cpuset.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Tracks how many cpusets are currently defined in system.
  62. * When there is only one cpuset (the root cpuset) we can
  63. * short circuit some hooks.
  64. */
  65. int number_of_cpusets __read_mostly;
  66. /* Forward declare cgroup structures */
  67. struct cgroup_subsys cpuset_subsys;
  68. struct cpuset;
  69. /* See "Frequency meter" comments, below. */
  70. struct fmeter {
  71. int cnt; /* unprocessed events count */
  72. int val; /* most recent output value */
  73. time_t time; /* clock (secs) when val computed */
  74. spinlock_t lock; /* guards read or write of above */
  75. };
  76. struct cpuset {
  77. struct cgroup_subsys_state css;
  78. unsigned long flags; /* "unsigned long" so bitops work */
  79. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  80. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  81. struct cpuset *parent; /* my parent */
  82. struct fmeter fmeter; /* memory_pressure filter */
  83. /*
  84. * Tasks are being attached to this cpuset. Used to prevent
  85. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  86. */
  87. int attach_in_progress;
  88. /* partition number for rebuild_sched_domains() */
  89. int pn;
  90. /* for custom sched domain */
  91. int relax_domain_level;
  92. /* used for walking a cpuset hierarchy */
  93. struct list_head stack_list;
  94. struct work_struct hotplug_work;
  95. };
  96. /* Retrieve the cpuset for a cgroup */
  97. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  98. {
  99. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  100. struct cpuset, css);
  101. }
  102. /* Retrieve the cpuset for a task */
  103. static inline struct cpuset *task_cs(struct task_struct *task)
  104. {
  105. return container_of(task_subsys_state(task, cpuset_subsys_id),
  106. struct cpuset, css);
  107. }
  108. #ifdef CONFIG_NUMA
  109. static inline bool task_has_mempolicy(struct task_struct *task)
  110. {
  111. return task->mempolicy;
  112. }
  113. #else
  114. static inline bool task_has_mempolicy(struct task_struct *task)
  115. {
  116. return false;
  117. }
  118. #endif
  119. /* bits in struct cpuset flags field */
  120. typedef enum {
  121. CS_ONLINE,
  122. CS_CPU_EXCLUSIVE,
  123. CS_MEM_EXCLUSIVE,
  124. CS_MEM_HARDWALL,
  125. CS_MEMORY_MIGRATE,
  126. CS_SCHED_LOAD_BALANCE,
  127. CS_SPREAD_PAGE,
  128. CS_SPREAD_SLAB,
  129. } cpuset_flagbits_t;
  130. /* convenient tests for these bits */
  131. static inline bool is_cpuset_online(const struct cpuset *cs)
  132. {
  133. return test_bit(CS_ONLINE, &cs->flags);
  134. }
  135. static inline int is_cpu_exclusive(const struct cpuset *cs)
  136. {
  137. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  138. }
  139. static inline int is_mem_exclusive(const struct cpuset *cs)
  140. {
  141. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  142. }
  143. static inline int is_mem_hardwall(const struct cpuset *cs)
  144. {
  145. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  146. }
  147. static inline int is_sched_load_balance(const struct cpuset *cs)
  148. {
  149. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  150. }
  151. static inline int is_memory_migrate(const struct cpuset *cs)
  152. {
  153. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  154. }
  155. static inline int is_spread_page(const struct cpuset *cs)
  156. {
  157. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  158. }
  159. static inline int is_spread_slab(const struct cpuset *cs)
  160. {
  161. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  162. }
  163. static struct cpuset top_cpuset = {
  164. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  165. (1 << CS_MEM_EXCLUSIVE)),
  166. };
  167. /**
  168. * cpuset_for_each_child - traverse online children of a cpuset
  169. * @child_cs: loop cursor pointing to the current child
  170. * @pos_cgrp: used for iteration
  171. * @parent_cs: target cpuset to walk children of
  172. *
  173. * Walk @child_cs through the online children of @parent_cs. Must be used
  174. * with RCU read locked.
  175. */
  176. #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
  177. cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
  178. if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
  179. /*
  180. * There are two global mutexes guarding cpuset structures - cpuset_mutex
  181. * and callback_mutex. The latter may nest inside the former. We also
  182. * require taking task_lock() when dereferencing a task's cpuset pointer.
  183. * See "The task_lock() exception", at the end of this comment.
  184. *
  185. * A task must hold both mutexes to modify cpusets. If a task holds
  186. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  187. * is the only task able to also acquire callback_mutex and be able to
  188. * modify cpusets. It can perform various checks on the cpuset structure
  189. * first, knowing nothing will change. It can also allocate memory while
  190. * just holding cpuset_mutex. While it is performing these checks, various
  191. * callback routines can briefly acquire callback_mutex to query cpusets.
  192. * Once it is ready to make the changes, it takes callback_mutex, blocking
  193. * everyone else.
  194. *
  195. * Calls to the kernel memory allocator can not be made while holding
  196. * callback_mutex, as that would risk double tripping on callback_mutex
  197. * from one of the callbacks into the cpuset code from within
  198. * __alloc_pages().
  199. *
  200. * If a task is only holding callback_mutex, then it has read-only
  201. * access to cpusets.
  202. *
  203. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  204. * by other task, we use alloc_lock in the task_struct fields to protect
  205. * them.
  206. *
  207. * The cpuset_common_file_read() handlers only hold callback_mutex across
  208. * small pieces of code, such as when reading out possibly multi-word
  209. * cpumasks and nodemasks.
  210. *
  211. * Accessing a task's cpuset should be done in accordance with the
  212. * guidelines for accessing subsystem state in kernel/cgroup.c
  213. */
  214. static DEFINE_MUTEX(cpuset_mutex);
  215. static DEFINE_MUTEX(callback_mutex);
  216. /*
  217. * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
  218. * buffers. They are statically allocated to prevent using excess stack
  219. * when calling cpuset_print_task_mems_allowed().
  220. */
  221. #define CPUSET_NAME_LEN (128)
  222. #define CPUSET_NODELIST_LEN (256)
  223. static char cpuset_name[CPUSET_NAME_LEN];
  224. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  225. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  226. /*
  227. * CPU / memory hotplug is handled asynchronously.
  228. */
  229. static struct workqueue_struct *cpuset_propagate_hotplug_wq;
  230. static void cpuset_hotplug_workfn(struct work_struct *work);
  231. static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
  232. static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
  233. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  234. /*
  235. * This is ugly, but preserves the userspace API for existing cpuset
  236. * users. If someone tries to mount the "cpuset" filesystem, we
  237. * silently switch it to mount "cgroup" instead
  238. */
  239. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  240. int flags, const char *unused_dev_name, void *data)
  241. {
  242. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  243. struct dentry *ret = ERR_PTR(-ENODEV);
  244. if (cgroup_fs) {
  245. char mountopts[] =
  246. "cpuset,noprefix,"
  247. "release_agent=/sbin/cpuset_release_agent";
  248. ret = cgroup_fs->mount(cgroup_fs, flags,
  249. unused_dev_name, mountopts);
  250. put_filesystem(cgroup_fs);
  251. }
  252. return ret;
  253. }
  254. static struct file_system_type cpuset_fs_type = {
  255. .name = "cpuset",
  256. .mount = cpuset_mount,
  257. };
  258. /*
  259. * Return in pmask the portion of a cpusets's cpus_allowed that
  260. * are online. If none are online, walk up the cpuset hierarchy
  261. * until we find one that does have some online cpus. If we get
  262. * all the way to the top and still haven't found any online cpus,
  263. * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
  264. * task, return cpu_online_mask.
  265. *
  266. * One way or another, we guarantee to return some non-empty subset
  267. * of cpu_online_mask.
  268. *
  269. * Call with callback_mutex held.
  270. */
  271. static void guarantee_online_cpus(const struct cpuset *cs,
  272. struct cpumask *pmask)
  273. {
  274. while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  275. cs = cs->parent;
  276. if (cs)
  277. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  278. else
  279. cpumask_copy(pmask, cpu_online_mask);
  280. BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
  281. }
  282. /*
  283. * Return in *pmask the portion of a cpusets's mems_allowed that
  284. * are online, with memory. If none are online with memory, walk
  285. * up the cpuset hierarchy until we find one that does have some
  286. * online mems. If we get all the way to the top and still haven't
  287. * found any online mems, return node_states[N_MEMORY].
  288. *
  289. * One way or another, we guarantee to return some non-empty subset
  290. * of node_states[N_MEMORY].
  291. *
  292. * Call with callback_mutex held.
  293. */
  294. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  295. {
  296. while (cs && !nodes_intersects(cs->mems_allowed,
  297. node_states[N_MEMORY]))
  298. cs = cs->parent;
  299. if (cs)
  300. nodes_and(*pmask, cs->mems_allowed,
  301. node_states[N_MEMORY]);
  302. else
  303. *pmask = node_states[N_MEMORY];
  304. BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
  305. }
  306. /*
  307. * update task's spread flag if cpuset's page/slab spread flag is set
  308. *
  309. * Called with callback_mutex/cpuset_mutex held
  310. */
  311. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  312. struct task_struct *tsk)
  313. {
  314. if (is_spread_page(cs))
  315. tsk->flags |= PF_SPREAD_PAGE;
  316. else
  317. tsk->flags &= ~PF_SPREAD_PAGE;
  318. if (is_spread_slab(cs))
  319. tsk->flags |= PF_SPREAD_SLAB;
  320. else
  321. tsk->flags &= ~PF_SPREAD_SLAB;
  322. }
  323. /*
  324. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  325. *
  326. * One cpuset is a subset of another if all its allowed CPUs and
  327. * Memory Nodes are a subset of the other, and its exclusive flags
  328. * are only set if the other's are set. Call holding cpuset_mutex.
  329. */
  330. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  331. {
  332. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  333. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  334. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  335. is_mem_exclusive(p) <= is_mem_exclusive(q);
  336. }
  337. /**
  338. * alloc_trial_cpuset - allocate a trial cpuset
  339. * @cs: the cpuset that the trial cpuset duplicates
  340. */
  341. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  342. {
  343. struct cpuset *trial;
  344. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  345. if (!trial)
  346. return NULL;
  347. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  348. kfree(trial);
  349. return NULL;
  350. }
  351. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  352. return trial;
  353. }
  354. /**
  355. * free_trial_cpuset - free the trial cpuset
  356. * @trial: the trial cpuset to be freed
  357. */
  358. static void free_trial_cpuset(struct cpuset *trial)
  359. {
  360. free_cpumask_var(trial->cpus_allowed);
  361. kfree(trial);
  362. }
  363. /*
  364. * validate_change() - Used to validate that any proposed cpuset change
  365. * follows the structural rules for cpusets.
  366. *
  367. * If we replaced the flag and mask values of the current cpuset
  368. * (cur) with those values in the trial cpuset (trial), would
  369. * our various subset and exclusive rules still be valid? Presumes
  370. * cpuset_mutex held.
  371. *
  372. * 'cur' is the address of an actual, in-use cpuset. Operations
  373. * such as list traversal that depend on the actual address of the
  374. * cpuset in the list must use cur below, not trial.
  375. *
  376. * 'trial' is the address of bulk structure copy of cur, with
  377. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  378. * or flags changed to new, trial values.
  379. *
  380. * Return 0 if valid, -errno if not.
  381. */
  382. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  383. {
  384. struct cgroup *cont;
  385. struct cpuset *c, *par;
  386. int ret;
  387. rcu_read_lock();
  388. /* Each of our child cpusets must be a subset of us */
  389. ret = -EBUSY;
  390. cpuset_for_each_child(c, cont, cur)
  391. if (!is_cpuset_subset(c, trial))
  392. goto out;
  393. /* Remaining checks don't apply to root cpuset */
  394. ret = 0;
  395. if (cur == &top_cpuset)
  396. goto out;
  397. par = cur->parent;
  398. /* We must be a subset of our parent cpuset */
  399. ret = -EACCES;
  400. if (!is_cpuset_subset(trial, par))
  401. goto out;
  402. /*
  403. * If either I or some sibling (!= me) is exclusive, we can't
  404. * overlap
  405. */
  406. ret = -EINVAL;
  407. cpuset_for_each_child(c, cont, par) {
  408. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  409. c != cur &&
  410. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  411. goto out;
  412. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  413. c != cur &&
  414. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  415. goto out;
  416. }
  417. /*
  418. * Cpusets with tasks - existing or newly being attached - can't
  419. * have empty cpus_allowed or mems_allowed.
  420. */
  421. ret = -ENOSPC;
  422. if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
  423. (cpumask_empty(trial->cpus_allowed) ||
  424. nodes_empty(trial->mems_allowed)))
  425. goto out;
  426. ret = 0;
  427. out:
  428. rcu_read_unlock();
  429. return ret;
  430. }
  431. #ifdef CONFIG_SMP
  432. /*
  433. * Helper routine for generate_sched_domains().
  434. * Do cpusets a, b have overlapping cpus_allowed masks?
  435. */
  436. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  437. {
  438. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  439. }
  440. static void
  441. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  442. {
  443. if (dattr->relax_domain_level < c->relax_domain_level)
  444. dattr->relax_domain_level = c->relax_domain_level;
  445. return;
  446. }
  447. static void
  448. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  449. {
  450. LIST_HEAD(q);
  451. list_add(&c->stack_list, &q);
  452. while (!list_empty(&q)) {
  453. struct cpuset *cp;
  454. struct cgroup *cont;
  455. struct cpuset *child;
  456. cp = list_first_entry(&q, struct cpuset, stack_list);
  457. list_del(q.next);
  458. if (cpumask_empty(cp->cpus_allowed))
  459. continue;
  460. if (is_sched_load_balance(cp))
  461. update_domain_attr(dattr, cp);
  462. rcu_read_lock();
  463. cpuset_for_each_child(child, cont, cp)
  464. list_add_tail(&child->stack_list, &q);
  465. rcu_read_unlock();
  466. }
  467. }
  468. /*
  469. * generate_sched_domains()
  470. *
  471. * This function builds a partial partition of the systems CPUs
  472. * A 'partial partition' is a set of non-overlapping subsets whose
  473. * union is a subset of that set.
  474. * The output of this function needs to be passed to kernel/sched.c
  475. * partition_sched_domains() routine, which will rebuild the scheduler's
  476. * load balancing domains (sched domains) as specified by that partial
  477. * partition.
  478. *
  479. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  480. * for a background explanation of this.
  481. *
  482. * Does not return errors, on the theory that the callers of this
  483. * routine would rather not worry about failures to rebuild sched
  484. * domains when operating in the severe memory shortage situations
  485. * that could cause allocation failures below.
  486. *
  487. * Must be called with cpuset_mutex held.
  488. *
  489. * The three key local variables below are:
  490. * q - a linked-list queue of cpuset pointers, used to implement a
  491. * top-down scan of all cpusets. This scan loads a pointer
  492. * to each cpuset marked is_sched_load_balance into the
  493. * array 'csa'. For our purposes, rebuilding the schedulers
  494. * sched domains, we can ignore !is_sched_load_balance cpusets.
  495. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  496. * that need to be load balanced, for convenient iterative
  497. * access by the subsequent code that finds the best partition,
  498. * i.e the set of domains (subsets) of CPUs such that the
  499. * cpus_allowed of every cpuset marked is_sched_load_balance
  500. * is a subset of one of these domains, while there are as
  501. * many such domains as possible, each as small as possible.
  502. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  503. * the kernel/sched.c routine partition_sched_domains() in a
  504. * convenient format, that can be easily compared to the prior
  505. * value to determine what partition elements (sched domains)
  506. * were changed (added or removed.)
  507. *
  508. * Finding the best partition (set of domains):
  509. * The triple nested loops below over i, j, k scan over the
  510. * load balanced cpusets (using the array of cpuset pointers in
  511. * csa[]) looking for pairs of cpusets that have overlapping
  512. * cpus_allowed, but which don't have the same 'pn' partition
  513. * number and gives them in the same partition number. It keeps
  514. * looping on the 'restart' label until it can no longer find
  515. * any such pairs.
  516. *
  517. * The union of the cpus_allowed masks from the set of
  518. * all cpusets having the same 'pn' value then form the one
  519. * element of the partition (one sched domain) to be passed to
  520. * partition_sched_domains().
  521. */
  522. static int generate_sched_domains(cpumask_var_t **domains,
  523. struct sched_domain_attr **attributes)
  524. {
  525. LIST_HEAD(q); /* queue of cpusets to be scanned */
  526. struct cpuset *cp; /* scans q */
  527. struct cpuset **csa; /* array of all cpuset ptrs */
  528. int csn; /* how many cpuset ptrs in csa so far */
  529. int i, j, k; /* indices for partition finding loops */
  530. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  531. struct sched_domain_attr *dattr; /* attributes for custom domains */
  532. int ndoms = 0; /* number of sched domains in result */
  533. int nslot; /* next empty doms[] struct cpumask slot */
  534. doms = NULL;
  535. dattr = NULL;
  536. csa = NULL;
  537. /* Special case for the 99% of systems with one, full, sched domain */
  538. if (is_sched_load_balance(&top_cpuset)) {
  539. ndoms = 1;
  540. doms = alloc_sched_domains(ndoms);
  541. if (!doms)
  542. goto done;
  543. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  544. if (dattr) {
  545. *dattr = SD_ATTR_INIT;
  546. update_domain_attr_tree(dattr, &top_cpuset);
  547. }
  548. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  549. goto done;
  550. }
  551. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  552. if (!csa)
  553. goto done;
  554. csn = 0;
  555. list_add(&top_cpuset.stack_list, &q);
  556. while (!list_empty(&q)) {
  557. struct cgroup *cont;
  558. struct cpuset *child; /* scans child cpusets of cp */
  559. cp = list_first_entry(&q, struct cpuset, stack_list);
  560. list_del(q.next);
  561. if (cpumask_empty(cp->cpus_allowed))
  562. continue;
  563. /*
  564. * All child cpusets contain a subset of the parent's cpus, so
  565. * just skip them, and then we call update_domain_attr_tree()
  566. * to calc relax_domain_level of the corresponding sched
  567. * domain.
  568. */
  569. if (is_sched_load_balance(cp)) {
  570. csa[csn++] = cp;
  571. continue;
  572. }
  573. rcu_read_lock();
  574. cpuset_for_each_child(child, cont, cp)
  575. list_add_tail(&child->stack_list, &q);
  576. rcu_read_unlock();
  577. }
  578. for (i = 0; i < csn; i++)
  579. csa[i]->pn = i;
  580. ndoms = csn;
  581. restart:
  582. /* Find the best partition (set of sched domains) */
  583. for (i = 0; i < csn; i++) {
  584. struct cpuset *a = csa[i];
  585. int apn = a->pn;
  586. for (j = 0; j < csn; j++) {
  587. struct cpuset *b = csa[j];
  588. int bpn = b->pn;
  589. if (apn != bpn && cpusets_overlap(a, b)) {
  590. for (k = 0; k < csn; k++) {
  591. struct cpuset *c = csa[k];
  592. if (c->pn == bpn)
  593. c->pn = apn;
  594. }
  595. ndoms--; /* one less element */
  596. goto restart;
  597. }
  598. }
  599. }
  600. /*
  601. * Now we know how many domains to create.
  602. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  603. */
  604. doms = alloc_sched_domains(ndoms);
  605. if (!doms)
  606. goto done;
  607. /*
  608. * The rest of the code, including the scheduler, can deal with
  609. * dattr==NULL case. No need to abort if alloc fails.
  610. */
  611. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  612. for (nslot = 0, i = 0; i < csn; i++) {
  613. struct cpuset *a = csa[i];
  614. struct cpumask *dp;
  615. int apn = a->pn;
  616. if (apn < 0) {
  617. /* Skip completed partitions */
  618. continue;
  619. }
  620. dp = doms[nslot];
  621. if (nslot == ndoms) {
  622. static int warnings = 10;
  623. if (warnings) {
  624. printk(KERN_WARNING
  625. "rebuild_sched_domains confused:"
  626. " nslot %d, ndoms %d, csn %d, i %d,"
  627. " apn %d\n",
  628. nslot, ndoms, csn, i, apn);
  629. warnings--;
  630. }
  631. continue;
  632. }
  633. cpumask_clear(dp);
  634. if (dattr)
  635. *(dattr + nslot) = SD_ATTR_INIT;
  636. for (j = i; j < csn; j++) {
  637. struct cpuset *b = csa[j];
  638. if (apn == b->pn) {
  639. cpumask_or(dp, dp, b->cpus_allowed);
  640. if (dattr)
  641. update_domain_attr_tree(dattr + nslot, b);
  642. /* Done with this partition */
  643. b->pn = -1;
  644. }
  645. }
  646. nslot++;
  647. }
  648. BUG_ON(nslot != ndoms);
  649. done:
  650. kfree(csa);
  651. /*
  652. * Fallback to the default domain if kmalloc() failed.
  653. * See comments in partition_sched_domains().
  654. */
  655. if (doms == NULL)
  656. ndoms = 1;
  657. *domains = doms;
  658. *attributes = dattr;
  659. return ndoms;
  660. }
  661. /*
  662. * Rebuild scheduler domains.
  663. *
  664. * If the flag 'sched_load_balance' of any cpuset with non-empty
  665. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  666. * which has that flag enabled, or if any cpuset with a non-empty
  667. * 'cpus' is removed, then call this routine to rebuild the
  668. * scheduler's dynamic sched domains.
  669. *
  670. * Call with cpuset_mutex held. Takes get_online_cpus().
  671. */
  672. static void rebuild_sched_domains_locked(void)
  673. {
  674. struct sched_domain_attr *attr;
  675. cpumask_var_t *doms;
  676. int ndoms;
  677. lockdep_assert_held(&cpuset_mutex);
  678. get_online_cpus();
  679. /* Generate domain masks and attrs */
  680. ndoms = generate_sched_domains(&doms, &attr);
  681. /* Have scheduler rebuild the domains */
  682. partition_sched_domains(ndoms, doms, attr);
  683. put_online_cpus();
  684. }
  685. #else /* !CONFIG_SMP */
  686. static void rebuild_sched_domains_locked(void)
  687. {
  688. }
  689. static int generate_sched_domains(cpumask_var_t **domains,
  690. struct sched_domain_attr **attributes)
  691. {
  692. *domains = NULL;
  693. return 1;
  694. }
  695. #endif /* CONFIG_SMP */
  696. void rebuild_sched_domains(void)
  697. {
  698. mutex_lock(&cpuset_mutex);
  699. rebuild_sched_domains_locked();
  700. mutex_unlock(&cpuset_mutex);
  701. }
  702. /**
  703. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  704. * @tsk: task to test
  705. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  706. *
  707. * Call with cpuset_mutex held. May take callback_mutex during call.
  708. * Called for each task in a cgroup by cgroup_scan_tasks().
  709. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  710. * words, if its mask is not equal to its cpuset's mask).
  711. */
  712. static int cpuset_test_cpumask(struct task_struct *tsk,
  713. struct cgroup_scanner *scan)
  714. {
  715. return !cpumask_equal(&tsk->cpus_allowed,
  716. (cgroup_cs(scan->cg))->cpus_allowed);
  717. }
  718. /**
  719. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  720. * @tsk: task to test
  721. * @scan: struct cgroup_scanner containing the cgroup of the task
  722. *
  723. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  724. * cpus_allowed mask needs to be changed.
  725. *
  726. * We don't need to re-check for the cgroup/cpuset membership, since we're
  727. * holding cpuset_mutex at this point.
  728. */
  729. static void cpuset_change_cpumask(struct task_struct *tsk,
  730. struct cgroup_scanner *scan)
  731. {
  732. set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
  733. }
  734. /**
  735. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  736. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  737. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  738. *
  739. * Called with cpuset_mutex held
  740. *
  741. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  742. * calling callback functions for each.
  743. *
  744. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  745. * if @heap != NULL.
  746. */
  747. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  748. {
  749. struct cgroup_scanner scan;
  750. scan.cg = cs->css.cgroup;
  751. scan.test_task = cpuset_test_cpumask;
  752. scan.process_task = cpuset_change_cpumask;
  753. scan.heap = heap;
  754. cgroup_scan_tasks(&scan);
  755. }
  756. /**
  757. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  758. * @cs: the cpuset to consider
  759. * @buf: buffer of cpu numbers written to this cpuset
  760. */
  761. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  762. const char *buf)
  763. {
  764. struct ptr_heap heap;
  765. int retval;
  766. int is_load_balanced;
  767. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  768. if (cs == &top_cpuset)
  769. return -EACCES;
  770. /*
  771. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  772. * Since cpulist_parse() fails on an empty mask, we special case
  773. * that parsing. The validate_change() call ensures that cpusets
  774. * with tasks have cpus.
  775. */
  776. if (!*buf) {
  777. cpumask_clear(trialcs->cpus_allowed);
  778. } else {
  779. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  780. if (retval < 0)
  781. return retval;
  782. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  783. return -EINVAL;
  784. }
  785. retval = validate_change(cs, trialcs);
  786. if (retval < 0)
  787. return retval;
  788. /* Nothing to do if the cpus didn't change */
  789. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  790. return 0;
  791. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  792. if (retval)
  793. return retval;
  794. is_load_balanced = is_sched_load_balance(trialcs);
  795. mutex_lock(&callback_mutex);
  796. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  797. mutex_unlock(&callback_mutex);
  798. /*
  799. * Scan tasks in the cpuset, and update the cpumasks of any
  800. * that need an update.
  801. */
  802. update_tasks_cpumask(cs, &heap);
  803. heap_free(&heap);
  804. if (is_load_balanced)
  805. rebuild_sched_domains_locked();
  806. return 0;
  807. }
  808. /*
  809. * cpuset_migrate_mm
  810. *
  811. * Migrate memory region from one set of nodes to another.
  812. *
  813. * Temporarilly set tasks mems_allowed to target nodes of migration,
  814. * so that the migration code can allocate pages on these nodes.
  815. *
  816. * Call holding cpuset_mutex, so current's cpuset won't change
  817. * during this call, as manage_mutex holds off any cpuset_attach()
  818. * calls. Therefore we don't need to take task_lock around the
  819. * call to guarantee_online_mems(), as we know no one is changing
  820. * our task's cpuset.
  821. *
  822. * While the mm_struct we are migrating is typically from some
  823. * other task, the task_struct mems_allowed that we are hacking
  824. * is for our current task, which must allocate new pages for that
  825. * migrating memory region.
  826. */
  827. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  828. const nodemask_t *to)
  829. {
  830. struct task_struct *tsk = current;
  831. tsk->mems_allowed = *to;
  832. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  833. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  834. }
  835. /*
  836. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  837. * @tsk: the task to change
  838. * @newmems: new nodes that the task will be set
  839. *
  840. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  841. * we structure updates as setting all new allowed nodes, then clearing newly
  842. * disallowed ones.
  843. */
  844. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  845. nodemask_t *newmems)
  846. {
  847. bool need_loop;
  848. /*
  849. * Allow tasks that have access to memory reserves because they have
  850. * been OOM killed to get memory anywhere.
  851. */
  852. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  853. return;
  854. if (current->flags & PF_EXITING) /* Let dying task have memory */
  855. return;
  856. task_lock(tsk);
  857. /*
  858. * Determine if a loop is necessary if another thread is doing
  859. * get_mems_allowed(). If at least one node remains unchanged and
  860. * tsk does not have a mempolicy, then an empty nodemask will not be
  861. * possible when mems_allowed is larger than a word.
  862. */
  863. need_loop = task_has_mempolicy(tsk) ||
  864. !nodes_intersects(*newmems, tsk->mems_allowed);
  865. if (need_loop)
  866. write_seqcount_begin(&tsk->mems_allowed_seq);
  867. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  868. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  869. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  870. tsk->mems_allowed = *newmems;
  871. if (need_loop)
  872. write_seqcount_end(&tsk->mems_allowed_seq);
  873. task_unlock(tsk);
  874. }
  875. /*
  876. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  877. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  878. * memory_migrate flag is set. Called with cpuset_mutex held.
  879. */
  880. static void cpuset_change_nodemask(struct task_struct *p,
  881. struct cgroup_scanner *scan)
  882. {
  883. struct mm_struct *mm;
  884. struct cpuset *cs;
  885. int migrate;
  886. const nodemask_t *oldmem = scan->data;
  887. static nodemask_t newmems; /* protected by cpuset_mutex */
  888. cs = cgroup_cs(scan->cg);
  889. guarantee_online_mems(cs, &newmems);
  890. cpuset_change_task_nodemask(p, &newmems);
  891. mm = get_task_mm(p);
  892. if (!mm)
  893. return;
  894. migrate = is_memory_migrate(cs);
  895. mpol_rebind_mm(mm, &cs->mems_allowed);
  896. if (migrate)
  897. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  898. mmput(mm);
  899. }
  900. static void *cpuset_being_rebound;
  901. /**
  902. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  903. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  904. * @oldmem: old mems_allowed of cpuset cs
  905. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  906. *
  907. * Called with cpuset_mutex held
  908. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  909. * if @heap != NULL.
  910. */
  911. static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
  912. struct ptr_heap *heap)
  913. {
  914. struct cgroup_scanner scan;
  915. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  916. scan.cg = cs->css.cgroup;
  917. scan.test_task = NULL;
  918. scan.process_task = cpuset_change_nodemask;
  919. scan.heap = heap;
  920. scan.data = (nodemask_t *)oldmem;
  921. /*
  922. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  923. * take while holding tasklist_lock. Forks can happen - the
  924. * mpol_dup() cpuset_being_rebound check will catch such forks,
  925. * and rebind their vma mempolicies too. Because we still hold
  926. * the global cpuset_mutex, we know that no other rebind effort
  927. * will be contending for the global variable cpuset_being_rebound.
  928. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  929. * is idempotent. Also migrate pages in each mm to new nodes.
  930. */
  931. cgroup_scan_tasks(&scan);
  932. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  933. cpuset_being_rebound = NULL;
  934. }
  935. /*
  936. * Handle user request to change the 'mems' memory placement
  937. * of a cpuset. Needs to validate the request, update the
  938. * cpusets mems_allowed, and for each task in the cpuset,
  939. * update mems_allowed and rebind task's mempolicy and any vma
  940. * mempolicies and if the cpuset is marked 'memory_migrate',
  941. * migrate the tasks pages to the new memory.
  942. *
  943. * Call with cpuset_mutex held. May take callback_mutex during call.
  944. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  945. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  946. * their mempolicies to the cpusets new mems_allowed.
  947. */
  948. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  949. const char *buf)
  950. {
  951. NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
  952. int retval;
  953. struct ptr_heap heap;
  954. if (!oldmem)
  955. return -ENOMEM;
  956. /*
  957. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  958. * it's read-only
  959. */
  960. if (cs == &top_cpuset) {
  961. retval = -EACCES;
  962. goto done;
  963. }
  964. /*
  965. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  966. * Since nodelist_parse() fails on an empty mask, we special case
  967. * that parsing. The validate_change() call ensures that cpusets
  968. * with tasks have memory.
  969. */
  970. if (!*buf) {
  971. nodes_clear(trialcs->mems_allowed);
  972. } else {
  973. retval = nodelist_parse(buf, trialcs->mems_allowed);
  974. if (retval < 0)
  975. goto done;
  976. if (!nodes_subset(trialcs->mems_allowed,
  977. node_states[N_MEMORY])) {
  978. retval = -EINVAL;
  979. goto done;
  980. }
  981. }
  982. *oldmem = cs->mems_allowed;
  983. if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
  984. retval = 0; /* Too easy - nothing to do */
  985. goto done;
  986. }
  987. retval = validate_change(cs, trialcs);
  988. if (retval < 0)
  989. goto done;
  990. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  991. if (retval < 0)
  992. goto done;
  993. mutex_lock(&callback_mutex);
  994. cs->mems_allowed = trialcs->mems_allowed;
  995. mutex_unlock(&callback_mutex);
  996. update_tasks_nodemask(cs, oldmem, &heap);
  997. heap_free(&heap);
  998. done:
  999. NODEMASK_FREE(oldmem);
  1000. return retval;
  1001. }
  1002. int current_cpuset_is_being_rebound(void)
  1003. {
  1004. return task_cs(current) == cpuset_being_rebound;
  1005. }
  1006. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1007. {
  1008. #ifdef CONFIG_SMP
  1009. if (val < -1 || val >= sched_domain_level_max)
  1010. return -EINVAL;
  1011. #endif
  1012. if (val != cs->relax_domain_level) {
  1013. cs->relax_domain_level = val;
  1014. if (!cpumask_empty(cs->cpus_allowed) &&
  1015. is_sched_load_balance(cs))
  1016. rebuild_sched_domains_locked();
  1017. }
  1018. return 0;
  1019. }
  1020. /*
  1021. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1022. * @tsk: task to be updated
  1023. * @scan: struct cgroup_scanner containing the cgroup of the task
  1024. *
  1025. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1026. *
  1027. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1028. * holding cpuset_mutex at this point.
  1029. */
  1030. static void cpuset_change_flag(struct task_struct *tsk,
  1031. struct cgroup_scanner *scan)
  1032. {
  1033. cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
  1034. }
  1035. /*
  1036. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1037. * @cs: the cpuset in which each task's spread flags needs to be changed
  1038. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  1039. *
  1040. * Called with cpuset_mutex held
  1041. *
  1042. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1043. * calling callback functions for each.
  1044. *
  1045. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  1046. * if @heap != NULL.
  1047. */
  1048. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1049. {
  1050. struct cgroup_scanner scan;
  1051. scan.cg = cs->css.cgroup;
  1052. scan.test_task = NULL;
  1053. scan.process_task = cpuset_change_flag;
  1054. scan.heap = heap;
  1055. cgroup_scan_tasks(&scan);
  1056. }
  1057. /*
  1058. * update_flag - read a 0 or a 1 in a file and update associated flag
  1059. * bit: the bit to update (see cpuset_flagbits_t)
  1060. * cs: the cpuset to update
  1061. * turning_on: whether the flag is being set or cleared
  1062. *
  1063. * Call with cpuset_mutex held.
  1064. */
  1065. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1066. int turning_on)
  1067. {
  1068. struct cpuset *trialcs;
  1069. int balance_flag_changed;
  1070. int spread_flag_changed;
  1071. struct ptr_heap heap;
  1072. int err;
  1073. trialcs = alloc_trial_cpuset(cs);
  1074. if (!trialcs)
  1075. return -ENOMEM;
  1076. if (turning_on)
  1077. set_bit(bit, &trialcs->flags);
  1078. else
  1079. clear_bit(bit, &trialcs->flags);
  1080. err = validate_change(cs, trialcs);
  1081. if (err < 0)
  1082. goto out;
  1083. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1084. if (err < 0)
  1085. goto out;
  1086. balance_flag_changed = (is_sched_load_balance(cs) !=
  1087. is_sched_load_balance(trialcs));
  1088. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1089. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1090. mutex_lock(&callback_mutex);
  1091. cs->flags = trialcs->flags;
  1092. mutex_unlock(&callback_mutex);
  1093. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1094. rebuild_sched_domains_locked();
  1095. if (spread_flag_changed)
  1096. update_tasks_flags(cs, &heap);
  1097. heap_free(&heap);
  1098. out:
  1099. free_trial_cpuset(trialcs);
  1100. return err;
  1101. }
  1102. /*
  1103. * Frequency meter - How fast is some event occurring?
  1104. *
  1105. * These routines manage a digitally filtered, constant time based,
  1106. * event frequency meter. There are four routines:
  1107. * fmeter_init() - initialize a frequency meter.
  1108. * fmeter_markevent() - called each time the event happens.
  1109. * fmeter_getrate() - returns the recent rate of such events.
  1110. * fmeter_update() - internal routine used to update fmeter.
  1111. *
  1112. * A common data structure is passed to each of these routines,
  1113. * which is used to keep track of the state required to manage the
  1114. * frequency meter and its digital filter.
  1115. *
  1116. * The filter works on the number of events marked per unit time.
  1117. * The filter is single-pole low-pass recursive (IIR). The time unit
  1118. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1119. * simulate 3 decimal digits of precision (multiplied by 1000).
  1120. *
  1121. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1122. * has a half-life of 10 seconds, meaning that if the events quit
  1123. * happening, then the rate returned from the fmeter_getrate()
  1124. * will be cut in half each 10 seconds, until it converges to zero.
  1125. *
  1126. * It is not worth doing a real infinitely recursive filter. If more
  1127. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1128. * just compute FM_MAXTICKS ticks worth, by which point the level
  1129. * will be stable.
  1130. *
  1131. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1132. * arithmetic overflow in the fmeter_update() routine.
  1133. *
  1134. * Given the simple 32 bit integer arithmetic used, this meter works
  1135. * best for reporting rates between one per millisecond (msec) and
  1136. * one per 32 (approx) seconds. At constant rates faster than one
  1137. * per msec it maxes out at values just under 1,000,000. At constant
  1138. * rates between one per msec, and one per second it will stabilize
  1139. * to a value N*1000, where N is the rate of events per second.
  1140. * At constant rates between one per second and one per 32 seconds,
  1141. * it will be choppy, moving up on the seconds that have an event,
  1142. * and then decaying until the next event. At rates slower than
  1143. * about one in 32 seconds, it decays all the way back to zero between
  1144. * each event.
  1145. */
  1146. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1147. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1148. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1149. #define FM_SCALE 1000 /* faux fixed point scale */
  1150. /* Initialize a frequency meter */
  1151. static void fmeter_init(struct fmeter *fmp)
  1152. {
  1153. fmp->cnt = 0;
  1154. fmp->val = 0;
  1155. fmp->time = 0;
  1156. spin_lock_init(&fmp->lock);
  1157. }
  1158. /* Internal meter update - process cnt events and update value */
  1159. static void fmeter_update(struct fmeter *fmp)
  1160. {
  1161. time_t now = get_seconds();
  1162. time_t ticks = now - fmp->time;
  1163. if (ticks == 0)
  1164. return;
  1165. ticks = min(FM_MAXTICKS, ticks);
  1166. while (ticks-- > 0)
  1167. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1168. fmp->time = now;
  1169. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1170. fmp->cnt = 0;
  1171. }
  1172. /* Process any previous ticks, then bump cnt by one (times scale). */
  1173. static void fmeter_markevent(struct fmeter *fmp)
  1174. {
  1175. spin_lock(&fmp->lock);
  1176. fmeter_update(fmp);
  1177. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1178. spin_unlock(&fmp->lock);
  1179. }
  1180. /* Process any previous ticks, then return current value. */
  1181. static int fmeter_getrate(struct fmeter *fmp)
  1182. {
  1183. int val;
  1184. spin_lock(&fmp->lock);
  1185. fmeter_update(fmp);
  1186. val = fmp->val;
  1187. spin_unlock(&fmp->lock);
  1188. return val;
  1189. }
  1190. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1191. static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1192. {
  1193. struct cpuset *cs = cgroup_cs(cgrp);
  1194. struct task_struct *task;
  1195. int ret;
  1196. mutex_lock(&cpuset_mutex);
  1197. ret = -ENOSPC;
  1198. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1199. goto out_unlock;
  1200. cgroup_taskset_for_each(task, cgrp, tset) {
  1201. /*
  1202. * Kthreads bound to specific cpus cannot be moved to a new
  1203. * cpuset; we cannot change their cpu affinity and
  1204. * isolating such threads by their set of allowed nodes is
  1205. * unnecessary. Thus, cpusets are not applicable for such
  1206. * threads. This prevents checking for success of
  1207. * set_cpus_allowed_ptr() on all attached tasks before
  1208. * cpus_allowed may be changed.
  1209. */
  1210. ret = -EINVAL;
  1211. if (task->flags & PF_THREAD_BOUND)
  1212. goto out_unlock;
  1213. ret = security_task_setscheduler(task);
  1214. if (ret)
  1215. goto out_unlock;
  1216. }
  1217. /*
  1218. * Mark attach is in progress. This makes validate_change() fail
  1219. * changes which zero cpus/mems_allowed.
  1220. */
  1221. cs->attach_in_progress++;
  1222. ret = 0;
  1223. out_unlock:
  1224. mutex_unlock(&cpuset_mutex);
  1225. return ret;
  1226. }
  1227. static void cpuset_cancel_attach(struct cgroup *cgrp,
  1228. struct cgroup_taskset *tset)
  1229. {
  1230. mutex_lock(&cpuset_mutex);
  1231. cgroup_cs(cgrp)->attach_in_progress--;
  1232. mutex_unlock(&cpuset_mutex);
  1233. }
  1234. /*
  1235. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1236. * but we can't allocate it dynamically there. Define it global and
  1237. * allocate from cpuset_init().
  1238. */
  1239. static cpumask_var_t cpus_attach;
  1240. static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1241. {
  1242. /* static bufs protected by cpuset_mutex */
  1243. static nodemask_t cpuset_attach_nodemask_from;
  1244. static nodemask_t cpuset_attach_nodemask_to;
  1245. struct mm_struct *mm;
  1246. struct task_struct *task;
  1247. struct task_struct *leader = cgroup_taskset_first(tset);
  1248. struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
  1249. struct cpuset *cs = cgroup_cs(cgrp);
  1250. struct cpuset *oldcs = cgroup_cs(oldcgrp);
  1251. mutex_lock(&cpuset_mutex);
  1252. /* prepare for attach */
  1253. if (cs == &top_cpuset)
  1254. cpumask_copy(cpus_attach, cpu_possible_mask);
  1255. else
  1256. guarantee_online_cpus(cs, cpus_attach);
  1257. guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
  1258. cgroup_taskset_for_each(task, cgrp, tset) {
  1259. /*
  1260. * can_attach beforehand should guarantee that this doesn't
  1261. * fail. TODO: have a better way to handle failure here
  1262. */
  1263. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1264. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1265. cpuset_update_task_spread_flag(cs, task);
  1266. }
  1267. /*
  1268. * Change mm, possibly for multiple threads in a threadgroup. This is
  1269. * expensive and may sleep.
  1270. */
  1271. cpuset_attach_nodemask_from = oldcs->mems_allowed;
  1272. cpuset_attach_nodemask_to = cs->mems_allowed;
  1273. mm = get_task_mm(leader);
  1274. if (mm) {
  1275. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1276. if (is_memory_migrate(cs))
  1277. cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
  1278. &cpuset_attach_nodemask_to);
  1279. mmput(mm);
  1280. }
  1281. cs->attach_in_progress--;
  1282. /*
  1283. * We may have raced with CPU/memory hotunplug. Trigger hotplug
  1284. * propagation if @cs doesn't have any CPU or memory. It will move
  1285. * the newly added tasks to the nearest parent which can execute.
  1286. */
  1287. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1288. schedule_cpuset_propagate_hotplug(cs);
  1289. mutex_unlock(&cpuset_mutex);
  1290. }
  1291. /* The various types of files and directories in a cpuset file system */
  1292. typedef enum {
  1293. FILE_MEMORY_MIGRATE,
  1294. FILE_CPULIST,
  1295. FILE_MEMLIST,
  1296. FILE_CPU_EXCLUSIVE,
  1297. FILE_MEM_EXCLUSIVE,
  1298. FILE_MEM_HARDWALL,
  1299. FILE_SCHED_LOAD_BALANCE,
  1300. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1301. FILE_MEMORY_PRESSURE_ENABLED,
  1302. FILE_MEMORY_PRESSURE,
  1303. FILE_SPREAD_PAGE,
  1304. FILE_SPREAD_SLAB,
  1305. } cpuset_filetype_t;
  1306. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1307. {
  1308. struct cpuset *cs = cgroup_cs(cgrp);
  1309. cpuset_filetype_t type = cft->private;
  1310. int retval = -ENODEV;
  1311. mutex_lock(&cpuset_mutex);
  1312. if (!is_cpuset_online(cs))
  1313. goto out_unlock;
  1314. switch (type) {
  1315. case FILE_CPU_EXCLUSIVE:
  1316. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1317. break;
  1318. case FILE_MEM_EXCLUSIVE:
  1319. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1320. break;
  1321. case FILE_MEM_HARDWALL:
  1322. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1323. break;
  1324. case FILE_SCHED_LOAD_BALANCE:
  1325. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1326. break;
  1327. case FILE_MEMORY_MIGRATE:
  1328. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1329. break;
  1330. case FILE_MEMORY_PRESSURE_ENABLED:
  1331. cpuset_memory_pressure_enabled = !!val;
  1332. break;
  1333. case FILE_MEMORY_PRESSURE:
  1334. retval = -EACCES;
  1335. break;
  1336. case FILE_SPREAD_PAGE:
  1337. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1338. break;
  1339. case FILE_SPREAD_SLAB:
  1340. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1341. break;
  1342. default:
  1343. retval = -EINVAL;
  1344. break;
  1345. }
  1346. out_unlock:
  1347. mutex_unlock(&cpuset_mutex);
  1348. return retval;
  1349. }
  1350. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1351. {
  1352. struct cpuset *cs = cgroup_cs(cgrp);
  1353. cpuset_filetype_t type = cft->private;
  1354. int retval = -ENODEV;
  1355. mutex_lock(&cpuset_mutex);
  1356. if (!is_cpuset_online(cs))
  1357. goto out_unlock;
  1358. switch (type) {
  1359. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1360. retval = update_relax_domain_level(cs, val);
  1361. break;
  1362. default:
  1363. retval = -EINVAL;
  1364. break;
  1365. }
  1366. out_unlock:
  1367. mutex_unlock(&cpuset_mutex);
  1368. return retval;
  1369. }
  1370. /*
  1371. * Common handling for a write to a "cpus" or "mems" file.
  1372. */
  1373. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1374. const char *buf)
  1375. {
  1376. struct cpuset *cs = cgroup_cs(cgrp);
  1377. struct cpuset *trialcs;
  1378. int retval = -ENODEV;
  1379. /*
  1380. * CPU or memory hotunplug may leave @cs w/o any execution
  1381. * resources, in which case the hotplug code asynchronously updates
  1382. * configuration and transfers all tasks to the nearest ancestor
  1383. * which can execute.
  1384. *
  1385. * As writes to "cpus" or "mems" may restore @cs's execution
  1386. * resources, wait for the previously scheduled operations before
  1387. * proceeding, so that we don't end up keep removing tasks added
  1388. * after execution capability is restored.
  1389. *
  1390. * Flushing cpuset_hotplug_work is enough to synchronize against
  1391. * hotplug hanlding; however, cpuset_attach() may schedule
  1392. * propagation work directly. Flush the workqueue too.
  1393. */
  1394. flush_work(&cpuset_hotplug_work);
  1395. flush_workqueue(cpuset_propagate_hotplug_wq);
  1396. mutex_lock(&cpuset_mutex);
  1397. if (!is_cpuset_online(cs))
  1398. goto out_unlock;
  1399. trialcs = alloc_trial_cpuset(cs);
  1400. if (!trialcs) {
  1401. retval = -ENOMEM;
  1402. goto out_unlock;
  1403. }
  1404. switch (cft->private) {
  1405. case FILE_CPULIST:
  1406. retval = update_cpumask(cs, trialcs, buf);
  1407. break;
  1408. case FILE_MEMLIST:
  1409. retval = update_nodemask(cs, trialcs, buf);
  1410. break;
  1411. default:
  1412. retval = -EINVAL;
  1413. break;
  1414. }
  1415. free_trial_cpuset(trialcs);
  1416. out_unlock:
  1417. mutex_unlock(&cpuset_mutex);
  1418. return retval;
  1419. }
  1420. /*
  1421. * These ascii lists should be read in a single call, by using a user
  1422. * buffer large enough to hold the entire map. If read in smaller
  1423. * chunks, there is no guarantee of atomicity. Since the display format
  1424. * used, list of ranges of sequential numbers, is variable length,
  1425. * and since these maps can change value dynamically, one could read
  1426. * gibberish by doing partial reads while a list was changing.
  1427. * A single large read to a buffer that crosses a page boundary is
  1428. * ok, because the result being copied to user land is not recomputed
  1429. * across a page fault.
  1430. */
  1431. static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1432. {
  1433. size_t count;
  1434. mutex_lock(&callback_mutex);
  1435. count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1436. mutex_unlock(&callback_mutex);
  1437. return count;
  1438. }
  1439. static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1440. {
  1441. size_t count;
  1442. mutex_lock(&callback_mutex);
  1443. count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
  1444. mutex_unlock(&callback_mutex);
  1445. return count;
  1446. }
  1447. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1448. struct cftype *cft,
  1449. struct file *file,
  1450. char __user *buf,
  1451. size_t nbytes, loff_t *ppos)
  1452. {
  1453. struct cpuset *cs = cgroup_cs(cont);
  1454. cpuset_filetype_t type = cft->private;
  1455. char *page;
  1456. ssize_t retval = 0;
  1457. char *s;
  1458. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1459. return -ENOMEM;
  1460. s = page;
  1461. switch (type) {
  1462. case FILE_CPULIST:
  1463. s += cpuset_sprintf_cpulist(s, cs);
  1464. break;
  1465. case FILE_MEMLIST:
  1466. s += cpuset_sprintf_memlist(s, cs);
  1467. break;
  1468. default:
  1469. retval = -EINVAL;
  1470. goto out;
  1471. }
  1472. *s++ = '\n';
  1473. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1474. out:
  1475. free_page((unsigned long)page);
  1476. return retval;
  1477. }
  1478. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1479. {
  1480. struct cpuset *cs = cgroup_cs(cont);
  1481. cpuset_filetype_t type = cft->private;
  1482. switch (type) {
  1483. case FILE_CPU_EXCLUSIVE:
  1484. return is_cpu_exclusive(cs);
  1485. case FILE_MEM_EXCLUSIVE:
  1486. return is_mem_exclusive(cs);
  1487. case FILE_MEM_HARDWALL:
  1488. return is_mem_hardwall(cs);
  1489. case FILE_SCHED_LOAD_BALANCE:
  1490. return is_sched_load_balance(cs);
  1491. case FILE_MEMORY_MIGRATE:
  1492. return is_memory_migrate(cs);
  1493. case FILE_MEMORY_PRESSURE_ENABLED:
  1494. return cpuset_memory_pressure_enabled;
  1495. case FILE_MEMORY_PRESSURE:
  1496. return fmeter_getrate(&cs->fmeter);
  1497. case FILE_SPREAD_PAGE:
  1498. return is_spread_page(cs);
  1499. case FILE_SPREAD_SLAB:
  1500. return is_spread_slab(cs);
  1501. default:
  1502. BUG();
  1503. }
  1504. /* Unreachable but makes gcc happy */
  1505. return 0;
  1506. }
  1507. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1508. {
  1509. struct cpuset *cs = cgroup_cs(cont);
  1510. cpuset_filetype_t type = cft->private;
  1511. switch (type) {
  1512. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1513. return cs->relax_domain_level;
  1514. default:
  1515. BUG();
  1516. }
  1517. /* Unrechable but makes gcc happy */
  1518. return 0;
  1519. }
  1520. /*
  1521. * for the common functions, 'private' gives the type of file
  1522. */
  1523. static struct cftype files[] = {
  1524. {
  1525. .name = "cpus",
  1526. .read = cpuset_common_file_read,
  1527. .write_string = cpuset_write_resmask,
  1528. .max_write_len = (100U + 6 * NR_CPUS),
  1529. .private = FILE_CPULIST,
  1530. },
  1531. {
  1532. .name = "mems",
  1533. .read = cpuset_common_file_read,
  1534. .write_string = cpuset_write_resmask,
  1535. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1536. .private = FILE_MEMLIST,
  1537. },
  1538. {
  1539. .name = "cpu_exclusive",
  1540. .read_u64 = cpuset_read_u64,
  1541. .write_u64 = cpuset_write_u64,
  1542. .private = FILE_CPU_EXCLUSIVE,
  1543. },
  1544. {
  1545. .name = "mem_exclusive",
  1546. .read_u64 = cpuset_read_u64,
  1547. .write_u64 = cpuset_write_u64,
  1548. .private = FILE_MEM_EXCLUSIVE,
  1549. },
  1550. {
  1551. .name = "mem_hardwall",
  1552. .read_u64 = cpuset_read_u64,
  1553. .write_u64 = cpuset_write_u64,
  1554. .private = FILE_MEM_HARDWALL,
  1555. },
  1556. {
  1557. .name = "sched_load_balance",
  1558. .read_u64 = cpuset_read_u64,
  1559. .write_u64 = cpuset_write_u64,
  1560. .private = FILE_SCHED_LOAD_BALANCE,
  1561. },
  1562. {
  1563. .name = "sched_relax_domain_level",
  1564. .read_s64 = cpuset_read_s64,
  1565. .write_s64 = cpuset_write_s64,
  1566. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1567. },
  1568. {
  1569. .name = "memory_migrate",
  1570. .read_u64 = cpuset_read_u64,
  1571. .write_u64 = cpuset_write_u64,
  1572. .private = FILE_MEMORY_MIGRATE,
  1573. },
  1574. {
  1575. .name = "memory_pressure",
  1576. .read_u64 = cpuset_read_u64,
  1577. .write_u64 = cpuset_write_u64,
  1578. .private = FILE_MEMORY_PRESSURE,
  1579. .mode = S_IRUGO,
  1580. },
  1581. {
  1582. .name = "memory_spread_page",
  1583. .read_u64 = cpuset_read_u64,
  1584. .write_u64 = cpuset_write_u64,
  1585. .private = FILE_SPREAD_PAGE,
  1586. },
  1587. {
  1588. .name = "memory_spread_slab",
  1589. .read_u64 = cpuset_read_u64,
  1590. .write_u64 = cpuset_write_u64,
  1591. .private = FILE_SPREAD_SLAB,
  1592. },
  1593. {
  1594. .name = "memory_pressure_enabled",
  1595. .flags = CFTYPE_ONLY_ON_ROOT,
  1596. .read_u64 = cpuset_read_u64,
  1597. .write_u64 = cpuset_write_u64,
  1598. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1599. },
  1600. { } /* terminate */
  1601. };
  1602. /*
  1603. * cpuset_css_alloc - allocate a cpuset css
  1604. * cont: control group that the new cpuset will be part of
  1605. */
  1606. static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
  1607. {
  1608. struct cpuset *cs;
  1609. if (!cont->parent)
  1610. return &top_cpuset.css;
  1611. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1612. if (!cs)
  1613. return ERR_PTR(-ENOMEM);
  1614. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1615. kfree(cs);
  1616. return ERR_PTR(-ENOMEM);
  1617. }
  1618. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1619. cpumask_clear(cs->cpus_allowed);
  1620. nodes_clear(cs->mems_allowed);
  1621. fmeter_init(&cs->fmeter);
  1622. INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
  1623. cs->relax_domain_level = -1;
  1624. cs->parent = cgroup_cs(cont->parent);
  1625. return &cs->css;
  1626. }
  1627. static int cpuset_css_online(struct cgroup *cgrp)
  1628. {
  1629. struct cpuset *cs = cgroup_cs(cgrp);
  1630. struct cpuset *parent = cs->parent;
  1631. struct cpuset *tmp_cs;
  1632. struct cgroup *pos_cg;
  1633. if (!parent)
  1634. return 0;
  1635. mutex_lock(&cpuset_mutex);
  1636. set_bit(CS_ONLINE, &cs->flags);
  1637. if (is_spread_page(parent))
  1638. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1639. if (is_spread_slab(parent))
  1640. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1641. number_of_cpusets++;
  1642. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
  1643. goto out_unlock;
  1644. /*
  1645. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1646. * set. This flag handling is implemented in cgroup core for
  1647. * histrical reasons - the flag may be specified during mount.
  1648. *
  1649. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1650. * refuse to clone the configuration - thereby refusing the task to
  1651. * be entered, and as a result refusing the sys_unshare() or
  1652. * clone() which initiated it. If this becomes a problem for some
  1653. * users who wish to allow that scenario, then this could be
  1654. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1655. * (and likewise for mems) to the new cgroup.
  1656. */
  1657. rcu_read_lock();
  1658. cpuset_for_each_child(tmp_cs, pos_cg, parent) {
  1659. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1660. rcu_read_unlock();
  1661. goto out_unlock;
  1662. }
  1663. }
  1664. rcu_read_unlock();
  1665. mutex_lock(&callback_mutex);
  1666. cs->mems_allowed = parent->mems_allowed;
  1667. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1668. mutex_unlock(&callback_mutex);
  1669. out_unlock:
  1670. mutex_unlock(&cpuset_mutex);
  1671. return 0;
  1672. }
  1673. static void cpuset_css_offline(struct cgroup *cgrp)
  1674. {
  1675. struct cpuset *cs = cgroup_cs(cgrp);
  1676. mutex_lock(&cpuset_mutex);
  1677. if (is_sched_load_balance(cs))
  1678. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1679. number_of_cpusets--;
  1680. clear_bit(CS_ONLINE, &cs->flags);
  1681. mutex_unlock(&cpuset_mutex);
  1682. }
  1683. /*
  1684. * If the cpuset being removed has its flag 'sched_load_balance'
  1685. * enabled, then simulate turning sched_load_balance off, which
  1686. * will call rebuild_sched_domains_locked().
  1687. */
  1688. static void cpuset_css_free(struct cgroup *cont)
  1689. {
  1690. struct cpuset *cs = cgroup_cs(cont);
  1691. free_cpumask_var(cs->cpus_allowed);
  1692. kfree(cs);
  1693. }
  1694. struct cgroup_subsys cpuset_subsys = {
  1695. .name = "cpuset",
  1696. .css_alloc = cpuset_css_alloc,
  1697. .css_online = cpuset_css_online,
  1698. .css_offline = cpuset_css_offline,
  1699. .css_free = cpuset_css_free,
  1700. .can_attach = cpuset_can_attach,
  1701. .cancel_attach = cpuset_cancel_attach,
  1702. .attach = cpuset_attach,
  1703. .subsys_id = cpuset_subsys_id,
  1704. .base_cftypes = files,
  1705. .early_init = 1,
  1706. };
  1707. /**
  1708. * cpuset_init - initialize cpusets at system boot
  1709. *
  1710. * Description: Initialize top_cpuset and the cpuset internal file system,
  1711. **/
  1712. int __init cpuset_init(void)
  1713. {
  1714. int err = 0;
  1715. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1716. BUG();
  1717. cpumask_setall(top_cpuset.cpus_allowed);
  1718. nodes_setall(top_cpuset.mems_allowed);
  1719. fmeter_init(&top_cpuset.fmeter);
  1720. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1721. top_cpuset.relax_domain_level = -1;
  1722. err = register_filesystem(&cpuset_fs_type);
  1723. if (err < 0)
  1724. return err;
  1725. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1726. BUG();
  1727. number_of_cpusets = 1;
  1728. return 0;
  1729. }
  1730. /**
  1731. * cpuset_do_move_task - move a given task to another cpuset
  1732. * @tsk: pointer to task_struct the task to move
  1733. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1734. *
  1735. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1736. * Return nonzero to stop the walk through the tasks.
  1737. */
  1738. static void cpuset_do_move_task(struct task_struct *tsk,
  1739. struct cgroup_scanner *scan)
  1740. {
  1741. struct cgroup *new_cgroup = scan->data;
  1742. cgroup_lock();
  1743. cgroup_attach_task(new_cgroup, tsk);
  1744. cgroup_unlock();
  1745. }
  1746. /**
  1747. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1748. * @from: cpuset in which the tasks currently reside
  1749. * @to: cpuset to which the tasks will be moved
  1750. *
  1751. * Called with cpuset_mutex held
  1752. * callback_mutex must not be held, as cpuset_attach() will take it.
  1753. *
  1754. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1755. * calling callback functions for each.
  1756. */
  1757. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1758. {
  1759. struct cgroup_scanner scan;
  1760. scan.cg = from->css.cgroup;
  1761. scan.test_task = NULL; /* select all tasks in cgroup */
  1762. scan.process_task = cpuset_do_move_task;
  1763. scan.heap = NULL;
  1764. scan.data = to->css.cgroup;
  1765. if (cgroup_scan_tasks(&scan))
  1766. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1767. "cgroup_scan_tasks failed\n");
  1768. }
  1769. /*
  1770. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1771. * or memory nodes, we need to walk over the cpuset hierarchy,
  1772. * removing that CPU or node from all cpusets. If this removes the
  1773. * last CPU or node from a cpuset, then move the tasks in the empty
  1774. * cpuset to its next-highest non-empty parent.
  1775. */
  1776. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1777. {
  1778. struct cpuset *parent;
  1779. /*
  1780. * Find its next-highest non-empty parent, (top cpuset
  1781. * has online cpus, so can't be empty).
  1782. */
  1783. parent = cs->parent;
  1784. while (cpumask_empty(parent->cpus_allowed) ||
  1785. nodes_empty(parent->mems_allowed))
  1786. parent = parent->parent;
  1787. move_member_tasks_to_cpuset(cs, parent);
  1788. }
  1789. /*
  1790. * Helper function to traverse cpusets.
  1791. * It can be used to walk the cpuset tree from top to bottom, completing
  1792. * one layer before dropping down to the next (thus always processing a
  1793. * node before any of its children).
  1794. */
  1795. static struct cpuset *cpuset_next(struct list_head *queue)
  1796. {
  1797. struct cpuset *cp;
  1798. struct cpuset *child; /* scans child cpusets of cp */
  1799. struct cgroup *cont;
  1800. if (list_empty(queue))
  1801. return NULL;
  1802. cp = list_first_entry(queue, struct cpuset, stack_list);
  1803. list_del(queue->next);
  1804. rcu_read_lock();
  1805. cpuset_for_each_child(child, cont, cp)
  1806. list_add_tail(&child->stack_list, queue);
  1807. rcu_read_unlock();
  1808. return cp;
  1809. }
  1810. /**
  1811. * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
  1812. * @cs: cpuset in interest
  1813. *
  1814. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1815. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1816. * all its tasks are moved to the nearest ancestor with both resources.
  1817. */
  1818. static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
  1819. {
  1820. static cpumask_t off_cpus;
  1821. static nodemask_t off_mems, tmp_mems;
  1822. struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
  1823. bool is_empty;
  1824. mutex_lock(&cpuset_mutex);
  1825. cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
  1826. nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
  1827. /* remove offline cpus from @cs */
  1828. if (!cpumask_empty(&off_cpus)) {
  1829. mutex_lock(&callback_mutex);
  1830. cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
  1831. mutex_unlock(&callback_mutex);
  1832. update_tasks_cpumask(cs, NULL);
  1833. }
  1834. /* remove offline mems from @cs */
  1835. if (!nodes_empty(off_mems)) {
  1836. tmp_mems = cs->mems_allowed;
  1837. mutex_lock(&callback_mutex);
  1838. nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
  1839. mutex_unlock(&callback_mutex);
  1840. update_tasks_nodemask(cs, &tmp_mems, NULL);
  1841. }
  1842. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1843. nodes_empty(cs->mems_allowed);
  1844. mutex_unlock(&cpuset_mutex);
  1845. /*
  1846. * If @cs became empty, move tasks to the nearest ancestor with
  1847. * execution resources. This is full cgroup operation which will
  1848. * also call back into cpuset. Should be done outside any lock.
  1849. */
  1850. if (is_empty)
  1851. remove_tasks_in_empty_cpuset(cs);
  1852. /* the following may free @cs, should be the last operation */
  1853. css_put(&cs->css);
  1854. }
  1855. /**
  1856. * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
  1857. * @cs: cpuset of interest
  1858. *
  1859. * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
  1860. * memory masks according to top_cpuset.
  1861. */
  1862. static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
  1863. {
  1864. /*
  1865. * Pin @cs. The refcnt will be released when the work item
  1866. * finishes executing.
  1867. */
  1868. if (!css_tryget(&cs->css))
  1869. return;
  1870. /*
  1871. * Queue @cs->hotplug_work. If already pending, lose the css ref.
  1872. * cpuset_propagate_hotplug_wq is ordered and propagation will
  1873. * happen in the order this function is called.
  1874. */
  1875. if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
  1876. css_put(&cs->css);
  1877. }
  1878. /**
  1879. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1880. *
  1881. * This function is called after either CPU or memory configuration has
  1882. * changed and updates cpuset accordingly. The top_cpuset is always
  1883. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1884. * order to make cpusets transparent (of no affect) on systems that are
  1885. * actively using CPU hotplug but making no active use of cpusets.
  1886. *
  1887. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1888. * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
  1889. * descendants.
  1890. *
  1891. * Note that CPU offlining during suspend is ignored. We don't modify
  1892. * cpusets across suspend/resume cycles at all.
  1893. */
  1894. static void cpuset_hotplug_workfn(struct work_struct *work)
  1895. {
  1896. static cpumask_t new_cpus, tmp_cpus;
  1897. static nodemask_t new_mems, tmp_mems;
  1898. bool cpus_updated, mems_updated;
  1899. bool cpus_offlined, mems_offlined;
  1900. mutex_lock(&cpuset_mutex);
  1901. /* fetch the available cpus/mems and find out which changed how */
  1902. cpumask_copy(&new_cpus, cpu_active_mask);
  1903. new_mems = node_states[N_MEMORY];
  1904. cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
  1905. cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
  1906. &new_cpus);
  1907. mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
  1908. nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
  1909. mems_offlined = !nodes_empty(tmp_mems);
  1910. /* synchronize cpus_allowed to cpu_active_mask */
  1911. if (cpus_updated) {
  1912. mutex_lock(&callback_mutex);
  1913. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1914. mutex_unlock(&callback_mutex);
  1915. /* we don't mess with cpumasks of tasks in top_cpuset */
  1916. }
  1917. /* synchronize mems_allowed to N_MEMORY */
  1918. if (mems_updated) {
  1919. tmp_mems = top_cpuset.mems_allowed;
  1920. mutex_lock(&callback_mutex);
  1921. top_cpuset.mems_allowed = new_mems;
  1922. mutex_unlock(&callback_mutex);
  1923. update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
  1924. }
  1925. /* if cpus or mems went down, we need to propagate to descendants */
  1926. if (cpus_offlined || mems_offlined) {
  1927. struct cpuset *cs;
  1928. LIST_HEAD(queue);
  1929. list_add_tail(&top_cpuset.stack_list, &queue);
  1930. while ((cs = cpuset_next(&queue)))
  1931. if (cs != &top_cpuset)
  1932. schedule_cpuset_propagate_hotplug(cs);
  1933. }
  1934. mutex_unlock(&cpuset_mutex);
  1935. /* wait for propagations to finish */
  1936. flush_workqueue(cpuset_propagate_hotplug_wq);
  1937. /* rebuild sched domains if cpus_allowed has changed */
  1938. if (cpus_updated) {
  1939. struct sched_domain_attr *attr;
  1940. cpumask_var_t *doms;
  1941. int ndoms;
  1942. mutex_lock(&cpuset_mutex);
  1943. ndoms = generate_sched_domains(&doms, &attr);
  1944. mutex_unlock(&cpuset_mutex);
  1945. partition_sched_domains(ndoms, doms, attr);
  1946. }
  1947. }
  1948. void cpuset_update_active_cpus(bool cpu_online)
  1949. {
  1950. /*
  1951. * We're inside cpu hotplug critical region which usually nests
  1952. * inside cgroup synchronization. Bounce actual hotplug processing
  1953. * to a work item to avoid reverse locking order.
  1954. *
  1955. * We still need to do partition_sched_domains() synchronously;
  1956. * otherwise, the scheduler will get confused and put tasks to the
  1957. * dead CPU. Fall back to the default single domain.
  1958. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1959. */
  1960. partition_sched_domains(1, NULL, NULL);
  1961. schedule_work(&cpuset_hotplug_work);
  1962. }
  1963. #ifdef CONFIG_MEMORY_HOTPLUG
  1964. /*
  1965. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1966. * Call this routine anytime after node_states[N_MEMORY] changes.
  1967. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1968. */
  1969. static int cpuset_track_online_nodes(struct notifier_block *self,
  1970. unsigned long action, void *arg)
  1971. {
  1972. schedule_work(&cpuset_hotplug_work);
  1973. return NOTIFY_OK;
  1974. }
  1975. #endif
  1976. /**
  1977. * cpuset_init_smp - initialize cpus_allowed
  1978. *
  1979. * Description: Finish top cpuset after cpu, node maps are initialized
  1980. **/
  1981. void __init cpuset_init_smp(void)
  1982. {
  1983. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  1984. top_cpuset.mems_allowed = node_states[N_MEMORY];
  1985. hotplug_memory_notifier(cpuset_track_online_nodes, 10);
  1986. cpuset_propagate_hotplug_wq =
  1987. alloc_ordered_workqueue("cpuset_hotplug", 0);
  1988. BUG_ON(!cpuset_propagate_hotplug_wq);
  1989. }
  1990. /**
  1991. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1992. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1993. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1994. *
  1995. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1996. * attached to the specified @tsk. Guaranteed to return some non-empty
  1997. * subset of cpu_online_mask, even if this means going outside the
  1998. * tasks cpuset.
  1999. **/
  2000. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  2001. {
  2002. mutex_lock(&callback_mutex);
  2003. task_lock(tsk);
  2004. guarantee_online_cpus(task_cs(tsk), pmask);
  2005. task_unlock(tsk);
  2006. mutex_unlock(&callback_mutex);
  2007. }
  2008. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  2009. {
  2010. const struct cpuset *cs;
  2011. rcu_read_lock();
  2012. cs = task_cs(tsk);
  2013. if (cs)
  2014. do_set_cpus_allowed(tsk, cs->cpus_allowed);
  2015. rcu_read_unlock();
  2016. /*
  2017. * We own tsk->cpus_allowed, nobody can change it under us.
  2018. *
  2019. * But we used cs && cs->cpus_allowed lockless and thus can
  2020. * race with cgroup_attach_task() or update_cpumask() and get
  2021. * the wrong tsk->cpus_allowed. However, both cases imply the
  2022. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  2023. * which takes task_rq_lock().
  2024. *
  2025. * If we are called after it dropped the lock we must see all
  2026. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  2027. * set any mask even if it is not right from task_cs() pov,
  2028. * the pending set_cpus_allowed_ptr() will fix things.
  2029. *
  2030. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  2031. * if required.
  2032. */
  2033. }
  2034. void cpuset_init_current_mems_allowed(void)
  2035. {
  2036. nodes_setall(current->mems_allowed);
  2037. }
  2038. /**
  2039. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  2040. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  2041. *
  2042. * Description: Returns the nodemask_t mems_allowed of the cpuset
  2043. * attached to the specified @tsk. Guaranteed to return some non-empty
  2044. * subset of node_states[N_MEMORY], even if this means going outside the
  2045. * tasks cpuset.
  2046. **/
  2047. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  2048. {
  2049. nodemask_t mask;
  2050. mutex_lock(&callback_mutex);
  2051. task_lock(tsk);
  2052. guarantee_online_mems(task_cs(tsk), &mask);
  2053. task_unlock(tsk);
  2054. mutex_unlock(&callback_mutex);
  2055. return mask;
  2056. }
  2057. /**
  2058. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  2059. * @nodemask: the nodemask to be checked
  2060. *
  2061. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  2062. */
  2063. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  2064. {
  2065. return nodes_intersects(*nodemask, current->mems_allowed);
  2066. }
  2067. /*
  2068. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2069. * mem_hardwall ancestor to the specified cpuset. Call holding
  2070. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  2071. * (an unusual configuration), then returns the root cpuset.
  2072. */
  2073. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  2074. {
  2075. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  2076. cs = cs->parent;
  2077. return cs;
  2078. }
  2079. /**
  2080. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  2081. * @node: is this an allowed node?
  2082. * @gfp_mask: memory allocation flags
  2083. *
  2084. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2085. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2086. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2087. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2088. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2089. * flag, yes.
  2090. * Otherwise, no.
  2091. *
  2092. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2093. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2094. * might sleep, and might allow a node from an enclosing cpuset.
  2095. *
  2096. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2097. * cpusets, and never sleeps.
  2098. *
  2099. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2100. * by forcibly using a zonelist starting at a specified node, and by
  2101. * (in get_page_from_freelist()) refusing to consider the zones for
  2102. * any node on the zonelist except the first. By the time any such
  2103. * calls get to this routine, we should just shut up and say 'yes'.
  2104. *
  2105. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2106. * and do not allow allocations outside the current tasks cpuset
  2107. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2108. * GFP_KERNEL allocations are not so marked, so can escape to the
  2109. * nearest enclosing hardwalled ancestor cpuset.
  2110. *
  2111. * Scanning up parent cpusets requires callback_mutex. The
  2112. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2113. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2114. * current tasks mems_allowed came up empty on the first pass over
  2115. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2116. * cpuset are short of memory, might require taking the callback_mutex
  2117. * mutex.
  2118. *
  2119. * The first call here from mm/page_alloc:get_page_from_freelist()
  2120. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2121. * so no allocation on a node outside the cpuset is allowed (unless
  2122. * in interrupt, of course).
  2123. *
  2124. * The second pass through get_page_from_freelist() doesn't even call
  2125. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2126. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2127. * in alloc_flags. That logic and the checks below have the combined
  2128. * affect that:
  2129. * in_interrupt - any node ok (current task context irrelevant)
  2130. * GFP_ATOMIC - any node ok
  2131. * TIF_MEMDIE - any node ok
  2132. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2133. * GFP_USER - only nodes in current tasks mems allowed ok.
  2134. *
  2135. * Rule:
  2136. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2137. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2138. * the code that might scan up ancestor cpusets and sleep.
  2139. */
  2140. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2141. {
  2142. const struct cpuset *cs; /* current cpuset ancestors */
  2143. int allowed; /* is allocation in zone z allowed? */
  2144. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2145. return 1;
  2146. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2147. if (node_isset(node, current->mems_allowed))
  2148. return 1;
  2149. /*
  2150. * Allow tasks that have access to memory reserves because they have
  2151. * been OOM killed to get memory anywhere.
  2152. */
  2153. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2154. return 1;
  2155. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2156. return 0;
  2157. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2158. return 1;
  2159. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2160. mutex_lock(&callback_mutex);
  2161. task_lock(current);
  2162. cs = nearest_hardwall_ancestor(task_cs(current));
  2163. task_unlock(current);
  2164. allowed = node_isset(node, cs->mems_allowed);
  2165. mutex_unlock(&callback_mutex);
  2166. return allowed;
  2167. }
  2168. /*
  2169. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2170. * @node: is this an allowed node?
  2171. * @gfp_mask: memory allocation flags
  2172. *
  2173. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2174. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2175. * yes. If the task has been OOM killed and has access to memory reserves as
  2176. * specified by the TIF_MEMDIE flag, yes.
  2177. * Otherwise, no.
  2178. *
  2179. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2180. * by forcibly using a zonelist starting at a specified node, and by
  2181. * (in get_page_from_freelist()) refusing to consider the zones for
  2182. * any node on the zonelist except the first. By the time any such
  2183. * calls get to this routine, we should just shut up and say 'yes'.
  2184. *
  2185. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2186. * this variant requires that the node be in the current task's
  2187. * mems_allowed or that we're in interrupt. It does not scan up the
  2188. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2189. * It never sleeps.
  2190. */
  2191. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2192. {
  2193. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2194. return 1;
  2195. if (node_isset(node, current->mems_allowed))
  2196. return 1;
  2197. /*
  2198. * Allow tasks that have access to memory reserves because they have
  2199. * been OOM killed to get memory anywhere.
  2200. */
  2201. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2202. return 1;
  2203. return 0;
  2204. }
  2205. /**
  2206. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2207. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2208. *
  2209. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2210. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2211. * and if the memory allocation used cpuset_mem_spread_node()
  2212. * to determine on which node to start looking, as it will for
  2213. * certain page cache or slab cache pages such as used for file
  2214. * system buffers and inode caches, then instead of starting on the
  2215. * local node to look for a free page, rather spread the starting
  2216. * node around the tasks mems_allowed nodes.
  2217. *
  2218. * We don't have to worry about the returned node being offline
  2219. * because "it can't happen", and even if it did, it would be ok.
  2220. *
  2221. * The routines calling guarantee_online_mems() are careful to
  2222. * only set nodes in task->mems_allowed that are online. So it
  2223. * should not be possible for the following code to return an
  2224. * offline node. But if it did, that would be ok, as this routine
  2225. * is not returning the node where the allocation must be, only
  2226. * the node where the search should start. The zonelist passed to
  2227. * __alloc_pages() will include all nodes. If the slab allocator
  2228. * is passed an offline node, it will fall back to the local node.
  2229. * See kmem_cache_alloc_node().
  2230. */
  2231. static int cpuset_spread_node(int *rotor)
  2232. {
  2233. int node;
  2234. node = next_node(*rotor, current->mems_allowed);
  2235. if (node == MAX_NUMNODES)
  2236. node = first_node(current->mems_allowed);
  2237. *rotor = node;
  2238. return node;
  2239. }
  2240. int cpuset_mem_spread_node(void)
  2241. {
  2242. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2243. current->cpuset_mem_spread_rotor =
  2244. node_random(&current->mems_allowed);
  2245. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2246. }
  2247. int cpuset_slab_spread_node(void)
  2248. {
  2249. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2250. current->cpuset_slab_spread_rotor =
  2251. node_random(&current->mems_allowed);
  2252. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2253. }
  2254. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2255. /**
  2256. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2257. * @tsk1: pointer to task_struct of some task.
  2258. * @tsk2: pointer to task_struct of some other task.
  2259. *
  2260. * Description: Return true if @tsk1's mems_allowed intersects the
  2261. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2262. * one of the task's memory usage might impact the memory available
  2263. * to the other.
  2264. **/
  2265. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2266. const struct task_struct *tsk2)
  2267. {
  2268. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2269. }
  2270. /**
  2271. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2272. * @task: pointer to task_struct of some task.
  2273. *
  2274. * Description: Prints @task's name, cpuset name, and cached copy of its
  2275. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2276. * dereferencing task_cs(task).
  2277. */
  2278. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2279. {
  2280. struct dentry *dentry;
  2281. dentry = task_cs(tsk)->css.cgroup->dentry;
  2282. spin_lock(&cpuset_buffer_lock);
  2283. snprintf(cpuset_name, CPUSET_NAME_LEN,
  2284. dentry ? (const char *)dentry->d_name.name : "/");
  2285. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2286. tsk->mems_allowed);
  2287. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2288. tsk->comm, cpuset_name, cpuset_nodelist);
  2289. spin_unlock(&cpuset_buffer_lock);
  2290. }
  2291. /*
  2292. * Collection of memory_pressure is suppressed unless
  2293. * this flag is enabled by writing "1" to the special
  2294. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2295. */
  2296. int cpuset_memory_pressure_enabled __read_mostly;
  2297. /**
  2298. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2299. *
  2300. * Keep a running average of the rate of synchronous (direct)
  2301. * page reclaim efforts initiated by tasks in each cpuset.
  2302. *
  2303. * This represents the rate at which some task in the cpuset
  2304. * ran low on memory on all nodes it was allowed to use, and
  2305. * had to enter the kernels page reclaim code in an effort to
  2306. * create more free memory by tossing clean pages or swapping
  2307. * or writing dirty pages.
  2308. *
  2309. * Display to user space in the per-cpuset read-only file
  2310. * "memory_pressure". Value displayed is an integer
  2311. * representing the recent rate of entry into the synchronous
  2312. * (direct) page reclaim by any task attached to the cpuset.
  2313. **/
  2314. void __cpuset_memory_pressure_bump(void)
  2315. {
  2316. task_lock(current);
  2317. fmeter_markevent(&task_cs(current)->fmeter);
  2318. task_unlock(current);
  2319. }
  2320. #ifdef CONFIG_PROC_PID_CPUSET
  2321. /*
  2322. * proc_cpuset_show()
  2323. * - Print tasks cpuset path into seq_file.
  2324. * - Used for /proc/<pid>/cpuset.
  2325. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2326. * doesn't really matter if tsk->cpuset changes after we read it,
  2327. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2328. * anyway.
  2329. */
  2330. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2331. {
  2332. struct pid *pid;
  2333. struct task_struct *tsk;
  2334. char *buf;
  2335. struct cgroup_subsys_state *css;
  2336. int retval;
  2337. retval = -ENOMEM;
  2338. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2339. if (!buf)
  2340. goto out;
  2341. retval = -ESRCH;
  2342. pid = m->private;
  2343. tsk = get_pid_task(pid, PIDTYPE_PID);
  2344. if (!tsk)
  2345. goto out_free;
  2346. retval = -EINVAL;
  2347. mutex_lock(&cpuset_mutex);
  2348. css = task_subsys_state(tsk, cpuset_subsys_id);
  2349. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2350. if (retval < 0)
  2351. goto out_unlock;
  2352. seq_puts(m, buf);
  2353. seq_putc(m, '\n');
  2354. out_unlock:
  2355. mutex_unlock(&cpuset_mutex);
  2356. put_task_struct(tsk);
  2357. out_free:
  2358. kfree(buf);
  2359. out:
  2360. return retval;
  2361. }
  2362. static int cpuset_open(struct inode *inode, struct file *file)
  2363. {
  2364. struct pid *pid = PROC_I(inode)->pid;
  2365. return single_open(file, proc_cpuset_show, pid);
  2366. }
  2367. const struct file_operations proc_cpuset_operations = {
  2368. .open = cpuset_open,
  2369. .read = seq_read,
  2370. .llseek = seq_lseek,
  2371. .release = single_release,
  2372. };
  2373. #endif /* CONFIG_PROC_PID_CPUSET */
  2374. /* Display task mems_allowed in /proc/<pid>/status file. */
  2375. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2376. {
  2377. seq_printf(m, "Mems_allowed:\t");
  2378. seq_nodemask(m, &task->mems_allowed);
  2379. seq_printf(m, "\n");
  2380. seq_printf(m, "Mems_allowed_list:\t");
  2381. seq_nodemask_list(m, &task->mems_allowed);
  2382. seq_printf(m, "\n");
  2383. }