1827. * Get the index into the agi hash table for the
  1828. * list this inode will go on.
  1829. */
  1830. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1831. ASSERT(agino != 0);
  1832. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1833. ASSERT(agi->agi_unlinked[bucket_index]);
  1834. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1835. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1836. /*
  1837. * There is already another inode in the bucket we need
  1838. * to add ourselves to. Add us at the front of the list.
  1839. * Here we put the head pointer into our next pointer,
  1840. * and then we fall through to point the head at us.
  1841. */
  1842. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1843. if (error)
  1844. return error;
  1845. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1846. /* both on-disk, don't endian flip twice */
  1847. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1848. offset = ip->i_boffset +
  1849. offsetof(xfs_dinode_t, di_next_unlinked);
  1850. xfs_trans_inode_buf(tp, ibp);
  1851. xfs_trans_log_buf(tp, ibp, offset,
  1852. (offset + sizeof(xfs_agino_t) - 1));
  1853. xfs_inobp_check(mp, ibp);
  1854. }
  1855. /*
  1856. * Point the bucket head pointer at the inode being inserted.
  1857. */
  1858. ASSERT(agino != 0);
  1859. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1860. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1861. (sizeof(xfs_agino_t) * bucket_index);
  1862. xfs_trans_log_buf(tp, agibp, offset,
  1863. (offset + sizeof(xfs_agino_t) - 1));
  1864. return 0;
  1865. }
  1866. /*
  1867. * Pull the on-disk inode from the AGI unlinked list.
  1868. */
  1869. STATIC int
  1870. xfs_iunlink_remove(
  1871. xfs_trans_t *tp,
  1872. xfs_inode_t *ip)
  1873. {
  1874. xfs_ino_t next_ino;
  1875. xfs_mount_t *mp;
  1876. xfs_agi_t *agi;
  1877. xfs_dinode_t *dip;
  1878. xfs_buf_t *agibp;
  1879. xfs_buf_t *ibp;
  1880. xfs_agnumber_t agno;
  1881. xfs_daddr_t agdaddr;
  1882. xfs_agino_t agino;
  1883. xfs_agino_t next_agino;
  1884. xfs_buf_t *last_ibp;
  1885. xfs_dinode_t *last_dip = NULL;
  1886. short bucket_index;
  1887. int offset, last_offset = 0;
  1888. int error;
  1889. int agi_ok;
  1890. /*
  1891. * First pull the on-disk inode from the AGI unlinked list.
  1892. */
  1893. mp = tp->t_mountp;
  1894. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1895. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1896. /*
  1897. * Get the agi buffer first. It ensures lock ordering
  1898. * on the list.
  1899. */
  1900. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1901. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1902. if (error) {
  1903. cmn_err(CE_WARN,
  1904. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1905. error, mp->m_fsname);
  1906. return error;
  1907. }
  1908. /*
  1909. * Validate the magic number of the agi block.
  1910. */
  1911. agi = XFS_BUF_TO_AGI(agibp);
  1912. agi_ok =
  1913. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1914. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1915. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1916. XFS_RANDOM_IUNLINK_REMOVE))) {
  1917. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1918. mp, agi);
  1919. xfs_trans_brelse(tp, agibp);
  1920. cmn_err(CE_WARN,
  1921. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1922. mp->m_fsname);
  1923. return XFS_ERROR(EFSCORRUPTED);
  1924. }
  1925. /*
  1926. * Get the index into the agi hash table for the
  1927. * list this inode will go on.
  1928. */
  1929. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1930. ASSERT(agino != 0);
  1931. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1932. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1933. ASSERT(agi->agi_unlinked[bucket_index]);
  1934. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1935. /*
  1936. * We're at the head of the list. Get the inode's
  1937. * on-disk buffer to see if there is anyone after us
  1938. * on the list. Only modify our next pointer if it
  1939. * is not already NULLAGINO. This saves us the overhead
  1940. * of dealing with the buffer when there is no need to
  1941. * change it.
  1942. */
  1943. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1944. if (error) {
  1945. cmn_err(CE_WARN,
  1946. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1947. error, mp->m_fsname);
  1948. return error;
  1949. }
  1950. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1951. ASSERT(next_agino != 0);
  1952. if (next_agino != NULLAGINO) {
  1953. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1954. offset = ip->i_boffset +
  1955. offsetof(xfs_dinode_t, di_next_unlinked);
  1956. xfs_trans_inode_buf(tp, ibp);
  1957. xfs_trans_log_buf(tp, ibp, offset,
  1958. (offset + sizeof(xfs_agino_t) - 1));
  1959. xfs_inobp_check(mp, ibp);
  1960. } else {
  1961. xfs_trans_brelse(tp, ibp);
  1962. }
  1963. /*
  1964. * Point the bucket head pointer at the next inode.
  1965. */
  1966. ASSERT(next_agino != 0);
  1967. ASSERT(next_agino != agino);
  1968. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1969. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1970. (sizeof(xfs_agino_t) * bucket_index);
  1971. xfs_trans_log_buf(tp, agibp, offset,
  1972. (offset + sizeof(xfs_agino_t) - 1));
  1973. } else {
  1974. /*
  1975. * We need to search the list for the inode being freed.
  1976. */
  1977. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1978. last_ibp = NULL;
  1979. while (next_agino != agino) {
  1980. /*
  1981. * If the last inode wasn't the one pointing to
  1982. * us, then release its buffer since we're not
  1983. * going to do anything with it.
  1984. */
  1985. if (last_ibp != NULL) {
  1986. xfs_trans_brelse(tp, last_ibp);
  1987. }
  1988. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1989. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1990. &last_ibp, &last_offset);
  1991. if (error) {
  1992. cmn_err(CE_WARN,
  1993. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1994. error, mp->m_fsname);
  1995. return error;
  1996. }
  1997. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1998. ASSERT(next_agino != NULLAGINO);
  1999. ASSERT(next_agino != 0);
  2000. }
  2001. /*
  2002. * Now last_ibp points to the buffer previous to us on
  2003. * the unlinked list. Pull us from the list.
  2004. */
  2005. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  2006. if (error) {
  2007. cmn_err(CE_WARN,
  2008. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  2009. error, mp->m_fsname);
  2010. return error;
  2011. }
  2012. next_agino = be32_to_cpu(dip->di_next_unlinked);
  2013. ASSERT(next_agino != 0);
  2014. ASSERT(next_agino != agino);
  2015. if (next_agino != NULLAGINO) {
  2016. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  2017. offset = ip->i_boffset +
  2018. offsetof(xfs_dinode_t, di_next_unlinked);
  2019. xfs_trans_inode_buf(tp, ibp);
  2020. xfs_trans_log_buf(tp, ibp, offset,
  2021. (offset + sizeof(xfs_agino_t) - 1));
  2022. xfs_inobp_check(mp, ibp);
  2023. } else {
  2024. xfs_trans_brelse(tp, ibp);
  2025. }
  2026. /*
  2027. * Point the previous inode on the list to the next inode.
  2028. */
  2029. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  2030. ASSERT(next_agino != 0);
  2031. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  2032. xfs_trans_inode_buf(tp, last_ibp);
  2033. xfs_trans_log_buf(tp, last_ibp, offset,
  2034. (offset + sizeof(xfs_agino_t) - 1));
  2035. xfs_inobp_check(mp, last_ibp);
  2036. }
  2037. return 0;
  2038. }
  2039. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  2040. {
  2041. return (((ip->i_itemp == NULL) ||
  2042. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2043. (ip->i_update_core == 0));
  2044. }
  2045. STATIC void
  2046. xfs_ifree_cluster(
  2047. xfs_inode_t *free_ip,
  2048. xfs_trans_t *tp,
  2049. xfs_ino_t inum)
  2050. {
  2051. xfs_mount_t *mp = free_ip->i_mount;
  2052. int blks_per_cluster;
  2053. int nbufs;
  2054. int ninodes;
  2055. int i, j, found, pre_flushed;
  2056. xfs_daddr_t blkno;
  2057. xfs_buf_t *bp;
  2058. xfs_inode_t *ip, **ip_found;
  2059. xfs_inode_log_item_t *iip;
  2060. xfs_log_item_t *lip;
  2061. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  2062. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2063. blks_per_cluster = 1;
  2064. ninodes = mp->m_sb.sb_inopblock;
  2065. nbufs = XFS_IALLOC_BLOCKS(mp);
  2066. } else {
  2067. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2068. mp->m_sb.sb_blocksize;
  2069. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2070. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2071. }
  2072. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2073. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2074. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2075. XFS_INO_TO_AGBNO(mp, inum));
  2076. /*
  2077. * Look for each inode in memory and attempt to lock it,
  2078. * we can be racing with flush and tail pushing here.
  2079. * any inode we get the locks on, add to an array of
  2080. * inode items to process later.
  2081. *
  2082. * The get the buffer lock, we could beat a flush
  2083. * or tail pushing thread to the lock here, in which
  2084. * case they will go looking for the inode buffer
  2085. * and fail, we need some other form of interlock
  2086. * here.
  2087. */
  2088. found = 0;
  2089. for (i = 0; i < ninodes; i++) {
  2090. read_lock(&pag->pag_ici_lock);
  2091. ip = radix_tree_lookup(&pag->pag_ici_root,
  2092. XFS_INO_TO_AGINO(mp, (inum + i)));
  2093. /* Inode not in memory or we found it already,
  2094. * nothing to do
  2095. */
  2096. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2097. read_unlock(&pag->pag_ici_lock);
  2098. continue;
  2099. }
  2100. if (xfs_inode_clean(ip)) {
  2101. read_unlock(&pag->pag_ici_lock);
  2102. continue;
  2103. }
  2104. /* If we can get the locks then add it to the
  2105. * list, otherwise by the time we get the bp lock
  2106. * below it will already be attached to the
  2107. * inode buffer.
  2108. */
  2109. /* This inode will already be locked - by us, lets
  2110. * keep it that way.
  2111. */
  2112. if (ip == free_ip) {
  2113. if (xfs_iflock_nowait(ip)) {
  2114. xfs_iflags_set(ip, XFS_ISTALE);
  2115. if (xfs_inode_clean(ip)) {
  2116. xfs_ifunlock(ip);
  2117. } else {
  2118. ip_found[found++] = ip;
  2119. }
  2120. }
  2121. read_unlock(&pag->pag_ici_lock);
  2122. continue;
  2123. }
  2124. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2125. if (xfs_iflock_nowait(ip)) {
  2126. xfs_iflags_set(ip, XFS_ISTALE);
  2127. if (xfs_inode_clean(ip)) {
  2128. xfs_ifunlock(ip);
  2129. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2130. } else {
  2131. ip_found[found++] = ip;
  2132. }
  2133. } else {
  2134. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2135. }
  2136. }
  2137. read_unlock(&pag->pag_ici_lock);
  2138. }
  2139. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2140. mp->m_bsize * blks_per_cluster,
  2141. XFS_BUF_LOCK);
  2142. pre_flushed = 0;
  2143. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2144. while (lip) {
  2145. if (lip->li_type == XFS_LI_INODE) {
  2146. iip = (xfs_inode_log_item_t *)lip;
  2147. ASSERT(iip->ili_logged == 1);
  2148. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2149. spin_lock(&mp->m_ail_lock);
  2150. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2151. spin_unlock(&mp->m_ail_lock);
  2152. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2153. pre_flushed++;
  2154. }
  2155. lip = lip->li_bio_list;
  2156. }
  2157. for (i = 0; i < found; i++) {
  2158. ip = ip_found[i];
  2159. iip = ip->i_itemp;
  2160. if (!iip) {
  2161. ip->i_update_core = 0;
  2162. xfs_ifunlock(ip);
  2163. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2164. continue;
  2165. }
  2166. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2167. iip->ili_format.ilf_fields = 0;
  2168. iip->ili_logged = 1;
  2169. spin_lock(&mp->m_ail_lock);
  2170. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2171. spin_unlock(&mp->m_ail_lock);
  2172. xfs_buf_attach_iodone(bp,
  2173. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2174. xfs_istale_done, (xfs_log_item_t *)iip);
  2175. if (ip != free_ip) {
  2176. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2177. }
  2178. }
  2179. if (found || pre_flushed)
  2180. xfs_trans_stale_inode_buf(tp, bp);
  2181. xfs_trans_binval(tp, bp);
  2182. }
  2183. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2184. xfs_put_perag(mp, pag);
  2185. }
  2186. /*
  2187. * This is called to return an inode to the inode free list.
  2188. * The inode should already be truncated to 0 length and have
  2189. * no pages associated with it. This routine also assumes that
  2190. * the inode is already a part of the transaction.
  2191. *
  2192. * The on-disk copy of the inode will have been added to the list
  2193. * of unlinked inodes in the AGI. We need to remove the inode from
  2194. * that list atomically with respect to freeing it here.
  2195. */
  2196. int
  2197. xfs_ifree(
  2198. xfs_trans_t *tp,
  2199. xfs_inode_t *ip,
  2200. xfs_bmap_free_t *flist)
  2201. {
  2202. int error;
  2203. int delete;
  2204. xfs_ino_t first_ino;
  2205. xfs_dinode_t *dip;
  2206. xfs_buf_t *ibp;
  2207. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2208. ASSERT(ip->i_transp == tp);
  2209. ASSERT(ip->i_d.di_nlink == 0);
  2210. ASSERT(ip->i_d.di_nextents == 0);
  2211. ASSERT(ip->i_d.di_anextents == 0);
  2212. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2213. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2214. ASSERT(ip->i_d.di_nblocks == 0);
  2215. /*
  2216. * Pull the on-disk inode from the AGI unlinked list.
  2217. */
  2218. error = xfs_iunlink_remove(tp, ip);
  2219. if (error != 0) {
  2220. return error;
  2221. }
  2222. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2223. if (error != 0) {
  2224. return error;
  2225. }
  2226. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2227. ip->i_d.di_flags = 0;
  2228. ip->i_d.di_dmevmask = 0;
  2229. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2230. ip->i_df.if_ext_max =
  2231. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2232. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2233. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2234. /*
  2235. * Bump the generation count so no one will be confused
  2236. * by reincarnations of this inode.
  2237. */
  2238. ip->i_d.di_gen++;
  2239. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2240. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0);
  2241. if (error)
  2242. return error;
  2243. /*
  2244. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2245. * from picking up this inode when it is reclaimed (its incore state
  2246. * initialzed but not flushed to disk yet). The in-core di_mode is
  2247. * already cleared and a corresponding transaction logged.
  2248. * The hack here just synchronizes the in-core to on-disk
  2249. * di_mode value in advance before the actual inode sync to disk.
  2250. * This is OK because the inode is already unlinked and would never
  2251. * change its di_mode again for this inode generation.
  2252. * This is a temporary hack that would require a proper fix
  2253. * in the future.
  2254. */
  2255. dip->di_core.di_mode = 0;
  2256. if (delete) {
  2257. xfs_ifree_cluster(ip, tp, first_ino);
  2258. }
  2259. return 0;
  2260. }
  2261. /*
  2262. * Reallocate the space for if_broot based on the number of records
  2263. * being added or deleted as indicated in rec_diff. Move the records
  2264. * and pointers in if_broot to fit the new size. When shrinking this
  2265. * will eliminate holes between the records and pointers created by
  2266. * the caller. When growing this will create holes to be filled in
  2267. * by the caller.
  2268. *
  2269. * The caller must not request to add more records than would fit in
  2270. * the on-disk inode root. If the if_broot is currently NULL, then
  2271. * if we adding records one will be allocated. The caller must also
  2272. * not request that the number of records go below zero, although
  2273. * it can go to zero.
  2274. *
  2275. * ip -- the inode whose if_broot area is changing
  2276. * ext_diff -- the change in the number of records, positive or negative,
  2277. * requested for the if_broot array.
  2278. */
  2279. void
  2280. xfs_iroot_realloc(
  2281. xfs_inode_t *ip,
  2282. int rec_diff,
  2283. int whichfork)
  2284. {
  2285. int cur_max;
  2286. xfs_ifork_t *ifp;
  2287. xfs_bmbt_block_t *new_broot;
  2288. int new_max;
  2289. size_t new_size;
  2290. char *np;
  2291. char *op;
  2292. /*
  2293. * Handle the degenerate case quietly.
  2294. */
  2295. if (rec_diff == 0) {
  2296. return;
  2297. }
  2298. ifp = XFS_IFORK_PTR(ip, whichfork);
  2299. if (rec_diff > 0) {
  2300. /*
  2301. * If there wasn't any memory allocated before, just
  2302. * allocate it now and get out.
  2303. */
  2304. if (ifp->if_broot_bytes == 0) {
  2305. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2306. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2307. KM_SLEEP);
  2308. ifp->if_broot_bytes = (int)new_size;
  2309. return;
  2310. }
  2311. /*
  2312. * If there is already an existing if_broot, then we need
  2313. * to realloc() it and shift the pointers to their new
  2314. * location. The records don't change location because
  2315. * they are kept butted up against the btree block header.
  2316. */
  2317. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2318. new_max = cur_max + rec_diff;
  2319. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2320. ifp->if_broot = (xfs_bmbt_block_t *)
  2321. kmem_realloc(ifp->if_broot,
  2322. new_size,
  2323. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2324. KM_SLEEP);
  2325. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2326. ifp->if_broot_bytes);
  2327. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2328. (int)new_size);
  2329. ifp->if_broot_bytes = (int)new_size;
  2330. ASSERT(ifp->if_broot_bytes <=
  2331. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2332. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2333. return;
  2334. }
  2335. /*
  2336. * rec_diff is less than 0. In this case, we are shrinking the
  2337. * if_broot buffer. It must already exist. If we go to zero
  2338. * records, just get rid of the root and clear the status bit.
  2339. */
  2340. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2341. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2342. new_max = cur_max + rec_diff;
  2343. ASSERT(new_max >= 0);
  2344. if (new_max > 0)
  2345. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2346. else
  2347. new_size = 0;
  2348. if (new_size > 0) {
  2349. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2350. /*
  2351. * First copy over the btree block header.
  2352. */
  2353. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2354. } else {
  2355. new_broot = NULL;
  2356. ifp->if_flags &= ~XFS_IFBROOT;
  2357. }
  2358. /*
  2359. * Only copy the records and pointers if there are any.
  2360. */
  2361. if (new_max > 0) {
  2362. /*
  2363. * First copy the records.
  2364. */
  2365. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2366. ifp->if_broot_bytes);
  2367. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2368. (int)new_size);
  2369. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2370. /*
  2371. * Then copy the pointers.
  2372. */
  2373. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2374. ifp->if_broot_bytes);
  2375. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2376. (int)new_size);
  2377. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2378. }
  2379. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2380. ifp->if_broot = new_broot;
  2381. ifp->if_broot_bytes = (int)new_size;
  2382. ASSERT(ifp->if_broot_bytes <=
  2383. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2384. return;
  2385. }
  2386. /*
  2387. * This is called when the amount of space needed for if_data
  2388. * is increased or decreased. The change in size is indicated by
  2389. * the number of bytes that need to be added or deleted in the
  2390. * byte_diff parameter.
  2391. *
  2392. * If the amount of space needed has decreased below the size of the
  2393. * inline buffer, then switch to using the inline buffer. Otherwise,
  2394. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2395. * to what is needed.
  2396. *
  2397. * ip -- the inode whose if_data area is changing
  2398. * byte_diff -- the change in the number of bytes, positive or negative,
  2399. * requested for the if_data array.
  2400. */
  2401. void
  2402. xfs_idata_realloc(
  2403. xfs_inode_t *ip,
  2404. int byte_diff,
  2405. int whichfork)
  2406. {
  2407. xfs_ifork_t *ifp;
  2408. int new_size;
  2409. int real_size;
  2410. if (byte_diff == 0) {
  2411. return;
  2412. }
  2413. ifp = XFS_IFORK_PTR(ip, whichfork);
  2414. new_size = (int)ifp->if_bytes + byte_diff;
  2415. ASSERT(new_size >= 0);
  2416. if (new_size == 0) {
  2417. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2418. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2419. }
  2420. ifp->if_u1.if_data = NULL;
  2421. real_size = 0;
  2422. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2423. /*
  2424. * If the valid extents/data can fit in if_inline_ext/data,
  2425. * copy them from the malloc'd vector and free it.
  2426. */
  2427. if (ifp->if_u1.if_data == NULL) {
  2428. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2429. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2430. ASSERT(ifp->if_real_bytes != 0);
  2431. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2432. new_size);
  2433. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2434. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2435. }
  2436. real_size = 0;
  2437. } else {
  2438. /*
  2439. * Stuck with malloc/realloc.
  2440. * For inline data, the underlying buffer must be
  2441. * a multiple of 4 bytes in size so that it can be
  2442. * logged and stay on word boundaries. We enforce
  2443. * that here.
  2444. */
  2445. real_size = roundup(new_size, 4);
  2446. if (ifp->if_u1.if_data == NULL) {
  2447. ASSERT(ifp->if_real_bytes == 0);
  2448. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2449. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2450. /*
  2451. * Only do the realloc if the underlying size
  2452. * is really changing.
  2453. */
  2454. if (ifp->if_real_bytes != real_size) {
  2455. ifp->if_u1.if_data =
  2456. kmem_realloc(ifp->if_u1.if_data,
  2457. real_size,
  2458. ifp->if_real_bytes,
  2459. KM_SLEEP);
  2460. }
  2461. } else {
  2462. ASSERT(ifp->if_real_bytes == 0);
  2463. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2464. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2465. ifp->if_bytes);
  2466. }
  2467. }
  2468. ifp->if_real_bytes = real_size;
  2469. ifp->if_bytes = new_size;
  2470. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2471. }
  2472. /*
  2473. * Map inode to disk block and offset.
  2474. *
  2475. * mp -- the mount point structure for the current file system
  2476. * tp -- the current transaction
  2477. * ino -- the inode number of the inode to be located
  2478. * imap -- this structure is filled in with the information necessary
  2479. * to retrieve the given inode from disk
  2480. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2481. * lookups in the inode btree were OK or not
  2482. */
  2483. int
  2484. xfs_imap(
  2485. xfs_mount_t *mp,
  2486. xfs_trans_t *tp,
  2487. xfs_ino_t ino,
  2488. xfs_imap_t *imap,
  2489. uint flags)
  2490. {
  2491. xfs_fsblock_t fsbno;
  2492. int len;
  2493. int off;
  2494. int error;
  2495. fsbno = imap->im_blkno ?
  2496. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2497. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2498. if (error != 0) {
  2499. return error;
  2500. }
  2501. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2502. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2503. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2504. imap->im_ioffset = (ushort)off;
  2505. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2506. return 0;
  2507. }
  2508. void
  2509. xfs_idestroy_fork(
  2510. xfs_inode_t *ip,
  2511. int whichfork)
  2512. {
  2513. xfs_ifork_t *ifp;
  2514. ifp = XFS_IFORK_PTR(ip, whichfork);
  2515. if (ifp->if_broot != NULL) {
  2516. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2517. ifp->if_broot = NULL;
  2518. }
  2519. /*
  2520. * If the format is local, then we can't have an extents
  2521. * array so just look for an inline data array. If we're
  2522. * not local then we may or may not have an extents list,
  2523. * so check and free it up if we do.
  2524. */
  2525. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2526. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2527. (ifp->if_u1.if_data != NULL)) {
  2528. ASSERT(ifp->if_real_bytes != 0);
  2529. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2530. ifp->if_u1.if_data = NULL;
  2531. ifp->if_real_bytes = 0;
  2532. }
  2533. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2534. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2535. ((ifp->if_u1.if_extents != NULL) &&
  2536. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2537. ASSERT(ifp->if_real_bytes != 0);
  2538. xfs_iext_destroy(ifp);
  2539. }
  2540. ASSERT(ifp->if_u1.if_extents == NULL ||
  2541. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2542. ASSERT(ifp->if_real_bytes == 0);
  2543. if (whichfork == XFS_ATTR_FORK) {
  2544. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2545. ip->i_afp = NULL;
  2546. }
  2547. }
  2548. /*
  2549. * This is called free all the memory associated with an inode.
  2550. * It must free the inode itself and any buffers allocated for
  2551. * if_extents/if_data and if_broot. It must also free the lock
  2552. * associated with the inode.
  2553. */
  2554. void
  2555. xfs_idestroy(
  2556. xfs_inode_t *ip)
  2557. {
  2558. switch (ip->i_d.di_mode & S_IFMT) {
  2559. case S_IFREG:
  2560. case S_IFDIR:
  2561. case S_IFLNK:
  2562. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2563. break;
  2564. }
  2565. if (ip->i_afp)
  2566. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2567. mrfree(&ip->i_lock);
  2568. mrfree(&ip->i_iolock);
  2569. freesema(&ip->i_flock);
  2570. #ifdef XFS_INODE_TRACE
  2571. ktrace_free(ip->i_trace);
  2572. #endif
  2573. #ifdef XFS_BMAP_TRACE
  2574. ktrace_free(ip->i_xtrace);
  2575. #endif
  2576. #ifdef XFS_BMBT_TRACE
  2577. ktrace_free(ip->i_btrace);
  2578. #endif
  2579. #ifdef XFS_RW_TRACE
  2580. ktrace_free(ip->i_rwtrace);
  2581. #endif
  2582. #ifdef XFS_ILOCK_TRACE
  2583. ktrace_free(ip->i_lock_trace);
  2584. #endif
  2585. #ifdef XFS_DIR2_TRACE
  2586. ktrace_free(ip->i_dir_trace);
  2587. #endif
  2588. if (ip->i_itemp) {
  2589. /*
  2590. * Only if we are shutting down the fs will we see an
  2591. * inode still in the AIL. If it is there, we should remove
  2592. * it to prevent a use-after-free from occurring.
  2593. */
  2594. xfs_mount_t *mp = ip->i_mount;
  2595. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2596. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2597. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2598. if (lip->li_flags & XFS_LI_IN_AIL) {
  2599. spin_lock(&mp->m_ail_lock);
  2600. if (lip->li_flags & XFS_LI_IN_AIL)
  2601. xfs_trans_delete_ail(mp, lip);
  2602. else
  2603. spin_unlock(&mp->m_ail_lock);
  2604. }
  2605. xfs_inode_item_destroy(ip);
  2606. }
  2607. kmem_zone_free(xfs_inode_zone, ip);
  2608. }
  2609. /*
  2610. * Increment the pin count of the given buffer.
  2611. * This value is protected by ipinlock spinlock in the mount structure.
  2612. */
  2613. void
  2614. xfs_ipin(
  2615. xfs_inode_t *ip)
  2616. {
  2617. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2618. atomic_inc(&ip->i_pincount);
  2619. }
  2620. /*
  2621. * Decrement the pin count of the given inode, and wake up
  2622. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2623. * inode must have been previously pinned with a call to xfs_ipin().
  2624. */
  2625. void
  2626. xfs_iunpin(
  2627. xfs_inode_t *ip)
  2628. {
  2629. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2630. if (atomic_dec_and_test(&ip->i_pincount))
  2631. wake_up(&ip->i_ipin_wait);
  2632. }
  2633. /*
  2634. * This is called to wait for the given inode to be unpinned.
  2635. * It will sleep until this happens. The caller must have the
  2636. * inode locked in at least shared mode so that the buffer cannot
  2637. * be subsequently pinned once someone is waiting for it to be
  2638. * unpinned.
  2639. */
  2640. STATIC void
  2641. xfs_iunpin_wait(
  2642. xfs_inode_t *ip)
  2643. {
  2644. xfs_inode_log_item_t *iip;
  2645. xfs_lsn_t lsn;
  2646. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2647. if (atomic_read(&ip->i_pincount) == 0) {
  2648. return;
  2649. }
  2650. iip = ip->i_itemp;
  2651. if (iip && iip->ili_last_lsn) {
  2652. lsn = iip->ili_last_lsn;
  2653. } else {
  2654. lsn = (xfs_lsn_t)0;
  2655. }
  2656. /*
  2657. * Give the log a push so we don't wait here too long.
  2658. */
  2659. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2660. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2661. }
  2662. /*
  2663. * xfs_iextents_copy()
  2664. *
  2665. * This is called to copy the REAL extents (as opposed to the delayed
  2666. * allocation extents) from the inode into the given buffer. It
  2667. * returns the number of bytes copied into the buffer.
  2668. *
  2669. * If there are no delayed allocation extents, then we can just
  2670. * memcpy() the extents into the buffer. Otherwise, we need to
  2671. * examine each extent in turn and skip those which are delayed.
  2672. */
  2673. int
  2674. xfs_iextents_copy(
  2675. xfs_inode_t *ip,
  2676. xfs_bmbt_rec_t *dp,
  2677. int whichfork)
  2678. {
  2679. int copied;
  2680. int i;
  2681. xfs_ifork_t *ifp;
  2682. int nrecs;
  2683. xfs_fsblock_t start_block;
  2684. ifp = XFS_IFORK_PTR(ip, whichfork);
  2685. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2686. ASSERT(ifp->if_bytes > 0);
  2687. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2688. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2689. ASSERT(nrecs > 0);
  2690. /*
  2691. * There are some delayed allocation extents in the
  2692. * inode, so copy the extents one at a time and skip
  2693. * the delayed ones. There must be at least one
  2694. * non-delayed extent.
  2695. */
  2696. copied = 0;
  2697. for (i = 0; i < nrecs; i++) {
  2698. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2699. start_block = xfs_bmbt_get_startblock(ep);
  2700. if (ISNULLSTARTBLOCK(start_block)) {
  2701. /*
  2702. * It's a delayed allocation extent, so skip it.
  2703. */
  2704. continue;
  2705. }
  2706. /* Translate to on disk format */
  2707. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2708. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2709. dp++;
  2710. copied++;
  2711. }
  2712. ASSERT(copied != 0);
  2713. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2714. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2715. }
  2716. /*
  2717. * Each of the following cases stores data into the same region
  2718. * of the on-disk inode, so only one of them can be valid at
  2719. * any given time. While it is possible to have conflicting formats
  2720. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2721. * in EXTENTS format, this can only happen when the fork has
  2722. * changed formats after being modified but before being flushed.
  2723. * In these cases, the format always takes precedence, because the
  2724. * format indicates the current state of the fork.
  2725. */
  2726. /*ARGSUSED*/
  2727. STATIC int
  2728. xfs_iflush_fork(
  2729. xfs_inode_t *ip,
  2730. xfs_dinode_t *dip,
  2731. xfs_inode_log_item_t *iip,
  2732. int whichfork,
  2733. xfs_buf_t *bp)
  2734. {
  2735. char *cp;
  2736. xfs_ifork_t *ifp;
  2737. xfs_mount_t *mp;
  2738. #ifdef XFS_TRANS_DEBUG
  2739. int first;
  2740. #endif
  2741. static const short brootflag[2] =
  2742. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2743. static const short dataflag[2] =
  2744. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2745. static const short extflag[2] =
  2746. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2747. if (iip == NULL)
  2748. return 0;
  2749. ifp = XFS_IFORK_PTR(ip, whichfork);
  2750. /*
  2751. * This can happen if we gave up in iformat in an error path,
  2752. * for the attribute fork.
  2753. */
  2754. if (ifp == NULL) {
  2755. ASSERT(whichfork == XFS_ATTR_FORK);
  2756. return 0;
  2757. }
  2758. cp = XFS_DFORK_PTR(dip, whichfork);
  2759. mp = ip->i_mount;
  2760. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2761. case XFS_DINODE_FMT_LOCAL:
  2762. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2763. (ifp->if_bytes > 0)) {
  2764. ASSERT(ifp->if_u1.if_data != NULL);
  2765. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2766. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2767. }
  2768. break;
  2769. case XFS_DINODE_FMT_EXTENTS:
  2770. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2771. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2772. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2773. (ifp->if_bytes == 0));
  2774. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2775. (ifp->if_bytes > 0));
  2776. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2777. (ifp->if_bytes > 0)) {
  2778. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2779. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2780. whichfork);
  2781. }
  2782. break;
  2783. case XFS_DINODE_FMT_BTREE:
  2784. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2785. (ifp->if_broot_bytes > 0)) {
  2786. ASSERT(ifp->if_broot != NULL);
  2787. ASSERT(ifp->if_broot_bytes <=
  2788. (XFS_IFORK_SIZE(ip, whichfork) +
  2789. XFS_BROOT_SIZE_ADJ));
  2790. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2791. (xfs_bmdr_block_t *)cp,
  2792. XFS_DFORK_SIZE(dip, mp, whichfork));
  2793. }
  2794. break;
  2795. case XFS_DINODE_FMT_DEV:
  2796. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2797. ASSERT(whichfork == XFS_DATA_FORK);
  2798. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2799. }
  2800. break;
  2801. case XFS_DINODE_FMT_UUID:
  2802. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2803. ASSERT(whichfork == XFS_DATA_FORK);
  2804. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2805. sizeof(uuid_t));
  2806. }
  2807. break;
  2808. default:
  2809. ASSERT(0);
  2810. break;
  2811. }
  2812. return 0;
  2813. }
  2814. /*
  2815. * xfs_iflush() will write a modified inode's changes out to the
  2816. * inode's on disk home. The caller must have the inode lock held
  2817. * in at least shared mode and the inode flush semaphore must be
  2818. * held as well. The inode lock will still be held upon return from
  2819. * the call and the caller is free to unlock it.
  2820. * The inode flush lock will be unlocked when the inode reaches the disk.
  2821. * The flags indicate how the inode's buffer should be written out.
  2822. */
  2823. int
  2824. xfs_iflush(
  2825. xfs_inode_t *ip,
  2826. uint flags)
  2827. {
  2828. xfs_inode_log_item_t *iip;
  2829. xfs_buf_t *bp;
  2830. xfs_dinode_t *dip;
  2831. xfs_mount_t *mp;
  2832. int error;
  2833. /* REFERENCED */
  2834. xfs_inode_t *iq;
  2835. int clcount; /* count of inodes clustered */
  2836. int bufwasdelwri;
  2837. struct hlist_node *entry;
  2838. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2839. XFS_STATS_INC(xs_iflush_count);
  2840. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2841. ASSERT(issemalocked(&(ip->i_flock)));
  2842. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2843. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2844. iip = ip->i_itemp;
  2845. mp = ip->i_mount;
  2846. /*
  2847. * If the inode isn't dirty, then just release the inode
  2848. * flush lock and do nothing.
  2849. */
  2850. if ((ip->i_update_core == 0) &&
  2851. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2852. ASSERT((iip != NULL) ?
  2853. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2854. xfs_ifunlock(ip);
  2855. return 0;
  2856. }
  2857. /*
  2858. * We can't flush the inode until it is unpinned, so
  2859. * wait for it. We know noone new can pin it, because
  2860. * we are holding the inode lock shared and you need
  2861. * to hold it exclusively to pin the inode.
  2862. */
  2863. xfs_iunpin_wait(ip);
  2864. /*
  2865. * This may have been unpinned because the filesystem is shutting
  2866. * down forcibly. If that's the case we must not write this inode
  2867. * to disk, because the log record didn't make it to disk!
  2868. */
  2869. if (XFS_FORCED_SHUTDOWN(mp)) {
  2870. ip->i_update_core = 0;
  2871. if (iip)
  2872. iip->ili_format.ilf_fields = 0;
  2873. xfs_ifunlock(ip);
  2874. return XFS_ERROR(EIO);
  2875. }
  2876. /*
  2877. * Get the buffer containing the on-disk inode.
  2878. */
  2879. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2880. if (error) {
  2881. xfs_ifunlock(ip);
  2882. return error;
  2883. }
  2884. /*
  2885. * Decide how buffer will be flushed out. This is done before
  2886. * the call to xfs_iflush_int because this field is zeroed by it.
  2887. */
  2888. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2889. /*
  2890. * Flush out the inode buffer according to the directions
  2891. * of the caller. In the cases where the caller has given
  2892. * us a choice choose the non-delwri case. This is because
  2893. * the inode is in the AIL and we need to get it out soon.
  2894. */
  2895. switch (flags) {
  2896. case XFS_IFLUSH_SYNC:
  2897. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2898. flags = 0;
  2899. break;
  2900. case XFS_IFLUSH_ASYNC:
  2901. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2902. flags = INT_ASYNC;
  2903. break;
  2904. case XFS_IFLUSH_DELWRI:
  2905. flags = INT_DELWRI;
  2906. break;
  2907. default:
  2908. ASSERT(0);
  2909. flags = 0;
  2910. break;
  2911. }
  2912. } else {
  2913. switch (flags) {
  2914. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2915. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2916. case XFS_IFLUSH_DELWRI:
  2917. flags = INT_DELWRI;
  2918. break;
  2919. case XFS_IFLUSH_ASYNC:
  2920. flags = INT_ASYNC;
  2921. break;
  2922. case XFS_IFLUSH_SYNC:
  2923. flags = 0;
  2924. break;
  2925. default:
  2926. ASSERT(0);
  2927. flags = 0;
  2928. break;
  2929. }
  2930. }
  2931. /*
  2932. * First flush out the inode that xfs_iflush was called with.
  2933. */
  2934. error = xfs_iflush_int(ip, bp);
  2935. if (error) {
  2936. goto corrupt_out;
  2937. }
  2938. /*
  2939. * inode clustering:
  2940. * see if other inodes can be gathered into this write
  2941. */
  2942. spin_lock(&ip->i_cluster->icl_lock);
  2943. ip->i_cluster->icl_buf = bp;
  2944. clcount = 0;
  2945. hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
  2946. if (iq == ip)
  2947. continue;
  2948. /*
  2949. * Do an un-protected check to see if the inode is dirty and
  2950. * is a candidate for flushing. These checks will be repeated
  2951. * later after the appropriate locks are acquired.
  2952. */
  2953. iip = iq->i_itemp;
  2954. if ((iq->i_update_core == 0) &&
  2955. ((iip == NULL) ||
  2956. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2957. xfs_ipincount(iq) == 0) {
  2958. continue;
  2959. }
  2960. /*
  2961. * Try to get locks. If any are unavailable,
  2962. * then this inode cannot be flushed and is skipped.
  2963. */
  2964. /* get inode locks (just i_lock) */
  2965. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2966. /* get inode flush lock */
  2967. if (xfs_iflock_nowait(iq)) {
  2968. /* check if pinned */
  2969. if (xfs_ipincount(iq) == 0) {
  2970. /* arriving here means that
  2971. * this inode can be flushed.
  2972. * first re-check that it's
  2973. * dirty
  2974. */
  2975. iip = iq->i_itemp;
  2976. if ((iq->i_update_core != 0)||
  2977. ((iip != NULL) &&
  2978. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2979. clcount++;
  2980. error = xfs_iflush_int(iq, bp);
  2981. if (error) {
  2982. xfs_iunlock(iq,
  2983. XFS_ILOCK_SHARED);
  2984. goto cluster_corrupt_out;
  2985. }
  2986. } else {
  2987. xfs_ifunlock(iq);
  2988. }
  2989. } else {
  2990. xfs_ifunlock(iq);
  2991. }
  2992. }
  2993. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2994. }
  2995. }
  2996. spin_unlock(&ip->i_cluster->icl_lock);
  2997. if (clcount) {
  2998. XFS_STATS_INC(xs_icluster_flushcnt);
  2999. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  3000. }
  3001. /*
  3002. * If the buffer is pinned then push on the log so we won't
  3003. * get stuck waiting in the write for too long.
  3004. */
  3005. if (XFS_BUF_ISPINNED(bp)){
  3006. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3007. }
  3008. if (flags & INT_DELWRI) {
  3009. xfs_bdwrite(mp, bp);
  3010. } else if (flags & INT_ASYNC) {
  3011. xfs_bawrite(mp, bp);
  3012. } else {
  3013. error = xfs_bwrite(mp, bp);
  3014. }
  3015. return error;
  3016. corrupt_out:
  3017. xfs_buf_relse(bp);
  3018. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3019. xfs_iflush_abort(ip);
  3020. /*
  3021. * Unlocks the flush lock
  3022. */
  3023. return XFS_ERROR(EFSCORRUPTED);
  3024. cluster_corrupt_out:
  3025. /* Corruption detected in the clustering loop. Invalidate the
  3026. * inode buffer and shut down the filesystem.
  3027. */
  3028. spin_unlock(&ip->i_cluster->icl_lock);
  3029. /*
  3030. * Clean up the buffer. If it was B_DELWRI, just release it --
  3031. * brelse can handle it with no problems. If not, shut down the
  3032. * filesystem before releasing the buffer.
  3033. */
  3034. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3035. xfs_buf_relse(bp);
  3036. }
  3037. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3038. if(!bufwasdelwri) {
  3039. /*
  3040. * Just like incore_relse: if we have b_iodone functions,
  3041. * mark the buffer as an error and call them. Otherwise
  3042. * mark it as stale and brelse.
  3043. */
  3044. if (XFS_BUF_IODONE_FUNC(bp)) {
  3045. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3046. XFS_BUF_UNDONE(bp);
  3047. XFS_BUF_STALE(bp);
  3048. XFS_BUF_SHUT(bp);
  3049. XFS_BUF_ERROR(bp,EIO);
  3050. xfs_biodone(bp);
  3051. } else {
  3052. XFS_BUF_STALE(bp);
  3053. xfs_buf_relse(bp);
  3054. }
  3055. }
  3056. xfs_iflush_abort(iq);
  3057. /*
  3058. * Unlocks the flush lock
  3059. */
  3060. return XFS_ERROR(EFSCORRUPTED);
  3061. }
  3062. STATIC int
  3063. xfs_iflush_int(
  3064. xfs_inode_t *ip,
  3065. xfs_buf_t *bp)
  3066. {
  3067. xfs_inode_log_item_t *iip;
  3068. xfs_dinode_t *dip;
  3069. xfs_mount_t *mp;
  3070. #ifdef XFS_TRANS_DEBUG
  3071. int first;
  3072. #endif
  3073. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3074. ASSERT(issemalocked(&(ip->i_flock)));
  3075. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3076. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3077. iip = ip->i_itemp;
  3078. mp = ip->i_mount;
  3079. /*
  3080. * If the inode isn't dirty, then just release the inode
  3081. * flush lock and do nothing.
  3082. */
  3083. if ((ip->i_update_core == 0) &&
  3084. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3085. xfs_ifunlock(ip);
  3086. return 0;
  3087. }
  3088. /* set *dip = inode's place in the buffer */
  3089. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3090. /*
  3091. * Clear i_update_core before copying out the data.
  3092. * This is for coordination with our timestamp updates
  3093. * that don't hold the inode lock. They will always
  3094. * update the timestamps BEFORE setting i_update_core,
  3095. * so if we clear i_update_core after they set it we
  3096. * are guaranteed to see their updates to the timestamps.
  3097. * I believe that this depends on strongly ordered memory
  3098. * semantics, but we have that. We use the SYNCHRONIZE
  3099. * macro to make sure that the compiler does not reorder
  3100. * the i_update_core access below the data copy below.
  3101. */
  3102. ip->i_update_core = 0;
  3103. SYNCHRONIZE();
  3104. /*
  3105. * Make sure to get the latest atime from the Linux inode.
  3106. */
  3107. xfs_synchronize_atime(ip);
  3108. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3109. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3110. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3111. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3112. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3113. goto corrupt_out;
  3114. }
  3115. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3116. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3117. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3118. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3119. ip->i_ino, ip, ip->i_d.di_magic);
  3120. goto corrupt_out;
  3121. }
  3122. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3123. if (XFS_TEST_ERROR(
  3124. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3125. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3126. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3127. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3128. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3129. ip->i_ino, ip);
  3130. goto corrupt_out;
  3131. }
  3132. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3133. if (XFS_TEST_ERROR(
  3134. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3135. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3136. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3137. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3138. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3139. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3140. ip->i_ino, ip);
  3141. goto corrupt_out;
  3142. }
  3143. }
  3144. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3145. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3146. XFS_RANDOM_IFLUSH_5)) {
  3147. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3148. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3149. ip->i_ino,
  3150. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3151. ip->i_d.di_nblocks,
  3152. ip);
  3153. goto corrupt_out;
  3154. }
  3155. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3156. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3157. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3158. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3159. ip->i_ino, ip->i_d.di_forkoff, ip);
  3160. goto corrupt_out;
  3161. }
  3162. /*
  3163. * bump the flush iteration count, used to detect flushes which
  3164. * postdate a log record during recovery.
  3165. */
  3166. ip->i_d.di_flushiter++;
  3167. /*
  3168. * Copy the dirty parts of the inode into the on-disk
  3169. * inode. We always copy out the core of the inode,
  3170. * because if the inode is dirty at all the core must
  3171. * be.
  3172. */
  3173. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3174. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3175. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3176. ip->i_d.di_flushiter = 0;
  3177. /*
  3178. * If this is really an old format inode and the superblock version
  3179. * has not been updated to support only new format inodes, then
  3180. * convert back to the old inode format. If the superblock version
  3181. * has been updated, then make the conversion permanent.
  3182. */
  3183. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3184. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3185. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3186. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3187. /*
  3188. * Convert it back.
  3189. */
  3190. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3191. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3192. } else {
  3193. /*
  3194. * The superblock version has already been bumped,
  3195. * so just make the conversion to the new inode
  3196. * format permanent.
  3197. */
  3198. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3199. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3200. ip->i_d.di_onlink = 0;
  3201. dip->di_core.di_onlink = 0;
  3202. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3203. memset(&(dip->di_core.di_pad[0]), 0,
  3204. sizeof(dip->di_core.di_pad));
  3205. ASSERT(ip->i_d.di_projid == 0);
  3206. }
  3207. }
  3208. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3209. goto corrupt_out;
  3210. }
  3211. if (XFS_IFORK_Q(ip)) {
  3212. /*
  3213. * The only error from xfs_iflush_fork is on the data fork.
  3214. */
  3215. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3216. }
  3217. xfs_inobp_check(mp, bp);
  3218. /*
  3219. * We've recorded everything logged in the inode, so we'd
  3220. * like to clear the ilf_fields bits so we don't log and
  3221. * flush things unnecessarily. However, we can't stop
  3222. * logging all this information until the data we've copied
  3223. * into the disk buffer is written to disk. If we did we might
  3224. * overwrite the copy of the inode in the log with all the
  3225. * data after re-logging only part of it, and in the face of
  3226. * a crash we wouldn't have all the data we need to recover.
  3227. *
  3228. * What we do is move the bits to the ili_last_fields field.
  3229. * When logging the inode, these bits are moved back to the
  3230. * ilf_fields field. In the xfs_iflush_done() routine we
  3231. * clear ili_last_fields, since we know that the information
  3232. * those bits represent is permanently on disk. As long as
  3233. * the flush completes before the inode is logged again, then
  3234. * both ilf_fields and ili_last_fields will be cleared.
  3235. *
  3236. * We can play with the ilf_fields bits here, because the inode
  3237. * lock must be held exclusively in order to set bits there
  3238. * and the flush lock protects the ili_last_fields bits.
  3239. * Set ili_logged so the flush done
  3240. * routine can tell whether or not to look in the AIL.
  3241. * Also, store the current LSN of the inode so that we can tell
  3242. * whether the item has moved in the AIL from xfs_iflush_done().
  3243. * In order to read the lsn we need the AIL lock, because
  3244. * it is a 64 bit value that cannot be read atomically.
  3245. */
  3246. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3247. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3248. iip->ili_format.ilf_fields = 0;
  3249. iip->ili_logged = 1;
  3250. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3251. spin_lock(&mp->m_ail_lock);
  3252. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3253. spin_unlock(&mp->m_ail_lock);
  3254. /*
  3255. * Attach the function xfs_iflush_done to the inode's
  3256. * buffer. This will remove the inode from the AIL
  3257. * and unlock the inode's flush lock when the inode is
  3258. * completely written to disk.
  3259. */
  3260. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3261. xfs_iflush_done, (xfs_log_item_t *)iip);
  3262. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3263. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3264. } else {
  3265. /*
  3266. * We're flushing an inode which is not in the AIL and has
  3267. * not been logged but has i_update_core set. For this
  3268. * case we can use a B_DELWRI flush and immediately drop
  3269. * the inode flush lock because we can avoid the whole
  3270. * AIL state thing. It's OK to drop the flush lock now,
  3271. * because we've already locked the buffer and to do anything
  3272. * you really need both.
  3273. */
  3274. if (iip != NULL) {
  3275. ASSERT(iip->ili_logged == 0);
  3276. ASSERT(iip->ili_last_fields == 0);
  3277. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3278. }
  3279. xfs_ifunlock(ip);
  3280. }
  3281. return 0;
  3282. corrupt_out:
  3283. return XFS_ERROR(EFSCORRUPTED);
  3284. }
  3285. /*
  3286. * Flush all inactive inodes in mp.
  3287. */
  3288. void
  3289. xfs_iflush_all(
  3290. xfs_mount_t *mp)
  3291. {
  3292. xfs_inode_t *ip;
  3293. bhv_vnode_t *vp;
  3294. again:
  3295. XFS_MOUNT_ILOCK(mp);
  3296. ip = mp->m_inodes;
  3297. if (ip == NULL)
  3298. goto out;
  3299. do {
  3300. /* Make sure we skip markers inserted by sync */
  3301. if (ip->i_mount == NULL) {
  3302. ip = ip->i_mnext;
  3303. continue;
  3304. }
  3305. vp = XFS_ITOV_NULL(ip);
  3306. if (!vp) {
  3307. XFS_MOUNT_IUNLOCK(mp);
  3308. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3309. goto again;
  3310. }
  3311. ASSERT(vn_count(vp) == 0);
  3312. ip = ip->i_mnext;
  3313. } while (ip != mp->m_inodes);
  3314. out:
  3315. XFS_MOUNT_IUNLOCK(mp);
  3316. }
  3317. /*
  3318. * xfs_iaccess: check accessibility of inode for mode.
  3319. */
  3320. int
  3321. xfs_iaccess(
  3322. xfs_inode_t *ip,
  3323. mode_t mode,
  3324. cred_t *cr)
  3325. {
  3326. int error;
  3327. mode_t orgmode = mode;
  3328. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3329. if (mode & S_IWUSR) {
  3330. umode_t imode = inode->i_mode;
  3331. if (IS_RDONLY(inode) &&
  3332. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3333. return XFS_ERROR(EROFS);
  3334. if (IS_IMMUTABLE(inode))
  3335. return XFS_ERROR(EACCES);
  3336. }
  3337. /*
  3338. * If there's an Access Control List it's used instead of
  3339. * the mode bits.
  3340. */
  3341. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3342. return error ? XFS_ERROR(error) : 0;
  3343. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3344. mode >>= 3;
  3345. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3346. mode >>= 3;
  3347. }
  3348. /*
  3349. * If the DACs are ok we don't need any capability check.
  3350. */
  3351. if ((ip->i_d.di_mode & mode) == mode)
  3352. return 0;
  3353. /*
  3354. * Read/write DACs are always overridable.
  3355. * Executable DACs are overridable if at least one exec bit is set.
  3356. */
  3357. if (!(orgmode & S_IXUSR) ||
  3358. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3359. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3360. return 0;
  3361. if ((orgmode == S_IRUSR) ||
  3362. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3363. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3364. return 0;
  3365. #ifdef NOISE
  3366. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3367. #endif /* NOISE */
  3368. return XFS_ERROR(EACCES);
  3369. }
  3370. return XFS_ERROR(EACCES);
  3371. }
  3372. /*
  3373. * xfs_iroundup: round up argument to next power of two
  3374. */
  3375. uint
  3376. xfs_iroundup(
  3377. uint v)
  3378. {
  3379. int i;
  3380. uint m;
  3381. if ((v & (v - 1)) == 0)
  3382. return v;
  3383. ASSERT((v & 0x80000000) == 0);
  3384. if ((v & (v + 1)) == 0)
  3385. return v + 1;
  3386. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3387. if (v & m)
  3388. continue;
  3389. v |= m;
  3390. if ((v & (v + 1)) == 0)
  3391. return v + 1;
  3392. }
  3393. ASSERT(0);
  3394. return( 0 );
  3395. }
  3396. #ifdef XFS_ILOCK_TRACE
  3397. ktrace_t *xfs_ilock_trace_buf;
  3398. void
  3399. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3400. {
  3401. ktrace_enter(ip->i_lock_trace,
  3402. (void *)ip,
  3403. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3404. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3405. (void *)ra, /* caller of ilock */
  3406. (void *)(unsigned long)current_cpu(),
  3407. (void *)(unsigned long)current_pid(),
  3408. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3409. }
  3410. #endif
  3411. /*
  3412. * Return a pointer to the extent record at file index idx.
  3413. */
  3414. xfs_bmbt_rec_host_t *
  3415. xfs_iext_get_ext(
  3416. xfs_ifork_t *ifp, /* inode fork pointer */
  3417. xfs_extnum_t idx) /* index of target extent */
  3418. {
  3419. ASSERT(idx >= 0);
  3420. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3421. return ifp->if_u1.if_ext_irec->er_extbuf;
  3422. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3423. xfs_ext_irec_t *erp; /* irec pointer */
  3424. int erp_idx = 0; /* irec index */
  3425. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3426. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3427. return &erp->er_extbuf[page_idx];
  3428. } else if (ifp->if_bytes) {
  3429. return &ifp->if_u1.if_extents[idx];
  3430. } else {
  3431. return NULL;
  3432. }
  3433. }
  3434. /*
  3435. * Insert new item(s) into the extent records for incore inode
  3436. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3437. */
  3438. void
  3439. xfs_iext_insert(
  3440. xfs_ifork_t *ifp, /* inode fork pointer */
  3441. xfs_extnum_t idx, /* starting index of new items */
  3442. xfs_extnum_t count, /* number of inserted items */
  3443. xfs_bmbt_irec_t *new) /* items to insert */
  3444. {
  3445. xfs_extnum_t i; /* extent record index */
  3446. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3447. xfs_iext_add(ifp, idx, count);
  3448. for (i = idx; i < idx + count; i++, new++)
  3449. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3450. }
  3451. /*
  3452. * This is called when the amount of space required for incore file
  3453. * extents needs to be increased. The ext_diff parameter stores the
  3454. * number of new extents being added and the idx parameter contains
  3455. * the extent index where the new extents will be added. If the new
  3456. * extents are being appended, then we just need to (re)allocate and
  3457. * initialize the space. Otherwise, if the new extents are being
  3458. * inserted into the middle of the existing entries, a bit more work
  3459. * is required to make room for the new extents to be inserted. The
  3460. * caller is responsible for filling in the new extent entries upon
  3461. * return.
  3462. */
  3463. void
  3464. xfs_iext_add(
  3465. xfs_ifork_t *ifp, /* inode fork pointer */
  3466. xfs_extnum_t idx, /* index to begin adding exts */
  3467. int ext_diff) /* number of extents to add */
  3468. {
  3469. int byte_diff; /* new bytes being added */
  3470. int new_size; /* size of extents after adding */
  3471. xfs_extnum_t nextents; /* number of extents in file */
  3472. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3473. ASSERT((idx >= 0) && (idx <= nextents));
  3474. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3475. new_size = ifp->if_bytes + byte_diff;
  3476. /*
  3477. * If the new number of extents (nextents + ext_diff)
  3478. * fits inside the inode, then continue to use the inline
  3479. * extent buffer.
  3480. */
  3481. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3482. if (idx < nextents) {
  3483. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3484. &ifp->if_u2.if_inline_ext[idx],
  3485. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3486. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3487. }
  3488. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3489. ifp->if_real_bytes = 0;
  3490. ifp->if_lastex = nextents + ext_diff;
  3491. }
  3492. /*
  3493. * Otherwise use a linear (direct) extent list.
  3494. * If the extents are currently inside the inode,
  3495. * xfs_iext_realloc_direct will switch us from
  3496. * inline to direct extent allocation mode.
  3497. */
  3498. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3499. xfs_iext_realloc_direct(ifp, new_size);
  3500. if (idx < nextents) {
  3501. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3502. &ifp->if_u1.if_extents[idx],
  3503. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3504. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3505. }
  3506. }
  3507. /* Indirection array */
  3508. else {
  3509. xfs_ext_irec_t *erp;
  3510. int erp_idx = 0;
  3511. int page_idx = idx;
  3512. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3513. if (ifp->if_flags & XFS_IFEXTIREC) {
  3514. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3515. } else {
  3516. xfs_iext_irec_init(ifp);
  3517. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3518. erp = ifp->if_u1.if_ext_irec;
  3519. }
  3520. /* Extents fit in target extent page */
  3521. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3522. if (page_idx < erp->er_extcount) {
  3523. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3524. &erp->er_extbuf[page_idx],
  3525. (erp->er_extcount - page_idx) *
  3526. sizeof(xfs_bmbt_rec_t));
  3527. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3528. }
  3529. erp->er_extcount += ext_diff;
  3530. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3531. }
  3532. /* Insert a new extent page */
  3533. else if (erp) {
  3534. xfs_iext_add_indirect_multi(ifp,
  3535. erp_idx, page_idx, ext_diff);
  3536. }
  3537. /*
  3538. * If extent(s) are being appended to the last page in
  3539. * the indirection array and the new extent(s) don't fit
  3540. * in the page, then erp is NULL and erp_idx is set to
  3541. * the next index needed in the indirection array.
  3542. */
  3543. else {
  3544. int count = ext_diff;
  3545. while (count) {
  3546. erp = xfs_iext_irec_new(ifp, erp_idx);
  3547. erp->er_extcount = count;
  3548. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3549. if (count) {
  3550. erp_idx++;
  3551. }
  3552. }
  3553. }
  3554. }
  3555. ifp->if_bytes = new_size;
  3556. }
  3557. /*
  3558. * This is called when incore extents are being added to the indirection
  3559. * array and the new extents do not fit in the target extent list. The
  3560. * erp_idx parameter contains the irec index for the target extent list
  3561. * in the indirection array, and the idx parameter contains the extent
  3562. * index within the list. The number of extents being added is stored
  3563. * in the count parameter.
  3564. *
  3565. * |-------| |-------|
  3566. * | | | | idx - number of extents before idx
  3567. * | idx | | count |
  3568. * | | | | count - number of extents being inserted at idx
  3569. * |-------| |-------|
  3570. * | count | | nex2 | nex2 - number of extents after idx + count
  3571. * |-------| |-------|
  3572. */
  3573. void
  3574. xfs_iext_add_indirect_multi(
  3575. xfs_ifork_t *ifp, /* inode fork pointer */
  3576. int erp_idx, /* target extent irec index */
  3577. xfs_extnum_t idx, /* index within target list */
  3578. int count) /* new extents being added */
  3579. {
  3580. int byte_diff; /* new bytes being added */
  3581. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3582. xfs_extnum_t ext_diff; /* number of extents to add */
  3583. xfs_extnum_t ext_cnt; /* new extents still needed */
  3584. xfs_extnum_t nex2; /* extents after idx + count */
  3585. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3586. int nlists; /* number of irec's (lists) */
  3587. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3588. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3589. nex2 = erp->er_extcount - idx;
  3590. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3591. /*
  3592. * Save second part of target extent list
  3593. * (all extents past */
  3594. if (nex2) {
  3595. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3596. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3597. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3598. erp->er_extcount -= nex2;
  3599. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3600. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3601. }
  3602. /*
  3603. * Add the new extents to the end of the target
  3604. * list, then allocate new irec record(s) and
  3605. * extent buffer(s) as needed to store the rest
  3606. * of the new extents.
  3607. */
  3608. ext_cnt = count;
  3609. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3610. if (ext_diff) {
  3611. erp->er_extcount += ext_diff;
  3612. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3613. ext_cnt -= ext_diff;
  3614. }
  3615. while (ext_cnt) {
  3616. erp_idx++;
  3617. erp = xfs_iext_irec_new(ifp, erp_idx);
  3618. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3619. erp->er_extcount = ext_diff;
  3620. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3621. ext_cnt -= ext_diff;
  3622. }
  3623. /* Add nex2 extents back to indirection array */
  3624. if (nex2) {
  3625. xfs_extnum_t ext_avail;
  3626. int i;
  3627. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3628. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3629. i = 0;
  3630. /*
  3631. * If nex2 extents fit in the current page, append
  3632. * nex2_ep after the new extents.
  3633. */
  3634. if (nex2 <= ext_avail) {
  3635. i = erp->er_extcount;
  3636. }
  3637. /*
  3638. * Otherwise, check if space is available in the
  3639. * next page.
  3640. */
  3641. else if ((erp_idx < nlists - 1) &&
  3642. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3643. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3644. erp_idx++;
  3645. erp++;
  3646. /* Create a hole for nex2 extents */
  3647. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3648. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3649. }
  3650. /*
  3651. * Final choice, create a new extent page for
  3652. * nex2 extents.
  3653. */
  3654. else {
  3655. erp_idx++;
  3656. erp = xfs_iext_irec_new(ifp, erp_idx);
  3657. }
  3658. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3659. kmem_free(nex2_ep, byte_diff);
  3660. erp->er_extcount += nex2;
  3661. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3662. }
  3663. }
  3664. /*
  3665. * This is called when the amount of space required for incore file
  3666. * extents needs to be decreased. The ext_diff parameter stores the
  3667. * number of extents to be removed and the idx parameter contains
  3668. * the extent index where the extents will be removed from.
  3669. *
  3670. * If the amount of space needed has decreased below the linear
  3671. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3672. * extent array. Otherwise, use kmem_realloc() to adjust the
  3673. * size to what is needed.
  3674. */
  3675. void
  3676. xfs_iext_remove(
  3677. xfs_ifork_t *ifp, /* inode fork pointer */
  3678. xfs_extnum_t idx, /* index to begin removing exts */
  3679. int ext_diff) /* number of extents to remove */
  3680. {
  3681. xfs_extnum_t nextents; /* number of extents in file */
  3682. int new_size; /* size of extents after removal */
  3683. ASSERT(ext_diff > 0);
  3684. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3685. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3686. if (new_size == 0) {
  3687. xfs_iext_destroy(ifp);
  3688. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3689. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3690. } else if (ifp->if_real_bytes) {
  3691. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3692. } else {
  3693. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3694. }
  3695. ifp->if_bytes = new_size;
  3696. }
  3697. /*
  3698. * This removes ext_diff extents from the inline buffer, beginning
  3699. * at extent index idx.
  3700. */
  3701. void
  3702. xfs_iext_remove_inline(
  3703. xfs_ifork_t *ifp, /* inode fork pointer */
  3704. xfs_extnum_t idx, /* index to begin removing exts */
  3705. int ext_diff) /* number of extents to remove */
  3706. {
  3707. int nextents; /* number of extents in file */
  3708. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3709. ASSERT(idx < XFS_INLINE_EXTS);
  3710. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3711. ASSERT(((nextents - ext_diff) > 0) &&
  3712. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3713. if (idx + ext_diff < nextents) {
  3714. memmove(&ifp->if_u2.if_inline_ext[idx],
  3715. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3716. (nextents - (idx + ext_diff)) *
  3717. sizeof(xfs_bmbt_rec_t));
  3718. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3719. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3720. } else {
  3721. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3722. ext_diff * sizeof(xfs_bmbt_rec_t));
  3723. }
  3724. }
  3725. /*
  3726. * This removes ext_diff extents from a linear (direct) extent list,
  3727. * beginning at extent index idx. If the extents are being removed
  3728. * from the end of the list (ie. truncate) then we just need to re-
  3729. * allocate the list to remove the extra space. Otherwise, if the
  3730. * extents are being removed from the middle of the existing extent
  3731. * entries, then we first need to move the extent records beginning
  3732. * at idx + ext_diff up in the list to overwrite the records being
  3733. * removed, then remove the extra space via kmem_realloc.
  3734. */
  3735. void
  3736. xfs_iext_remove_direct(
  3737. xfs_ifork_t *ifp, /* inode fork pointer */
  3738. xfs_extnum_t idx, /* index to begin removing exts */
  3739. int ext_diff) /* number of extents to remove */
  3740. {
  3741. xfs_extnum_t nextents; /* number of extents in file */
  3742. int new_size; /* size of extents after removal */
  3743. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3744. new_size = ifp->if_bytes -
  3745. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3746. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3747. if (new_size == 0) {
  3748. xfs_iext_destroy(ifp);
  3749. return;
  3750. }
  3751. /* Move extents up in the list (if needed) */
  3752. if (idx + ext_diff < nextents) {
  3753. memmove(&ifp->if_u1.if_extents[idx],
  3754. &ifp->if_u1.if_extents[idx + ext_diff],
  3755. (nextents - (idx + ext_diff)) *
  3756. sizeof(xfs_bmbt_rec_t));
  3757. }
  3758. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3759. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3760. /*
  3761. * Reallocate the direct extent list. If the extents
  3762. * will fit inside the inode then xfs_iext_realloc_direct
  3763. * will switch from direct to inline extent allocation
  3764. * mode for us.
  3765. */
  3766. xfs_iext_realloc_direct(ifp, new_size);
  3767. ifp->if_bytes = new_size;
  3768. }
  3769. /*
  3770. * This is called when incore extents are being removed from the
  3771. * indirection array and the extents being removed span multiple extent
  3772. * buffers. The idx parameter contains the file extent index where we
  3773. * want to begin removing extents, and the count parameter contains
  3774. * how many extents need to be removed.
  3775. *
  3776. * |-------| |-------|
  3777. * | nex1 | | | nex1 - number of extents before idx
  3778. * |-------| | count |
  3779. * | | | | count - number of extents being removed at idx
  3780. * | count | |-------|
  3781. * | | | nex2 | nex2 - number of extents after idx + count
  3782. * |-------| |-------|
  3783. */
  3784. void
  3785. xfs_iext_remove_indirect(
  3786. xfs_ifork_t *ifp, /* inode fork pointer */
  3787. xfs_extnum_t idx, /* index to begin removing extents */
  3788. int count) /* number of extents to remove */
  3789. {
  3790. xfs_ext_irec_t *erp; /* indirection array pointer */
  3791. int erp_idx = 0; /* indirection array index */
  3792. xfs_extnum_t ext_cnt; /* extents left to remove */
  3793. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3794. xfs_extnum_t nex1; /* number of extents before idx */
  3795. xfs_extnum_t nex2; /* extents after idx + count */
  3796. int nlists; /* entries in indirection array */
  3797. int page_idx = idx; /* index in target extent list */
  3798. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3799. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3800. ASSERT(erp != NULL);
  3801. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3802. nex1 = page_idx;
  3803. ext_cnt = count;
  3804. while (ext_cnt) {
  3805. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3806. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3807. /*
  3808. * Check for deletion of entire list;
  3809. * xfs_iext_irec_remove() updates extent offsets.
  3810. */
  3811. if (ext_diff == erp->er_extcount) {
  3812. xfs_iext_irec_remove(ifp, erp_idx);
  3813. ext_cnt -= ext_diff;
  3814. nex1 = 0;
  3815. if (ext_cnt) {
  3816. ASSERT(erp_idx < ifp->if_real_bytes /
  3817. XFS_IEXT_BUFSZ);
  3818. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3819. nex1 = 0;
  3820. continue;
  3821. } else {
  3822. break;
  3823. }
  3824. }
  3825. /* Move extents up (if needed) */
  3826. if (nex2) {
  3827. memmove(&erp->er_extbuf[nex1],
  3828. &erp->er_extbuf[nex1 + ext_diff],
  3829. nex2 * sizeof(xfs_bmbt_rec_t));
  3830. }
  3831. /* Zero out rest of page */
  3832. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3833. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3834. /* Update remaining counters */
  3835. erp->er_extcount -= ext_diff;
  3836. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3837. ext_cnt -= ext_diff;
  3838. nex1 = 0;
  3839. erp_idx++;
  3840. erp++;
  3841. }
  3842. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3843. xfs_iext_irec_compact(ifp);
  3844. }
  3845. /*
  3846. * Create, destroy, or resize a linear (direct) block of extents.
  3847. */
  3848. void
  3849. xfs_iext_realloc_direct(
  3850. xfs_ifork_t *ifp, /* inode fork pointer */
  3851. int new_size) /* new size of extents */
  3852. {
  3853. int rnew_size; /* real new size of extents */
  3854. rnew_size = new_size;
  3855. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3856. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3857. (new_size != ifp->if_real_bytes)));
  3858. /* Free extent records */
  3859. if (new_size == 0) {
  3860. xfs_iext_destroy(ifp);
  3861. }
  3862. /* Resize direct extent list and zero any new bytes */
  3863. else if (ifp->if_real_bytes) {
  3864. /* Check if extents will fit inside the inode */
  3865. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3866. xfs_iext_direct_to_inline(ifp, new_size /
  3867. (uint)sizeof(xfs_bmbt_rec_t));
  3868. ifp->if_bytes = new_size;
  3869. return;
  3870. }
  3871. if (!is_power_of_2(new_size)){
  3872. rnew_size = xfs_iroundup(new_size);
  3873. }
  3874. if (rnew_size != ifp->if_real_bytes) {
  3875. ifp->if_u1.if_extents =
  3876. kmem_realloc(ifp->if_u1.if_extents,
  3877. rnew_size,
  3878. ifp->if_real_bytes,
  3879. KM_SLEEP);
  3880. }
  3881. if (rnew_size > ifp->if_real_bytes) {
  3882. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3883. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3884. rnew_size - ifp->if_real_bytes);
  3885. }
  3886. }
  3887. /*
  3888. * Switch from the inline extent buffer to a direct
  3889. * extent list. Be sure to include the inline extent
  3890. * bytes in new_size.
  3891. */
  3892. else {
  3893. new_size += ifp->if_bytes;
  3894. if (!is_power_of_2(new_size)) {
  3895. rnew_size = xfs_iroundup(new_size);
  3896. }
  3897. xfs_iext_inline_to_direct(ifp, rnew_size);
  3898. }
  3899. ifp->if_real_bytes = rnew_size;
  3900. ifp->if_bytes = new_size;
  3901. }
  3902. /*
  3903. * Switch from linear (direct) extent records to inline buffer.
  3904. */
  3905. void
  3906. xfs_iext_direct_to_inline(
  3907. xfs_ifork_t *ifp, /* inode fork pointer */
  3908. xfs_extnum_t nextents) /* number of extents in file */
  3909. {
  3910. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3911. ASSERT(nextents <= XFS_INLINE_EXTS);
  3912. /*
  3913. * The inline buffer was zeroed when we switched
  3914. * from inline to direct extent allocation mode,
  3915. * so we don't need to clear it here.
  3916. */
  3917. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3918. nextents * sizeof(xfs_bmbt_rec_t));
  3919. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3920. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3921. ifp->if_real_bytes = 0;
  3922. }
  3923. /*
  3924. * Switch from inline buffer to linear (direct) extent records.
  3925. * new_size should already be rounded up to the next power of 2
  3926. * by the caller (when appropriate), so use new_size as it is.
  3927. * However, since new_size may be rounded up, we can't update
  3928. * if_bytes here. It is the caller's responsibility to update
  3929. * if_bytes upon return.
  3930. */
  3931. void
  3932. xfs_iext_inline_to_direct(
  3933. xfs_ifork_t *ifp, /* inode fork pointer */
  3934. int new_size) /* number of extents in file */
  3935. {
  3936. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
  3937. memset(ifp->if_u1.if_extents, 0, new_size);
  3938. if (ifp->if_bytes) {
  3939. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3940. ifp->if_bytes);
  3941. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3942. sizeof(xfs_bmbt_rec_t));
  3943. }
  3944. ifp->if_real_bytes = new_size;
  3945. }
  3946. /*
  3947. * Resize an extent indirection array to new_size bytes.
  3948. */
  3949. void
  3950. xfs_iext_realloc_indirect(
  3951. xfs_ifork_t *ifp, /* inode fork pointer */
  3952. int new_size) /* new indirection array size */
  3953. {
  3954. int nlists; /* number of irec's (ex lists) */
  3955. int size; /* current indirection array size */
  3956. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3957. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3958. size = nlists * sizeof(xfs_ext_irec_t);
  3959. ASSERT(ifp->if_real_bytes);
  3960. ASSERT((new_size >= 0) && (new_size != size));
  3961. if (new_size == 0) {
  3962. xfs_iext_destroy(ifp);
  3963. } else {
  3964. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3965. kmem_realloc(ifp->if_u1.if_ext_irec,
  3966. new_size, size, KM_SLEEP);
  3967. }
  3968. }
  3969. /*
  3970. * Switch from indirection array to linear (direct) extent allocations.
  3971. */
  3972. void
  3973. xfs_iext_indirect_to_direct(
  3974. xfs_ifork_t *ifp) /* inode fork pointer */
  3975. {
  3976. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3977. xfs_extnum_t nextents; /* number of extents in file */
  3978. int size; /* size of file extents */
  3979. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3980. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3981. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3982. size = nextents * sizeof(xfs_bmbt_rec_t);
  3983. xfs_iext_irec_compact_full(ifp);
  3984. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3985. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3986. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3987. ifp->if_flags &= ~XFS_IFEXTIREC;
  3988. ifp->if_u1.if_extents = ep;
  3989. ifp->if_bytes = size;
  3990. if (nextents < XFS_LINEAR_EXTS) {
  3991. xfs_iext_realloc_direct(ifp, size);
  3992. }
  3993. }
  3994. /*
  3995. * Free incore file extents.
  3996. */
  3997. void
  3998. xfs_iext_destroy(
  3999. xfs_ifork_t *ifp) /* inode fork pointer */
  4000. {
  4001. if (ifp->if_flags & XFS_IFEXTIREC) {
  4002. int erp_idx;
  4003. int nlists;
  4004. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4005. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  4006. xfs_iext_irec_remove(ifp, erp_idx);
  4007. }
  4008. ifp->if_flags &= ~XFS_IFEXTIREC;
  4009. } else if (ifp->if_real_bytes) {
  4010. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  4011. } else if (ifp->if_bytes) {
  4012. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  4013. sizeof(xfs_bmbt_rec_t));
  4014. }
  4015. ifp->if_u1.if_extents = NULL;
  4016. ifp->if_real_bytes = 0;
  4017. ifp->if_bytes = 0;
  4018. }
  4019. /*
  4020. * Return a pointer to the extent record for file system block bno.
  4021. */
  4022. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  4023. xfs_iext_bno_to_ext(
  4024. xfs_ifork_t *ifp, /* inode fork pointer */
  4025. xfs_fileoff_t bno, /* block number to search for */
  4026. xfs_extnum_t *idxp) /* index of target extent */
  4027. {
  4028. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  4029. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  4030. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  4031. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4032. int high; /* upper boundary in search */
  4033. xfs_extnum_t idx = 0; /* index of target extent */
  4034. int low; /* lower boundary in search */
  4035. xfs_extnum_t nextents; /* number of file extents */
  4036. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4037. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4038. if (nextents == 0) {
  4039. *idxp = 0;
  4040. return NULL;
  4041. }
  4042. low = 0;
  4043. if (ifp->if_flags & XFS_IFEXTIREC) {
  4044. /* Find target extent list */
  4045. int erp_idx = 0;
  4046. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4047. base = erp->er_extbuf;
  4048. high = erp->er_extcount - 1;
  4049. } else {
  4050. base = ifp->if_u1.if_extents;
  4051. high = nextents - 1;
  4052. }
  4053. /* Binary search extent records */
  4054. while (low <= high) {
  4055. idx = (low + high) >> 1;
  4056. ep = base + idx;
  4057. startoff = xfs_bmbt_get_startoff(ep);
  4058. blockcount = xfs_bmbt_get_blockcount(ep);
  4059. if (bno < startoff) {
  4060. high = idx - 1;
  4061. } else if (bno >= startoff + blockcount) {
  4062. low = idx + 1;
  4063. } else {
  4064. /* Convert back to file-based extent index */
  4065. if (ifp->if_flags & XFS_IFEXTIREC) {
  4066. idx += erp->er_extoff;
  4067. }
  4068. *idxp = idx;
  4069. return ep;
  4070. }
  4071. }
  4072. /* Convert back to file-based extent index */
  4073. if (ifp->if_flags & XFS_IFEXTIREC) {
  4074. idx += erp->er_extoff;
  4075. }
  4076. if (bno >= startoff + blockcount) {
  4077. if (++idx == nextents) {
  4078. ep = NULL;
  4079. } else {
  4080. ep = xfs_iext_get_ext(ifp, idx);
  4081. }
  4082. }
  4083. *idxp = idx;
  4084. return ep;
  4085. }
  4086. /*
  4087. * Return a pointer to the indirection array entry containing the
  4088. * extent record for filesystem block bno. Store the index of the
  4089. * target irec in *erp_idxp.
  4090. */
  4091. xfs_ext_irec_t * /* pointer to found extent record */
  4092. xfs_iext_bno_to_irec(
  4093. xfs_ifork_t *ifp, /* inode fork pointer */
  4094. xfs_fileoff_t bno, /* block number to search for */
  4095. int *erp_idxp) /* irec index of target ext list */
  4096. {
  4097. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4098. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4099. int erp_idx; /* indirection array index */
  4100. int nlists; /* number of extent irec's (lists) */
  4101. int high; /* binary search upper limit */
  4102. int low; /* binary search lower limit */
  4103. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4104. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4105. erp_idx = 0;
  4106. low = 0;
  4107. high = nlists - 1;
  4108. while (low <= high) {
  4109. erp_idx = (low + high) >> 1;
  4110. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4111. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4112. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4113. high = erp_idx - 1;
  4114. } else if (erp_next && bno >=
  4115. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4116. low = erp_idx + 1;
  4117. } else {
  4118. break;
  4119. }
  4120. }
  4121. *erp_idxp = erp_idx;
  4122. return erp;
  4123. }
  4124. /*
  4125. * Return a pointer to the indirection array entry containing the
  4126. * extent record at file extent index *idxp. Store the index of the
  4127. * target irec in *erp_idxp and store the page index of the target
  4128. * extent record in *idxp.
  4129. */
  4130. xfs_ext_irec_t *
  4131. xfs_iext_idx_to_irec(
  4132. xfs_ifork_t *ifp, /* inode fork pointer */
  4133. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4134. int *erp_idxp, /* pointer to target irec */
  4135. int realloc) /* new bytes were just added */
  4136. {
  4137. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4138. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4139. int erp_idx; /* indirection array index */
  4140. int nlists; /* number of irec's (ex lists) */
  4141. int high; /* binary search upper limit */
  4142. int low; /* binary search lower limit */
  4143. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4144. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4145. ASSERT(page_idx >= 0 && page_idx <=
  4146. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4147. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4148. erp_idx = 0;
  4149. low = 0;
  4150. high = nlists - 1;
  4151. /* Binary search extent irec's */
  4152. while (low <= high) {
  4153. erp_idx = (low + high) >> 1;
  4154. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4155. prev = erp_idx > 0 ? erp - 1 : NULL;
  4156. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4157. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4158. high = erp_idx - 1;
  4159. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4160. (page_idx == erp->er_extoff + erp->er_extcount &&
  4161. !realloc)) {
  4162. low = erp_idx + 1;
  4163. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4164. erp->er_extcount == XFS_LINEAR_EXTS) {
  4165. ASSERT(realloc);
  4166. page_idx = 0;
  4167. erp_idx++;
  4168. erp = erp_idx < nlists ? erp + 1 : NULL;
  4169. break;
  4170. } else {
  4171. page_idx -= erp->er_extoff;
  4172. break;
  4173. }
  4174. }
  4175. *idxp = page_idx;
  4176. *erp_idxp = erp_idx;
  4177. return(erp);
  4178. }
  4179. /*
  4180. * Allocate and initialize an indirection array once the space needed
  4181. * for incore extents increases above XFS_IEXT_BUFSZ.
  4182. */
  4183. void
  4184. xfs_iext_irec_init(
  4185. xfs_ifork_t *ifp) /* inode fork pointer */
  4186. {
  4187. xfs_ext_irec_t *erp; /* indirection array pointer */
  4188. xfs_extnum_t nextents; /* number of extents in file */
  4189. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4190. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4191. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4192. erp = (xfs_ext_irec_t *)
  4193. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4194. if (nextents == 0) {
  4195. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4196. } else if (!ifp->if_real_bytes) {
  4197. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4198. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4199. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4200. }
  4201. erp->er_extbuf = ifp->if_u1.if_extents;
  4202. erp->er_extcount = nextents;
  4203. erp->er_extoff = 0;
  4204. ifp->if_flags |= XFS_IFEXTIREC;
  4205. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4206. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4207. ifp->if_u1.if_ext_irec = erp;
  4208. return;
  4209. }
  4210. /*
  4211. * Allocate and initialize a new entry in the indirection array.
  4212. */
  4213. xfs_ext_irec_t *
  4214. xfs_iext_irec_new(
  4215. xfs_ifork_t *ifp, /* inode fork pointer */
  4216. int erp_idx) /* index for new irec */
  4217. {
  4218. xfs_ext_irec_t *erp; /* indirection array pointer */
  4219. int i; /* loop counter */
  4220. int nlists; /* number of irec's (ex lists) */
  4221. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4222. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4223. /* Resize indirection array */
  4224. xfs_iext_realloc_indirect(ifp, ++nlists *
  4225. sizeof(xfs_ext_irec_t));
  4226. /*
  4227. * Move records down in the array so the
  4228. * new page can use erp_idx.
  4229. */
  4230. erp = ifp->if_u1.if_ext_irec;
  4231. for (i = nlists - 1; i > erp_idx; i--) {
  4232. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4233. }
  4234. ASSERT(i == erp_idx);
  4235. /* Initialize new extent record */
  4236. erp = ifp->if_u1.if_ext_irec;
  4237. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4238. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4239. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4240. erp[erp_idx].er_extcount = 0;
  4241. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4242. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4243. return (&erp[erp_idx]);
  4244. }
  4245. /*
  4246. * Remove a record from the indirection array.
  4247. */
  4248. void
  4249. xfs_iext_irec_remove(
  4250. xfs_ifork_t *ifp, /* inode fork pointer */
  4251. int erp_idx) /* irec index to remove */
  4252. {
  4253. xfs_ext_irec_t *erp; /* indirection array pointer */
  4254. int i; /* loop counter */
  4255. int nlists; /* number of irec's (ex lists) */
  4256. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4257. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4258. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4259. if (erp->er_extbuf) {
  4260. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4261. -erp->er_extcount);
  4262. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4263. }
  4264. /* Compact extent records */
  4265. erp = ifp->if_u1.if_ext_irec;
  4266. for (i = erp_idx; i < nlists - 1; i++) {
  4267. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4268. }
  4269. /*
  4270. * Manually free the last extent record from the indirection
  4271. * array. A call to xfs_iext_realloc_indirect() with a size
  4272. * of zero would result in a call to xfs_iext_destroy() which
  4273. * would in turn call this function again, creating a nasty
  4274. * infinite loop.
  4275. */
  4276. if (--nlists) {
  4277. xfs_iext_realloc_indirect(ifp,
  4278. nlists * sizeof(xfs_ext_irec_t));
  4279. } else {
  4280. kmem_free(ifp->if_u1.if_ext_irec,
  4281. sizeof(xfs_ext_irec_t));
  4282. }
  4283. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4284. }
  4285. /*
  4286. * This is called to clean up large amounts of unused memory allocated
  4287. * by the indirection array. Before compacting anything though, verify
  4288. * that the indirection array is still needed and switch back to the
  4289. * linear extent list (or even the inline buffer) if possible. The
  4290. * compaction policy is as follows:
  4291. *
  4292. * Full Compaction: Extents fit into a single page (or inline buffer)
  4293. * Full Compaction: Extents occupy less than 10% of allocated space
  4294. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4295. * No Compaction: Extents occupy at least 50% of allocated space
  4296. */
  4297. void
  4298. xfs_iext_irec_compact(
  4299. xfs_ifork_t *ifp) /* inode fork pointer */
  4300. {
  4301. xfs_extnum_t nextents; /* number of extents in file */
  4302. int nlists; /* number of irec's (ex lists) */
  4303. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4304. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4305. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4306. if (nextents == 0) {
  4307. xfs_iext_destroy(ifp);
  4308. } else if (nextents <= XFS_INLINE_EXTS) {
  4309. xfs_iext_indirect_to_direct(ifp);
  4310. xfs_iext_direct_to_inline(ifp, nextents);
  4311. } else if (nextents <= XFS_LINEAR_EXTS) {
  4312. xfs_iext_indirect_to_direct(ifp);
  4313. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4314. xfs_iext_irec_compact_full(ifp);
  4315. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4316. xfs_iext_irec_compact_pages(ifp);
  4317. }
  4318. }
  4319. /*
  4320. * Combine extents from neighboring extent pages.
  4321. */
  4322. void
  4323. xfs_iext_irec_compact_pages(
  4324. xfs_ifork_t *ifp) /* inode fork pointer */
  4325. {
  4326. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4327. int erp_idx = 0; /* indirection array index */
  4328. int nlists; /* number of irec's (ex lists) */
  4329. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4330. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4331. while (erp_idx < nlists - 1) {
  4332. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4333. erp_next = erp + 1;
  4334. if (erp_next->er_extcount <=
  4335. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4336. memmove(&erp->er_extbuf[erp->er_extcount],
  4337. erp_next->er_extbuf, erp_next->er_extcount *
  4338. sizeof(xfs_bmbt_rec_t));
  4339. erp->er_extcount += erp_next->er_extcount;
  4340. /*
  4341. * Free page before removing extent record
  4342. * so er_extoffs don't get modified in
  4343. * xfs_iext_irec_remove.
  4344. */
  4345. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4346. erp_next->er_extbuf = NULL;
  4347. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4348. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4349. } else {
  4350. erp_idx++;
  4351. }
  4352. }
  4353. }
  4354. /*
  4355. * Fully compact the extent records managed by the indirection array.
  4356. */
  4357. void
  4358. xfs_iext_irec_compact_full(
  4359. xfs_ifork_t *ifp) /* inode fork pointer */
  4360. {
  4361. xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
  4362. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4363. int erp_idx = 0; /* extent irec index */
  4364. int ext_avail; /* empty entries in ex list */
  4365. int ext_diff; /* number of exts to add */
  4366. int nlists; /* number of irec's (ex lists) */
  4367. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4368. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4369. erp = ifp->if_u1.if_ext_irec;
  4370. ep = &erp->er_extbuf[erp->er_extcount];
  4371. erp_next = erp + 1;
  4372. ep_next = erp_next->er_extbuf;
  4373. while (erp_idx < nlists - 1) {
  4374. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4375. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4376. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4377. erp->er_extcount += ext_diff;
  4378. erp_next->er_extcount -= ext_diff;
  4379. /* Remove next page */
  4380. if (erp_next->er_extcount == 0) {
  4381. /*
  4382. * Free page before removing extent record
  4383. * so er_extoffs don't get modified in
  4384. * xfs_iext_irec_remove.
  4385. */
  4386. kmem_free(erp_next->er_extbuf,
  4387. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4388. erp_next->er_extbuf = NULL;
  4389. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4390. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4391. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4392. /* Update next page */
  4393. } else {
  4394. /* Move rest of page up to become next new page */
  4395. memmove(erp_next->er_extbuf, ep_next,
  4396. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4397. ep_next = erp_next->er_extbuf;
  4398. memset(&ep_next[erp_next->er_extcount], 0,
  4399. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4400. sizeof(xfs_bmbt_rec_t));
  4401. }
  4402. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4403. erp_idx++;
  4404. if (erp_idx < nlists)
  4405. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4406. else
  4407. break;
  4408. }
  4409. ep = &erp->er_extbuf[erp->er_extcount];
  4410. erp_next = erp + 1;
  4411. ep_next = erp_next->er_extbuf;
  4412. }
  4413. }
  4414. /*
  4415. * This is called to update the er_extoff field in the indirection
  4416. * array when extents have been added or removed from one of the
  4417. * extent lists. erp_idx contains the irec index to begin updating
  4418. * at and ext_diff contains the number of extents that were added
  4419. * or removed.
  4420. */
  4421. void
  4422. xfs_iext_irec_update_extoffs(
  4423. xfs_ifork_t *ifp, /* inode fork pointer */
  4424. int erp_idx, /* irec index to update */
  4425. int ext_diff) /* number of new extents */
  4426. {
  4427. int i; /* loop counter */
  4428. int nlists; /* number of irec's (ex lists */
  4429. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4430. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4431. for (i = erp_idx; i < nlists; i++) {
  4432. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4433. }
  4434. }