mmzone.h 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <linux/page-flags-layout.h>
  17. #include <linux/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coalesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. enum {
  34. MIGRATE_UNMOVABLE,
  35. MIGRATE_RECLAIMABLE,
  36. MIGRATE_MOVABLE,
  37. MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
  38. MIGRATE_RESERVE = MIGRATE_PCPTYPES,
  39. #ifdef CONFIG_CMA
  40. /*
  41. * MIGRATE_CMA migration type is designed to mimic the way
  42. * ZONE_MOVABLE works. Only movable pages can be allocated
  43. * from MIGRATE_CMA pageblocks and page allocator never
  44. * implicitly change migration type of MIGRATE_CMA pageblock.
  45. *
  46. * The way to use it is to change migratetype of a range of
  47. * pageblocks to MIGRATE_CMA which can be done by
  48. * __free_pageblock_cma() function. What is important though
  49. * is that a range of pageblocks must be aligned to
  50. * MAX_ORDER_NR_PAGES should biggest page be bigger then
  51. * a single pageblock.
  52. */
  53. MIGRATE_CMA,
  54. #endif
  55. #ifdef CONFIG_MEMORY_ISOLATION
  56. MIGRATE_ISOLATE, /* can't allocate from here */
  57. #endif
  58. MIGRATE_TYPES
  59. };
  60. #ifdef CONFIG_CMA
  61. # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  62. #else
  63. # define is_migrate_cma(migratetype) false
  64. #endif
  65. #define for_each_migratetype_order(order, type) \
  66. for (order = 0; order < MAX_ORDER; order++) \
  67. for (type = 0; type < MIGRATE_TYPES; type++)
  68. extern int page_group_by_mobility_disabled;
  69. static inline int get_pageblock_migratetype(struct page *page)
  70. {
  71. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  72. }
  73. struct free_area {
  74. struct list_head free_list[MIGRATE_TYPES];
  75. unsigned long nr_free;
  76. };
  77. struct pglist_data;
  78. /*
  79. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  80. * So add a wild amount of padding here to ensure that they fall into separate
  81. * cachelines. There are very few zone structures in the machine, so space
  82. * consumption is not a concern here.
  83. */
  84. #if defined(CONFIG_SMP)
  85. struct zone_padding {
  86. char x[0];
  87. } ____cacheline_internodealigned_in_smp;
  88. #define ZONE_PADDING(name) struct zone_padding name;
  89. #else
  90. #define ZONE_PADDING(name)
  91. #endif
  92. enum zone_stat_item {
  93. /* First 128 byte cacheline (assuming 64 bit words) */
  94. NR_FREE_PAGES,
  95. NR_LRU_BASE,
  96. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  97. NR_ACTIVE_ANON, /* " " " " " */
  98. NR_INACTIVE_FILE, /* " " " " " */
  99. NR_ACTIVE_FILE, /* " " " " " */
  100. NR_UNEVICTABLE, /* " " " " " */
  101. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  102. NR_ANON_PAGES, /* Mapped anonymous pages */
  103. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  104. only modified from process context */
  105. NR_FILE_PAGES,
  106. NR_FILE_DIRTY,
  107. NR_WRITEBACK,
  108. NR_SLAB_RECLAIMABLE,
  109. NR_SLAB_UNRECLAIMABLE,
  110. NR_PAGETABLE, /* used for pagetables */
  111. NR_KERNEL_STACK,
  112. /* Second 128 byte cacheline */
  113. NR_UNSTABLE_NFS, /* NFS unstable pages */
  114. NR_BOUNCE,
  115. NR_VMSCAN_WRITE,
  116. NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
  117. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  118. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  119. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  120. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  121. NR_DIRTIED, /* page dirtyings since bootup */
  122. NR_WRITTEN, /* page writings since bootup */
  123. #ifdef CONFIG_NUMA
  124. NUMA_HIT, /* allocated in intended node */
  125. NUMA_MISS, /* allocated in non intended node */
  126. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  127. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  128. NUMA_LOCAL, /* allocation from local node */
  129. NUMA_OTHER, /* allocation from other node */
  130. #endif
  131. NR_ANON_TRANSPARENT_HUGEPAGES,
  132. NR_FREE_CMA_PAGES,
  133. NR_VM_ZONE_STAT_ITEMS };
  134. /*
  135. * We do arithmetic on the LRU lists in various places in the code,
  136. * so it is important to keep the active lists LRU_ACTIVE higher in
  137. * the array than the corresponding inactive lists, and to keep
  138. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  139. *
  140. * This has to be kept in sync with the statistics in zone_stat_item
  141. * above and the descriptions in vmstat_text in mm/vmstat.c
  142. */
  143. #define LRU_BASE 0
  144. #define LRU_ACTIVE 1
  145. #define LRU_FILE 2
  146. enum lru_list {
  147. LRU_INACTIVE_ANON = LRU_BASE,
  148. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  149. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  150. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  151. LRU_UNEVICTABLE,
  152. NR_LRU_LISTS
  153. };
  154. #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
  155. #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
  156. static inline int is_file_lru(enum lru_list lru)
  157. {
  158. return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
  159. }
  160. static inline int is_active_lru(enum lru_list lru)
  161. {
  162. return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
  163. }
  164. static inline int is_unevictable_lru(enum lru_list lru)
  165. {
  166. return (lru == LRU_UNEVICTABLE);
  167. }
  168. struct zone_reclaim_stat {
  169. /*
  170. * The pageout code in vmscan.c keeps track of how many of the
  171. * mem/swap backed and file backed pages are referenced.
  172. * The higher the rotated/scanned ratio, the more valuable
  173. * that cache is.
  174. *
  175. * The anon LRU stats live in [0], file LRU stats in [1]
  176. */
  177. unsigned long recent_rotated[2];
  178. unsigned long recent_scanned[2];
  179. };
  180. struct lruvec {
  181. struct list_head lists[NR_LRU_LISTS];
  182. struct zone_reclaim_stat reclaim_stat;
  183. #ifdef CONFIG_MEMCG
  184. struct zone *zone;
  185. #endif
  186. };
  187. /* Mask used at gathering information at once (see memcontrol.c) */
  188. #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
  189. #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
  190. #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
  191. /* Isolate clean file */
  192. #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
  193. /* Isolate unmapped file */
  194. #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
  195. /* Isolate for asynchronous migration */
  196. #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
  197. /* Isolate unevictable pages */
  198. #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
  199. /* LRU Isolation modes. */
  200. typedef unsigned __bitwise__ isolate_mode_t;
  201. enum zone_watermarks {
  202. WMARK_MIN,
  203. WMARK_LOW,
  204. WMARK_HIGH,
  205. NR_WMARK
  206. };
  207. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  208. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  209. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  210. struct per_cpu_pages {
  211. int count; /* number of pages in the list */
  212. int high; /* high watermark, emptying needed */
  213. int batch; /* chunk size for buddy add/remove */
  214. /* Lists of pages, one per migrate type stored on the pcp-lists */
  215. struct list_head lists[MIGRATE_PCPTYPES];
  216. };
  217. struct per_cpu_pageset {
  218. struct per_cpu_pages pcp;
  219. #ifdef CONFIG_NUMA
  220. s8 expire;
  221. #endif
  222. #ifdef CONFIG_SMP
  223. s8 stat_threshold;
  224. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  225. #endif
  226. };
  227. #endif /* !__GENERATING_BOUNDS.H */
  228. enum zone_type {
  229. #ifdef CONFIG_ZONE_DMA
  230. /*
  231. * ZONE_DMA is used when there are devices that are not able
  232. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  233. * carve out the portion of memory that is needed for these devices.
  234. * The range is arch specific.
  235. *
  236. * Some examples
  237. *
  238. * Architecture Limit
  239. * ---------------------------
  240. * parisc, ia64, sparc <4G
  241. * s390 <2G
  242. * arm Various
  243. * alpha Unlimited or 0-16MB.
  244. *
  245. * i386, x86_64 and multiple other arches
  246. * <16M.
  247. */
  248. ZONE_DMA,
  249. #endif
  250. #ifdef CONFIG_ZONE_DMA32
  251. /*
  252. * x86_64 needs two ZONE_DMAs because it supports devices that are
  253. * only able to do DMA to the lower 16M but also 32 bit devices that
  254. * can only do DMA areas below 4G.
  255. */
  256. ZONE_DMA32,
  257. #endif
  258. /*
  259. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  260. * performed on pages in ZONE_NORMAL if the DMA devices support
  261. * transfers to all addressable memory.
  262. */
  263. ZONE_NORMAL,
  264. #ifdef CONFIG_HIGHMEM
  265. /*
  266. * A memory area that is only addressable by the kernel through
  267. * mapping portions into its own address space. This is for example
  268. * used by i386 to allow the kernel to address the memory beyond
  269. * 900MB. The kernel will set up special mappings (page
  270. * table entries on i386) for each page that the kernel needs to
  271. * access.
  272. */
  273. ZONE_HIGHMEM,
  274. #endif
  275. ZONE_MOVABLE,
  276. __MAX_NR_ZONES
  277. };
  278. #ifndef __GENERATING_BOUNDS_H
  279. struct zone {
  280. /* Fields commonly accessed by the page allocator */
  281. /* zone watermarks, access with *_wmark_pages(zone) macros */
  282. unsigned long watermark[NR_WMARK];
  283. /*
  284. * When free pages are below this point, additional steps are taken
  285. * when reading the number of free pages to avoid per-cpu counter
  286. * drift allowing watermarks to be breached
  287. */
  288. unsigned long percpu_drift_mark;
  289. /*
  290. * We don't know if the memory that we're going to allocate will be freeable
  291. * or/and it will be released eventually, so to avoid totally wasting several
  292. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  293. * to run OOM on the lower zones despite there's tons of freeable ram
  294. * on the higher zones). This array is recalculated at runtime if the
  295. * sysctl_lowmem_reserve_ratio sysctl changes.
  296. */
  297. unsigned long lowmem_reserve[MAX_NR_ZONES];
  298. /*
  299. * This is a per-zone reserve of pages that should not be
  300. * considered dirtyable memory.
  301. */
  302. unsigned long dirty_balance_reserve;
  303. #ifdef CONFIG_NUMA
  304. int node;
  305. /*
  306. * zone reclaim becomes active if more unmapped pages exist.
  307. */
  308. unsigned long min_unmapped_pages;
  309. unsigned long min_slab_pages;
  310. #endif
  311. struct per_cpu_pageset __percpu *pageset;
  312. /*
  313. * free areas of different sizes
  314. */
  315. spinlock_t lock;
  316. int all_unreclaimable; /* All pages pinned */
  317. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  318. /* Set to true when the PG_migrate_skip bits should be cleared */
  319. bool compact_blockskip_flush;
  320. /* pfns where compaction scanners should start */
  321. unsigned long compact_cached_free_pfn;
  322. unsigned long compact_cached_migrate_pfn;
  323. #endif
  324. #ifdef CONFIG_MEMORY_HOTPLUG
  325. /* see spanned/present_pages for more description */
  326. seqlock_t span_seqlock;
  327. #endif
  328. struct free_area free_area[MAX_ORDER];
  329. #ifndef CONFIG_SPARSEMEM
  330. /*
  331. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  332. * In SPARSEMEM, this map is stored in struct mem_section
  333. */
  334. unsigned long *pageblock_flags;
  335. #endif /* CONFIG_SPARSEMEM */
  336. #ifdef CONFIG_COMPACTION
  337. /*
  338. * On compaction failure, 1<<compact_defer_shift compactions
  339. * are skipped before trying again. The number attempted since
  340. * last failure is tracked with compact_considered.
  341. */
  342. unsigned int compact_considered;
  343. unsigned int compact_defer_shift;
  344. int compact_order_failed;
  345. #endif
  346. ZONE_PADDING(_pad1_)
  347. /* Fields commonly accessed by the page reclaim scanner */
  348. spinlock_t lru_lock;
  349. struct lruvec lruvec;
  350. unsigned long pages_scanned; /* since last reclaim */
  351. unsigned long flags; /* zone flags, see below */
  352. /* Zone statistics */
  353. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  354. /*
  355. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  356. * this zone's LRU. Maintained by the pageout code.
  357. */
  358. unsigned int inactive_ratio;
  359. ZONE_PADDING(_pad2_)
  360. /* Rarely used or read-mostly fields */
  361. /*
  362. * wait_table -- the array holding the hash table
  363. * wait_table_hash_nr_entries -- the size of the hash table array
  364. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  365. *
  366. * The purpose of all these is to keep track of the people
  367. * waiting for a page to become available and make them
  368. * runnable again when possible. The trouble is that this
  369. * consumes a lot of space, especially when so few things
  370. * wait on pages at a given time. So instead of using
  371. * per-page waitqueues, we use a waitqueue hash table.
  372. *
  373. * The bucket discipline is to sleep on the same queue when
  374. * colliding and wake all in that wait queue when removing.
  375. * When something wakes, it must check to be sure its page is
  376. * truly available, a la thundering herd. The cost of a
  377. * collision is great, but given the expected load of the
  378. * table, they should be so rare as to be outweighed by the
  379. * benefits from the saved space.
  380. *
  381. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  382. * primary users of these fields, and in mm/page_alloc.c
  383. * free_area_init_core() performs the initialization of them.
  384. */
  385. wait_queue_head_t * wait_table;
  386. unsigned long wait_table_hash_nr_entries;
  387. unsigned long wait_table_bits;
  388. /*
  389. * Discontig memory support fields.
  390. */
  391. struct pglist_data *zone_pgdat;
  392. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  393. unsigned long zone_start_pfn;
  394. /*
  395. * spanned_pages is the total pages spanned by the zone, including
  396. * holes, which is calculated as:
  397. * spanned_pages = zone_end_pfn - zone_start_pfn;
  398. *
  399. * present_pages is physical pages existing within the zone, which
  400. * is calculated as:
  401. * present_pages = spanned_pages - absent_pages(pages in holes);
  402. *
  403. * managed_pages is present pages managed by the buddy system, which
  404. * is calculated as (reserved_pages includes pages allocated by the
  405. * bootmem allocator):
  406. * managed_pages = present_pages - reserved_pages;
  407. *
  408. * So present_pages may be used by memory hotplug or memory power
  409. * management logic to figure out unmanaged pages by checking
  410. * (present_pages - managed_pages). And managed_pages should be used
  411. * by page allocator and vm scanner to calculate all kinds of watermarks
  412. * and thresholds.
  413. *
  414. * Locking rules:
  415. *
  416. * zone_start_pfn and spanned_pages are protected by span_seqlock.
  417. * It is a seqlock because it has to be read outside of zone->lock,
  418. * and it is done in the main allocator path. But, it is written
  419. * quite infrequently.
  420. *
  421. * The span_seq lock is declared along with zone->lock because it is
  422. * frequently read in proximity to zone->lock. It's good to
  423. * give them a chance of being in the same cacheline.
  424. *
  425. * Write access to present_pages and managed_pages at runtime should
  426. * be protected by lock_memory_hotplug()/unlock_memory_hotplug().
  427. * Any reader who can't tolerant drift of present_pages and
  428. * managed_pages should hold memory hotplug lock to get a stable value.
  429. */
  430. unsigned long spanned_pages;
  431. unsigned long present_pages;
  432. unsigned long managed_pages;
  433. /*
  434. * rarely used fields:
  435. */
  436. const char *name;
  437. } ____cacheline_internodealigned_in_smp;
  438. typedef enum {
  439. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  440. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  441. ZONE_CONGESTED, /* zone has many dirty pages backed by
  442. * a congested BDI
  443. */
  444. } zone_flags_t;
  445. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  446. {
  447. set_bit(flag, &zone->flags);
  448. }
  449. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  450. {
  451. return test_and_set_bit(flag, &zone->flags);
  452. }
  453. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  454. {
  455. clear_bit(flag, &zone->flags);
  456. }
  457. static inline int zone_is_reclaim_congested(const struct zone *zone)
  458. {
  459. return test_bit(ZONE_CONGESTED, &zone->flags);
  460. }
  461. static inline int zone_is_reclaim_locked(const struct zone *zone)
  462. {
  463. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  464. }
  465. static inline int zone_is_oom_locked(const struct zone *zone)
  466. {
  467. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  468. }
  469. static inline unsigned long zone_end_pfn(const struct zone *zone)
  470. {
  471. return zone->zone_start_pfn + zone->spanned_pages;
  472. }
  473. static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
  474. {
  475. return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
  476. }
  477. static inline bool zone_is_initialized(struct zone *zone)
  478. {
  479. return !!zone->wait_table;
  480. }
  481. static inline bool zone_is_empty(struct zone *zone)
  482. {
  483. return zone->spanned_pages == 0;
  484. }
  485. /*
  486. * The "priority" of VM scanning is how much of the queues we will scan in one
  487. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  488. * queues ("queue_length >> 12") during an aging round.
  489. */
  490. #define DEF_PRIORITY 12
  491. /* Maximum number of zones on a zonelist */
  492. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  493. #ifdef CONFIG_NUMA
  494. /*
  495. * The NUMA zonelists are doubled because we need zonelists that restrict the
  496. * allocations to a single node for GFP_THISNODE.
  497. *
  498. * [0] : Zonelist with fallback
  499. * [1] : No fallback (GFP_THISNODE)
  500. */
  501. #define MAX_ZONELISTS 2
  502. /*
  503. * We cache key information from each zonelist for smaller cache
  504. * footprint when scanning for free pages in get_page_from_freelist().
  505. *
  506. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  507. * up short of free memory since the last time (last_fullzone_zap)
  508. * we zero'd fullzones.
  509. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  510. * id, so that we can efficiently evaluate whether that node is
  511. * set in the current tasks mems_allowed.
  512. *
  513. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  514. * indexed by a zones offset in the zonelist zones[] array.
  515. *
  516. * The get_page_from_freelist() routine does two scans. During the
  517. * first scan, we skip zones whose corresponding bit in 'fullzones'
  518. * is set or whose corresponding node in current->mems_allowed (which
  519. * comes from cpusets) is not set. During the second scan, we bypass
  520. * this zonelist_cache, to ensure we look methodically at each zone.
  521. *
  522. * Once per second, we zero out (zap) fullzones, forcing us to
  523. * reconsider nodes that might have regained more free memory.
  524. * The field last_full_zap is the time we last zapped fullzones.
  525. *
  526. * This mechanism reduces the amount of time we waste repeatedly
  527. * reexaming zones for free memory when they just came up low on
  528. * memory momentarilly ago.
  529. *
  530. * The zonelist_cache struct members logically belong in struct
  531. * zonelist. However, the mempolicy zonelists constructed for
  532. * MPOL_BIND are intentionally variable length (and usually much
  533. * shorter). A general purpose mechanism for handling structs with
  534. * multiple variable length members is more mechanism than we want
  535. * here. We resort to some special case hackery instead.
  536. *
  537. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  538. * part because they are shorter), so we put the fixed length stuff
  539. * at the front of the zonelist struct, ending in a variable length
  540. * zones[], as is needed by MPOL_BIND.
  541. *
  542. * Then we put the optional zonelist cache on the end of the zonelist
  543. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  544. * the fixed length portion at the front of the struct. This pointer
  545. * both enables us to find the zonelist cache, and in the case of
  546. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  547. * to know that the zonelist cache is not there.
  548. *
  549. * The end result is that struct zonelists come in two flavors:
  550. * 1) The full, fixed length version, shown below, and
  551. * 2) The custom zonelists for MPOL_BIND.
  552. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  553. *
  554. * Even though there may be multiple CPU cores on a node modifying
  555. * fullzones or last_full_zap in the same zonelist_cache at the same
  556. * time, we don't lock it. This is just hint data - if it is wrong now
  557. * and then, the allocator will still function, perhaps a bit slower.
  558. */
  559. struct zonelist_cache {
  560. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  561. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  562. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  563. };
  564. #else
  565. #define MAX_ZONELISTS 1
  566. struct zonelist_cache;
  567. #endif
  568. /*
  569. * This struct contains information about a zone in a zonelist. It is stored
  570. * here to avoid dereferences into large structures and lookups of tables
  571. */
  572. struct zoneref {
  573. struct zone *zone; /* Pointer to actual zone */
  574. int zone_idx; /* zone_idx(zoneref->zone) */
  575. };
  576. /*
  577. * One allocation request operates on a zonelist. A zonelist
  578. * is a list of zones, the first one is the 'goal' of the
  579. * allocation, the other zones are fallback zones, in decreasing
  580. * priority.
  581. *
  582. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  583. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  584. * *
  585. * To speed the reading of the zonelist, the zonerefs contain the zone index
  586. * of the entry being read. Helper functions to access information given
  587. * a struct zoneref are
  588. *
  589. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  590. * zonelist_zone_idx() - Return the index of the zone for an entry
  591. * zonelist_node_idx() - Return the index of the node for an entry
  592. */
  593. struct zonelist {
  594. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  595. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  596. #ifdef CONFIG_NUMA
  597. struct zonelist_cache zlcache; // optional ...
  598. #endif
  599. };
  600. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  601. struct node_active_region {
  602. unsigned long start_pfn;
  603. unsigned long end_pfn;
  604. int nid;
  605. };
  606. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  607. #ifndef CONFIG_DISCONTIGMEM
  608. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  609. extern struct page *mem_map;
  610. #endif
  611. /*
  612. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  613. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  614. * zone denotes.
  615. *
  616. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  617. * it's memory layout.
  618. *
  619. * Memory statistics and page replacement data structures are maintained on a
  620. * per-zone basis.
  621. */
  622. struct bootmem_data;
  623. typedef struct pglist_data {
  624. struct zone node_zones[MAX_NR_ZONES];
  625. struct zonelist node_zonelists[MAX_ZONELISTS];
  626. int nr_zones;
  627. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  628. struct page *node_mem_map;
  629. #ifdef CONFIG_MEMCG
  630. struct page_cgroup *node_page_cgroup;
  631. #endif
  632. #endif
  633. #ifndef CONFIG_NO_BOOTMEM
  634. struct bootmem_data *bdata;
  635. #endif
  636. #ifdef CONFIG_MEMORY_HOTPLUG
  637. /*
  638. * Must be held any time you expect node_start_pfn, node_present_pages
  639. * or node_spanned_pages stay constant. Holding this will also
  640. * guarantee that any pfn_valid() stays that way.
  641. *
  642. * Nests above zone->lock and zone->size_seqlock.
  643. */
  644. spinlock_t node_size_lock;
  645. #endif
  646. unsigned long node_start_pfn;
  647. unsigned long node_present_pages; /* total number of physical pages */
  648. unsigned long node_spanned_pages; /* total size of physical page
  649. range, including holes */
  650. int node_id;
  651. nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */
  652. wait_queue_head_t kswapd_wait;
  653. wait_queue_head_t pfmemalloc_wait;
  654. struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
  655. int kswapd_max_order;
  656. enum zone_type classzone_idx;
  657. #ifdef CONFIG_NUMA_BALANCING
  658. /*
  659. * Lock serializing the per destination node AutoNUMA memory
  660. * migration rate limiting data.
  661. */
  662. spinlock_t numabalancing_migrate_lock;
  663. /* Rate limiting time interval */
  664. unsigned long numabalancing_migrate_next_window;
  665. /* Number of pages migrated during the rate limiting time interval */
  666. unsigned long numabalancing_migrate_nr_pages;
  667. #endif
  668. } pg_data_t;
  669. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  670. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  671. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  672. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  673. #else
  674. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  675. #endif
  676. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  677. #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
  678. #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
  679. static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
  680. {
  681. return pgdat->node_start_pfn + pgdat->node_spanned_pages;
  682. }
  683. static inline bool pgdat_is_empty(pg_data_t *pgdat)
  684. {
  685. return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
  686. }
  687. #include <linux/memory_hotplug.h>
  688. extern struct mutex zonelists_mutex;
  689. void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
  690. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
  691. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  692. int classzone_idx, int alloc_flags);
  693. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  694. int classzone_idx, int alloc_flags);
  695. enum memmap_context {
  696. MEMMAP_EARLY,
  697. MEMMAP_HOTPLUG,
  698. };
  699. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  700. unsigned long size,
  701. enum memmap_context context);
  702. extern void lruvec_init(struct lruvec *lruvec);
  703. static inline struct zone *lruvec_zone(struct lruvec *lruvec)
  704. {
  705. #ifdef CONFIG_MEMCG
  706. return lruvec->zone;
  707. #else
  708. return container_of(lruvec, struct zone, lruvec);
  709. #endif
  710. }
  711. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  712. void memory_present(int nid, unsigned long start, unsigned long end);
  713. #else
  714. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  715. #endif
  716. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  717. int local_memory_node(int node_id);
  718. #else
  719. static inline int local_memory_node(int node_id) { return node_id; };
  720. #endif
  721. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  722. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  723. #endif
  724. /*
  725. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  726. */
  727. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  728. static inline int populated_zone(struct zone *zone)
  729. {
  730. return (!!zone->present_pages);
  731. }
  732. extern int movable_zone;
  733. static inline int zone_movable_is_highmem(void)
  734. {
  735. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  736. return movable_zone == ZONE_HIGHMEM;
  737. #else
  738. return 0;
  739. #endif
  740. }
  741. static inline int is_highmem_idx(enum zone_type idx)
  742. {
  743. #ifdef CONFIG_HIGHMEM
  744. return (idx == ZONE_HIGHMEM ||
  745. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  746. #else
  747. return 0;
  748. #endif
  749. }
  750. static inline int is_normal_idx(enum zone_type idx)
  751. {
  752. return (idx == ZONE_NORMAL);
  753. }
  754. /**
  755. * is_highmem - helper function to quickly check if a struct zone is a
  756. * highmem zone or not. This is an attempt to keep references
  757. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  758. * @zone - pointer to struct zone variable
  759. */
  760. static inline int is_highmem(struct zone *zone)
  761. {
  762. #ifdef CONFIG_HIGHMEM
  763. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  764. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  765. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  766. zone_movable_is_highmem());
  767. #else
  768. return 0;
  769. #endif
  770. }
  771. static inline int is_normal(struct zone *zone)
  772. {
  773. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  774. }
  775. static inline int is_dma32(struct zone *zone)
  776. {
  777. #ifdef CONFIG_ZONE_DMA32
  778. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  779. #else
  780. return 0;
  781. #endif
  782. }
  783. static inline int is_dma(struct zone *zone)
  784. {
  785. #ifdef CONFIG_ZONE_DMA
  786. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  787. #else
  788. return 0;
  789. #endif
  790. }
  791. /* These two functions are used to setup the per zone pages min values */
  792. struct ctl_table;
  793. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  794. void __user *, size_t *, loff_t *);
  795. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  796. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  797. void __user *, size_t *, loff_t *);
  798. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  799. void __user *, size_t *, loff_t *);
  800. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  801. void __user *, size_t *, loff_t *);
  802. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  803. void __user *, size_t *, loff_t *);
  804. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  805. void __user *, size_t *, loff_t *);
  806. extern char numa_zonelist_order[];
  807. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  808. #ifndef CONFIG_NEED_MULTIPLE_NODES
  809. extern struct pglist_data contig_page_data;
  810. #define NODE_DATA(nid) (&contig_page_data)
  811. #define NODE_MEM_MAP(nid) mem_map
  812. #else /* CONFIG_NEED_MULTIPLE_NODES */
  813. #include <asm/mmzone.h>
  814. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  815. extern struct pglist_data *first_online_pgdat(void);
  816. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  817. extern struct zone *next_zone(struct zone *zone);
  818. /**
  819. * for_each_online_pgdat - helper macro to iterate over all online nodes
  820. * @pgdat - pointer to a pg_data_t variable
  821. */
  822. #define for_each_online_pgdat(pgdat) \
  823. for (pgdat = first_online_pgdat(); \
  824. pgdat; \
  825. pgdat = next_online_pgdat(pgdat))
  826. /**
  827. * for_each_zone - helper macro to iterate over all memory zones
  828. * @zone - pointer to struct zone variable
  829. *
  830. * The user only needs to declare the zone variable, for_each_zone
  831. * fills it in.
  832. */
  833. #define for_each_zone(zone) \
  834. for (zone = (first_online_pgdat())->node_zones; \
  835. zone; \
  836. zone = next_zone(zone))
  837. #define for_each_populated_zone(zone) \
  838. for (zone = (first_online_pgdat())->node_zones; \
  839. zone; \
  840. zone = next_zone(zone)) \
  841. if (!populated_zone(zone)) \
  842. ; /* do nothing */ \
  843. else
  844. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  845. {
  846. return zoneref->zone;
  847. }
  848. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  849. {
  850. return zoneref->zone_idx;
  851. }
  852. static inline int zonelist_node_idx(struct zoneref *zoneref)
  853. {
  854. #ifdef CONFIG_NUMA
  855. /* zone_to_nid not available in this context */
  856. return zoneref->zone->node;
  857. #else
  858. return 0;
  859. #endif /* CONFIG_NUMA */
  860. }
  861. /**
  862. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  863. * @z - The cursor used as a starting point for the search
  864. * @highest_zoneidx - The zone index of the highest zone to return
  865. * @nodes - An optional nodemask to filter the zonelist with
  866. * @zone - The first suitable zone found is returned via this parameter
  867. *
  868. * This function returns the next zone at or below a given zone index that is
  869. * within the allowed nodemask using a cursor as the starting point for the
  870. * search. The zoneref returned is a cursor that represents the current zone
  871. * being examined. It should be advanced by one before calling
  872. * next_zones_zonelist again.
  873. */
  874. struct zoneref *next_zones_zonelist(struct zoneref *z,
  875. enum zone_type highest_zoneidx,
  876. nodemask_t *nodes,
  877. struct zone **zone);
  878. /**
  879. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  880. * @zonelist - The zonelist to search for a suitable zone
  881. * @highest_zoneidx - The zone index of the highest zone to return
  882. * @nodes - An optional nodemask to filter the zonelist with
  883. * @zone - The first suitable zone found is returned via this parameter
  884. *
  885. * This function returns the first zone at or below a given zone index that is
  886. * within the allowed nodemask. The zoneref returned is a cursor that can be
  887. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  888. * one before calling.
  889. */
  890. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  891. enum zone_type highest_zoneidx,
  892. nodemask_t *nodes,
  893. struct zone **zone)
  894. {
  895. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  896. zone);
  897. }
  898. /**
  899. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  900. * @zone - The current zone in the iterator
  901. * @z - The current pointer within zonelist->zones being iterated
  902. * @zlist - The zonelist being iterated
  903. * @highidx - The zone index of the highest zone to return
  904. * @nodemask - Nodemask allowed by the allocator
  905. *
  906. * This iterator iterates though all zones at or below a given zone index and
  907. * within a given nodemask
  908. */
  909. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  910. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  911. zone; \
  912. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  913. /**
  914. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  915. * @zone - The current zone in the iterator
  916. * @z - The current pointer within zonelist->zones being iterated
  917. * @zlist - The zonelist being iterated
  918. * @highidx - The zone index of the highest zone to return
  919. *
  920. * This iterator iterates though all zones at or below a given zone index.
  921. */
  922. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  923. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  924. #ifdef CONFIG_SPARSEMEM
  925. #include <asm/sparsemem.h>
  926. #endif
  927. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  928. !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  929. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  930. {
  931. return 0;
  932. }
  933. #endif
  934. #ifdef CONFIG_FLATMEM
  935. #define pfn_to_nid(pfn) (0)
  936. #endif
  937. #ifdef CONFIG_SPARSEMEM
  938. /*
  939. * SECTION_SHIFT #bits space required to store a section #
  940. *
  941. * PA_SECTION_SHIFT physical address to/from section number
  942. * PFN_SECTION_SHIFT pfn to/from section number
  943. */
  944. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  945. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  946. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  947. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  948. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  949. #define SECTION_BLOCKFLAGS_BITS \
  950. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  951. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  952. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  953. #endif
  954. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  955. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  956. #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
  957. #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
  958. struct page;
  959. struct page_cgroup;
  960. struct mem_section {
  961. /*
  962. * This is, logically, a pointer to an array of struct
  963. * pages. However, it is stored with some other magic.
  964. * (see sparse.c::sparse_init_one_section())
  965. *
  966. * Additionally during early boot we encode node id of
  967. * the location of the section here to guide allocation.
  968. * (see sparse.c::memory_present())
  969. *
  970. * Making it a UL at least makes someone do a cast
  971. * before using it wrong.
  972. */
  973. unsigned long section_mem_map;
  974. /* See declaration of similar field in struct zone */
  975. unsigned long *pageblock_flags;
  976. #ifdef CONFIG_MEMCG
  977. /*
  978. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  979. * section. (see memcontrol.h/page_cgroup.h about this.)
  980. */
  981. struct page_cgroup *page_cgroup;
  982. unsigned long pad;
  983. #endif
  984. };
  985. #ifdef CONFIG_SPARSEMEM_EXTREME
  986. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  987. #else
  988. #define SECTIONS_PER_ROOT 1
  989. #endif
  990. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  991. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  992. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  993. #ifdef CONFIG_SPARSEMEM_EXTREME
  994. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  995. #else
  996. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  997. #endif
  998. static inline struct mem_section *__nr_to_section(unsigned long nr)
  999. {
  1000. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  1001. return NULL;
  1002. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  1003. }
  1004. extern int __section_nr(struct mem_section* ms);
  1005. extern unsigned long usemap_size(void);
  1006. /*
  1007. * We use the lower bits of the mem_map pointer to store
  1008. * a little bit of information. There should be at least
  1009. * 3 bits here due to 32-bit alignment.
  1010. */
  1011. #define SECTION_MARKED_PRESENT (1UL<<0)
  1012. #define SECTION_HAS_MEM_MAP (1UL<<1)
  1013. #define SECTION_MAP_LAST_BIT (1UL<<2)
  1014. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  1015. #define SECTION_NID_SHIFT 2
  1016. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  1017. {
  1018. unsigned long map = section->section_mem_map;
  1019. map &= SECTION_MAP_MASK;
  1020. return (struct page *)map;
  1021. }
  1022. static inline int present_section(struct mem_section *section)
  1023. {
  1024. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  1025. }
  1026. static inline int present_section_nr(unsigned long nr)
  1027. {
  1028. return present_section(__nr_to_section(nr));
  1029. }
  1030. static inline int valid_section(struct mem_section *section)
  1031. {
  1032. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  1033. }
  1034. static inline int valid_section_nr(unsigned long nr)
  1035. {
  1036. return valid_section(__nr_to_section(nr));
  1037. }
  1038. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  1039. {
  1040. return __nr_to_section(pfn_to_section_nr(pfn));
  1041. }
  1042. #ifndef CONFIG_HAVE_ARCH_PFN_VALID
  1043. static inline int pfn_valid(unsigned long pfn)
  1044. {
  1045. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1046. return 0;
  1047. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1048. }
  1049. #endif
  1050. static inline int pfn_present(unsigned long pfn)
  1051. {
  1052. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1053. return 0;
  1054. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1055. }
  1056. /*
  1057. * These are _only_ used during initialisation, therefore they
  1058. * can use __initdata ... They could have names to indicate
  1059. * this restriction.
  1060. */
  1061. #ifdef CONFIG_NUMA
  1062. #define pfn_to_nid(pfn) \
  1063. ({ \
  1064. unsigned long __pfn_to_nid_pfn = (pfn); \
  1065. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  1066. })
  1067. #else
  1068. #define pfn_to_nid(pfn) (0)
  1069. #endif
  1070. #define early_pfn_valid(pfn) pfn_valid(pfn)
  1071. void sparse_init(void);
  1072. #else
  1073. #define sparse_init() do {} while (0)
  1074. #define sparse_index_init(_sec, _nid) do {} while (0)
  1075. #endif /* CONFIG_SPARSEMEM */
  1076. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1077. bool early_pfn_in_nid(unsigned long pfn, int nid);
  1078. #else
  1079. #define early_pfn_in_nid(pfn, nid) (1)
  1080. #endif
  1081. #ifndef early_pfn_valid
  1082. #define early_pfn_valid(pfn) (1)
  1083. #endif
  1084. void memory_present(int nid, unsigned long start, unsigned long end);
  1085. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  1086. /*
  1087. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  1088. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  1089. * pfn_valid_within() should be used in this case; we optimise this away
  1090. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  1091. */
  1092. #ifdef CONFIG_HOLES_IN_ZONE
  1093. #define pfn_valid_within(pfn) pfn_valid(pfn)
  1094. #else
  1095. #define pfn_valid_within(pfn) (1)
  1096. #endif
  1097. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  1098. /*
  1099. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  1100. * associated with it or not. In FLATMEM, it is expected that holes always
  1101. * have valid memmap as long as there is valid PFNs either side of the hole.
  1102. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  1103. * entire section.
  1104. *
  1105. * However, an ARM, and maybe other embedded architectures in the future
  1106. * free memmap backing holes to save memory on the assumption the memmap is
  1107. * never used. The page_zone linkages are then broken even though pfn_valid()
  1108. * returns true. A walker of the full memmap must then do this additional
  1109. * check to ensure the memmap they are looking at is sane by making sure
  1110. * the zone and PFN linkages are still valid. This is expensive, but walkers
  1111. * of the full memmap are extremely rare.
  1112. */
  1113. int memmap_valid_within(unsigned long pfn,
  1114. struct page *page, struct zone *zone);
  1115. #else
  1116. static inline int memmap_valid_within(unsigned long pfn,
  1117. struct page *page, struct zone *zone)
  1118. {
  1119. return 1;
  1120. }
  1121. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1122. #endif /* !__GENERATING_BOUNDS.H */
  1123. #endif /* !__ASSEMBLY__ */
  1124. #endif /* _LINUX_MMZONE_H */