inode.c 143 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/bio.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/file.h>
  22. #include <linux/fs.h>
  23. #include <linux/pagemap.h>
  24. #include <linux/highmem.h>
  25. #include <linux/time.h>
  26. #include <linux/init.h>
  27. #include <linux/string.h>
  28. #include <linux/smp_lock.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/mpage.h>
  31. #include <linux/swap.h>
  32. #include <linux/writeback.h>
  33. #include <linux/statfs.h>
  34. #include <linux/compat.h>
  35. #include <linux/bit_spinlock.h>
  36. #include <linux/xattr.h>
  37. #include <linux/posix_acl.h>
  38. #include <linux/falloc.h>
  39. #include "compat.h"
  40. #include "ctree.h"
  41. #include "disk-io.h"
  42. #include "transaction.h"
  43. #include "btrfs_inode.h"
  44. #include "ioctl.h"
  45. #include "print-tree.h"
  46. #include "volumes.h"
  47. #include "ordered-data.h"
  48. #include "xattr.h"
  49. #include "tree-log.h"
  50. #include "compression.h"
  51. #include "locking.h"
  52. struct btrfs_iget_args {
  53. u64 ino;
  54. struct btrfs_root *root;
  55. };
  56. static struct inode_operations btrfs_dir_inode_operations;
  57. static struct inode_operations btrfs_symlink_inode_operations;
  58. static struct inode_operations btrfs_dir_ro_inode_operations;
  59. static struct inode_operations btrfs_special_inode_operations;
  60. static struct inode_operations btrfs_file_inode_operations;
  61. static struct address_space_operations btrfs_aops;
  62. static struct address_space_operations btrfs_symlink_aops;
  63. static struct file_operations btrfs_dir_file_operations;
  64. static struct extent_io_ops btrfs_extent_io_ops;
  65. static struct kmem_cache *btrfs_inode_cachep;
  66. struct kmem_cache *btrfs_trans_handle_cachep;
  67. struct kmem_cache *btrfs_transaction_cachep;
  68. struct kmem_cache *btrfs_path_cachep;
  69. #define S_SHIFT 12
  70. static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  71. [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
  72. [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
  73. [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
  74. [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
  75. [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
  76. [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
  77. [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
  78. };
  79. static void btrfs_truncate(struct inode *inode);
  80. static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
  81. static noinline int cow_file_range(struct inode *inode,
  82. struct page *locked_page,
  83. u64 start, u64 end, int *page_started,
  84. unsigned long *nr_written, int unlock);
  85. static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
  86. {
  87. int err;
  88. err = btrfs_init_acl(inode, dir);
  89. if (!err)
  90. err = btrfs_xattr_security_init(inode, dir);
  91. return err;
  92. }
  93. /*
  94. * this does all the hard work for inserting an inline extent into
  95. * the btree. The caller should have done a btrfs_drop_extents so that
  96. * no overlapping inline items exist in the btree
  97. */
  98. static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
  99. struct btrfs_root *root, struct inode *inode,
  100. u64 start, size_t size, size_t compressed_size,
  101. struct page **compressed_pages)
  102. {
  103. struct btrfs_key key;
  104. struct btrfs_path *path;
  105. struct extent_buffer *leaf;
  106. struct page *page = NULL;
  107. char *kaddr;
  108. unsigned long ptr;
  109. struct btrfs_file_extent_item *ei;
  110. int err = 0;
  111. int ret;
  112. size_t cur_size = size;
  113. size_t datasize;
  114. unsigned long offset;
  115. int use_compress = 0;
  116. if (compressed_size && compressed_pages) {
  117. use_compress = 1;
  118. cur_size = compressed_size;
  119. }
  120. path = btrfs_alloc_path();
  121. if (!path)
  122. return -ENOMEM;
  123. path->leave_spinning = 1;
  124. btrfs_set_trans_block_group(trans, inode);
  125. key.objectid = inode->i_ino;
  126. key.offset = start;
  127. btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
  128. datasize = btrfs_file_extent_calc_inline_size(cur_size);
  129. inode_add_bytes(inode, size);
  130. ret = btrfs_insert_empty_item(trans, root, path, &key,
  131. datasize);
  132. BUG_ON(ret);
  133. if (ret) {
  134. err = ret;
  135. goto fail;
  136. }
  137. leaf = path->nodes[0];
  138. ei = btrfs_item_ptr(leaf, path->slots[0],
  139. struct btrfs_file_extent_item);
  140. btrfs_set_file_extent_generation(leaf, ei, trans->transid);
  141. btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
  142. btrfs_set_file_extent_encryption(leaf, ei, 0);
  143. btrfs_set_file_extent_other_encoding(leaf, ei, 0);
  144. btrfs_set_file_extent_ram_bytes(leaf, ei, size);
  145. ptr = btrfs_file_extent_inline_start(ei);
  146. if (use_compress) {
  147. struct page *cpage;
  148. int i = 0;
  149. while (compressed_size > 0) {
  150. cpage = compressed_pages[i];
  151. cur_size = min_t(unsigned long, compressed_size,
  152. PAGE_CACHE_SIZE);
  153. kaddr = kmap_atomic(cpage, KM_USER0);
  154. write_extent_buffer(leaf, kaddr, ptr, cur_size);
  155. kunmap_atomic(kaddr, KM_USER0);
  156. i++;
  157. ptr += cur_size;
  158. compressed_size -= cur_size;
  159. }
  160. btrfs_set_file_extent_compression(leaf, ei,
  161. BTRFS_COMPRESS_ZLIB);
  162. } else {
  163. page = find_get_page(inode->i_mapping,
  164. start >> PAGE_CACHE_SHIFT);
  165. btrfs_set_file_extent_compression(leaf, ei, 0);
  166. kaddr = kmap_atomic(page, KM_USER0);
  167. offset = start & (PAGE_CACHE_SIZE - 1);
  168. write_extent_buffer(leaf, kaddr + offset, ptr, size);
  169. kunmap_atomic(kaddr, KM_USER0);
  170. page_cache_release(page);
  171. }
  172. btrfs_mark_buffer_dirty(leaf);
  173. btrfs_free_path(path);
  174. BTRFS_I(inode)->disk_i_size = inode->i_size;
  175. btrfs_update_inode(trans, root, inode);
  176. return 0;
  177. fail:
  178. btrfs_free_path(path);
  179. return err;
  180. }
  181. /*
  182. * conditionally insert an inline extent into the file. This
  183. * does the checks required to make sure the data is small enough
  184. * to fit as an inline extent.
  185. */
  186. static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
  187. struct btrfs_root *root,
  188. struct inode *inode, u64 start, u64 end,
  189. size_t compressed_size,
  190. struct page **compressed_pages)
  191. {
  192. u64 isize = i_size_read(inode);
  193. u64 actual_end = min(end + 1, isize);
  194. u64 inline_len = actual_end - start;
  195. u64 aligned_end = (end + root->sectorsize - 1) &
  196. ~((u64)root->sectorsize - 1);
  197. u64 hint_byte;
  198. u64 data_len = inline_len;
  199. int ret;
  200. if (compressed_size)
  201. data_len = compressed_size;
  202. if (start > 0 ||
  203. actual_end >= PAGE_CACHE_SIZE ||
  204. data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
  205. (!compressed_size &&
  206. (actual_end & (root->sectorsize - 1)) == 0) ||
  207. end + 1 < isize ||
  208. data_len > root->fs_info->max_inline) {
  209. return 1;
  210. }
  211. ret = btrfs_drop_extents(trans, root, inode, start,
  212. aligned_end, aligned_end, start, &hint_byte);
  213. BUG_ON(ret);
  214. if (isize > actual_end)
  215. inline_len = min_t(u64, isize, actual_end);
  216. ret = insert_inline_extent(trans, root, inode, start,
  217. inline_len, compressed_size,
  218. compressed_pages);
  219. BUG_ON(ret);
  220. btrfs_drop_extent_cache(inode, start, aligned_end, 0);
  221. return 0;
  222. }
  223. struct async_extent {
  224. u64 start;
  225. u64 ram_size;
  226. u64 compressed_size;
  227. struct page **pages;
  228. unsigned long nr_pages;
  229. struct list_head list;
  230. };
  231. struct async_cow {
  232. struct inode *inode;
  233. struct btrfs_root *root;
  234. struct page *locked_page;
  235. u64 start;
  236. u64 end;
  237. struct list_head extents;
  238. struct btrfs_work work;
  239. };
  240. static noinline int add_async_extent(struct async_cow *cow,
  241. u64 start, u64 ram_size,
  242. u64 compressed_size,
  243. struct page **pages,
  244. unsigned long nr_pages)
  245. {
  246. struct async_extent *async_extent;
  247. async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
  248. async_extent->start = start;
  249. async_extent->ram_size = ram_size;
  250. async_extent->compressed_size = compressed_size;
  251. async_extent->pages = pages;
  252. async_extent->nr_pages = nr_pages;
  253. list_add_tail(&async_extent->list, &cow->extents);
  254. return 0;
  255. }
  256. /*
  257. * we create compressed extents in two phases. The first
  258. * phase compresses a range of pages that have already been
  259. * locked (both pages and state bits are locked).
  260. *
  261. * This is done inside an ordered work queue, and the compression
  262. * is spread across many cpus. The actual IO submission is step
  263. * two, and the ordered work queue takes care of making sure that
  264. * happens in the same order things were put onto the queue by
  265. * writepages and friends.
  266. *
  267. * If this code finds it can't get good compression, it puts an
  268. * entry onto the work queue to write the uncompressed bytes. This
  269. * makes sure that both compressed inodes and uncompressed inodes
  270. * are written in the same order that pdflush sent them down.
  271. */
  272. static noinline int compress_file_range(struct inode *inode,
  273. struct page *locked_page,
  274. u64 start, u64 end,
  275. struct async_cow *async_cow,
  276. int *num_added)
  277. {
  278. struct btrfs_root *root = BTRFS_I(inode)->root;
  279. struct btrfs_trans_handle *trans;
  280. u64 num_bytes;
  281. u64 orig_start;
  282. u64 disk_num_bytes;
  283. u64 blocksize = root->sectorsize;
  284. u64 actual_end;
  285. u64 isize = i_size_read(inode);
  286. int ret = 0;
  287. struct page **pages = NULL;
  288. unsigned long nr_pages;
  289. unsigned long nr_pages_ret = 0;
  290. unsigned long total_compressed = 0;
  291. unsigned long total_in = 0;
  292. unsigned long max_compressed = 128 * 1024;
  293. unsigned long max_uncompressed = 128 * 1024;
  294. int i;
  295. int will_compress;
  296. orig_start = start;
  297. actual_end = min_t(u64, isize, end + 1);
  298. again:
  299. will_compress = 0;
  300. nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
  301. nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
  302. /*
  303. * we don't want to send crud past the end of i_size through
  304. * compression, that's just a waste of CPU time. So, if the
  305. * end of the file is before the start of our current
  306. * requested range of bytes, we bail out to the uncompressed
  307. * cleanup code that can deal with all of this.
  308. *
  309. * It isn't really the fastest way to fix things, but this is a
  310. * very uncommon corner.
  311. */
  312. if (actual_end <= start)
  313. goto cleanup_and_bail_uncompressed;
  314. total_compressed = actual_end - start;
  315. /* we want to make sure that amount of ram required to uncompress
  316. * an extent is reasonable, so we limit the total size in ram
  317. * of a compressed extent to 128k. This is a crucial number
  318. * because it also controls how easily we can spread reads across
  319. * cpus for decompression.
  320. *
  321. * We also want to make sure the amount of IO required to do
  322. * a random read is reasonably small, so we limit the size of
  323. * a compressed extent to 128k.
  324. */
  325. total_compressed = min(total_compressed, max_uncompressed);
  326. num_bytes = (end - start + blocksize) & ~(blocksize - 1);
  327. num_bytes = max(blocksize, num_bytes);
  328. disk_num_bytes = num_bytes;
  329. total_in = 0;
  330. ret = 0;
  331. /*
  332. * we do compression for mount -o compress and when the
  333. * inode has not been flagged as nocompress. This flag can
  334. * change at any time if we discover bad compression ratios.
  335. */
  336. if (!btrfs_test_flag(inode, NOCOMPRESS) &&
  337. btrfs_test_opt(root, COMPRESS)) {
  338. WARN_ON(pages);
  339. pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
  340. ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
  341. total_compressed, pages,
  342. nr_pages, &nr_pages_ret,
  343. &total_in,
  344. &total_compressed,
  345. max_compressed);
  346. if (!ret) {
  347. unsigned long offset = total_compressed &
  348. (PAGE_CACHE_SIZE - 1);
  349. struct page *page = pages[nr_pages_ret - 1];
  350. char *kaddr;
  351. /* zero the tail end of the last page, we might be
  352. * sending it down to disk
  353. */
  354. if (offset) {
  355. kaddr = kmap_atomic(page, KM_USER0);
  356. memset(kaddr + offset, 0,
  357. PAGE_CACHE_SIZE - offset);
  358. kunmap_atomic(kaddr, KM_USER0);
  359. }
  360. will_compress = 1;
  361. }
  362. }
  363. if (start == 0) {
  364. trans = btrfs_join_transaction(root, 1);
  365. BUG_ON(!trans);
  366. btrfs_set_trans_block_group(trans, inode);
  367. /* lets try to make an inline extent */
  368. if (ret || total_in < (actual_end - start)) {
  369. /* we didn't compress the entire range, try
  370. * to make an uncompressed inline extent.
  371. */
  372. ret = cow_file_range_inline(trans, root, inode,
  373. start, end, 0, NULL);
  374. } else {
  375. /* try making a compressed inline extent */
  376. ret = cow_file_range_inline(trans, root, inode,
  377. start, end,
  378. total_compressed, pages);
  379. }
  380. btrfs_end_transaction(trans, root);
  381. if (ret == 0) {
  382. /*
  383. * inline extent creation worked, we don't need
  384. * to create any more async work items. Unlock
  385. * and free up our temp pages.
  386. */
  387. extent_clear_unlock_delalloc(inode,
  388. &BTRFS_I(inode)->io_tree,
  389. start, end, NULL, 1, 0,
  390. 0, 1, 1, 1);
  391. ret = 0;
  392. goto free_pages_out;
  393. }
  394. }
  395. if (will_compress) {
  396. /*
  397. * we aren't doing an inline extent round the compressed size
  398. * up to a block size boundary so the allocator does sane
  399. * things
  400. */
  401. total_compressed = (total_compressed + blocksize - 1) &
  402. ~(blocksize - 1);
  403. /*
  404. * one last check to make sure the compression is really a
  405. * win, compare the page count read with the blocks on disk
  406. */
  407. total_in = (total_in + PAGE_CACHE_SIZE - 1) &
  408. ~(PAGE_CACHE_SIZE - 1);
  409. if (total_compressed >= total_in) {
  410. will_compress = 0;
  411. } else {
  412. disk_num_bytes = total_compressed;
  413. num_bytes = total_in;
  414. }
  415. }
  416. if (!will_compress && pages) {
  417. /*
  418. * the compression code ran but failed to make things smaller,
  419. * free any pages it allocated and our page pointer array
  420. */
  421. for (i = 0; i < nr_pages_ret; i++) {
  422. WARN_ON(pages[i]->mapping);
  423. page_cache_release(pages[i]);
  424. }
  425. kfree(pages);
  426. pages = NULL;
  427. total_compressed = 0;
  428. nr_pages_ret = 0;
  429. /* flag the file so we don't compress in the future */
  430. btrfs_set_flag(inode, NOCOMPRESS);
  431. }
  432. if (will_compress) {
  433. *num_added += 1;
  434. /* the async work queues will take care of doing actual
  435. * allocation on disk for these compressed pages,
  436. * and will submit them to the elevator.
  437. */
  438. add_async_extent(async_cow, start, num_bytes,
  439. total_compressed, pages, nr_pages_ret);
  440. if (start + num_bytes < end && start + num_bytes < actual_end) {
  441. start += num_bytes;
  442. pages = NULL;
  443. cond_resched();
  444. goto again;
  445. }
  446. } else {
  447. cleanup_and_bail_uncompressed:
  448. /*
  449. * No compression, but we still need to write the pages in
  450. * the file we've been given so far. redirty the locked
  451. * page if it corresponds to our extent and set things up
  452. * for the async work queue to run cow_file_range to do
  453. * the normal delalloc dance
  454. */
  455. if (page_offset(locked_page) >= start &&
  456. page_offset(locked_page) <= end) {
  457. __set_page_dirty_nobuffers(locked_page);
  458. /* unlocked later on in the async handlers */
  459. }
  460. add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
  461. *num_added += 1;
  462. }
  463. out:
  464. return 0;
  465. free_pages_out:
  466. for (i = 0; i < nr_pages_ret; i++) {
  467. WARN_ON(pages[i]->mapping);
  468. page_cache_release(pages[i]);
  469. }
  470. kfree(pages);
  471. goto out;
  472. }
  473. /*
  474. * phase two of compressed writeback. This is the ordered portion
  475. * of the code, which only gets called in the order the work was
  476. * queued. We walk all the async extents created by compress_file_range
  477. * and send them down to the disk.
  478. */
  479. static noinline int submit_compressed_extents(struct inode *inode,
  480. struct async_cow *async_cow)
  481. {
  482. struct async_extent *async_extent;
  483. u64 alloc_hint = 0;
  484. struct btrfs_trans_handle *trans;
  485. struct btrfs_key ins;
  486. struct extent_map *em;
  487. struct btrfs_root *root = BTRFS_I(inode)->root;
  488. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  489. struct extent_io_tree *io_tree;
  490. int ret;
  491. if (list_empty(&async_cow->extents))
  492. return 0;
  493. trans = btrfs_join_transaction(root, 1);
  494. while (!list_empty(&async_cow->extents)) {
  495. async_extent = list_entry(async_cow->extents.next,
  496. struct async_extent, list);
  497. list_del(&async_extent->list);
  498. io_tree = &BTRFS_I(inode)->io_tree;
  499. /* did the compression code fall back to uncompressed IO? */
  500. if (!async_extent->pages) {
  501. int page_started = 0;
  502. unsigned long nr_written = 0;
  503. lock_extent(io_tree, async_extent->start,
  504. async_extent->start +
  505. async_extent->ram_size - 1, GFP_NOFS);
  506. /* allocate blocks */
  507. cow_file_range(inode, async_cow->locked_page,
  508. async_extent->start,
  509. async_extent->start +
  510. async_extent->ram_size - 1,
  511. &page_started, &nr_written, 0);
  512. /*
  513. * if page_started, cow_file_range inserted an
  514. * inline extent and took care of all the unlocking
  515. * and IO for us. Otherwise, we need to submit
  516. * all those pages down to the drive.
  517. */
  518. if (!page_started)
  519. extent_write_locked_range(io_tree,
  520. inode, async_extent->start,
  521. async_extent->start +
  522. async_extent->ram_size - 1,
  523. btrfs_get_extent,
  524. WB_SYNC_ALL);
  525. kfree(async_extent);
  526. cond_resched();
  527. continue;
  528. }
  529. lock_extent(io_tree, async_extent->start,
  530. async_extent->start + async_extent->ram_size - 1,
  531. GFP_NOFS);
  532. /*
  533. * here we're doing allocation and writeback of the
  534. * compressed pages
  535. */
  536. btrfs_drop_extent_cache(inode, async_extent->start,
  537. async_extent->start +
  538. async_extent->ram_size - 1, 0);
  539. ret = btrfs_reserve_extent(trans, root,
  540. async_extent->compressed_size,
  541. async_extent->compressed_size,
  542. 0, alloc_hint,
  543. (u64)-1, &ins, 1);
  544. BUG_ON(ret);
  545. em = alloc_extent_map(GFP_NOFS);
  546. em->start = async_extent->start;
  547. em->len = async_extent->ram_size;
  548. em->orig_start = em->start;
  549. em->block_start = ins.objectid;
  550. em->block_len = ins.offset;
  551. em->bdev = root->fs_info->fs_devices->latest_bdev;
  552. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  553. set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  554. while (1) {
  555. spin_lock(&em_tree->lock);
  556. ret = add_extent_mapping(em_tree, em);
  557. spin_unlock(&em_tree->lock);
  558. if (ret != -EEXIST) {
  559. free_extent_map(em);
  560. break;
  561. }
  562. btrfs_drop_extent_cache(inode, async_extent->start,
  563. async_extent->start +
  564. async_extent->ram_size - 1, 0);
  565. }
  566. ret = btrfs_add_ordered_extent(inode, async_extent->start,
  567. ins.objectid,
  568. async_extent->ram_size,
  569. ins.offset,
  570. BTRFS_ORDERED_COMPRESSED);
  571. BUG_ON(ret);
  572. btrfs_end_transaction(trans, root);
  573. /*
  574. * clear dirty, set writeback and unlock the pages.
  575. */
  576. extent_clear_unlock_delalloc(inode,
  577. &BTRFS_I(inode)->io_tree,
  578. async_extent->start,
  579. async_extent->start +
  580. async_extent->ram_size - 1,
  581. NULL, 1, 1, 0, 1, 1, 0);
  582. ret = btrfs_submit_compressed_write(inode,
  583. async_extent->start,
  584. async_extent->ram_size,
  585. ins.objectid,
  586. ins.offset, async_extent->pages,
  587. async_extent->nr_pages);
  588. BUG_ON(ret);
  589. trans = btrfs_join_transaction(root, 1);
  590. alloc_hint = ins.objectid + ins.offset;
  591. kfree(async_extent);
  592. cond_resched();
  593. }
  594. btrfs_end_transaction(trans, root);
  595. return 0;
  596. }
  597. /*
  598. * when extent_io.c finds a delayed allocation range in the file,
  599. * the call backs end up in this code. The basic idea is to
  600. * allocate extents on disk for the range, and create ordered data structs
  601. * in ram to track those extents.
  602. *
  603. * locked_page is the page that writepage had locked already. We use
  604. * it to make sure we don't do extra locks or unlocks.
  605. *
  606. * *page_started is set to one if we unlock locked_page and do everything
  607. * required to start IO on it. It may be clean and already done with
  608. * IO when we return.
  609. */
  610. static noinline int cow_file_range(struct inode *inode,
  611. struct page *locked_page,
  612. u64 start, u64 end, int *page_started,
  613. unsigned long *nr_written,
  614. int unlock)
  615. {
  616. struct btrfs_root *root = BTRFS_I(inode)->root;
  617. struct btrfs_trans_handle *trans;
  618. u64 alloc_hint = 0;
  619. u64 num_bytes;
  620. unsigned long ram_size;
  621. u64 disk_num_bytes;
  622. u64 cur_alloc_size;
  623. u64 blocksize = root->sectorsize;
  624. u64 actual_end;
  625. u64 isize = i_size_read(inode);
  626. struct btrfs_key ins;
  627. struct extent_map *em;
  628. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  629. int ret = 0;
  630. trans = btrfs_join_transaction(root, 1);
  631. BUG_ON(!trans);
  632. btrfs_set_trans_block_group(trans, inode);
  633. actual_end = min_t(u64, isize, end + 1);
  634. num_bytes = (end - start + blocksize) & ~(blocksize - 1);
  635. num_bytes = max(blocksize, num_bytes);
  636. disk_num_bytes = num_bytes;
  637. ret = 0;
  638. if (start == 0) {
  639. /* lets try to make an inline extent */
  640. ret = cow_file_range_inline(trans, root, inode,
  641. start, end, 0, NULL);
  642. if (ret == 0) {
  643. extent_clear_unlock_delalloc(inode,
  644. &BTRFS_I(inode)->io_tree,
  645. start, end, NULL, 1, 1,
  646. 1, 1, 1, 1);
  647. *nr_written = *nr_written +
  648. (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
  649. *page_started = 1;
  650. ret = 0;
  651. goto out;
  652. }
  653. }
  654. BUG_ON(disk_num_bytes >
  655. btrfs_super_total_bytes(&root->fs_info->super_copy));
  656. btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
  657. while (disk_num_bytes > 0) {
  658. cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
  659. ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
  660. root->sectorsize, 0, alloc_hint,
  661. (u64)-1, &ins, 1);
  662. BUG_ON(ret);
  663. em = alloc_extent_map(GFP_NOFS);
  664. em->start = start;
  665. em->orig_start = em->start;
  666. ram_size = ins.offset;
  667. em->len = ins.offset;
  668. em->block_start = ins.objectid;
  669. em->block_len = ins.offset;
  670. em->bdev = root->fs_info->fs_devices->latest_bdev;
  671. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  672. while (1) {
  673. spin_lock(&em_tree->lock);
  674. ret = add_extent_mapping(em_tree, em);
  675. spin_unlock(&em_tree->lock);
  676. if (ret != -EEXIST) {
  677. free_extent_map(em);
  678. break;
  679. }
  680. btrfs_drop_extent_cache(inode, start,
  681. start + ram_size - 1, 0);
  682. }
  683. cur_alloc_size = ins.offset;
  684. ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
  685. ram_size, cur_alloc_size, 0);
  686. BUG_ON(ret);
  687. if (root->root_key.objectid ==
  688. BTRFS_DATA_RELOC_TREE_OBJECTID) {
  689. ret = btrfs_reloc_clone_csums(inode, start,
  690. cur_alloc_size);
  691. BUG_ON(ret);
  692. }
  693. if (disk_num_bytes < cur_alloc_size)
  694. break;
  695. /* we're not doing compressed IO, don't unlock the first
  696. * page (which the caller expects to stay locked), don't
  697. * clear any dirty bits and don't set any writeback bits
  698. */
  699. extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
  700. start, start + ram_size - 1,
  701. locked_page, unlock, 1,
  702. 1, 0, 0, 0);
  703. disk_num_bytes -= cur_alloc_size;
  704. num_bytes -= cur_alloc_size;
  705. alloc_hint = ins.objectid + ins.offset;
  706. start += cur_alloc_size;
  707. }
  708. out:
  709. ret = 0;
  710. btrfs_end_transaction(trans, root);
  711. return ret;
  712. }
  713. /*
  714. * work queue call back to started compression on a file and pages
  715. */
  716. static noinline void async_cow_start(struct btrfs_work *work)
  717. {
  718. struct async_cow *async_cow;
  719. int num_added = 0;
  720. async_cow = container_of(work, struct async_cow, work);
  721. compress_file_range(async_cow->inode, async_cow->locked_page,
  722. async_cow->start, async_cow->end, async_cow,
  723. &num_added);
  724. if (num_added == 0)
  725. async_cow->inode = NULL;
  726. }
  727. /*
  728. * work queue call back to submit previously compressed pages
  729. */
  730. static noinline void async_cow_submit(struct btrfs_work *work)
  731. {
  732. struct async_cow *async_cow;
  733. struct btrfs_root *root;
  734. unsigned long nr_pages;
  735. async_cow = container_of(work, struct async_cow, work);
  736. root = async_cow->root;
  737. nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
  738. PAGE_CACHE_SHIFT;
  739. atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
  740. if (atomic_read(&root->fs_info->async_delalloc_pages) <
  741. 5 * 1042 * 1024 &&
  742. waitqueue_active(&root->fs_info->async_submit_wait))
  743. wake_up(&root->fs_info->async_submit_wait);
  744. if (async_cow->inode)
  745. submit_compressed_extents(async_cow->inode, async_cow);
  746. }
  747. static noinline void async_cow_free(struct btrfs_work *work)
  748. {
  749. struct async_cow *async_cow;
  750. async_cow = container_of(work, struct async_cow, work);
  751. kfree(async_cow);
  752. }
  753. static int cow_file_range_async(struct inode *inode, struct page *locked_page,
  754. u64 start, u64 end, int *page_started,
  755. unsigned long *nr_written)
  756. {
  757. struct async_cow *async_cow;
  758. struct btrfs_root *root = BTRFS_I(inode)->root;
  759. unsigned long nr_pages;
  760. u64 cur_end;
  761. int limit = 10 * 1024 * 1042;
  762. clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
  763. EXTENT_DELALLOC, 1, 0, GFP_NOFS);
  764. while (start < end) {
  765. async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
  766. async_cow->inode = inode;
  767. async_cow->root = root;
  768. async_cow->locked_page = locked_page;
  769. async_cow->start = start;
  770. if (btrfs_test_flag(inode, NOCOMPRESS))
  771. cur_end = end;
  772. else
  773. cur_end = min(end, start + 512 * 1024 - 1);
  774. async_cow->end = cur_end;
  775. INIT_LIST_HEAD(&async_cow->extents);
  776. async_cow->work.func = async_cow_start;
  777. async_cow->work.ordered_func = async_cow_submit;
  778. async_cow->work.ordered_free = async_cow_free;
  779. async_cow->work.flags = 0;
  780. nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
  781. PAGE_CACHE_SHIFT;
  782. atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
  783. btrfs_queue_worker(&root->fs_info->delalloc_workers,
  784. &async_cow->work);
  785. if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
  786. wait_event(root->fs_info->async_submit_wait,
  787. (atomic_read(&root->fs_info->async_delalloc_pages) <
  788. limit));
  789. }
  790. while (atomic_read(&root->fs_info->async_submit_draining) &&
  791. atomic_read(&root->fs_info->async_delalloc_pages)) {
  792. wait_event(root->fs_info->async_submit_wait,
  793. (atomic_read(&root->fs_info->async_delalloc_pages) ==
  794. 0));
  795. }
  796. *nr_written += nr_pages;
  797. start = cur_end + 1;
  798. }
  799. *page_started = 1;
  800. return 0;
  801. }
  802. static noinline int csum_exist_in_range(struct btrfs_root *root,
  803. u64 bytenr, u64 num_bytes)
  804. {
  805. int ret;
  806. struct btrfs_ordered_sum *sums;
  807. LIST_HEAD(list);
  808. ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
  809. bytenr + num_bytes - 1, &list);
  810. if (ret == 0 && list_empty(&list))
  811. return 0;
  812. while (!list_empty(&list)) {
  813. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  814. list_del(&sums->list);
  815. kfree(sums);
  816. }
  817. return 1;
  818. }
  819. /*
  820. * when nowcow writeback call back. This checks for snapshots or COW copies
  821. * of the extents that exist in the file, and COWs the file as required.
  822. *
  823. * If no cow copies or snapshots exist, we write directly to the existing
  824. * blocks on disk
  825. */
  826. static noinline int run_delalloc_nocow(struct inode *inode,
  827. struct page *locked_page,
  828. u64 start, u64 end, int *page_started, int force,
  829. unsigned long *nr_written)
  830. {
  831. struct btrfs_root *root = BTRFS_I(inode)->root;
  832. struct btrfs_trans_handle *trans;
  833. struct extent_buffer *leaf;
  834. struct btrfs_path *path;
  835. struct btrfs_file_extent_item *fi;
  836. struct btrfs_key found_key;
  837. u64 cow_start;
  838. u64 cur_offset;
  839. u64 extent_end;
  840. u64 extent_offset;
  841. u64 disk_bytenr;
  842. u64 num_bytes;
  843. int extent_type;
  844. int ret;
  845. int type;
  846. int nocow;
  847. int check_prev = 1;
  848. path = btrfs_alloc_path();
  849. BUG_ON(!path);
  850. trans = btrfs_join_transaction(root, 1);
  851. BUG_ON(!trans);
  852. cow_start = (u64)-1;
  853. cur_offset = start;
  854. while (1) {
  855. ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
  856. cur_offset, 0);
  857. BUG_ON(ret < 0);
  858. if (ret > 0 && path->slots[0] > 0 && check_prev) {
  859. leaf = path->nodes[0];
  860. btrfs_item_key_to_cpu(leaf, &found_key,
  861. path->slots[0] - 1);
  862. if (found_key.objectid == inode->i_ino &&
  863. found_key.type == BTRFS_EXTENT_DATA_KEY)
  864. path->slots[0]--;
  865. }
  866. check_prev = 0;
  867. next_slot:
  868. leaf = path->nodes[0];
  869. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  870. ret = btrfs_next_leaf(root, path);
  871. if (ret < 0)
  872. BUG_ON(1);
  873. if (ret > 0)
  874. break;
  875. leaf = path->nodes[0];
  876. }
  877. nocow = 0;
  878. disk_bytenr = 0;
  879. num_bytes = 0;
  880. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  881. if (found_key.objectid > inode->i_ino ||
  882. found_key.type > BTRFS_EXTENT_DATA_KEY ||
  883. found_key.offset > end)
  884. break;
  885. if (found_key.offset > cur_offset) {
  886. extent_end = found_key.offset;
  887. goto out_check;
  888. }
  889. fi = btrfs_item_ptr(leaf, path->slots[0],
  890. struct btrfs_file_extent_item);
  891. extent_type = btrfs_file_extent_type(leaf, fi);
  892. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  893. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  894. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  895. extent_offset = btrfs_file_extent_offset(leaf, fi);
  896. extent_end = found_key.offset +
  897. btrfs_file_extent_num_bytes(leaf, fi);
  898. if (extent_end <= start) {
  899. path->slots[0]++;
  900. goto next_slot;
  901. }
  902. if (disk_bytenr == 0)
  903. goto out_check;
  904. if (btrfs_file_extent_compression(leaf, fi) ||
  905. btrfs_file_extent_encryption(leaf, fi) ||
  906. btrfs_file_extent_other_encoding(leaf, fi))
  907. goto out_check;
  908. if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
  909. goto out_check;
  910. if (btrfs_extent_readonly(root, disk_bytenr))
  911. goto out_check;
  912. if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
  913. found_key.offset -
  914. extent_offset, disk_bytenr))
  915. goto out_check;
  916. disk_bytenr += extent_offset;
  917. disk_bytenr += cur_offset - found_key.offset;
  918. num_bytes = min(end + 1, extent_end) - cur_offset;
  919. /*
  920. * force cow if csum exists in the range.
  921. * this ensure that csum for a given extent are
  922. * either valid or do not exist.
  923. */
  924. if (csum_exist_in_range(root, disk_bytenr, num_bytes))
  925. goto out_check;
  926. nocow = 1;
  927. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  928. extent_end = found_key.offset +
  929. btrfs_file_extent_inline_len(leaf, fi);
  930. extent_end = ALIGN(extent_end, root->sectorsize);
  931. } else {
  932. BUG_ON(1);
  933. }
  934. out_check:
  935. if (extent_end <= start) {
  936. path->slots[0]++;
  937. goto next_slot;
  938. }
  939. if (!nocow) {
  940. if (cow_start == (u64)-1)
  941. cow_start = cur_offset;
  942. cur_offset = extent_end;
  943. if (cur_offset > end)
  944. break;
  945. path->slots[0]++;
  946. goto next_slot;
  947. }
  948. btrfs_release_path(root, path);
  949. if (cow_start != (u64)-1) {
  950. ret = cow_file_range(inode, locked_page, cow_start,
  951. found_key.offset - 1, page_started,
  952. nr_written, 1);
  953. BUG_ON(ret);
  954. cow_start = (u64)-1;
  955. }
  956. if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  957. struct extent_map *em;
  958. struct extent_map_tree *em_tree;
  959. em_tree = &BTRFS_I(inode)->extent_tree;
  960. em = alloc_extent_map(GFP_NOFS);
  961. em->start = cur_offset;
  962. em->orig_start = em->start;
  963. em->len = num_bytes;
  964. em->block_len = num_bytes;
  965. em->block_start = disk_bytenr;
  966. em->bdev = root->fs_info->fs_devices->latest_bdev;
  967. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  968. while (1) {
  969. spin_lock(&em_tree->lock);
  970. ret = add_extent_mapping(em_tree, em);
  971. spin_unlock(&em_tree->lock);
  972. if (ret != -EEXIST) {
  973. free_extent_map(em);
  974. break;
  975. }
  976. btrfs_drop_extent_cache(inode, em->start,
  977. em->start + em->len - 1, 0);
  978. }
  979. type = BTRFS_ORDERED_PREALLOC;
  980. } else {
  981. type = BTRFS_ORDERED_NOCOW;
  982. }
  983. ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
  984. num_bytes, num_bytes, type);
  985. BUG_ON(ret);
  986. extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
  987. cur_offset, cur_offset + num_bytes - 1,
  988. locked_page, 1, 1, 1, 0, 0, 0);
  989. cur_offset = extent_end;
  990. if (cur_offset > end)
  991. break;
  992. }
  993. btrfs_release_path(root, path);
  994. if (cur_offset <= end && cow_start == (u64)-1)
  995. cow_start = cur_offset;
  996. if (cow_start != (u64)-1) {
  997. ret = cow_file_range(inode, locked_page, cow_start, end,
  998. page_started, nr_written, 1);
  999. BUG_ON(ret);
  1000. }
  1001. ret = btrfs_end_transaction(trans, root);
  1002. BUG_ON(ret);
  1003. btrfs_free_path(path);
  1004. return 0;
  1005. }
  1006. /*
  1007. * extent_io.c call back to do delayed allocation processing
  1008. */
  1009. static int run_delalloc_range(struct inode *inode, struct page *locked_page,
  1010. u64 start, u64 end, int *page_started,
  1011. unsigned long *nr_written)
  1012. {
  1013. int ret;
  1014. struct btrfs_root *root = BTRFS_I(inode)->root;
  1015. if (btrfs_test_flag(inode, NODATACOW))
  1016. ret = run_delalloc_nocow(inode, locked_page, start, end,
  1017. page_started, 1, nr_written);
  1018. else if (btrfs_test_flag(inode, PREALLOC))
  1019. ret = run_delalloc_nocow(inode, locked_page, start, end,
  1020. page_started, 0, nr_written);
  1021. else if (!btrfs_test_opt(root, COMPRESS))
  1022. ret = cow_file_range(inode, locked_page, start, end,
  1023. page_started, nr_written, 1);
  1024. else
  1025. ret = cow_file_range_async(inode, locked_page, start, end,
  1026. page_started, nr_written);
  1027. return ret;
  1028. }
  1029. /*
  1030. * extent_io.c set_bit_hook, used to track delayed allocation
  1031. * bytes in this file, and to maintain the list of inodes that
  1032. * have pending delalloc work to be done.
  1033. */
  1034. static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
  1035. unsigned long old, unsigned long bits)
  1036. {
  1037. /*
  1038. * set_bit and clear bit hooks normally require _irqsave/restore
  1039. * but in this case, we are only testeing for the DELALLOC
  1040. * bit, which is only set or cleared with irqs on
  1041. */
  1042. if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
  1043. struct btrfs_root *root = BTRFS_I(inode)->root;
  1044. btrfs_delalloc_reserve_space(root, inode, end - start + 1);
  1045. spin_lock(&root->fs_info->delalloc_lock);
  1046. BTRFS_I(inode)->delalloc_bytes += end - start + 1;
  1047. root->fs_info->delalloc_bytes += end - start + 1;
  1048. if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
  1049. list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
  1050. &root->fs_info->delalloc_inodes);
  1051. }
  1052. spin_unlock(&root->fs_info->delalloc_lock);
  1053. }
  1054. return 0;
  1055. }
  1056. /*
  1057. * extent_io.c clear_bit_hook, see set_bit_hook for why
  1058. */
  1059. static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
  1060. unsigned long old, unsigned long bits)
  1061. {
  1062. /*
  1063. * set_bit and clear bit hooks normally require _irqsave/restore
  1064. * but in this case, we are only testeing for the DELALLOC
  1065. * bit, which is only set or cleared with irqs on
  1066. */
  1067. if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
  1068. struct btrfs_root *root = BTRFS_I(inode)->root;
  1069. spin_lock(&root->fs_info->delalloc_lock);
  1070. if (end - start + 1 > root->fs_info->delalloc_bytes) {
  1071. printk(KERN_INFO "btrfs warning: delalloc account "
  1072. "%llu %llu\n",
  1073. (unsigned long long)end - start + 1,
  1074. (unsigned long long)
  1075. root->fs_info->delalloc_bytes);
  1076. btrfs_delalloc_free_space(root, inode, (u64)-1);
  1077. root->fs_info->delalloc_bytes = 0;
  1078. BTRFS_I(inode)->delalloc_bytes = 0;
  1079. } else {
  1080. btrfs_delalloc_free_space(root, inode,
  1081. end - start + 1);
  1082. root->fs_info->delalloc_bytes -= end - start + 1;
  1083. BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
  1084. }
  1085. if (BTRFS_I(inode)->delalloc_bytes == 0 &&
  1086. !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
  1087. list_del_init(&BTRFS_I(inode)->delalloc_inodes);
  1088. }
  1089. spin_unlock(&root->fs_info->delalloc_lock);
  1090. }
  1091. return 0;
  1092. }
  1093. /*
  1094. * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
  1095. * we don't create bios that span stripes or chunks
  1096. */
  1097. int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
  1098. size_t size, struct bio *bio,
  1099. unsigned long bio_flags)
  1100. {
  1101. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  1102. struct btrfs_mapping_tree *map_tree;
  1103. u64 logical = (u64)bio->bi_sector << 9;
  1104. u64 length = 0;
  1105. u64 map_length;
  1106. int ret;
  1107. if (bio_flags & EXTENT_BIO_COMPRESSED)
  1108. return 0;
  1109. length = bio->bi_size;
  1110. map_tree = &root->fs_info->mapping_tree;
  1111. map_length = length;
  1112. ret = btrfs_map_block(map_tree, READ, logical,
  1113. &map_length, NULL, 0);
  1114. if (map_length < length + size)
  1115. return 1;
  1116. return 0;
  1117. }
  1118. /*
  1119. * in order to insert checksums into the metadata in large chunks,
  1120. * we wait until bio submission time. All the pages in the bio are
  1121. * checksummed and sums are attached onto the ordered extent record.
  1122. *
  1123. * At IO completion time the cums attached on the ordered extent record
  1124. * are inserted into the btree
  1125. */
  1126. static int __btrfs_submit_bio_start(struct inode *inode, int rw,
  1127. struct bio *bio, int mirror_num,
  1128. unsigned long bio_flags)
  1129. {
  1130. struct btrfs_root *root = BTRFS_I(inode)->root;
  1131. int ret = 0;
  1132. ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
  1133. BUG_ON(ret);
  1134. return 0;
  1135. }
  1136. /*
  1137. * in order to insert checksums into the metadata in large chunks,
  1138. * we wait until bio submission time. All the pages in the bio are
  1139. * checksummed and sums are attached onto the ordered extent record.
  1140. *
  1141. * At IO completion time the cums attached on the ordered extent record
  1142. * are inserted into the btree
  1143. */
  1144. static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  1145. int mirror_num, unsigned long bio_flags)
  1146. {
  1147. struct btrfs_root *root = BTRFS_I(inode)->root;
  1148. return btrfs_map_bio(root, rw, bio, mirror_num, 1);
  1149. }
  1150. /*
  1151. * extent_io.c submission hook. This does the right thing for csum calculation
  1152. * on write, or reading the csums from the tree before a read
  1153. */
  1154. static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  1155. int mirror_num, unsigned long bio_flags)
  1156. {
  1157. struct btrfs_root *root = BTRFS_I(inode)->root;
  1158. int ret = 0;
  1159. int skip_sum;
  1160. skip_sum = btrfs_test_flag(inode, NODATASUM);
  1161. ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
  1162. BUG_ON(ret);
  1163. if (!(rw & (1 << BIO_RW))) {
  1164. if (bio_flags & EXTENT_BIO_COMPRESSED) {
  1165. return btrfs_submit_compressed_read(inode, bio,
  1166. mirror_num, bio_flags);
  1167. } else if (!skip_sum)
  1168. btrfs_lookup_bio_sums(root, inode, bio, NULL);
  1169. goto mapit;
  1170. } else if (!skip_sum) {
  1171. /* csum items have already been cloned */
  1172. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  1173. goto mapit;
  1174. /* we're doing a write, do the async checksumming */
  1175. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  1176. inode, rw, bio, mirror_num,
  1177. bio_flags, __btrfs_submit_bio_start,
  1178. __btrfs_submit_bio_done);
  1179. }
  1180. mapit:
  1181. return btrfs_map_bio(root, rw, bio, mirror_num, 0);
  1182. }
  1183. /*
  1184. * given a list of ordered sums record them in the inode. This happens
  1185. * at IO completion time based on sums calculated at bio submission time.
  1186. */
  1187. static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
  1188. struct inode *inode, u64 file_offset,
  1189. struct list_head *list)
  1190. {
  1191. struct btrfs_ordered_sum *sum;
  1192. btrfs_set_trans_block_group(trans, inode);
  1193. list_for_each_entry(sum, list, list) {
  1194. btrfs_csum_file_blocks(trans,
  1195. BTRFS_I(inode)->root->fs_info->csum_root, sum);
  1196. }
  1197. return 0;
  1198. }
  1199. int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
  1200. {
  1201. if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
  1202. WARN_ON(1);
  1203. return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
  1204. GFP_NOFS);
  1205. }
  1206. /* see btrfs_writepage_start_hook for details on why this is required */
  1207. struct btrfs_writepage_fixup {
  1208. struct page *page;
  1209. struct btrfs_work work;
  1210. };
  1211. static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
  1212. {
  1213. struct btrfs_writepage_fixup *fixup;
  1214. struct btrfs_ordered_extent *ordered;
  1215. struct page *page;
  1216. struct inode *inode;
  1217. u64 page_start;
  1218. u64 page_end;
  1219. fixup = container_of(work, struct btrfs_writepage_fixup, work);
  1220. page = fixup->page;
  1221. again:
  1222. lock_page(page);
  1223. if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
  1224. ClearPageChecked(page);
  1225. goto out_page;
  1226. }
  1227. inode = page->mapping->host;
  1228. page_start = page_offset(page);
  1229. page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
  1230. lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
  1231. /* already ordered? We're done */
  1232. if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
  1233. EXTENT_ORDERED, 0)) {
  1234. goto out;
  1235. }
  1236. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  1237. if (ordered) {
  1238. unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
  1239. page_end, GFP_NOFS);
  1240. unlock_page(page);
  1241. btrfs_start_ordered_extent(inode, ordered, 1);
  1242. goto again;
  1243. }
  1244. btrfs_set_extent_delalloc(inode, page_start, page_end);
  1245. ClearPageChecked(page);
  1246. out:
  1247. unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
  1248. out_page:
  1249. unlock_page(page);
  1250. page_cache_release(page);
  1251. }
  1252. /*
  1253. * There are a few paths in the higher layers of the kernel that directly
  1254. * set the page dirty bit without asking the filesystem if it is a
  1255. * good idea. This causes problems because we want to make sure COW
  1256. * properly happens and the data=ordered rules are followed.
  1257. *
  1258. * In our case any range that doesn't have the ORDERED bit set
  1259. * hasn't been properly setup for IO. We kick off an async process
  1260. * to fix it up. The async helper will wait for ordered extents, set
  1261. * the delalloc bit and make it safe to write the page.
  1262. */
  1263. static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
  1264. {
  1265. struct inode *inode = page->mapping->host;
  1266. struct btrfs_writepage_fixup *fixup;
  1267. struct btrfs_root *root = BTRFS_I(inode)->root;
  1268. int ret;
  1269. ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
  1270. EXTENT_ORDERED, 0);
  1271. if (ret)
  1272. return 0;
  1273. if (PageChecked(page))
  1274. return -EAGAIN;
  1275. fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
  1276. if (!fixup)
  1277. return -EAGAIN;
  1278. SetPageChecked(page);
  1279. page_cache_get(page);
  1280. fixup->work.func = btrfs_writepage_fixup_worker;
  1281. fixup->page = page;
  1282. btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
  1283. return -EAGAIN;
  1284. }
  1285. static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
  1286. struct inode *inode, u64 file_pos,
  1287. u64 disk_bytenr, u64 disk_num_bytes,
  1288. u64 num_bytes, u64 ram_bytes,
  1289. u64 locked_end,
  1290. u8 compression, u8 encryption,
  1291. u16 other_encoding, int extent_type)
  1292. {
  1293. struct btrfs_root *root = BTRFS_I(inode)->root;
  1294. struct btrfs_file_extent_item *fi;
  1295. struct btrfs_path *path;
  1296. struct extent_buffer *leaf;
  1297. struct btrfs_key ins;
  1298. u64 hint;
  1299. int ret;
  1300. path = btrfs_alloc_path();
  1301. BUG_ON(!path);
  1302. path->leave_spinning = 1;
  1303. ret = btrfs_drop_extents(trans, root, inode, file_pos,
  1304. file_pos + num_bytes, locked_end,
  1305. file_pos, &hint);
  1306. BUG_ON(ret);
  1307. ins.objectid = inode->i_ino;
  1308. ins.offset = file_pos;
  1309. ins.type = BTRFS_EXTENT_DATA_KEY;
  1310. ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
  1311. BUG_ON(ret);
  1312. leaf = path->nodes[0];
  1313. fi = btrfs_item_ptr(leaf, path->slots[0],
  1314. struct btrfs_file_extent_item);
  1315. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1316. btrfs_set_file_extent_type(leaf, fi, extent_type);
  1317. btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
  1318. btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
  1319. btrfs_set_file_extent_offset(leaf, fi, 0);
  1320. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1321. btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
  1322. btrfs_set_file_extent_compression(leaf, fi, compression);
  1323. btrfs_set_file_extent_encryption(leaf, fi, encryption);
  1324. btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
  1325. btrfs_unlock_up_safe(path, 1);
  1326. btrfs_set_lock_blocking(leaf);
  1327. btrfs_mark_buffer_dirty(leaf);
  1328. inode_add_bytes(inode, num_bytes);
  1329. btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
  1330. ins.objectid = disk_bytenr;
  1331. ins.offset = disk_num_bytes;
  1332. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1333. ret = btrfs_alloc_reserved_file_extent(trans, root,
  1334. root->root_key.objectid,
  1335. inode->i_ino, file_pos, &ins);
  1336. BUG_ON(ret);
  1337. btrfs_free_path(path);
  1338. return 0;
  1339. }
  1340. /*
  1341. * helper function for btrfs_finish_ordered_io, this
  1342. * just reads in some of the csum leaves to prime them into ram
  1343. * before we start the transaction. It limits the amount of btree
  1344. * reads required while inside the transaction.
  1345. */
  1346. static noinline void reada_csum(struct btrfs_root *root,
  1347. struct btrfs_path *path,
  1348. struct btrfs_ordered_extent *ordered_extent)
  1349. {
  1350. struct btrfs_ordered_sum *sum;
  1351. u64 bytenr;
  1352. sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
  1353. list);
  1354. bytenr = sum->sums[0].bytenr;
  1355. /*
  1356. * we don't care about the results, the point of this search is
  1357. * just to get the btree leaves into ram
  1358. */
  1359. btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
  1360. }
  1361. /* as ordered data IO finishes, this gets called so we can finish
  1362. * an ordered extent if the range of bytes in the file it covers are
  1363. * fully written.
  1364. */
  1365. static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
  1366. {
  1367. struct btrfs_root *root = BTRFS_I(inode)->root;
  1368. struct btrfs_trans_handle *trans;
  1369. struct btrfs_ordered_extent *ordered_extent = NULL;
  1370. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  1371. struct btrfs_path *path;
  1372. int compressed = 0;
  1373. int ret;
  1374. ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
  1375. if (!ret)
  1376. return 0;
  1377. /*
  1378. * before we join the transaction, try to do some of our IO.
  1379. * This will limit the amount of IO that we have to do with
  1380. * the transaction running. We're unlikely to need to do any
  1381. * IO if the file extents are new, the disk_i_size checks
  1382. * covers the most common case.
  1383. */
  1384. if (start < BTRFS_I(inode)->disk_i_size) {
  1385. path = btrfs_alloc_path();
  1386. if (path) {
  1387. ret = btrfs_lookup_file_extent(NULL, root, path,
  1388. inode->i_ino,
  1389. start, 0);
  1390. ordered_extent = btrfs_lookup_ordered_extent(inode,
  1391. start);
  1392. if (!list_empty(&ordered_extent->list)) {
  1393. btrfs_release_path(root, path);
  1394. reada_csum(root, path, ordered_extent);
  1395. }
  1396. btrfs_free_path(path);
  1397. }
  1398. }
  1399. trans = btrfs_join_transaction(root, 1);
  1400. if (!ordered_extent)
  1401. ordered_extent = btrfs_lookup_ordered_extent(inode, start);
  1402. BUG_ON(!ordered_extent);
  1403. if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
  1404. goto nocow;
  1405. lock_extent(io_tree, ordered_extent->file_offset,
  1406. ordered_extent->file_offset + ordered_extent->len - 1,
  1407. GFP_NOFS);
  1408. if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
  1409. compressed = 1;
  1410. if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
  1411. BUG_ON(compressed);
  1412. ret = btrfs_mark_extent_written(trans, root, inode,
  1413. ordered_extent->file_offset,
  1414. ordered_extent->file_offset +
  1415. ordered_extent->len);
  1416. BUG_ON(ret);
  1417. } else {
  1418. ret = insert_reserved_file_extent(trans, inode,
  1419. ordered_extent->file_offset,
  1420. ordered_extent->start,
  1421. ordered_extent->disk_len,
  1422. ordered_extent->len,
  1423. ordered_extent->len,
  1424. ordered_extent->file_offset +
  1425. ordered_extent->len,
  1426. compressed, 0, 0,
  1427. BTRFS_FILE_EXTENT_REG);
  1428. BUG_ON(ret);
  1429. }
  1430. unlock_extent(io_tree, ordered_extent->file_offset,
  1431. ordered_extent->file_offset + ordered_extent->len - 1,
  1432. GFP_NOFS);
  1433. nocow:
  1434. add_pending_csums(trans, inode, ordered_extent->file_offset,
  1435. &ordered_extent->list);
  1436. mutex_lock(&BTRFS_I(inode)->extent_mutex);
  1437. btrfs_ordered_update_i_size(inode, ordered_extent);
  1438. btrfs_update_inode(trans, root, inode);
  1439. btrfs_remove_ordered_extent(inode, ordered_extent);
  1440. mutex_unlock(&BTRFS_I(inode)->extent_mutex);
  1441. /* once for us */
  1442. btrfs_put_ordered_extent(ordered_extent);
  1443. /* once for the tree */
  1444. btrfs_put_ordered_extent(ordered_extent);
  1445. btrfs_end_transaction(trans, root);
  1446. return 0;
  1447. }
  1448. static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
  1449. struct extent_state *state, int uptodate)
  1450. {
  1451. return btrfs_finish_ordered_io(page->mapping->host, start, end);
  1452. }
  1453. /*
  1454. * When IO fails, either with EIO or csum verification fails, we
  1455. * try other mirrors that might have a good copy of the data. This
  1456. * io_failure_record is used to record state as we go through all the
  1457. * mirrors. If another mirror has good data, the page is set up to date
  1458. * and things continue. If a good mirror can't be found, the original
  1459. * bio end_io callback is called to indicate things have failed.
  1460. */
  1461. struct io_failure_record {
  1462. struct page *page;
  1463. u64 start;
  1464. u64 len;
  1465. u64 logical;
  1466. unsigned long bio_flags;
  1467. int last_mirror;
  1468. };
  1469. static int btrfs_io_failed_hook(struct bio *failed_bio,
  1470. struct page *page, u64 start, u64 end,
  1471. struct extent_state *state)
  1472. {
  1473. struct io_failure_record *failrec = NULL;
  1474. u64 private;
  1475. struct extent_map *em;
  1476. struct inode *inode = page->mapping->host;
  1477. struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
  1478. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1479. struct bio *bio;
  1480. int num_copies;
  1481. int ret;
  1482. int rw;
  1483. u64 logical;
  1484. ret = get_state_private(failure_tree, start, &private);
  1485. if (ret) {
  1486. failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
  1487. if (!failrec)
  1488. return -ENOMEM;
  1489. failrec->start = start;
  1490. failrec->len = end - start + 1;
  1491. failrec->last_mirror = 0;
  1492. failrec->bio_flags = 0;
  1493. spin_lock(&em_tree->lock);
  1494. em = lookup_extent_mapping(em_tree, start, failrec->len);
  1495. if (em->start > start || em->start + em->len < start) {
  1496. free_extent_map(em);
  1497. em = NULL;
  1498. }
  1499. spin_unlock(&em_tree->lock);
  1500. if (!em || IS_ERR(em)) {
  1501. kfree(failrec);
  1502. return -EIO;
  1503. }
  1504. logical = start - em->start;
  1505. logical = em->block_start + logical;
  1506. if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
  1507. logical = em->block_start;
  1508. failrec->bio_flags = EXTENT_BIO_COMPRESSED;
  1509. }
  1510. failrec->logical = logical;
  1511. free_extent_map(em);
  1512. set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
  1513. EXTENT_DIRTY, GFP_NOFS);
  1514. set_state_private(failure_tree, start,
  1515. (u64)(unsigned long)failrec);
  1516. } else {
  1517. failrec = (struct io_failure_record *)(unsigned long)private;
  1518. }
  1519. num_copies = btrfs_num_copies(
  1520. &BTRFS_I(inode)->root->fs_info->mapping_tree,
  1521. failrec->logical, failrec->len);
  1522. failrec->last_mirror++;
  1523. if (!state) {
  1524. spin_lock(&BTRFS_I(inode)->io_tree.lock);
  1525. state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
  1526. failrec->start,
  1527. EXTENT_LOCKED);
  1528. if (state && state->start != failrec->start)
  1529. state = NULL;
  1530. spin_unlock(&BTRFS_I(inode)->io_tree.lock);
  1531. }
  1532. if (!state || failrec->last_mirror > num_copies) {
  1533. set_state_private(failure_tree, failrec->start, 0);
  1534. clear_extent_bits(failure_tree, failrec->start,
  1535. failrec->start + failrec->len - 1,
  1536. EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
  1537. kfree(failrec);
  1538. return -EIO;
  1539. }
  1540. bio = bio_alloc(GFP_NOFS, 1);
  1541. bio->bi_private = state;
  1542. bio->bi_end_io = failed_bio->bi_end_io;
  1543. bio->bi_sector = failrec->logical >> 9;
  1544. bio->bi_bdev = failed_bio->bi_bdev;
  1545. bio->bi_size = 0;
  1546. bio_add_page(bio, page, failrec->len, start - page_offset(page));
  1547. if (failed_bio->bi_rw & (1 << BIO_RW))
  1548. rw = WRITE;
  1549. else
  1550. rw = READ;
  1551. BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
  1552. failrec->last_mirror,
  1553. failrec->bio_flags);
  1554. return 0;
  1555. }
  1556. /*
  1557. * each time an IO finishes, we do a fast check in the IO failure tree
  1558. * to see if we need to process or clean up an io_failure_record
  1559. */
  1560. static int btrfs_clean_io_failures(struct inode *inode, u64 start)
  1561. {
  1562. u64 private;
  1563. u64 private_failure;
  1564. struct io_failure_record *failure;
  1565. int ret;
  1566. private = 0;
  1567. if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
  1568. (u64)-1, 1, EXTENT_DIRTY)) {
  1569. ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
  1570. start, &private_failure);
  1571. if (ret == 0) {
  1572. failure = (struct io_failure_record *)(unsigned long)
  1573. private_failure;
  1574. set_state_private(&BTRFS_I(inode)->io_failure_tree,
  1575. failure->start, 0);
  1576. clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
  1577. failure->start,
  1578. failure->start + failure->len - 1,
  1579. EXTENT_DIRTY | EXTENT_LOCKED,
  1580. GFP_NOFS);
  1581. kfree(failure);
  1582. }
  1583. }
  1584. return 0;
  1585. }
  1586. /*
  1587. * when reads are done, we need to check csums to verify the data is correct
  1588. * if there's a match, we allow the bio to finish. If not, we go through
  1589. * the io_failure_record routines to find good copies
  1590. */
  1591. static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  1592. struct extent_state *state)
  1593. {
  1594. size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
  1595. struct inode *inode = page->mapping->host;
  1596. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  1597. char *kaddr;
  1598. u64 private = ~(u32)0;
  1599. int ret;
  1600. struct btrfs_root *root = BTRFS_I(inode)->root;
  1601. u32 csum = ~(u32)0;
  1602. if (PageChecked(page)) {
  1603. ClearPageChecked(page);
  1604. goto good;
  1605. }
  1606. if (btrfs_test_flag(inode, NODATASUM))
  1607. return 0;
  1608. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
  1609. test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
  1610. clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
  1611. GFP_NOFS);
  1612. return 0;
  1613. }
  1614. if (state && state->start == start) {
  1615. private = state->private;
  1616. ret = 0;
  1617. } else {
  1618. ret = get_state_private(io_tree, start, &private);
  1619. }
  1620. kaddr = kmap_atomic(page, KM_USER0);
  1621. if (ret)
  1622. goto zeroit;
  1623. csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
  1624. btrfs_csum_final(csum, (char *)&csum);
  1625. if (csum != private)
  1626. goto zeroit;
  1627. kunmap_atomic(kaddr, KM_USER0);
  1628. good:
  1629. /* if the io failure tree for this inode is non-empty,
  1630. * check to see if we've recovered from a failed IO
  1631. */
  1632. btrfs_clean_io_failures(inode, start);
  1633. return 0;
  1634. zeroit:
  1635. if (printk_ratelimit()) {
  1636. printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
  1637. "private %llu\n", page->mapping->host->i_ino,
  1638. (unsigned long long)start, csum,
  1639. (unsigned long long)private);
  1640. }
  1641. memset(kaddr + offset, 1, end - start + 1);
  1642. flush_dcache_page(page);
  1643. kunmap_atomic(kaddr, KM_USER0);
  1644. if (private == 0)
  1645. return 0;
  1646. return -EIO;
  1647. }
  1648. /*
  1649. * This creates an orphan entry for the given inode in case something goes
  1650. * wrong in the middle of an unlink/truncate.
  1651. */
  1652. int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
  1653. {
  1654. struct btrfs_root *root = BTRFS_I(inode)->root;
  1655. int ret = 0;
  1656. spin_lock(&root->list_lock);
  1657. /* already on the orphan list, we're good */
  1658. if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
  1659. spin_unlock(&root->list_lock);
  1660. return 0;
  1661. }
  1662. list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
  1663. spin_unlock(&root->list_lock);
  1664. /*
  1665. * insert an orphan item to track this unlinked/truncated file
  1666. */
  1667. ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
  1668. return ret;
  1669. }
  1670. /*
  1671. * We have done the truncate/delete so we can go ahead and remove the orphan
  1672. * item for this particular inode.
  1673. */
  1674. int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
  1675. {
  1676. struct btrfs_root *root = BTRFS_I(inode)->root;
  1677. int ret = 0;
  1678. spin_lock(&root->list_lock);
  1679. if (list_empty(&BTRFS_I(inode)->i_orphan)) {
  1680. spin_unlock(&root->list_lock);
  1681. return 0;
  1682. }
  1683. list_del_init(&BTRFS_I(inode)->i_orphan);
  1684. if (!trans) {
  1685. spin_unlock(&root->list_lock);
  1686. return 0;
  1687. }
  1688. spin_unlock(&root->list_lock);
  1689. ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
  1690. return ret;
  1691. }
  1692. /*
  1693. * this cleans up any orphans that may be left on the list from the last use
  1694. * of this root.
  1695. */
  1696. void btrfs_orphan_cleanup(struct btrfs_root *root)
  1697. {
  1698. struct btrfs_path *path;
  1699. struct extent_buffer *leaf;
  1700. struct btrfs_item *item;
  1701. struct btrfs_key key, found_key;
  1702. struct btrfs_trans_handle *trans;
  1703. struct inode *inode;
  1704. int ret = 0, nr_unlink = 0, nr_truncate = 0;
  1705. path = btrfs_alloc_path();
  1706. if (!path)
  1707. return;
  1708. path->reada = -1;
  1709. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1710. btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
  1711. key.offset = (u64)-1;
  1712. while (1) {
  1713. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1714. if (ret < 0) {
  1715. printk(KERN_ERR "Error searching slot for orphan: %d"
  1716. "\n", ret);
  1717. break;
  1718. }
  1719. /*
  1720. * if ret == 0 means we found what we were searching for, which
  1721. * is weird, but possible, so only screw with path if we didnt
  1722. * find the key and see if we have stuff that matches
  1723. */
  1724. if (ret > 0) {
  1725. if (path->slots[0] == 0)
  1726. break;
  1727. path->slots[0]--;
  1728. }
  1729. /* pull out the item */
  1730. leaf = path->nodes[0];
  1731. item = btrfs_item_nr(leaf, path->slots[0]);
  1732. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  1733. /* make sure the item matches what we want */
  1734. if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
  1735. break;
  1736. if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
  1737. break;
  1738. /* release the path since we're done with it */
  1739. btrfs_release_path(root, path);
  1740. /*
  1741. * this is where we are basically btrfs_lookup, without the
  1742. * crossing root thing. we store the inode number in the
  1743. * offset of the orphan item.
  1744. */
  1745. found_key.objectid = found_key.offset;
  1746. found_key.type = BTRFS_INODE_ITEM_KEY;
  1747. found_key.offset = 0;
  1748. inode = btrfs_iget(root->fs_info->sb, &found_key, root);
  1749. if (IS_ERR(inode))
  1750. break;
  1751. /*
  1752. * add this inode to the orphan list so btrfs_orphan_del does
  1753. * the proper thing when we hit it
  1754. */
  1755. spin_lock(&root->list_lock);
  1756. list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
  1757. spin_unlock(&root->list_lock);
  1758. /*
  1759. * if this is a bad inode, means we actually succeeded in
  1760. * removing the inode, but not the orphan record, which means
  1761. * we need to manually delete the orphan since iput will just
  1762. * do a destroy_inode
  1763. */
  1764. if (is_bad_inode(inode)) {
  1765. trans = btrfs_start_transaction(root, 1);
  1766. btrfs_orphan_del(trans, inode);
  1767. btrfs_end_transaction(trans, root);
  1768. iput(inode);
  1769. continue;
  1770. }
  1771. /* if we have links, this was a truncate, lets do that */
  1772. if (inode->i_nlink) {
  1773. nr_truncate++;
  1774. btrfs_truncate(inode);
  1775. } else {
  1776. nr_unlink++;
  1777. }
  1778. /* this will do delete_inode and everything for us */
  1779. iput(inode);
  1780. }
  1781. if (nr_unlink)
  1782. printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
  1783. if (nr_truncate)
  1784. printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
  1785. btrfs_free_path(path);
  1786. }
  1787. /*
  1788. * very simple check to peek ahead in the leaf looking for xattrs. If we
  1789. * don't find any xattrs, we know there can't be any acls.
  1790. *
  1791. * slot is the slot the inode is in, objectid is the objectid of the inode
  1792. */
  1793. static noinline int acls_after_inode_item(struct extent_buffer *leaf,
  1794. int slot, u64 objectid)
  1795. {
  1796. u32 nritems = btrfs_header_nritems(leaf);
  1797. struct btrfs_key found_key;
  1798. int scanned = 0;
  1799. slot++;
  1800. while (slot < nritems) {
  1801. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  1802. /* we found a different objectid, there must not be acls */
  1803. if (found_key.objectid != objectid)
  1804. return 0;
  1805. /* we found an xattr, assume we've got an acl */
  1806. if (found_key.type == BTRFS_XATTR_ITEM_KEY)
  1807. return 1;
  1808. /*
  1809. * we found a key greater than an xattr key, there can't
  1810. * be any acls later on
  1811. */
  1812. if (found_key.type > BTRFS_XATTR_ITEM_KEY)
  1813. return 0;
  1814. slot++;
  1815. scanned++;
  1816. /*
  1817. * it goes inode, inode backrefs, xattrs, extents,
  1818. * so if there are a ton of hard links to an inode there can
  1819. * be a lot of backrefs. Don't waste time searching too hard,
  1820. * this is just an optimization
  1821. */
  1822. if (scanned >= 8)
  1823. break;
  1824. }
  1825. /* we hit the end of the leaf before we found an xattr or
  1826. * something larger than an xattr. We have to assume the inode
  1827. * has acls
  1828. */
  1829. return 1;
  1830. }
  1831. /*
  1832. * read an inode from the btree into the in-memory inode
  1833. */
  1834. static void btrfs_read_locked_inode(struct inode *inode)
  1835. {
  1836. struct btrfs_path *path;
  1837. struct extent_buffer *leaf;
  1838. struct btrfs_inode_item *inode_item;
  1839. struct btrfs_timespec *tspec;
  1840. struct btrfs_root *root = BTRFS_I(inode)->root;
  1841. struct btrfs_key location;
  1842. int maybe_acls;
  1843. u64 alloc_group_block;
  1844. u32 rdev;
  1845. int ret;
  1846. path = btrfs_alloc_path();
  1847. BUG_ON(!path);
  1848. memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
  1849. ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
  1850. if (ret)
  1851. goto make_bad;
  1852. leaf = path->nodes[0];
  1853. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  1854. struct btrfs_inode_item);
  1855. inode->i_mode = btrfs_inode_mode(leaf, inode_item);
  1856. inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
  1857. inode->i_uid = btrfs_inode_uid(leaf, inode_item);
  1858. inode->i_gid = btrfs_inode_gid(leaf, inode_item);
  1859. btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
  1860. tspec = btrfs_inode_atime(inode_item);
  1861. inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
  1862. inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
  1863. tspec = btrfs_inode_mtime(inode_item);
  1864. inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
  1865. inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
  1866. tspec = btrfs_inode_ctime(inode_item);
  1867. inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
  1868. inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
  1869. inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
  1870. BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
  1871. BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
  1872. inode->i_generation = BTRFS_I(inode)->generation;
  1873. inode->i_rdev = 0;
  1874. rdev = btrfs_inode_rdev(leaf, inode_item);
  1875. BTRFS_I(inode)->index_cnt = (u64)-1;
  1876. BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
  1877. alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
  1878. /*
  1879. * try to precache a NULL acl entry for files that don't have
  1880. * any xattrs or acls
  1881. */
  1882. maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
  1883. if (!maybe_acls) {
  1884. BTRFS_I(inode)->i_acl = NULL;
  1885. BTRFS_I(inode)->i_default_acl = NULL;
  1886. }
  1887. BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
  1888. alloc_group_block, 0);
  1889. btrfs_free_path(path);
  1890. inode_item = NULL;
  1891. switch (inode->i_mode & S_IFMT) {
  1892. case S_IFREG:
  1893. inode->i_mapping->a_ops = &btrfs_aops;
  1894. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  1895. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  1896. inode->i_fop = &btrfs_file_operations;
  1897. inode->i_op = &btrfs_file_inode_operations;
  1898. break;
  1899. case S_IFDIR:
  1900. inode->i_fop = &btrfs_dir_file_operations;
  1901. if (root == root->fs_info->tree_root)
  1902. inode->i_op = &btrfs_dir_ro_inode_operations;
  1903. else
  1904. inode->i_op = &btrfs_dir_inode_operations;
  1905. break;
  1906. case S_IFLNK:
  1907. inode->i_op = &btrfs_symlink_inode_operations;
  1908. inode->i_mapping->a_ops = &btrfs_symlink_aops;
  1909. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  1910. break;
  1911. default:
  1912. inode->i_op = &btrfs_special_inode_operations;
  1913. init_special_inode(inode, inode->i_mode, rdev);
  1914. break;
  1915. }
  1916. return;
  1917. make_bad:
  1918. btrfs_free_path(path);
  1919. make_bad_inode(inode);
  1920. }
  1921. /*
  1922. * given a leaf and an inode, copy the inode fields into the leaf
  1923. */
  1924. static void fill_inode_item(struct btrfs_trans_handle *trans,
  1925. struct extent_buffer *leaf,
  1926. struct btrfs_inode_item *item,
  1927. struct inode *inode)
  1928. {
  1929. btrfs_set_inode_uid(leaf, item, inode->i_uid);
  1930. btrfs_set_inode_gid(leaf, item, inode->i_gid);
  1931. btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
  1932. btrfs_set_inode_mode(leaf, item, inode->i_mode);
  1933. btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
  1934. btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
  1935. inode->i_atime.tv_sec);
  1936. btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
  1937. inode->i_atime.tv_nsec);
  1938. btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
  1939. inode->i_mtime.tv_sec);
  1940. btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
  1941. inode->i_mtime.tv_nsec);
  1942. btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
  1943. inode->i_ctime.tv_sec);
  1944. btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
  1945. inode->i_ctime.tv_nsec);
  1946. btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
  1947. btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
  1948. btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
  1949. btrfs_set_inode_transid(leaf, item, trans->transid);
  1950. btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
  1951. btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
  1952. btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
  1953. }
  1954. /*
  1955. * copy everything in the in-memory inode into the btree.
  1956. */
  1957. noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
  1958. struct btrfs_root *root, struct inode *inode)
  1959. {
  1960. struct btrfs_inode_item *inode_item;
  1961. struct btrfs_path *path;
  1962. struct extent_buffer *leaf;
  1963. int ret;
  1964. path = btrfs_alloc_path();
  1965. BUG_ON(!path);
  1966. path->leave_spinning = 1;
  1967. ret = btrfs_lookup_inode(trans, root, path,
  1968. &BTRFS_I(inode)->location, 1);
  1969. if (ret) {
  1970. if (ret > 0)
  1971. ret = -ENOENT;
  1972. goto failed;
  1973. }
  1974. btrfs_unlock_up_safe(path, 1);
  1975. leaf = path->nodes[0];
  1976. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  1977. struct btrfs_inode_item);
  1978. fill_inode_item(trans, leaf, inode_item, inode);
  1979. btrfs_mark_buffer_dirty(leaf);
  1980. btrfs_set_inode_last_trans(trans, inode);
  1981. ret = 0;
  1982. failed:
  1983. btrfs_free_path(path);
  1984. return ret;
  1985. }
  1986. /*
  1987. * unlink helper that gets used here in inode.c and in the tree logging
  1988. * recovery code. It remove a link in a directory with a given name, and
  1989. * also drops the back refs in the inode to the directory
  1990. */
  1991. int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
  1992. struct btrfs_root *root,
  1993. struct inode *dir, struct inode *inode,
  1994. const char *name, int name_len)
  1995. {
  1996. struct btrfs_path *path;
  1997. int ret = 0;
  1998. struct extent_buffer *leaf;
  1999. struct btrfs_dir_item *di;
  2000. struct btrfs_key key;
  2001. u64 index;
  2002. path = btrfs_alloc_path();
  2003. if (!path) {
  2004. ret = -ENOMEM;
  2005. goto err;
  2006. }
  2007. path->leave_spinning = 1;
  2008. di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
  2009. name, name_len, -1);
  2010. if (IS_ERR(di)) {
  2011. ret = PTR_ERR(di);
  2012. goto err;
  2013. }
  2014. if (!di) {
  2015. ret = -ENOENT;
  2016. goto err;
  2017. }
  2018. leaf = path->nodes[0];
  2019. btrfs_dir_item_key_to_cpu(leaf, di, &key);
  2020. ret = btrfs_delete_one_dir_name(trans, root, path, di);
  2021. if (ret)
  2022. goto err;
  2023. btrfs_release_path(root, path);
  2024. ret = btrfs_del_inode_ref(trans, root, name, name_len,
  2025. inode->i_ino,
  2026. dir->i_ino, &index);
  2027. if (ret) {
  2028. printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
  2029. "inode %lu parent %lu\n", name_len, name,
  2030. inode->i_ino, dir->i_ino);
  2031. goto err;
  2032. }
  2033. di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
  2034. index, name, name_len, -1);
  2035. if (IS_ERR(di)) {
  2036. ret = PTR_ERR(di);
  2037. goto err;
  2038. }
  2039. if (!di) {
  2040. ret = -ENOENT;
  2041. goto err;
  2042. }
  2043. ret = btrfs_delete_one_dir_name(trans, root, path, di);
  2044. btrfs_release_path(root, path);
  2045. ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
  2046. inode, dir->i_ino);
  2047. BUG_ON(ret != 0 && ret != -ENOENT);
  2048. ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
  2049. dir, index);
  2050. BUG_ON(ret);
  2051. err:
  2052. btrfs_free_path(path);
  2053. if (ret)
  2054. goto out;
  2055. btrfs_i_size_write(dir, dir->i_size - name_len * 2);
  2056. inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  2057. btrfs_update_inode(trans, root, dir);
  2058. btrfs_drop_nlink(inode);
  2059. ret = btrfs_update_inode(trans, root, inode);
  2060. dir->i_sb->s_dirt = 1;
  2061. out:
  2062. return ret;
  2063. }
  2064. static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
  2065. {
  2066. struct btrfs_root *root;
  2067. struct btrfs_trans_handle *trans;
  2068. struct inode *inode = dentry->d_inode;
  2069. int ret;
  2070. unsigned long nr = 0;
  2071. root = BTRFS_I(dir)->root;
  2072. trans = btrfs_start_transaction(root, 1);
  2073. btrfs_set_trans_block_group(trans, dir);
  2074. btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
  2075. ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
  2076. dentry->d_name.name, dentry->d_name.len);
  2077. if (inode->i_nlink == 0)
  2078. ret = btrfs_orphan_add(trans, inode);
  2079. nr = trans->blocks_used;
  2080. btrfs_end_transaction_throttle(trans, root);
  2081. btrfs_btree_balance_dirty(root, nr);
  2082. return ret;
  2083. }
  2084. static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
  2085. {
  2086. struct inode *inode = dentry->d_inode;
  2087. int err = 0;
  2088. int ret;
  2089. struct btrfs_root *root = BTRFS_I(dir)->root;
  2090. struct btrfs_trans_handle *trans;
  2091. unsigned long nr = 0;
  2092. /*
  2093. * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
  2094. * the root of a subvolume or snapshot
  2095. */
  2096. if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
  2097. inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
  2098. return -ENOTEMPTY;
  2099. }
  2100. trans = btrfs_start_transaction(root, 1);
  2101. btrfs_set_trans_block_group(trans, dir);
  2102. err = btrfs_orphan_add(trans, inode);
  2103. if (err)
  2104. goto fail_trans;
  2105. /* now the directory is empty */
  2106. err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
  2107. dentry->d_name.name, dentry->d_name.len);
  2108. if (!err)
  2109. btrfs_i_size_write(inode, 0);
  2110. fail_trans:
  2111. nr = trans->blocks_used;
  2112. ret = btrfs_end_transaction_throttle(trans, root);
  2113. btrfs_btree_balance_dirty(root, nr);
  2114. if (ret && !err)
  2115. err = ret;
  2116. return err;
  2117. }
  2118. #if 0
  2119. /*
  2120. * when truncating bytes in a file, it is possible to avoid reading
  2121. * the leaves that contain only checksum items. This can be the
  2122. * majority of the IO required to delete a large file, but it must
  2123. * be done carefully.
  2124. *
  2125. * The keys in the level just above the leaves are checked to make sure
  2126. * the lowest key in a given leaf is a csum key, and starts at an offset
  2127. * after the new size.
  2128. *
  2129. * Then the key for the next leaf is checked to make sure it also has
  2130. * a checksum item for the same file. If it does, we know our target leaf
  2131. * contains only checksum items, and it can be safely freed without reading
  2132. * it.
  2133. *
  2134. * This is just an optimization targeted at large files. It may do
  2135. * nothing. It will return 0 unless things went badly.
  2136. */
  2137. static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
  2138. struct btrfs_root *root,
  2139. struct btrfs_path *path,
  2140. struct inode *inode, u64 new_size)
  2141. {
  2142. struct btrfs_key key;
  2143. int ret;
  2144. int nritems;
  2145. struct btrfs_key found_key;
  2146. struct btrfs_key other_key;
  2147. struct btrfs_leaf_ref *ref;
  2148. u64 leaf_gen;
  2149. u64 leaf_start;
  2150. path->lowest_level = 1;
  2151. key.objectid = inode->i_ino;
  2152. key.type = BTRFS_CSUM_ITEM_KEY;
  2153. key.offset = new_size;
  2154. again:
  2155. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  2156. if (ret < 0)
  2157. goto out;
  2158. if (path->nodes[1] == NULL) {
  2159. ret = 0;
  2160. goto out;
  2161. }
  2162. ret = 0;
  2163. btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
  2164. nritems = btrfs_header_nritems(path->nodes[1]);
  2165. if (!nritems)
  2166. goto out;
  2167. if (path->slots[1] >= nritems)
  2168. goto next_node;
  2169. /* did we find a key greater than anything we want to delete? */
  2170. if (found_key.objectid > inode->i_ino ||
  2171. (found_key.objectid == inode->i_ino && found_key.type > key.type))
  2172. goto out;
  2173. /* we check the next key in the node to make sure the leave contains
  2174. * only checksum items. This comparison doesn't work if our
  2175. * leaf is the last one in the node
  2176. */
  2177. if (path->slots[1] + 1 >= nritems) {
  2178. next_node:
  2179. /* search forward from the last key in the node, this
  2180. * will bring us into the next node in the tree
  2181. */
  2182. btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
  2183. /* unlikely, but we inc below, so check to be safe */
  2184. if (found_key.offset == (u64)-1)
  2185. goto out;
  2186. /* search_forward needs a path with locks held, do the
  2187. * search again for the original key. It is possible
  2188. * this will race with a balance and return a path that
  2189. * we could modify, but this drop is just an optimization
  2190. * and is allowed to miss some leaves.
  2191. */
  2192. btrfs_release_path(root, path);
  2193. found_key.offset++;
  2194. /* setup a max key for search_forward */
  2195. other_key.offset = (u64)-1;
  2196. other_key.type = key.type;
  2197. other_key.objectid = key.objectid;
  2198. path->keep_locks = 1;
  2199. ret = btrfs_search_forward(root, &found_key, &other_key,
  2200. path, 0, 0);
  2201. path->keep_locks = 0;
  2202. if (ret || found_key.objectid != key.objectid ||
  2203. found_key.type != key.type) {
  2204. ret = 0;
  2205. goto out;
  2206. }
  2207. key.offset = found_key.offset;
  2208. btrfs_release_path(root, path);
  2209. cond_resched();
  2210. goto again;
  2211. }
  2212. /* we know there's one more slot after us in the tree,
  2213. * read that key so we can verify it is also a checksum item
  2214. */
  2215. btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
  2216. if (found_key.objectid < inode->i_ino)
  2217. goto next_key;
  2218. if (found_key.type != key.type || found_key.offset < new_size)
  2219. goto next_key;
  2220. /*
  2221. * if the key for the next leaf isn't a csum key from this objectid,
  2222. * we can't be sure there aren't good items inside this leaf.
  2223. * Bail out
  2224. */
  2225. if (other_key.objectid != inode->i_ino || other_key.type != key.type)
  2226. goto out;
  2227. leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
  2228. leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
  2229. /*
  2230. * it is safe to delete this leaf, it contains only
  2231. * csum items from this inode at an offset >= new_size
  2232. */
  2233. ret = btrfs_del_leaf(trans, root, path, leaf_start);
  2234. BUG_ON(ret);
  2235. if (root->ref_cows && leaf_gen < trans->transid) {
  2236. ref = btrfs_alloc_leaf_ref(root, 0);
  2237. if (ref) {
  2238. ref->root_gen = root->root_key.offset;
  2239. ref->bytenr = leaf_start;
  2240. ref->owner = 0;
  2241. ref->generation = leaf_gen;
  2242. ref->nritems = 0;
  2243. btrfs_sort_leaf_ref(ref);
  2244. ret = btrfs_add_leaf_ref(root, ref, 0);
  2245. WARN_ON(ret);
  2246. btrfs_free_leaf_ref(root, ref);
  2247. } else {
  2248. WARN_ON(1);
  2249. }
  2250. }
  2251. next_key:
  2252. btrfs_release_path(root, path);
  2253. if (other_key.objectid == inode->i_ino &&
  2254. other_key.type == key.type && other_key.offset > key.offset) {
  2255. key.offset = other_key.offset;
  2256. cond_resched();
  2257. goto again;
  2258. }
  2259. ret = 0;
  2260. out:
  2261. /* fixup any changes we've made to the path */
  2262. path->lowest_level = 0;
  2263. path->keep_locks = 0;
  2264. btrfs_release_path(root, path);
  2265. return ret;
  2266. }
  2267. #endif
  2268. /*
  2269. * this can truncate away extent items, csum items and directory items.
  2270. * It starts at a high offset and removes keys until it can't find
  2271. * any higher than new_size
  2272. *
  2273. * csum items that cross the new i_size are truncated to the new size
  2274. * as well.
  2275. *
  2276. * min_type is the minimum key type to truncate down to. If set to 0, this
  2277. * will kill all the items on this inode, including the INODE_ITEM_KEY.
  2278. */
  2279. noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
  2280. struct btrfs_root *root,
  2281. struct inode *inode,
  2282. u64 new_size, u32 min_type)
  2283. {
  2284. int ret;
  2285. struct btrfs_path *path;
  2286. struct btrfs_key key;
  2287. struct btrfs_key found_key;
  2288. u32 found_type = (u8)-1;
  2289. struct extent_buffer *leaf;
  2290. struct btrfs_file_extent_item *fi;
  2291. u64 extent_start = 0;
  2292. u64 extent_num_bytes = 0;
  2293. u64 extent_offset = 0;
  2294. u64 item_end = 0;
  2295. int found_extent;
  2296. int del_item;
  2297. int pending_del_nr = 0;
  2298. int pending_del_slot = 0;
  2299. int extent_type = -1;
  2300. int encoding;
  2301. u64 mask = root->sectorsize - 1;
  2302. if (root->ref_cows)
  2303. btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
  2304. path = btrfs_alloc_path();
  2305. path->reada = -1;
  2306. BUG_ON(!path);
  2307. /* FIXME, add redo link to tree so we don't leak on crash */
  2308. key.objectid = inode->i_ino;
  2309. key.offset = (u64)-1;
  2310. key.type = (u8)-1;
  2311. search_again:
  2312. path->leave_spinning = 1;
  2313. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  2314. if (ret < 0)
  2315. goto error;
  2316. if (ret > 0) {
  2317. /* there are no items in the tree for us to truncate, we're
  2318. * done
  2319. */
  2320. if (path->slots[0] == 0) {
  2321. ret = 0;
  2322. goto error;
  2323. }
  2324. path->slots[0]--;
  2325. }
  2326. while (1) {
  2327. fi = NULL;
  2328. leaf = path->nodes[0];
  2329. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  2330. found_type = btrfs_key_type(&found_key);
  2331. encoding = 0;
  2332. if (found_key.objectid != inode->i_ino)
  2333. break;
  2334. if (found_type < min_type)
  2335. break;
  2336. item_end = found_key.offset;
  2337. if (found_type == BTRFS_EXTENT_DATA_KEY) {
  2338. fi = btrfs_item_ptr(leaf, path->slots[0],
  2339. struct btrfs_file_extent_item);
  2340. extent_type = btrfs_file_extent_type(leaf, fi);
  2341. encoding = btrfs_file_extent_compression(leaf, fi);
  2342. encoding |= btrfs_file_extent_encryption(leaf, fi);
  2343. encoding |= btrfs_file_extent_other_encoding(leaf, fi);
  2344. if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
  2345. item_end +=
  2346. btrfs_file_extent_num_bytes(leaf, fi);
  2347. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  2348. item_end += btrfs_file_extent_inline_len(leaf,
  2349. fi);
  2350. }
  2351. item_end--;
  2352. }
  2353. if (item_end < new_size) {
  2354. if (found_type == BTRFS_DIR_ITEM_KEY)
  2355. found_type = BTRFS_INODE_ITEM_KEY;
  2356. else if (found_type == BTRFS_EXTENT_ITEM_KEY)
  2357. found_type = BTRFS_EXTENT_DATA_KEY;
  2358. else if (found_type == BTRFS_EXTENT_DATA_KEY)
  2359. found_type = BTRFS_XATTR_ITEM_KEY;
  2360. else if (found_type == BTRFS_XATTR_ITEM_KEY)
  2361. found_type = BTRFS_INODE_REF_KEY;
  2362. else if (found_type)
  2363. found_type--;
  2364. else
  2365. break;
  2366. btrfs_set_key_type(&key, found_type);
  2367. goto next;
  2368. }
  2369. if (found_key.offset >= new_size)
  2370. del_item = 1;
  2371. else
  2372. del_item = 0;
  2373. found_extent = 0;
  2374. /* FIXME, shrink the extent if the ref count is only 1 */
  2375. if (found_type != BTRFS_EXTENT_DATA_KEY)
  2376. goto delete;
  2377. if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
  2378. u64 num_dec;
  2379. extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
  2380. if (!del_item && !encoding) {
  2381. u64 orig_num_bytes =
  2382. btrfs_file_extent_num_bytes(leaf, fi);
  2383. extent_num_bytes = new_size -
  2384. found_key.offset + root->sectorsize - 1;
  2385. extent_num_bytes = extent_num_bytes &
  2386. ~((u64)root->sectorsize - 1);
  2387. btrfs_set_file_extent_num_bytes(leaf, fi,
  2388. extent_num_bytes);
  2389. num_dec = (orig_num_bytes -
  2390. extent_num_bytes);
  2391. if (root->ref_cows && extent_start != 0)
  2392. inode_sub_bytes(inode, num_dec);
  2393. btrfs_mark_buffer_dirty(leaf);
  2394. } else {
  2395. extent_num_bytes =
  2396. btrfs_file_extent_disk_num_bytes(leaf,
  2397. fi);
  2398. extent_offset = found_key.offset -
  2399. btrfs_file_extent_offset(leaf, fi);
  2400. /* FIXME blocksize != 4096 */
  2401. num_dec = btrfs_file_extent_num_bytes(leaf, fi);
  2402. if (extent_start != 0) {
  2403. found_extent = 1;
  2404. if (root->ref_cows)
  2405. inode_sub_bytes(inode, num_dec);
  2406. }
  2407. }
  2408. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  2409. /*
  2410. * we can't truncate inline items that have had
  2411. * special encodings
  2412. */
  2413. if (!del_item &&
  2414. btrfs_file_extent_compression(leaf, fi) == 0 &&
  2415. btrfs_file_extent_encryption(leaf, fi) == 0 &&
  2416. btrfs_file_extent_other_encoding(leaf, fi) == 0) {
  2417. u32 size = new_size - found_key.offset;
  2418. if (root->ref_cows) {
  2419. inode_sub_bytes(inode, item_end + 1 -
  2420. new_size);
  2421. }
  2422. size =
  2423. btrfs_file_extent_calc_inline_size(size);
  2424. ret = btrfs_truncate_item(trans, root, path,
  2425. size, 1);
  2426. BUG_ON(ret);
  2427. } else if (root->ref_cows) {
  2428. inode_sub_bytes(inode, item_end + 1 -
  2429. found_key.offset);
  2430. }
  2431. }
  2432. delete:
  2433. if (del_item) {
  2434. if (!pending_del_nr) {
  2435. /* no pending yet, add ourselves */
  2436. pending_del_slot = path->slots[0];
  2437. pending_del_nr = 1;
  2438. } else if (pending_del_nr &&
  2439. path->slots[0] + 1 == pending_del_slot) {
  2440. /* hop on the pending chunk */
  2441. pending_del_nr++;
  2442. pending_del_slot = path->slots[0];
  2443. } else {
  2444. BUG();
  2445. }
  2446. } else {
  2447. break;
  2448. }
  2449. if (found_extent && root->ref_cows) {
  2450. btrfs_set_path_blocking(path);
  2451. ret = btrfs_free_extent(trans, root, extent_start,
  2452. extent_num_bytes, 0,
  2453. btrfs_header_owner(leaf),
  2454. inode->i_ino, extent_offset);
  2455. BUG_ON(ret);
  2456. }
  2457. next:
  2458. if (path->slots[0] == 0) {
  2459. if (pending_del_nr)
  2460. goto del_pending;
  2461. btrfs_release_path(root, path);
  2462. if (found_type == BTRFS_INODE_ITEM_KEY)
  2463. break;
  2464. goto search_again;
  2465. }
  2466. path->slots[0]--;
  2467. if (pending_del_nr &&
  2468. path->slots[0] + 1 != pending_del_slot) {
  2469. struct btrfs_key debug;
  2470. del_pending:
  2471. btrfs_item_key_to_cpu(path->nodes[0], &debug,
  2472. pending_del_slot);
  2473. ret = btrfs_del_items(trans, root, path,
  2474. pending_del_slot,
  2475. pending_del_nr);
  2476. BUG_ON(ret);
  2477. pending_del_nr = 0;
  2478. btrfs_release_path(root, path);
  2479. if (found_type == BTRFS_INODE_ITEM_KEY)
  2480. break;
  2481. goto search_again;
  2482. }
  2483. }
  2484. ret = 0;
  2485. error:
  2486. if (pending_del_nr) {
  2487. ret = btrfs_del_items(trans, root, path, pending_del_slot,
  2488. pending_del_nr);
  2489. }
  2490. btrfs_free_path(path);
  2491. inode->i_sb->s_dirt = 1;
  2492. return ret;
  2493. }
  2494. /*
  2495. * taken from block_truncate_page, but does cow as it zeros out
  2496. * any bytes left in the last page in the file.
  2497. */
  2498. static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
  2499. {
  2500. struct inode *inode = mapping->host;
  2501. struct btrfs_root *root = BTRFS_I(inode)->root;
  2502. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2503. struct btrfs_ordered_extent *ordered;
  2504. char *kaddr;
  2505. u32 blocksize = root->sectorsize;
  2506. pgoff_t index = from >> PAGE_CACHE_SHIFT;
  2507. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  2508. struct page *page;
  2509. int ret = 0;
  2510. u64 page_start;
  2511. u64 page_end;
  2512. if ((offset & (blocksize - 1)) == 0)
  2513. goto out;
  2514. ret = -ENOMEM;
  2515. again:
  2516. page = grab_cache_page(mapping, index);
  2517. if (!page)
  2518. goto out;
  2519. page_start = page_offset(page);
  2520. page_end = page_start + PAGE_CACHE_SIZE - 1;
  2521. if (!PageUptodate(page)) {
  2522. ret = btrfs_readpage(NULL, page);
  2523. lock_page(page);
  2524. if (page->mapping != mapping) {
  2525. unlock_page(page);
  2526. page_cache_release(page);
  2527. goto again;
  2528. }
  2529. if (!PageUptodate(page)) {
  2530. ret = -EIO;
  2531. goto out_unlock;
  2532. }
  2533. }
  2534. wait_on_page_writeback(page);
  2535. lock_extent(io_tree, page_start, page_end, GFP_NOFS);
  2536. set_page_extent_mapped(page);
  2537. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  2538. if (ordered) {
  2539. unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
  2540. unlock_page(page);
  2541. page_cache_release(page);
  2542. btrfs_start_ordered_extent(inode, ordered, 1);
  2543. btrfs_put_ordered_extent(ordered);
  2544. goto again;
  2545. }
  2546. btrfs_set_extent_delalloc(inode, page_start, page_end);
  2547. ret = 0;
  2548. if (offset != PAGE_CACHE_SIZE) {
  2549. kaddr = kmap(page);
  2550. memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
  2551. flush_dcache_page(page);
  2552. kunmap(page);
  2553. }
  2554. ClearPageChecked(page);
  2555. set_page_dirty(page);
  2556. unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
  2557. out_unlock:
  2558. unlock_page(page);
  2559. page_cache_release(page);
  2560. out:
  2561. return ret;
  2562. }
  2563. int btrfs_cont_expand(struct inode *inode, loff_t size)
  2564. {
  2565. struct btrfs_trans_handle *trans;
  2566. struct btrfs_root *root = BTRFS_I(inode)->root;
  2567. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2568. struct extent_map *em;
  2569. u64 mask = root->sectorsize - 1;
  2570. u64 hole_start = (inode->i_size + mask) & ~mask;
  2571. u64 block_end = (size + mask) & ~mask;
  2572. u64 last_byte;
  2573. u64 cur_offset;
  2574. u64 hole_size;
  2575. int err;
  2576. if (size <= hole_start)
  2577. return 0;
  2578. err = btrfs_check_metadata_free_space(root);
  2579. if (err)
  2580. return err;
  2581. btrfs_truncate_page(inode->i_mapping, inode->i_size);
  2582. while (1) {
  2583. struct btrfs_ordered_extent *ordered;
  2584. btrfs_wait_ordered_range(inode, hole_start,
  2585. block_end - hole_start);
  2586. lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
  2587. ordered = btrfs_lookup_ordered_extent(inode, hole_start);
  2588. if (!ordered)
  2589. break;
  2590. unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
  2591. btrfs_put_ordered_extent(ordered);
  2592. }
  2593. trans = btrfs_start_transaction(root, 1);
  2594. btrfs_set_trans_block_group(trans, inode);
  2595. cur_offset = hole_start;
  2596. while (1) {
  2597. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  2598. block_end - cur_offset, 0);
  2599. BUG_ON(IS_ERR(em) || !em);
  2600. last_byte = min(extent_map_end(em), block_end);
  2601. last_byte = (last_byte + mask) & ~mask;
  2602. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2603. u64 hint_byte = 0;
  2604. hole_size = last_byte - cur_offset;
  2605. err = btrfs_drop_extents(trans, root, inode,
  2606. cur_offset,
  2607. cur_offset + hole_size,
  2608. block_end,
  2609. cur_offset, &hint_byte);
  2610. if (err)
  2611. break;
  2612. err = btrfs_insert_file_extent(trans, root,
  2613. inode->i_ino, cur_offset, 0,
  2614. 0, hole_size, 0, hole_size,
  2615. 0, 0, 0);
  2616. btrfs_drop_extent_cache(inode, hole_start,
  2617. last_byte - 1, 0);
  2618. }
  2619. free_extent_map(em);
  2620. cur_offset = last_byte;
  2621. if (err || cur_offset >= block_end)
  2622. break;
  2623. }
  2624. btrfs_end_transaction(trans, root);
  2625. unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
  2626. return err;
  2627. }
  2628. static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
  2629. {
  2630. struct inode *inode = dentry->d_inode;
  2631. int err;
  2632. err = inode_change_ok(inode, attr);
  2633. if (err)
  2634. return err;
  2635. if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
  2636. if (attr->ia_size > inode->i_size) {
  2637. err = btrfs_cont_expand(inode, attr->ia_size);
  2638. if (err)
  2639. return err;
  2640. } else if (inode->i_size > 0 &&
  2641. attr->ia_size == 0) {
  2642. /* we're truncating a file that used to have good
  2643. * data down to zero. Make sure it gets into
  2644. * the ordered flush list so that any new writes
  2645. * get down to disk quickly.
  2646. */
  2647. BTRFS_I(inode)->ordered_data_close = 1;
  2648. }
  2649. }
  2650. err = inode_setattr(inode, attr);
  2651. if (!err && ((attr->ia_valid & ATTR_MODE)))
  2652. err = btrfs_acl_chmod(inode);
  2653. return err;
  2654. }
  2655. void btrfs_delete_inode(struct inode *inode)
  2656. {
  2657. struct btrfs_trans_handle *trans;
  2658. struct btrfs_root *root = BTRFS_I(inode)->root;
  2659. unsigned long nr;
  2660. int ret;
  2661. truncate_inode_pages(&inode->i_data, 0);
  2662. if (is_bad_inode(inode)) {
  2663. btrfs_orphan_del(NULL, inode);
  2664. goto no_delete;
  2665. }
  2666. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  2667. btrfs_i_size_write(inode, 0);
  2668. trans = btrfs_join_transaction(root, 1);
  2669. btrfs_set_trans_block_group(trans, inode);
  2670. ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
  2671. if (ret) {
  2672. btrfs_orphan_del(NULL, inode);
  2673. goto no_delete_lock;
  2674. }
  2675. btrfs_orphan_del(trans, inode);
  2676. nr = trans->blocks_used;
  2677. clear_inode(inode);
  2678. btrfs_end_transaction(trans, root);
  2679. btrfs_btree_balance_dirty(root, nr);
  2680. return;
  2681. no_delete_lock:
  2682. nr = trans->blocks_used;
  2683. btrfs_end_transaction(trans, root);
  2684. btrfs_btree_balance_dirty(root, nr);
  2685. no_delete:
  2686. clear_inode(inode);
  2687. }
  2688. /*
  2689. * this returns the key found in the dir entry in the location pointer.
  2690. * If no dir entries were found, location->objectid is 0.
  2691. */
  2692. static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
  2693. struct btrfs_key *location)
  2694. {
  2695. const char *name = dentry->d_name.name;
  2696. int namelen = dentry->d_name.len;
  2697. struct btrfs_dir_item *di;
  2698. struct btrfs_path *path;
  2699. struct btrfs_root *root = BTRFS_I(dir)->root;
  2700. int ret = 0;
  2701. path = btrfs_alloc_path();
  2702. BUG_ON(!path);
  2703. di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
  2704. namelen, 0);
  2705. if (IS_ERR(di))
  2706. ret = PTR_ERR(di);
  2707. if (!di || IS_ERR(di))
  2708. goto out_err;
  2709. btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
  2710. out:
  2711. btrfs_free_path(path);
  2712. return ret;
  2713. out_err:
  2714. location->objectid = 0;
  2715. goto out;
  2716. }
  2717. /*
  2718. * when we hit a tree root in a directory, the btrfs part of the inode
  2719. * needs to be changed to reflect the root directory of the tree root. This
  2720. * is kind of like crossing a mount point.
  2721. */
  2722. static int fixup_tree_root_location(struct btrfs_root *root,
  2723. struct btrfs_key *location,
  2724. struct btrfs_root **sub_root,
  2725. struct dentry *dentry)
  2726. {
  2727. struct btrfs_root_item *ri;
  2728. if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
  2729. return 0;
  2730. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  2731. return 0;
  2732. *sub_root = btrfs_read_fs_root(root->fs_info, location,
  2733. dentry->d_name.name,
  2734. dentry->d_name.len);
  2735. if (IS_ERR(*sub_root))
  2736. return PTR_ERR(*sub_root);
  2737. ri = &(*sub_root)->root_item;
  2738. location->objectid = btrfs_root_dirid(ri);
  2739. btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
  2740. location->offset = 0;
  2741. return 0;
  2742. }
  2743. static void inode_tree_add(struct inode *inode)
  2744. {
  2745. struct btrfs_root *root = BTRFS_I(inode)->root;
  2746. struct btrfs_inode *entry;
  2747. struct rb_node **p = &root->inode_tree.rb_node;
  2748. struct rb_node *parent = NULL;
  2749. spin_lock(&root->inode_lock);
  2750. while (*p) {
  2751. parent = *p;
  2752. entry = rb_entry(parent, struct btrfs_inode, rb_node);
  2753. if (inode->i_ino < entry->vfs_inode.i_ino)
  2754. p = &(*p)->rb_left;
  2755. else if (inode->i_ino > entry->vfs_inode.i_ino)
  2756. p = &(*p)->rb_right;
  2757. else {
  2758. WARN_ON(!(entry->vfs_inode.i_state &
  2759. (I_WILL_FREE | I_FREEING | I_CLEAR)));
  2760. break;
  2761. }
  2762. }
  2763. rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
  2764. rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
  2765. spin_unlock(&root->inode_lock);
  2766. }
  2767. static void inode_tree_del(struct inode *inode)
  2768. {
  2769. struct btrfs_root *root = BTRFS_I(inode)->root;
  2770. if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
  2771. spin_lock(&root->inode_lock);
  2772. rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
  2773. spin_unlock(&root->inode_lock);
  2774. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  2775. }
  2776. }
  2777. static noinline void init_btrfs_i(struct inode *inode)
  2778. {
  2779. struct btrfs_inode *bi = BTRFS_I(inode);
  2780. bi->i_acl = BTRFS_ACL_NOT_CACHED;
  2781. bi->i_default_acl = BTRFS_ACL_NOT_CACHED;
  2782. bi->generation = 0;
  2783. bi->sequence = 0;
  2784. bi->last_trans = 0;
  2785. bi->logged_trans = 0;
  2786. bi->delalloc_bytes = 0;
  2787. bi->reserved_bytes = 0;
  2788. bi->disk_i_size = 0;
  2789. bi->flags = 0;
  2790. bi->index_cnt = (u64)-1;
  2791. bi->last_unlink_trans = 0;
  2792. bi->ordered_data_close = 0;
  2793. extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
  2794. extent_io_tree_init(&BTRFS_I(inode)->io_tree,
  2795. inode->i_mapping, GFP_NOFS);
  2796. extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
  2797. inode->i_mapping, GFP_NOFS);
  2798. INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
  2799. INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
  2800. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  2801. btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
  2802. mutex_init(&BTRFS_I(inode)->extent_mutex);
  2803. mutex_init(&BTRFS_I(inode)->log_mutex);
  2804. }
  2805. static int btrfs_init_locked_inode(struct inode *inode, void *p)
  2806. {
  2807. struct btrfs_iget_args *args = p;
  2808. inode->i_ino = args->ino;
  2809. init_btrfs_i(inode);
  2810. BTRFS_I(inode)->root = args->root;
  2811. btrfs_set_inode_space_info(args->root, inode);
  2812. return 0;
  2813. }
  2814. static int btrfs_find_actor(struct inode *inode, void *opaque)
  2815. {
  2816. struct btrfs_iget_args *args = opaque;
  2817. return args->ino == inode->i_ino &&
  2818. args->root == BTRFS_I(inode)->root;
  2819. }
  2820. static struct inode *btrfs_iget_locked(struct super_block *s,
  2821. u64 objectid,
  2822. struct btrfs_root *root)
  2823. {
  2824. struct inode *inode;
  2825. struct btrfs_iget_args args;
  2826. args.ino = objectid;
  2827. args.root = root;
  2828. inode = iget5_locked(s, objectid, btrfs_find_actor,
  2829. btrfs_init_locked_inode,
  2830. (void *)&args);
  2831. return inode;
  2832. }
  2833. /* Get an inode object given its location and corresponding root.
  2834. * Returns in *is_new if the inode was read from disk
  2835. */
  2836. struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
  2837. struct btrfs_root *root)
  2838. {
  2839. struct inode *inode;
  2840. inode = btrfs_iget_locked(s, location->objectid, root);
  2841. if (!inode)
  2842. return ERR_PTR(-ENOMEM);
  2843. if (inode->i_state & I_NEW) {
  2844. BTRFS_I(inode)->root = root;
  2845. memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
  2846. btrfs_read_locked_inode(inode);
  2847. inode_tree_add(inode);
  2848. unlock_new_inode(inode);
  2849. }
  2850. return inode;
  2851. }
  2852. struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
  2853. {
  2854. struct inode *inode;
  2855. struct btrfs_inode *bi = BTRFS_I(dir);
  2856. struct btrfs_root *root = bi->root;
  2857. struct btrfs_root *sub_root = root;
  2858. struct btrfs_key location;
  2859. int ret;
  2860. if (dentry->d_name.len > BTRFS_NAME_LEN)
  2861. return ERR_PTR(-ENAMETOOLONG);
  2862. ret = btrfs_inode_by_name(dir, dentry, &location);
  2863. if (ret < 0)
  2864. return ERR_PTR(ret);
  2865. inode = NULL;
  2866. if (location.objectid) {
  2867. ret = fixup_tree_root_location(root, &location, &sub_root,
  2868. dentry);
  2869. if (ret < 0)
  2870. return ERR_PTR(ret);
  2871. if (ret > 0)
  2872. return ERR_PTR(-ENOENT);
  2873. inode = btrfs_iget(dir->i_sb, &location, sub_root);
  2874. if (IS_ERR(inode))
  2875. return ERR_CAST(inode);
  2876. }
  2877. return inode;
  2878. }
  2879. static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
  2880. struct nameidata *nd)
  2881. {
  2882. struct inode *inode;
  2883. if (dentry->d_name.len > BTRFS_NAME_LEN)
  2884. return ERR_PTR(-ENAMETOOLONG);
  2885. inode = btrfs_lookup_dentry(dir, dentry);
  2886. if (IS_ERR(inode))
  2887. return ERR_CAST(inode);
  2888. return d_splice_alias(inode, dentry);
  2889. }
  2890. static unsigned char btrfs_filetype_table[] = {
  2891. DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
  2892. };
  2893. static int btrfs_real_readdir(struct file *filp, void *dirent,
  2894. filldir_t filldir)
  2895. {
  2896. struct inode *inode = filp->f_dentry->d_inode;
  2897. struct btrfs_root *root = BTRFS_I(inode)->root;
  2898. struct btrfs_item *item;
  2899. struct btrfs_dir_item *di;
  2900. struct btrfs_key key;
  2901. struct btrfs_key found_key;
  2902. struct btrfs_path *path;
  2903. int ret;
  2904. u32 nritems;
  2905. struct extent_buffer *leaf;
  2906. int slot;
  2907. int advance;
  2908. unsigned char d_type;
  2909. int over = 0;
  2910. u32 di_cur;
  2911. u32 di_total;
  2912. u32 di_len;
  2913. int key_type = BTRFS_DIR_INDEX_KEY;
  2914. char tmp_name[32];
  2915. char *name_ptr;
  2916. int name_len;
  2917. /* FIXME, use a real flag for deciding about the key type */
  2918. if (root->fs_info->tree_root == root)
  2919. key_type = BTRFS_DIR_ITEM_KEY;
  2920. /* special case for "." */
  2921. if (filp->f_pos == 0) {
  2922. over = filldir(dirent, ".", 1,
  2923. 1, inode->i_ino,
  2924. DT_DIR);
  2925. if (over)
  2926. return 0;
  2927. filp->f_pos = 1;
  2928. }
  2929. /* special case for .., just use the back ref */
  2930. if (filp->f_pos == 1) {
  2931. u64 pino = parent_ino(filp->f_path.dentry);
  2932. over = filldir(dirent, "..", 2,
  2933. 2, pino, DT_DIR);
  2934. if (over)
  2935. return 0;
  2936. filp->f_pos = 2;
  2937. }
  2938. path = btrfs_alloc_path();
  2939. path->reada = 2;
  2940. btrfs_set_key_type(&key, key_type);
  2941. key.offset = filp->f_pos;
  2942. key.objectid = inode->i_ino;
  2943. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2944. if (ret < 0)
  2945. goto err;
  2946. advance = 0;
  2947. while (1) {
  2948. leaf = path->nodes[0];
  2949. nritems = btrfs_header_nritems(leaf);
  2950. slot = path->slots[0];
  2951. if (advance || slot >= nritems) {
  2952. if (slot >= nritems - 1) {
  2953. ret = btrfs_next_leaf(root, path);
  2954. if (ret)
  2955. break;
  2956. leaf = path->nodes[0];
  2957. nritems = btrfs_header_nritems(leaf);
  2958. slot = path->slots[0];
  2959. } else {
  2960. slot++;
  2961. path->slots[0]++;
  2962. }
  2963. }
  2964. advance = 1;
  2965. item = btrfs_item_nr(leaf, slot);
  2966. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2967. if (found_key.objectid != key.objectid)
  2968. break;
  2969. if (btrfs_key_type(&found_key) != key_type)
  2970. break;
  2971. if (found_key.offset < filp->f_pos)
  2972. continue;
  2973. filp->f_pos = found_key.offset;
  2974. di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
  2975. di_cur = 0;
  2976. di_total = btrfs_item_size(leaf, item);
  2977. while (di_cur < di_total) {
  2978. struct btrfs_key location;
  2979. name_len = btrfs_dir_name_len(leaf, di);
  2980. if (name_len <= sizeof(tmp_name)) {
  2981. name_ptr = tmp_name;
  2982. } else {
  2983. name_ptr = kmalloc(name_len, GFP_NOFS);
  2984. if (!name_ptr) {
  2985. ret = -ENOMEM;
  2986. goto err;
  2987. }
  2988. }
  2989. read_extent_buffer(leaf, name_ptr,
  2990. (unsigned long)(di + 1), name_len);
  2991. d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
  2992. btrfs_dir_item_key_to_cpu(leaf, di, &location);
  2993. /* is this a reference to our own snapshot? If so
  2994. * skip it
  2995. */
  2996. if (location.type == BTRFS_ROOT_ITEM_KEY &&
  2997. location.objectid == root->root_key.objectid) {
  2998. over = 0;
  2999. goto skip;
  3000. }
  3001. over = filldir(dirent, name_ptr, name_len,
  3002. found_key.offset, location.objectid,
  3003. d_type);
  3004. skip:
  3005. if (name_ptr != tmp_name)
  3006. kfree(name_ptr);
  3007. if (over)
  3008. goto nopos;
  3009. di_len = btrfs_dir_name_len(leaf, di) +
  3010. btrfs_dir_data_len(leaf, di) + sizeof(*di);
  3011. di_cur += di_len;
  3012. di = (struct btrfs_dir_item *)((char *)di + di_len);
  3013. }
  3014. }
  3015. /* Reached end of directory/root. Bump pos past the last item. */
  3016. if (key_type == BTRFS_DIR_INDEX_KEY)
  3017. filp->f_pos = INT_LIMIT(off_t);
  3018. else
  3019. filp->f_pos++;
  3020. nopos:
  3021. ret = 0;
  3022. err:
  3023. btrfs_free_path(path);
  3024. return ret;
  3025. }
  3026. int btrfs_write_inode(struct inode *inode, int wait)
  3027. {
  3028. struct btrfs_root *root = BTRFS_I(inode)->root;
  3029. struct btrfs_trans_handle *trans;
  3030. int ret = 0;
  3031. if (root->fs_info->btree_inode == inode)
  3032. return 0;
  3033. if (wait) {
  3034. trans = btrfs_join_transaction(root, 1);
  3035. btrfs_set_trans_block_group(trans, inode);
  3036. ret = btrfs_commit_transaction(trans, root);
  3037. }
  3038. return ret;
  3039. }
  3040. /*
  3041. * This is somewhat expensive, updating the tree every time the
  3042. * inode changes. But, it is most likely to find the inode in cache.
  3043. * FIXME, needs more benchmarking...there are no reasons other than performance
  3044. * to keep or drop this code.
  3045. */
  3046. void btrfs_dirty_inode(struct inode *inode)
  3047. {
  3048. struct btrfs_root *root = BTRFS_I(inode)->root;
  3049. struct btrfs_trans_handle *trans;
  3050. trans = btrfs_join_transaction(root, 1);
  3051. btrfs_set_trans_block_group(trans, inode);
  3052. btrfs_update_inode(trans, root, inode);
  3053. btrfs_end_transaction(trans, root);
  3054. }
  3055. /*
  3056. * find the highest existing sequence number in a directory
  3057. * and then set the in-memory index_cnt variable to reflect
  3058. * free sequence numbers
  3059. */
  3060. static int btrfs_set_inode_index_count(struct inode *inode)
  3061. {
  3062. struct btrfs_root *root = BTRFS_I(inode)->root;
  3063. struct btrfs_key key, found_key;
  3064. struct btrfs_path *path;
  3065. struct extent_buffer *leaf;
  3066. int ret;
  3067. key.objectid = inode->i_ino;
  3068. btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
  3069. key.offset = (u64)-1;
  3070. path = btrfs_alloc_path();
  3071. if (!path)
  3072. return -ENOMEM;
  3073. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3074. if (ret < 0)
  3075. goto out;
  3076. /* FIXME: we should be able to handle this */
  3077. if (ret == 0)
  3078. goto out;
  3079. ret = 0;
  3080. /*
  3081. * MAGIC NUMBER EXPLANATION:
  3082. * since we search a directory based on f_pos we have to start at 2
  3083. * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
  3084. * else has to start at 2
  3085. */
  3086. if (path->slots[0] == 0) {
  3087. BTRFS_I(inode)->index_cnt = 2;
  3088. goto out;
  3089. }
  3090. path->slots[0]--;
  3091. leaf = path->nodes[0];
  3092. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3093. if (found_key.objectid != inode->i_ino ||
  3094. btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
  3095. BTRFS_I(inode)->index_cnt = 2;
  3096. goto out;
  3097. }
  3098. BTRFS_I(inode)->index_cnt = found_key.offset + 1;
  3099. out:
  3100. btrfs_free_path(path);
  3101. return ret;
  3102. }
  3103. /*
  3104. * helper to find a free sequence number in a given directory. This current
  3105. * code is very simple, later versions will do smarter things in the btree
  3106. */
  3107. int btrfs_set_inode_index(struct inode *dir, u64 *index)
  3108. {
  3109. int ret = 0;
  3110. if (BTRFS_I(dir)->index_cnt == (u64)-1) {
  3111. ret = btrfs_set_inode_index_count(dir);
  3112. if (ret)
  3113. return ret;
  3114. }
  3115. *index = BTRFS_I(dir)->index_cnt;
  3116. BTRFS_I(dir)->index_cnt++;
  3117. return ret;
  3118. }
  3119. static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
  3120. struct btrfs_root *root,
  3121. struct inode *dir,
  3122. const char *name, int name_len,
  3123. u64 ref_objectid, u64 objectid,
  3124. u64 alloc_hint, int mode, u64 *index)
  3125. {
  3126. struct inode *inode;
  3127. struct btrfs_inode_item *inode_item;
  3128. struct btrfs_key *location;
  3129. struct btrfs_path *path;
  3130. struct btrfs_inode_ref *ref;
  3131. struct btrfs_key key[2];
  3132. u32 sizes[2];
  3133. unsigned long ptr;
  3134. int ret;
  3135. int owner;
  3136. path = btrfs_alloc_path();
  3137. BUG_ON(!path);
  3138. inode = new_inode(root->fs_info->sb);
  3139. if (!inode)
  3140. return ERR_PTR(-ENOMEM);
  3141. if (dir) {
  3142. ret = btrfs_set_inode_index(dir, index);
  3143. if (ret) {
  3144. iput(inode);
  3145. return ERR_PTR(ret);
  3146. }
  3147. }
  3148. /*
  3149. * index_cnt is ignored for everything but a dir,
  3150. * btrfs_get_inode_index_count has an explanation for the magic
  3151. * number
  3152. */
  3153. init_btrfs_i(inode);
  3154. BTRFS_I(inode)->index_cnt = 2;
  3155. BTRFS_I(inode)->root = root;
  3156. BTRFS_I(inode)->generation = trans->transid;
  3157. btrfs_set_inode_space_info(root, inode);
  3158. if (mode & S_IFDIR)
  3159. owner = 0;
  3160. else
  3161. owner = 1;
  3162. BTRFS_I(inode)->block_group =
  3163. btrfs_find_block_group(root, 0, alloc_hint, owner);
  3164. if ((mode & S_IFREG)) {
  3165. if (btrfs_test_opt(root, NODATASUM))
  3166. btrfs_set_flag(inode, NODATASUM);
  3167. if (btrfs_test_opt(root, NODATACOW))
  3168. btrfs_set_flag(inode, NODATACOW);
  3169. }
  3170. key[0].objectid = objectid;
  3171. btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
  3172. key[0].offset = 0;
  3173. key[1].objectid = objectid;
  3174. btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
  3175. key[1].offset = ref_objectid;
  3176. sizes[0] = sizeof(struct btrfs_inode_item);
  3177. sizes[1] = name_len + sizeof(*ref);
  3178. path->leave_spinning = 1;
  3179. ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
  3180. if (ret != 0)
  3181. goto fail;
  3182. if (objectid > root->highest_inode)
  3183. root->highest_inode = objectid;
  3184. inode->i_uid = current_fsuid();
  3185. if (dir && (dir->i_mode & S_ISGID)) {
  3186. inode->i_gid = dir->i_gid;
  3187. if (S_ISDIR(mode))
  3188. mode |= S_ISGID;
  3189. } else
  3190. inode->i_gid = current_fsgid();
  3191. inode->i_mode = mode;
  3192. inode->i_ino = objectid;
  3193. inode_set_bytes(inode, 0);
  3194. inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
  3195. inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
  3196. struct btrfs_inode_item);
  3197. fill_inode_item(trans, path->nodes[0], inode_item, inode);
  3198. ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
  3199. struct btrfs_inode_ref);
  3200. btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
  3201. btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
  3202. ptr = (unsigned long)(ref + 1);
  3203. write_extent_buffer(path->nodes[0], name, ptr, name_len);
  3204. btrfs_mark_buffer_dirty(path->nodes[0]);
  3205. btrfs_free_path(path);
  3206. location = &BTRFS_I(inode)->location;
  3207. location->objectid = objectid;
  3208. location->offset = 0;
  3209. btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
  3210. insert_inode_hash(inode);
  3211. inode_tree_add(inode);
  3212. return inode;
  3213. fail:
  3214. if (dir)
  3215. BTRFS_I(dir)->index_cnt--;
  3216. btrfs_free_path(path);
  3217. iput(inode);
  3218. return ERR_PTR(ret);
  3219. }
  3220. static inline u8 btrfs_inode_type(struct inode *inode)
  3221. {
  3222. return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
  3223. }
  3224. /*
  3225. * utility function to add 'inode' into 'parent_inode' with
  3226. * a give name and a given sequence number.
  3227. * if 'add_backref' is true, also insert a backref from the
  3228. * inode to the parent directory.
  3229. */
  3230. int btrfs_add_link(struct btrfs_trans_handle *trans,
  3231. struct inode *parent_inode, struct inode *inode,
  3232. const char *name, int name_len, int add_backref, u64 index)
  3233. {
  3234. int ret;
  3235. struct btrfs_key key;
  3236. struct btrfs_root *root = BTRFS_I(parent_inode)->root;
  3237. key.objectid = inode->i_ino;
  3238. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  3239. key.offset = 0;
  3240. ret = btrfs_insert_dir_item(trans, root, name, name_len,
  3241. parent_inode->i_ino,
  3242. &key, btrfs_inode_type(inode),
  3243. index);
  3244. if (ret == 0) {
  3245. if (add_backref) {
  3246. ret = btrfs_insert_inode_ref(trans, root,
  3247. name, name_len,
  3248. inode->i_ino,
  3249. parent_inode->i_ino,
  3250. index);
  3251. }
  3252. btrfs_i_size_write(parent_inode, parent_inode->i_size +
  3253. name_len * 2);
  3254. parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
  3255. ret = btrfs_update_inode(trans, root, parent_inode);
  3256. }
  3257. return ret;
  3258. }
  3259. static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
  3260. struct dentry *dentry, struct inode *inode,
  3261. int backref, u64 index)
  3262. {
  3263. int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
  3264. inode, dentry->d_name.name,
  3265. dentry->d_name.len, backref, index);
  3266. if (!err) {
  3267. d_instantiate(dentry, inode);
  3268. return 0;
  3269. }
  3270. if (err > 0)
  3271. err = -EEXIST;
  3272. return err;
  3273. }
  3274. static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
  3275. int mode, dev_t rdev)
  3276. {
  3277. struct btrfs_trans_handle *trans;
  3278. struct btrfs_root *root = BTRFS_I(dir)->root;
  3279. struct inode *inode = NULL;
  3280. int err;
  3281. int drop_inode = 0;
  3282. u64 objectid;
  3283. unsigned long nr = 0;
  3284. u64 index = 0;
  3285. if (!new_valid_dev(rdev))
  3286. return -EINVAL;
  3287. err = btrfs_check_metadata_free_space(root);
  3288. if (err)
  3289. goto fail;
  3290. trans = btrfs_start_transaction(root, 1);
  3291. btrfs_set_trans_block_group(trans, dir);
  3292. err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
  3293. if (err) {
  3294. err = -ENOSPC;
  3295. goto out_unlock;
  3296. }
  3297. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  3298. dentry->d_name.len,
  3299. dentry->d_parent->d_inode->i_ino, objectid,
  3300. BTRFS_I(dir)->block_group, mode, &index);
  3301. err = PTR_ERR(inode);
  3302. if (IS_ERR(inode))
  3303. goto out_unlock;
  3304. err = btrfs_init_inode_security(inode, dir);
  3305. if (err) {
  3306. drop_inode = 1;
  3307. goto out_unlock;
  3308. }
  3309. btrfs_set_trans_block_group(trans, inode);
  3310. err = btrfs_add_nondir(trans, dentry, inode, 0, index);
  3311. if (err)
  3312. drop_inode = 1;
  3313. else {
  3314. inode->i_op = &btrfs_special_inode_operations;
  3315. init_special_inode(inode, inode->i_mode, rdev);
  3316. btrfs_update_inode(trans, root, inode);
  3317. }
  3318. dir->i_sb->s_dirt = 1;
  3319. btrfs_update_inode_block_group(trans, inode);
  3320. btrfs_update_inode_block_group(trans, dir);
  3321. out_unlock:
  3322. nr = trans->blocks_used;
  3323. btrfs_end_transaction_throttle(trans, root);
  3324. fail:
  3325. if (drop_inode) {
  3326. inode_dec_link_count(inode);
  3327. iput(inode);
  3328. }
  3329. btrfs_btree_balance_dirty(root, nr);
  3330. return err;
  3331. }
  3332. static int btrfs_create(struct inode *dir, struct dentry *dentry,
  3333. int mode, struct nameidata *nd)
  3334. {
  3335. struct btrfs_trans_handle *trans;
  3336. struct btrfs_root *root = BTRFS_I(dir)->root;
  3337. struct inode *inode = NULL;
  3338. int err;
  3339. int drop_inode = 0;
  3340. unsigned long nr = 0;
  3341. u64 objectid;
  3342. u64 index = 0;
  3343. err = btrfs_check_metadata_free_space(root);
  3344. if (err)
  3345. goto fail;
  3346. trans = btrfs_start_transaction(root, 1);
  3347. btrfs_set_trans_block_group(trans, dir);
  3348. err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
  3349. if (err) {
  3350. err = -ENOSPC;
  3351. goto out_unlock;
  3352. }
  3353. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  3354. dentry->d_name.len,
  3355. dentry->d_parent->d_inode->i_ino,
  3356. objectid, BTRFS_I(dir)->block_group, mode,
  3357. &index);
  3358. err = PTR_ERR(inode);
  3359. if (IS_ERR(inode))
  3360. goto out_unlock;
  3361. err = btrfs_init_inode_security(inode, dir);
  3362. if (err) {
  3363. drop_inode = 1;
  3364. goto out_unlock;
  3365. }
  3366. btrfs_set_trans_block_group(trans, inode);
  3367. err = btrfs_add_nondir(trans, dentry, inode, 0, index);
  3368. if (err)
  3369. drop_inode = 1;
  3370. else {
  3371. inode->i_mapping->a_ops = &btrfs_aops;
  3372. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  3373. inode->i_fop = &btrfs_file_operations;
  3374. inode->i_op = &btrfs_file_inode_operations;
  3375. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  3376. }
  3377. dir->i_sb->s_dirt = 1;
  3378. btrfs_update_inode_block_group(trans, inode);
  3379. btrfs_update_inode_block_group(trans, dir);
  3380. out_unlock:
  3381. nr = trans->blocks_used;
  3382. btrfs_end_transaction_throttle(trans, root);
  3383. fail:
  3384. if (drop_inode) {
  3385. inode_dec_link_count(inode);
  3386. iput(inode);
  3387. }
  3388. btrfs_btree_balance_dirty(root, nr);
  3389. return err;
  3390. }
  3391. static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
  3392. struct dentry *dentry)
  3393. {
  3394. struct btrfs_trans_handle *trans;
  3395. struct btrfs_root *root = BTRFS_I(dir)->root;
  3396. struct inode *inode = old_dentry->d_inode;
  3397. u64 index;
  3398. unsigned long nr = 0;
  3399. int err;
  3400. int drop_inode = 0;
  3401. if (inode->i_nlink == 0)
  3402. return -ENOENT;
  3403. btrfs_inc_nlink(inode);
  3404. err = btrfs_check_metadata_free_space(root);
  3405. if (err)
  3406. goto fail;
  3407. err = btrfs_set_inode_index(dir, &index);
  3408. if (err)
  3409. goto fail;
  3410. trans = btrfs_start_transaction(root, 1);
  3411. btrfs_set_trans_block_group(trans, dir);
  3412. atomic_inc(&inode->i_count);
  3413. err = btrfs_add_nondir(trans, dentry, inode, 1, index);
  3414. if (err)
  3415. drop_inode = 1;
  3416. dir->i_sb->s_dirt = 1;
  3417. btrfs_update_inode_block_group(trans, dir);
  3418. err = btrfs_update_inode(trans, root, inode);
  3419. if (err)
  3420. drop_inode = 1;
  3421. nr = trans->blocks_used;
  3422. btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
  3423. btrfs_end_transaction_throttle(trans, root);
  3424. fail:
  3425. if (drop_inode) {
  3426. inode_dec_link_count(inode);
  3427. iput(inode);
  3428. }
  3429. btrfs_btree_balance_dirty(root, nr);
  3430. return err;
  3431. }
  3432. static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  3433. {
  3434. struct inode *inode = NULL;
  3435. struct btrfs_trans_handle *trans;
  3436. struct btrfs_root *root = BTRFS_I(dir)->root;
  3437. int err = 0;
  3438. int drop_on_err = 0;
  3439. u64 objectid = 0;
  3440. u64 index = 0;
  3441. unsigned long nr = 1;
  3442. err = btrfs_check_metadata_free_space(root);
  3443. if (err)
  3444. goto out_unlock;
  3445. trans = btrfs_start_transaction(root, 1);
  3446. btrfs_set_trans_block_group(trans, dir);
  3447. if (IS_ERR(trans)) {
  3448. err = PTR_ERR(trans);
  3449. goto out_unlock;
  3450. }
  3451. err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
  3452. if (err) {
  3453. err = -ENOSPC;
  3454. goto out_unlock;
  3455. }
  3456. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  3457. dentry->d_name.len,
  3458. dentry->d_parent->d_inode->i_ino, objectid,
  3459. BTRFS_I(dir)->block_group, S_IFDIR | mode,
  3460. &index);
  3461. if (IS_ERR(inode)) {
  3462. err = PTR_ERR(inode);
  3463. goto out_fail;
  3464. }
  3465. drop_on_err = 1;
  3466. err = btrfs_init_inode_security(inode, dir);
  3467. if (err)
  3468. goto out_fail;
  3469. inode->i_op = &btrfs_dir_inode_operations;
  3470. inode->i_fop = &btrfs_dir_file_operations;
  3471. btrfs_set_trans_block_group(trans, inode);
  3472. btrfs_i_size_write(inode, 0);
  3473. err = btrfs_update_inode(trans, root, inode);
  3474. if (err)
  3475. goto out_fail;
  3476. err = btrfs_add_link(trans, dentry->d_parent->d_inode,
  3477. inode, dentry->d_name.name,
  3478. dentry->d_name.len, 0, index);
  3479. if (err)
  3480. goto out_fail;
  3481. d_instantiate(dentry, inode);
  3482. drop_on_err = 0;
  3483. dir->i_sb->s_dirt = 1;
  3484. btrfs_update_inode_block_group(trans, inode);
  3485. btrfs_update_inode_block_group(trans, dir);
  3486. out_fail:
  3487. nr = trans->blocks_used;
  3488. btrfs_end_transaction_throttle(trans, root);
  3489. out_unlock:
  3490. if (drop_on_err)
  3491. iput(inode);
  3492. btrfs_btree_balance_dirty(root, nr);
  3493. return err;
  3494. }
  3495. /* helper for btfs_get_extent. Given an existing extent in the tree,
  3496. * and an extent that you want to insert, deal with overlap and insert
  3497. * the new extent into the tree.
  3498. */
  3499. static int merge_extent_mapping(struct extent_map_tree *em_tree,
  3500. struct extent_map *existing,
  3501. struct extent_map *em,
  3502. u64 map_start, u64 map_len)
  3503. {
  3504. u64 start_diff;
  3505. BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
  3506. start_diff = map_start - em->start;
  3507. em->start = map_start;
  3508. em->len = map_len;
  3509. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  3510. !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
  3511. em->block_start += start_diff;
  3512. em->block_len -= start_diff;
  3513. }
  3514. return add_extent_mapping(em_tree, em);
  3515. }
  3516. static noinline int uncompress_inline(struct btrfs_path *path,
  3517. struct inode *inode, struct page *page,
  3518. size_t pg_offset, u64 extent_offset,
  3519. struct btrfs_file_extent_item *item)
  3520. {
  3521. int ret;
  3522. struct extent_buffer *leaf = path->nodes[0];
  3523. char *tmp;
  3524. size_t max_size;
  3525. unsigned long inline_size;
  3526. unsigned long ptr;
  3527. WARN_ON(pg_offset != 0);
  3528. max_size = btrfs_file_extent_ram_bytes(leaf, item);
  3529. inline_size = btrfs_file_extent_inline_item_len(leaf,
  3530. btrfs_item_nr(leaf, path->slots[0]));
  3531. tmp = kmalloc(inline_size, GFP_NOFS);
  3532. ptr = btrfs_file_extent_inline_start(item);
  3533. read_extent_buffer(leaf, tmp, ptr, inline_size);
  3534. max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
  3535. ret = btrfs_zlib_decompress(tmp, page, extent_offset,
  3536. inline_size, max_size);
  3537. if (ret) {
  3538. char *kaddr = kmap_atomic(page, KM_USER0);
  3539. unsigned long copy_size = min_t(u64,
  3540. PAGE_CACHE_SIZE - pg_offset,
  3541. max_size - extent_offset);
  3542. memset(kaddr + pg_offset, 0, copy_size);
  3543. kunmap_atomic(kaddr, KM_USER0);
  3544. }
  3545. kfree(tmp);
  3546. return 0;
  3547. }
  3548. /*
  3549. * a bit scary, this does extent mapping from logical file offset to the disk.
  3550. * the ugly parts come from merging extents from the disk with the in-ram
  3551. * representation. This gets more complex because of the data=ordered code,
  3552. * where the in-ram extents might be locked pending data=ordered completion.
  3553. *
  3554. * This also copies inline extents directly into the page.
  3555. */
  3556. struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
  3557. size_t pg_offset, u64 start, u64 len,
  3558. int create)
  3559. {
  3560. int ret;
  3561. int err = 0;
  3562. u64 bytenr;
  3563. u64 extent_start = 0;
  3564. u64 extent_end = 0;
  3565. u64 objectid = inode->i_ino;
  3566. u32 found_type;
  3567. struct btrfs_path *path = NULL;
  3568. struct btrfs_root *root = BTRFS_I(inode)->root;
  3569. struct btrfs_file_extent_item *item;
  3570. struct extent_buffer *leaf;
  3571. struct btrfs_key found_key;
  3572. struct extent_map *em = NULL;
  3573. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  3574. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  3575. struct btrfs_trans_handle *trans = NULL;
  3576. int compressed;
  3577. again:
  3578. spin_lock(&em_tree->lock);
  3579. em = lookup_extent_mapping(em_tree, start, len);
  3580. if (em)
  3581. em->bdev = root->fs_info->fs_devices->latest_bdev;
  3582. spin_unlock(&em_tree->lock);
  3583. if (em) {
  3584. if (em->start > start || em->start + em->len <= start)
  3585. free_extent_map(em);
  3586. else if (em->block_start == EXTENT_MAP_INLINE && page)
  3587. free_extent_map(em);
  3588. else
  3589. goto out;
  3590. }
  3591. em = alloc_extent_map(GFP_NOFS);
  3592. if (!em) {
  3593. err = -ENOMEM;
  3594. goto out;
  3595. }
  3596. em->bdev = root->fs_info->fs_devices->latest_bdev;
  3597. em->start = EXTENT_MAP_HOLE;
  3598. em->orig_start = EXTENT_MAP_HOLE;
  3599. em->len = (u64)-1;
  3600. em->block_len = (u64)-1;
  3601. if (!path) {
  3602. path = btrfs_alloc_path();
  3603. BUG_ON(!path);
  3604. }
  3605. ret = btrfs_lookup_file_extent(trans, root, path,
  3606. objectid, start, trans != NULL);
  3607. if (ret < 0) {
  3608. err = ret;
  3609. goto out;
  3610. }
  3611. if (ret != 0) {
  3612. if (path->slots[0] == 0)
  3613. goto not_found;
  3614. path->slots[0]--;
  3615. }
  3616. leaf = path->nodes[0];
  3617. item = btrfs_item_ptr(leaf, path->slots[0],
  3618. struct btrfs_file_extent_item);
  3619. /* are we inside the extent that was found? */
  3620. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3621. found_type = btrfs_key_type(&found_key);
  3622. if (found_key.objectid != objectid ||
  3623. found_type != BTRFS_EXTENT_DATA_KEY) {
  3624. goto not_found;
  3625. }
  3626. found_type = btrfs_file_extent_type(leaf, item);
  3627. extent_start = found_key.offset;
  3628. compressed = btrfs_file_extent_compression(leaf, item);
  3629. if (found_type == BTRFS_FILE_EXTENT_REG ||
  3630. found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  3631. extent_end = extent_start +
  3632. btrfs_file_extent_num_bytes(leaf, item);
  3633. } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
  3634. size_t size;
  3635. size = btrfs_file_extent_inline_len(leaf, item);
  3636. extent_end = (extent_start + size + root->sectorsize - 1) &
  3637. ~((u64)root->sectorsize - 1);
  3638. }
  3639. if (start >= extent_end) {
  3640. path->slots[0]++;
  3641. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  3642. ret = btrfs_next_leaf(root, path);
  3643. if (ret < 0) {
  3644. err = ret;
  3645. goto out;
  3646. }
  3647. if (ret > 0)
  3648. goto not_found;
  3649. leaf = path->nodes[0];
  3650. }
  3651. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3652. if (found_key.objectid != objectid ||
  3653. found_key.type != BTRFS_EXTENT_DATA_KEY)
  3654. goto not_found;
  3655. if (start + len <= found_key.offset)
  3656. goto not_found;
  3657. em->start = start;
  3658. em->len = found_key.offset - start;
  3659. goto not_found_em;
  3660. }
  3661. if (found_type == BTRFS_FILE_EXTENT_REG ||
  3662. found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  3663. em->start = extent_start;
  3664. em->len = extent_end - extent_start;
  3665. em->orig_start = extent_start -
  3666. btrfs_file_extent_offset(leaf, item);
  3667. bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
  3668. if (bytenr == 0) {
  3669. em->block_start = EXTENT_MAP_HOLE;
  3670. goto insert;
  3671. }
  3672. if (compressed) {
  3673. set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  3674. em->block_start = bytenr;
  3675. em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
  3676. item);
  3677. } else {
  3678. bytenr += btrfs_file_extent_offset(leaf, item);
  3679. em->block_start = bytenr;
  3680. em->block_len = em->len;
  3681. if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
  3682. set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
  3683. }
  3684. goto insert;
  3685. } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
  3686. unsigned long ptr;
  3687. char *map;
  3688. size_t size;
  3689. size_t extent_offset;
  3690. size_t copy_size;
  3691. em->block_start = EXTENT_MAP_INLINE;
  3692. if (!page || create) {
  3693. em->start = extent_start;
  3694. em->len = extent_end - extent_start;
  3695. goto out;
  3696. }
  3697. size = btrfs_file_extent_inline_len(leaf, item);
  3698. extent_offset = page_offset(page) + pg_offset - extent_start;
  3699. copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
  3700. size - extent_offset);
  3701. em->start = extent_start + extent_offset;
  3702. em->len = (copy_size + root->sectorsize - 1) &
  3703. ~((u64)root->sectorsize - 1);
  3704. em->orig_start = EXTENT_MAP_INLINE;
  3705. if (compressed)
  3706. set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  3707. ptr = btrfs_file_extent_inline_start(item) + extent_offset;
  3708. if (create == 0 && !PageUptodate(page)) {
  3709. if (btrfs_file_extent_compression(leaf, item) ==
  3710. BTRFS_COMPRESS_ZLIB) {
  3711. ret = uncompress_inline(path, inode, page,
  3712. pg_offset,
  3713. extent_offset, item);
  3714. BUG_ON(ret);
  3715. } else {
  3716. map = kmap(page);
  3717. read_extent_buffer(leaf, map + pg_offset, ptr,
  3718. copy_size);
  3719. kunmap(page);
  3720. }
  3721. flush_dcache_page(page);
  3722. } else if (create && PageUptodate(page)) {
  3723. if (!trans) {
  3724. kunmap(page);
  3725. free_extent_map(em);
  3726. em = NULL;
  3727. btrfs_release_path(root, path);
  3728. trans = btrfs_join_transaction(root, 1);
  3729. goto again;
  3730. }
  3731. map = kmap(page);
  3732. write_extent_buffer(leaf, map + pg_offset, ptr,
  3733. copy_size);
  3734. kunmap(page);
  3735. btrfs_mark_buffer_dirty(leaf);
  3736. }
  3737. set_extent_uptodate(io_tree, em->start,
  3738. extent_map_end(em) - 1, GFP_NOFS);
  3739. goto insert;
  3740. } else {
  3741. printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
  3742. WARN_ON(1);
  3743. }
  3744. not_found:
  3745. em->start = start;
  3746. em->len = len;
  3747. not_found_em:
  3748. em->block_start = EXTENT_MAP_HOLE;
  3749. set_bit(EXTENT_FLAG_VACANCY, &em->flags);
  3750. insert:
  3751. btrfs_release_path(root, path);
  3752. if (em->start > start || extent_map_end(em) <= start) {
  3753. printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
  3754. "[%llu %llu]\n", (unsigned long long)em->start,
  3755. (unsigned long long)em->len,
  3756. (unsigned long long)start,
  3757. (unsigned long long)len);
  3758. err = -EIO;
  3759. goto out;
  3760. }
  3761. err = 0;
  3762. spin_lock(&em_tree->lock);
  3763. ret = add_extent_mapping(em_tree, em);
  3764. /* it is possible that someone inserted the extent into the tree
  3765. * while we had the lock dropped. It is also possible that
  3766. * an overlapping map exists in the tree
  3767. */
  3768. if (ret == -EEXIST) {
  3769. struct extent_map *existing;
  3770. ret = 0;
  3771. existing = lookup_extent_mapping(em_tree, start, len);
  3772. if (existing && (existing->start > start ||
  3773. existing->start + existing->len <= start)) {
  3774. free_extent_map(existing);
  3775. existing = NULL;
  3776. }
  3777. if (!existing) {
  3778. existing = lookup_extent_mapping(em_tree, em->start,
  3779. em->len);
  3780. if (existing) {
  3781. err = merge_extent_mapping(em_tree, existing,
  3782. em, start,
  3783. root->sectorsize);
  3784. free_extent_map(existing);
  3785. if (err) {
  3786. free_extent_map(em);
  3787. em = NULL;
  3788. }
  3789. } else {
  3790. err = -EIO;
  3791. free_extent_map(em);
  3792. em = NULL;
  3793. }
  3794. } else {
  3795. free_extent_map(em);
  3796. em = existing;
  3797. err = 0;
  3798. }
  3799. }
  3800. spin_unlock(&em_tree->lock);
  3801. out:
  3802. if (path)
  3803. btrfs_free_path(path);
  3804. if (trans) {
  3805. ret = btrfs_end_transaction(trans, root);
  3806. if (!err)
  3807. err = ret;
  3808. }
  3809. if (err) {
  3810. free_extent_map(em);
  3811. return ERR_PTR(err);
  3812. }
  3813. return em;
  3814. }
  3815. static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
  3816. const struct iovec *iov, loff_t offset,
  3817. unsigned long nr_segs)
  3818. {
  3819. return -EINVAL;
  3820. }
  3821. static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  3822. __u64 start, __u64 len)
  3823. {
  3824. return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
  3825. }
  3826. int btrfs_readpage(struct file *file, struct page *page)
  3827. {
  3828. struct extent_io_tree *tree;
  3829. tree = &BTRFS_I(page->mapping->host)->io_tree;
  3830. return extent_read_full_page(tree, page, btrfs_get_extent);
  3831. }
  3832. static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
  3833. {
  3834. struct extent_io_tree *tree;
  3835. if (current->flags & PF_MEMALLOC) {
  3836. redirty_page_for_writepage(wbc, page);
  3837. unlock_page(page);
  3838. return 0;
  3839. }
  3840. tree = &BTRFS_I(page->mapping->host)->io_tree;
  3841. return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
  3842. }
  3843. int btrfs_writepages(struct address_space *mapping,
  3844. struct writeback_control *wbc)
  3845. {
  3846. struct extent_io_tree *tree;
  3847. tree = &BTRFS_I(mapping->host)->io_tree;
  3848. return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
  3849. }
  3850. static int
  3851. btrfs_readpages(struct file *file, struct address_space *mapping,
  3852. struct list_head *pages, unsigned nr_pages)
  3853. {
  3854. struct extent_io_tree *tree;
  3855. tree = &BTRFS_I(mapping->host)->io_tree;
  3856. return extent_readpages(tree, mapping, pages, nr_pages,
  3857. btrfs_get_extent);
  3858. }
  3859. static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
  3860. {
  3861. struct extent_io_tree *tree;
  3862. struct extent_map_tree *map;
  3863. int ret;
  3864. tree = &BTRFS_I(page->mapping->host)->io_tree;
  3865. map = &BTRFS_I(page->mapping->host)->extent_tree;
  3866. ret = try_release_extent_mapping(map, tree, page, gfp_flags);
  3867. if (ret == 1) {
  3868. ClearPagePrivate(page);
  3869. set_page_private(page, 0);
  3870. page_cache_release(page);
  3871. }
  3872. return ret;
  3873. }
  3874. static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
  3875. {
  3876. if (PageWriteback(page) || PageDirty(page))
  3877. return 0;
  3878. return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
  3879. }
  3880. static void btrfs_invalidatepage(struct page *page, unsigned long offset)
  3881. {
  3882. struct extent_io_tree *tree;
  3883. struct btrfs_ordered_extent *ordered;
  3884. u64 page_start = page_offset(page);
  3885. u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
  3886. wait_on_page_writeback(page);
  3887. tree = &BTRFS_I(page->mapping->host)->io_tree;
  3888. if (offset) {
  3889. btrfs_releasepage(page, GFP_NOFS);
  3890. return;
  3891. }
  3892. lock_extent(tree, page_start, page_end, GFP_NOFS);
  3893. ordered = btrfs_lookup_ordered_extent(page->mapping->host,
  3894. page_offset(page));
  3895. if (ordered) {
  3896. /*
  3897. * IO on this page will never be started, so we need
  3898. * to account for any ordered extents now
  3899. */
  3900. clear_extent_bit(tree, page_start, page_end,
  3901. EXTENT_DIRTY | EXTENT_DELALLOC |
  3902. EXTENT_LOCKED, 1, 0, GFP_NOFS);
  3903. btrfs_finish_ordered_io(page->mapping->host,
  3904. page_start, page_end);
  3905. btrfs_put_ordered_extent(ordered);
  3906. lock_extent(tree, page_start, page_end, GFP_NOFS);
  3907. }
  3908. clear_extent_bit(tree, page_start, page_end,
  3909. EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
  3910. EXTENT_ORDERED,
  3911. 1, 1, GFP_NOFS);
  3912. __btrfs_releasepage(page, GFP_NOFS);
  3913. ClearPageChecked(page);
  3914. if (PagePrivate(page)) {
  3915. ClearPagePrivate(page);
  3916. set_page_private(page, 0);
  3917. page_cache_release(page);
  3918. }
  3919. }
  3920. /*
  3921. * btrfs_page_mkwrite() is not allowed to change the file size as it gets
  3922. * called from a page fault handler when a page is first dirtied. Hence we must
  3923. * be careful to check for EOF conditions here. We set the page up correctly
  3924. * for a written page which means we get ENOSPC checking when writing into
  3925. * holes and correct delalloc and unwritten extent mapping on filesystems that
  3926. * support these features.
  3927. *
  3928. * We are not allowed to take the i_mutex here so we have to play games to
  3929. * protect against truncate races as the page could now be beyond EOF. Because
  3930. * vmtruncate() writes the inode size before removing pages, once we have the
  3931. * page lock we can determine safely if the page is beyond EOF. If it is not
  3932. * beyond EOF, then the page is guaranteed safe against truncation until we
  3933. * unlock the page.
  3934. */
  3935. int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  3936. {
  3937. struct page *page = vmf->page;
  3938. struct inode *inode = fdentry(vma->vm_file)->d_inode;
  3939. struct btrfs_root *root = BTRFS_I(inode)->root;
  3940. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  3941. struct btrfs_ordered_extent *ordered;
  3942. char *kaddr;
  3943. unsigned long zero_start;
  3944. loff_t size;
  3945. int ret;
  3946. u64 page_start;
  3947. u64 page_end;
  3948. ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
  3949. if (ret) {
  3950. if (ret == -ENOMEM)
  3951. ret = VM_FAULT_OOM;
  3952. else /* -ENOSPC, -EIO, etc */
  3953. ret = VM_FAULT_SIGBUS;
  3954. goto out;
  3955. }
  3956. ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
  3957. again:
  3958. lock_page(page);
  3959. size = i_size_read(inode);
  3960. page_start = page_offset(page);
  3961. page_end = page_start + PAGE_CACHE_SIZE - 1;
  3962. if ((page->mapping != inode->i_mapping) ||
  3963. (page_start >= size)) {
  3964. btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
  3965. /* page got truncated out from underneath us */
  3966. goto out_unlock;
  3967. }
  3968. wait_on_page_writeback(page);
  3969. lock_extent(io_tree, page_start, page_end, GFP_NOFS);
  3970. set_page_extent_mapped(page);
  3971. /*
  3972. * we can't set the delalloc bits if there are pending ordered
  3973. * extents. Drop our locks and wait for them to finish
  3974. */
  3975. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  3976. if (ordered) {
  3977. unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
  3978. unlock_page(page);
  3979. btrfs_start_ordered_extent(inode, ordered, 1);
  3980. btrfs_put_ordered_extent(ordered);
  3981. goto again;
  3982. }
  3983. btrfs_set_extent_delalloc(inode, page_start, page_end);
  3984. ret = 0;
  3985. /* page is wholly or partially inside EOF */
  3986. if (page_start + PAGE_CACHE_SIZE > size)
  3987. zero_start = size & ~PAGE_CACHE_MASK;
  3988. else
  3989. zero_start = PAGE_CACHE_SIZE;
  3990. if (zero_start != PAGE_CACHE_SIZE) {
  3991. kaddr = kmap(page);
  3992. memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
  3993. flush_dcache_page(page);
  3994. kunmap(page);
  3995. }
  3996. ClearPageChecked(page);
  3997. set_page_dirty(page);
  3998. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  3999. unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
  4000. out_unlock:
  4001. unlock_page(page);
  4002. out:
  4003. return ret;
  4004. }
  4005. static void btrfs_truncate(struct inode *inode)
  4006. {
  4007. struct btrfs_root *root = BTRFS_I(inode)->root;
  4008. int ret;
  4009. struct btrfs_trans_handle *trans;
  4010. unsigned long nr;
  4011. u64 mask = root->sectorsize - 1;
  4012. if (!S_ISREG(inode->i_mode))
  4013. return;
  4014. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  4015. return;
  4016. btrfs_truncate_page(inode->i_mapping, inode->i_size);
  4017. btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
  4018. trans = btrfs_start_transaction(root, 1);
  4019. /*
  4020. * setattr is responsible for setting the ordered_data_close flag,
  4021. * but that is only tested during the last file release. That
  4022. * could happen well after the next commit, leaving a great big
  4023. * window where new writes may get lost if someone chooses to write
  4024. * to this file after truncating to zero
  4025. *
  4026. * The inode doesn't have any dirty data here, and so if we commit
  4027. * this is a noop. If someone immediately starts writing to the inode
  4028. * it is very likely we'll catch some of their writes in this
  4029. * transaction, and the commit will find this file on the ordered
  4030. * data list with good things to send down.
  4031. *
  4032. * This is a best effort solution, there is still a window where
  4033. * using truncate to replace the contents of the file will
  4034. * end up with a zero length file after a crash.
  4035. */
  4036. if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
  4037. btrfs_add_ordered_operation(trans, root, inode);
  4038. btrfs_set_trans_block_group(trans, inode);
  4039. btrfs_i_size_write(inode, inode->i_size);
  4040. ret = btrfs_orphan_add(trans, inode);
  4041. if (ret)
  4042. goto out;
  4043. /* FIXME, add redo link to tree so we don't leak on crash */
  4044. ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
  4045. BTRFS_EXTENT_DATA_KEY);
  4046. btrfs_update_inode(trans, root, inode);
  4047. ret = btrfs_orphan_del(trans, inode);
  4048. BUG_ON(ret);
  4049. out:
  4050. nr = trans->blocks_used;
  4051. ret = btrfs_end_transaction_throttle(trans, root);
  4052. BUG_ON(ret);
  4053. btrfs_btree_balance_dirty(root, nr);
  4054. }
  4055. /*
  4056. * create a new subvolume directory/inode (helper for the ioctl).
  4057. */
  4058. int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
  4059. struct btrfs_root *new_root, struct dentry *dentry,
  4060. u64 new_dirid, u64 alloc_hint)
  4061. {
  4062. struct inode *inode;
  4063. int error;
  4064. u64 index = 0;
  4065. inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
  4066. new_dirid, alloc_hint, S_IFDIR | 0700, &index);
  4067. if (IS_ERR(inode))
  4068. return PTR_ERR(inode);
  4069. inode->i_op = &btrfs_dir_inode_operations;
  4070. inode->i_fop = &btrfs_dir_file_operations;
  4071. inode->i_nlink = 1;
  4072. btrfs_i_size_write(inode, 0);
  4073. error = btrfs_update_inode(trans, new_root, inode);
  4074. if (error)
  4075. return error;
  4076. d_instantiate(dentry, inode);
  4077. return 0;
  4078. }
  4079. /* helper function for file defrag and space balancing. This
  4080. * forces readahead on a given range of bytes in an inode
  4081. */
  4082. unsigned long btrfs_force_ra(struct address_space *mapping,
  4083. struct file_ra_state *ra, struct file *file,
  4084. pgoff_t offset, pgoff_t last_index)
  4085. {
  4086. pgoff_t req_size = last_index - offset + 1;
  4087. page_cache_sync_readahead(mapping, ra, file, offset, req_size);
  4088. return offset + req_size;
  4089. }
  4090. struct inode *btrfs_alloc_inode(struct super_block *sb)
  4091. {
  4092. struct btrfs_inode *ei;
  4093. ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
  4094. if (!ei)
  4095. return NULL;
  4096. ei->last_trans = 0;
  4097. ei->logged_trans = 0;
  4098. btrfs_ordered_inode_tree_init(&ei->ordered_tree);
  4099. ei->i_acl = BTRFS_ACL_NOT_CACHED;
  4100. ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
  4101. INIT_LIST_HEAD(&ei->i_orphan);
  4102. INIT_LIST_HEAD(&ei->ordered_operations);
  4103. return &ei->vfs_inode;
  4104. }
  4105. void btrfs_destroy_inode(struct inode *inode)
  4106. {
  4107. struct btrfs_ordered_extent *ordered;
  4108. struct btrfs_root *root = BTRFS_I(inode)->root;
  4109. WARN_ON(!list_empty(&inode->i_dentry));
  4110. WARN_ON(inode->i_data.nrpages);
  4111. if (BTRFS_I(inode)->i_acl &&
  4112. BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
  4113. posix_acl_release(BTRFS_I(inode)->i_acl);
  4114. if (BTRFS_I(inode)->i_default_acl &&
  4115. BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
  4116. posix_acl_release(BTRFS_I(inode)->i_default_acl);
  4117. /*
  4118. * Make sure we're properly removed from the ordered operation
  4119. * lists.
  4120. */
  4121. smp_mb();
  4122. if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
  4123. spin_lock(&root->fs_info->ordered_extent_lock);
  4124. list_del_init(&BTRFS_I(inode)->ordered_operations);
  4125. spin_unlock(&root->fs_info->ordered_extent_lock);
  4126. }
  4127. spin_lock(&root->list_lock);
  4128. if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
  4129. printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
  4130. " list\n", inode->i_ino);
  4131. dump_stack();
  4132. }
  4133. spin_unlock(&root->list_lock);
  4134. while (1) {
  4135. ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
  4136. if (!ordered)
  4137. break;
  4138. else {
  4139. printk(KERN_ERR "btrfs found ordered "
  4140. "extent %llu %llu on inode cleanup\n",
  4141. (unsigned long long)ordered->file_offset,
  4142. (unsigned long long)ordered->len);
  4143. btrfs_remove_ordered_extent(inode, ordered);
  4144. btrfs_put_ordered_extent(ordered);
  4145. btrfs_put_ordered_extent(ordered);
  4146. }
  4147. }
  4148. inode_tree_del(inode);
  4149. btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
  4150. kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
  4151. }
  4152. static void init_once(void *foo)
  4153. {
  4154. struct btrfs_inode *ei = (struct btrfs_inode *) foo;
  4155. inode_init_once(&ei->vfs_inode);
  4156. }
  4157. void btrfs_destroy_cachep(void)
  4158. {
  4159. if (btrfs_inode_cachep)
  4160. kmem_cache_destroy(btrfs_inode_cachep);
  4161. if (btrfs_trans_handle_cachep)
  4162. kmem_cache_destroy(btrfs_trans_handle_cachep);
  4163. if (btrfs_transaction_cachep)
  4164. kmem_cache_destroy(btrfs_transaction_cachep);
  4165. if (btrfs_path_cachep)
  4166. kmem_cache_destroy(btrfs_path_cachep);
  4167. }
  4168. int btrfs_init_cachep(void)
  4169. {
  4170. btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
  4171. sizeof(struct btrfs_inode), 0,
  4172. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
  4173. if (!btrfs_inode_cachep)
  4174. goto fail;
  4175. btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
  4176. sizeof(struct btrfs_trans_handle), 0,
  4177. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  4178. if (!btrfs_trans_handle_cachep)
  4179. goto fail;
  4180. btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
  4181. sizeof(struct btrfs_transaction), 0,
  4182. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  4183. if (!btrfs_transaction_cachep)
  4184. goto fail;
  4185. btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
  4186. sizeof(struct btrfs_path), 0,
  4187. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  4188. if (!btrfs_path_cachep)
  4189. goto fail;
  4190. return 0;
  4191. fail:
  4192. btrfs_destroy_cachep();
  4193. return -ENOMEM;
  4194. }
  4195. static int btrfs_getattr(struct vfsmount *mnt,
  4196. struct dentry *dentry, struct kstat *stat)
  4197. {
  4198. struct inode *inode = dentry->d_inode;
  4199. generic_fillattr(inode, stat);
  4200. stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
  4201. stat->blksize = PAGE_CACHE_SIZE;
  4202. stat->blocks = (inode_get_bytes(inode) +
  4203. BTRFS_I(inode)->delalloc_bytes) >> 9;
  4204. return 0;
  4205. }
  4206. static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
  4207. struct inode *new_dir, struct dentry *new_dentry)
  4208. {
  4209. struct btrfs_trans_handle *trans;
  4210. struct btrfs_root *root = BTRFS_I(old_dir)->root;
  4211. struct inode *new_inode = new_dentry->d_inode;
  4212. struct inode *old_inode = old_dentry->d_inode;
  4213. struct timespec ctime = CURRENT_TIME;
  4214. u64 index = 0;
  4215. int ret;
  4216. /* we're not allowed to rename between subvolumes */
  4217. if (BTRFS_I(old_inode)->root->root_key.objectid !=
  4218. BTRFS_I(new_dir)->root->root_key.objectid)
  4219. return -EXDEV;
  4220. if (S_ISDIR(old_inode->i_mode) && new_inode &&
  4221. new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
  4222. return -ENOTEMPTY;
  4223. }
  4224. /* to rename a snapshot or subvolume, we need to juggle the
  4225. * backrefs. This isn't coded yet
  4226. */
  4227. if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
  4228. return -EXDEV;
  4229. ret = btrfs_check_metadata_free_space(root);
  4230. if (ret)
  4231. goto out_unlock;
  4232. /*
  4233. * we're using rename to replace one file with another.
  4234. * and the replacement file is large. Start IO on it now so
  4235. * we don't add too much work to the end of the transaction
  4236. */
  4237. if (new_inode && old_inode && S_ISREG(old_inode->i_mode) &&
  4238. new_inode->i_size &&
  4239. old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  4240. filemap_flush(old_inode->i_mapping);
  4241. trans = btrfs_start_transaction(root, 1);
  4242. /*
  4243. * make sure the inode gets flushed if it is replacing
  4244. * something.
  4245. */
  4246. if (new_inode && new_inode->i_size &&
  4247. old_inode && S_ISREG(old_inode->i_mode)) {
  4248. btrfs_add_ordered_operation(trans, root, old_inode);
  4249. }
  4250. /*
  4251. * this is an ugly little race, but the rename is required to make
  4252. * sure that if we crash, the inode is either at the old name
  4253. * or the new one. pinning the log transaction lets us make sure
  4254. * we don't allow a log commit to come in after we unlink the
  4255. * name but before we add the new name back in.
  4256. */
  4257. btrfs_pin_log_trans(root);
  4258. btrfs_set_trans_block_group(trans, new_dir);
  4259. btrfs_inc_nlink(old_dentry->d_inode);
  4260. old_dir->i_ctime = old_dir->i_mtime = ctime;
  4261. new_dir->i_ctime = new_dir->i_mtime = ctime;
  4262. old_inode->i_ctime = ctime;
  4263. if (old_dentry->d_parent != new_dentry->d_parent)
  4264. btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
  4265. ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
  4266. old_dentry->d_name.name,
  4267. old_dentry->d_name.len);
  4268. if (ret)
  4269. goto out_fail;
  4270. if (new_inode) {
  4271. new_inode->i_ctime = CURRENT_TIME;
  4272. ret = btrfs_unlink_inode(trans, root, new_dir,
  4273. new_dentry->d_inode,
  4274. new_dentry->d_name.name,
  4275. new_dentry->d_name.len);
  4276. if (ret)
  4277. goto out_fail;
  4278. if (new_inode->i_nlink == 0) {
  4279. ret = btrfs_orphan_add(trans, new_dentry->d_inode);
  4280. if (ret)
  4281. goto out_fail;
  4282. }
  4283. }
  4284. ret = btrfs_set_inode_index(new_dir, &index);
  4285. if (ret)
  4286. goto out_fail;
  4287. ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
  4288. old_inode, new_dentry->d_name.name,
  4289. new_dentry->d_name.len, 1, index);
  4290. if (ret)
  4291. goto out_fail;
  4292. btrfs_log_new_name(trans, old_inode, old_dir,
  4293. new_dentry->d_parent);
  4294. out_fail:
  4295. /* this btrfs_end_log_trans just allows the current
  4296. * log-sub transaction to complete
  4297. */
  4298. btrfs_end_log_trans(root);
  4299. btrfs_end_transaction_throttle(trans, root);
  4300. out_unlock:
  4301. return ret;
  4302. }
  4303. /*
  4304. * some fairly slow code that needs optimization. This walks the list
  4305. * of all the inodes with pending delalloc and forces them to disk.
  4306. */
  4307. int btrfs_start_delalloc_inodes(struct btrfs_root *root)
  4308. {
  4309. struct list_head *head = &root->fs_info->delalloc_inodes;
  4310. struct btrfs_inode *binode;
  4311. struct inode *inode;
  4312. if (root->fs_info->sb->s_flags & MS_RDONLY)
  4313. return -EROFS;
  4314. spin_lock(&root->fs_info->delalloc_lock);
  4315. while (!list_empty(head)) {
  4316. binode = list_entry(head->next, struct btrfs_inode,
  4317. delalloc_inodes);
  4318. inode = igrab(&binode->vfs_inode);
  4319. if (!inode)
  4320. list_del_init(&binode->delalloc_inodes);
  4321. spin_unlock(&root->fs_info->delalloc_lock);
  4322. if (inode) {
  4323. filemap_flush(inode->i_mapping);
  4324. iput(inode);
  4325. }
  4326. cond_resched();
  4327. spin_lock(&root->fs_info->delalloc_lock);
  4328. }
  4329. spin_unlock(&root->fs_info->delalloc_lock);
  4330. /* the filemap_flush will queue IO into the worker threads, but
  4331. * we have to make sure the IO is actually started and that
  4332. * ordered extents get created before we return
  4333. */
  4334. atomic_inc(&root->fs_info->async_submit_draining);
  4335. while (atomic_read(&root->fs_info->nr_async_submits) ||
  4336. atomic_read(&root->fs_info->async_delalloc_pages)) {
  4337. wait_event(root->fs_info->async_submit_wait,
  4338. (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
  4339. atomic_read(&root->fs_info->async_delalloc_pages) == 0));
  4340. }
  4341. atomic_dec(&root->fs_info->async_submit_draining);
  4342. return 0;
  4343. }
  4344. static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
  4345. const char *symname)
  4346. {
  4347. struct btrfs_trans_handle *trans;
  4348. struct btrfs_root *root = BTRFS_I(dir)->root;
  4349. struct btrfs_path *path;
  4350. struct btrfs_key key;
  4351. struct inode *inode = NULL;
  4352. int err;
  4353. int drop_inode = 0;
  4354. u64 objectid;
  4355. u64 index = 0 ;
  4356. int name_len;
  4357. int datasize;
  4358. unsigned long ptr;
  4359. struct btrfs_file_extent_item *ei;
  4360. struct extent_buffer *leaf;
  4361. unsigned long nr = 0;
  4362. name_len = strlen(symname) + 1;
  4363. if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
  4364. return -ENAMETOOLONG;
  4365. err = btrfs_check_metadata_free_space(root);
  4366. if (err)
  4367. goto out_fail;
  4368. trans = btrfs_start_transaction(root, 1);
  4369. btrfs_set_trans_block_group(trans, dir);
  4370. err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
  4371. if (err) {
  4372. err = -ENOSPC;
  4373. goto out_unlock;
  4374. }
  4375. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  4376. dentry->d_name.len,
  4377. dentry->d_parent->d_inode->i_ino, objectid,
  4378. BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
  4379. &index);
  4380. err = PTR_ERR(inode);
  4381. if (IS_ERR(inode))
  4382. goto out_unlock;
  4383. err = btrfs_init_inode_security(inode, dir);
  4384. if (err) {
  4385. drop_inode = 1;
  4386. goto out_unlock;
  4387. }
  4388. btrfs_set_trans_block_group(trans, inode);
  4389. err = btrfs_add_nondir(trans, dentry, inode, 0, index);
  4390. if (err)
  4391. drop_inode = 1;
  4392. else {
  4393. inode->i_mapping->a_ops = &btrfs_aops;
  4394. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  4395. inode->i_fop = &btrfs_file_operations;
  4396. inode->i_op = &btrfs_file_inode_operations;
  4397. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  4398. }
  4399. dir->i_sb->s_dirt = 1;
  4400. btrfs_update_inode_block_group(trans, inode);
  4401. btrfs_update_inode_block_group(trans, dir);
  4402. if (drop_inode)
  4403. goto out_unlock;
  4404. path = btrfs_alloc_path();
  4405. BUG_ON(!path);
  4406. key.objectid = inode->i_ino;
  4407. key.offset = 0;
  4408. btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
  4409. datasize = btrfs_file_extent_calc_inline_size(name_len);
  4410. err = btrfs_insert_empty_item(trans, root, path, &key,
  4411. datasize);
  4412. if (err) {
  4413. drop_inode = 1;
  4414. goto out_unlock;
  4415. }
  4416. leaf = path->nodes[0];
  4417. ei = btrfs_item_ptr(leaf, path->slots[0],
  4418. struct btrfs_file_extent_item);
  4419. btrfs_set_file_extent_generation(leaf, ei, trans->transid);
  4420. btrfs_set_file_extent_type(leaf, ei,
  4421. BTRFS_FILE_EXTENT_INLINE);
  4422. btrfs_set_file_extent_encryption(leaf, ei, 0);
  4423. btrfs_set_file_extent_compression(leaf, ei, 0);
  4424. btrfs_set_file_extent_other_encoding(leaf, ei, 0);
  4425. btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
  4426. ptr = btrfs_file_extent_inline_start(ei);
  4427. write_extent_buffer(leaf, symname, ptr, name_len);
  4428. btrfs_mark_buffer_dirty(leaf);
  4429. btrfs_free_path(path);
  4430. inode->i_op = &btrfs_symlink_inode_operations;
  4431. inode->i_mapping->a_ops = &btrfs_symlink_aops;
  4432. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  4433. inode_set_bytes(inode, name_len);
  4434. btrfs_i_size_write(inode, name_len - 1);
  4435. err = btrfs_update_inode(trans, root, inode);
  4436. if (err)
  4437. drop_inode = 1;
  4438. out_unlock:
  4439. nr = trans->blocks_used;
  4440. btrfs_end_transaction_throttle(trans, root);
  4441. out_fail:
  4442. if (drop_inode) {
  4443. inode_dec_link_count(inode);
  4444. iput(inode);
  4445. }
  4446. btrfs_btree_balance_dirty(root, nr);
  4447. return err;
  4448. }
  4449. static int prealloc_file_range(struct btrfs_trans_handle *trans,
  4450. struct inode *inode, u64 start, u64 end,
  4451. u64 locked_end, u64 alloc_hint, int mode)
  4452. {
  4453. struct btrfs_root *root = BTRFS_I(inode)->root;
  4454. struct btrfs_key ins;
  4455. u64 alloc_size;
  4456. u64 cur_offset = start;
  4457. u64 num_bytes = end - start;
  4458. int ret = 0;
  4459. while (num_bytes > 0) {
  4460. alloc_size = min(num_bytes, root->fs_info->max_extent);
  4461. ret = btrfs_reserve_extent(trans, root, alloc_size,
  4462. root->sectorsize, 0, alloc_hint,
  4463. (u64)-1, &ins, 1);
  4464. if (ret) {
  4465. WARN_ON(1);
  4466. goto out;
  4467. }
  4468. ret = insert_reserved_file_extent(trans, inode,
  4469. cur_offset, ins.objectid,
  4470. ins.offset, ins.offset,
  4471. ins.offset, locked_end,
  4472. 0, 0, 0,
  4473. BTRFS_FILE_EXTENT_PREALLOC);
  4474. BUG_ON(ret);
  4475. num_bytes -= ins.offset;
  4476. cur_offset += ins.offset;
  4477. alloc_hint = ins.objectid + ins.offset;
  4478. }
  4479. out:
  4480. if (cur_offset > start) {
  4481. inode->i_ctime = CURRENT_TIME;
  4482. btrfs_set_flag(inode, PREALLOC);
  4483. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  4484. cur_offset > i_size_read(inode))
  4485. btrfs_i_size_write(inode, cur_offset);
  4486. ret = btrfs_update_inode(trans, root, inode);
  4487. BUG_ON(ret);
  4488. }
  4489. return ret;
  4490. }
  4491. static long btrfs_fallocate(struct inode *inode, int mode,
  4492. loff_t offset, loff_t len)
  4493. {
  4494. u64 cur_offset;
  4495. u64 last_byte;
  4496. u64 alloc_start;
  4497. u64 alloc_end;
  4498. u64 alloc_hint = 0;
  4499. u64 locked_end;
  4500. u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
  4501. struct extent_map *em;
  4502. struct btrfs_trans_handle *trans;
  4503. int ret;
  4504. alloc_start = offset & ~mask;
  4505. alloc_end = (offset + len + mask) & ~mask;
  4506. /*
  4507. * wait for ordered IO before we have any locks. We'll loop again
  4508. * below with the locks held.
  4509. */
  4510. btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
  4511. mutex_lock(&inode->i_mutex);
  4512. if (alloc_start > inode->i_size) {
  4513. ret = btrfs_cont_expand(inode, alloc_start);
  4514. if (ret)
  4515. goto out;
  4516. }
  4517. locked_end = alloc_end - 1;
  4518. while (1) {
  4519. struct btrfs_ordered_extent *ordered;
  4520. trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
  4521. if (!trans) {
  4522. ret = -EIO;
  4523. goto out;
  4524. }
  4525. /* the extent lock is ordered inside the running
  4526. * transaction
  4527. */
  4528. lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  4529. GFP_NOFS);
  4530. ordered = btrfs_lookup_first_ordered_extent(inode,
  4531. alloc_end - 1);
  4532. if (ordered &&
  4533. ordered->file_offset + ordered->len > alloc_start &&
  4534. ordered->file_offset < alloc_end) {
  4535. btrfs_put_ordered_extent(ordered);
  4536. unlock_extent(&BTRFS_I(inode)->io_tree,
  4537. alloc_start, locked_end, GFP_NOFS);
  4538. btrfs_end_transaction(trans, BTRFS_I(inode)->root);
  4539. /*
  4540. * we can't wait on the range with the transaction
  4541. * running or with the extent lock held
  4542. */
  4543. btrfs_wait_ordered_range(inode, alloc_start,
  4544. alloc_end - alloc_start);
  4545. } else {
  4546. if (ordered)
  4547. btrfs_put_ordered_extent(ordered);
  4548. break;
  4549. }
  4550. }
  4551. cur_offset = alloc_start;
  4552. while (1) {
  4553. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  4554. alloc_end - cur_offset, 0);
  4555. BUG_ON(IS_ERR(em) || !em);
  4556. last_byte = min(extent_map_end(em), alloc_end);
  4557. last_byte = (last_byte + mask) & ~mask;
  4558. if (em->block_start == EXTENT_MAP_HOLE) {
  4559. ret = prealloc_file_range(trans, inode, cur_offset,
  4560. last_byte, locked_end + 1,
  4561. alloc_hint, mode);
  4562. if (ret < 0) {
  4563. free_extent_map(em);
  4564. break;
  4565. }
  4566. }
  4567. if (em->block_start <= EXTENT_MAP_LAST_BYTE)
  4568. alloc_hint = em->block_start;
  4569. free_extent_map(em);
  4570. cur_offset = last_byte;
  4571. if (cur_offset >= alloc_end) {
  4572. ret = 0;
  4573. break;
  4574. }
  4575. }
  4576. unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  4577. GFP_NOFS);
  4578. btrfs_end_transaction(trans, BTRFS_I(inode)->root);
  4579. out:
  4580. mutex_unlock(&inode->i_mutex);
  4581. return ret;
  4582. }
  4583. static int btrfs_set_page_dirty(struct page *page)
  4584. {
  4585. return __set_page_dirty_nobuffers(page);
  4586. }
  4587. static int btrfs_permission(struct inode *inode, int mask)
  4588. {
  4589. if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
  4590. return -EACCES;
  4591. return generic_permission(inode, mask, btrfs_check_acl);
  4592. }
  4593. static struct inode_operations btrfs_dir_inode_operations = {
  4594. .getattr = btrfs_getattr,
  4595. .lookup = btrfs_lookup,
  4596. .create = btrfs_create,
  4597. .unlink = btrfs_unlink,
  4598. .link = btrfs_link,
  4599. .mkdir = btrfs_mkdir,
  4600. .rmdir = btrfs_rmdir,
  4601. .rename = btrfs_rename,
  4602. .symlink = btrfs_symlink,
  4603. .setattr = btrfs_setattr,
  4604. .mknod = btrfs_mknod,
  4605. .setxattr = btrfs_setxattr,
  4606. .getxattr = btrfs_getxattr,
  4607. .listxattr = btrfs_listxattr,
  4608. .removexattr = btrfs_removexattr,
  4609. .permission = btrfs_permission,
  4610. };
  4611. static struct inode_operations btrfs_dir_ro_inode_operations = {
  4612. .lookup = btrfs_lookup,
  4613. .permission = btrfs_permission,
  4614. };
  4615. static struct file_operations btrfs_dir_file_operations = {
  4616. .llseek = generic_file_llseek,
  4617. .read = generic_read_dir,
  4618. .readdir = btrfs_real_readdir,
  4619. .unlocked_ioctl = btrfs_ioctl,
  4620. #ifdef CONFIG_COMPAT
  4621. .compat_ioctl = btrfs_ioctl,
  4622. #endif
  4623. .release = btrfs_release_file,
  4624. .fsync = btrfs_sync_file,
  4625. };
  4626. static struct extent_io_ops btrfs_extent_io_ops = {
  4627. .fill_delalloc = run_delalloc_range,
  4628. .submit_bio_hook = btrfs_submit_bio_hook,
  4629. .merge_bio_hook = btrfs_merge_bio_hook,
  4630. .readpage_end_io_hook = btrfs_readpage_end_io_hook,
  4631. .writepage_end_io_hook = btrfs_writepage_end_io_hook,
  4632. .writepage_start_hook = btrfs_writepage_start_hook,
  4633. .readpage_io_failed_hook = btrfs_io_failed_hook,
  4634. .set_bit_hook = btrfs_set_bit_hook,
  4635. .clear_bit_hook = btrfs_clear_bit_hook,
  4636. };
  4637. /*
  4638. * btrfs doesn't support the bmap operation because swapfiles
  4639. * use bmap to make a mapping of extents in the file. They assume
  4640. * these extents won't change over the life of the file and they
  4641. * use the bmap result to do IO directly to the drive.
  4642. *
  4643. * the btrfs bmap call would return logical addresses that aren't
  4644. * suitable for IO and they also will change frequently as COW
  4645. * operations happen. So, swapfile + btrfs == corruption.
  4646. *
  4647. * For now we're avoiding this by dropping bmap.
  4648. */
  4649. static struct address_space_operations btrfs_aops = {
  4650. .readpage = btrfs_readpage,
  4651. .writepage = btrfs_writepage,
  4652. .writepages = btrfs_writepages,
  4653. .readpages = btrfs_readpages,
  4654. .sync_page = block_sync_page,
  4655. .direct_IO = btrfs_direct_IO,
  4656. .invalidatepage = btrfs_invalidatepage,
  4657. .releasepage = btrfs_releasepage,
  4658. .set_page_dirty = btrfs_set_page_dirty,
  4659. };
  4660. static struct address_space_operations btrfs_symlink_aops = {
  4661. .readpage = btrfs_readpage,
  4662. .writepage = btrfs_writepage,
  4663. .invalidatepage = btrfs_invalidatepage,
  4664. .releasepage = btrfs_releasepage,
  4665. };
  4666. static struct inode_operations btrfs_file_inode_operations = {
  4667. .truncate = btrfs_truncate,
  4668. .getattr = btrfs_getattr,
  4669. .setattr = btrfs_setattr,
  4670. .setxattr = btrfs_setxattr,
  4671. .getxattr = btrfs_getxattr,
  4672. .listxattr = btrfs_listxattr,
  4673. .removexattr = btrfs_removexattr,
  4674. .permission = btrfs_permission,
  4675. .fallocate = btrfs_fallocate,
  4676. .fiemap = btrfs_fiemap,
  4677. };
  4678. static struct inode_operations btrfs_special_inode_operations = {
  4679. .getattr = btrfs_getattr,
  4680. .setattr = btrfs_setattr,
  4681. .permission = btrfs_permission,
  4682. .setxattr = btrfs_setxattr,
  4683. .getxattr = btrfs_getxattr,
  4684. .listxattr = btrfs_listxattr,
  4685. .removexattr = btrfs_removexattr,
  4686. };
  4687. static struct inode_operations btrfs_symlink_inode_operations = {
  4688. .readlink = generic_readlink,
  4689. .follow_link = page_follow_link_light,
  4690. .put_link = page_put_link,
  4691. .permission = btrfs_permission,
  4692. .setxattr = btrfs_setxattr,
  4693. .getxattr = btrfs_getxattr,
  4694. .listxattr = btrfs_listxattr,
  4695. .removexattr = btrfs_removexattr,
  4696. };