rtc-mxc.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. /*
  2. * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3. *
  4. * The code contained herein is licensed under the GNU General Public
  5. * License. You may obtain a copy of the GNU General Public License
  6. * Version 2 or later at the following locations:
  7. *
  8. * http://www.opensource.org/licenses/gpl-license.html
  9. * http://www.gnu.org/copyleft/gpl.html
  10. */
  11. #include <linux/io.h>
  12. #include <linux/rtc.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/clk.h>
  18. #include <mach/hardware.h>
  19. #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
  20. #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
  21. #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
  22. #define RTC_SW_BIT (1 << 0)
  23. #define RTC_ALM_BIT (1 << 2)
  24. #define RTC_1HZ_BIT (1 << 4)
  25. #define RTC_2HZ_BIT (1 << 7)
  26. #define RTC_SAM0_BIT (1 << 8)
  27. #define RTC_SAM1_BIT (1 << 9)
  28. #define RTC_SAM2_BIT (1 << 10)
  29. #define RTC_SAM3_BIT (1 << 11)
  30. #define RTC_SAM4_BIT (1 << 12)
  31. #define RTC_SAM5_BIT (1 << 13)
  32. #define RTC_SAM6_BIT (1 << 14)
  33. #define RTC_SAM7_BIT (1 << 15)
  34. #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
  35. RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
  36. RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
  37. #define RTC_ENABLE_BIT (1 << 7)
  38. #define MAX_PIE_NUM 9
  39. #define MAX_PIE_FREQ 512
  40. static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
  41. { 2, RTC_2HZ_BIT },
  42. { 4, RTC_SAM0_BIT },
  43. { 8, RTC_SAM1_BIT },
  44. { 16, RTC_SAM2_BIT },
  45. { 32, RTC_SAM3_BIT },
  46. { 64, RTC_SAM4_BIT },
  47. { 128, RTC_SAM5_BIT },
  48. { 256, RTC_SAM6_BIT },
  49. { MAX_PIE_FREQ, RTC_SAM7_BIT },
  50. };
  51. /* Those are the bits from a classic RTC we want to mimic */
  52. #define RTC_IRQF 0x80 /* any of the following 3 is active */
  53. #define RTC_PF 0x40 /* Periodic interrupt */
  54. #define RTC_AF 0x20 /* Alarm interrupt */
  55. #define RTC_UF 0x10 /* Update interrupt for 1Hz RTC */
  56. #define MXC_RTC_TIME 0
  57. #define MXC_RTC_ALARM 1
  58. #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
  59. #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
  60. #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
  61. #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
  62. #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
  63. #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
  64. #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
  65. #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
  66. #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
  67. #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
  68. #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
  69. #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
  70. #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
  71. struct rtc_plat_data {
  72. struct rtc_device *rtc;
  73. void __iomem *ioaddr;
  74. int irq;
  75. struct clk *clk;
  76. unsigned int irqen;
  77. int alrm_sec;
  78. int alrm_min;
  79. int alrm_hour;
  80. int alrm_mday;
  81. struct timespec mxc_rtc_delta;
  82. struct rtc_time g_rtc_alarm;
  83. };
  84. /*
  85. * This function is used to obtain the RTC time or the alarm value in
  86. * second.
  87. */
  88. static u32 get_alarm_or_time(struct device *dev, int time_alarm)
  89. {
  90. struct platform_device *pdev = to_platform_device(dev);
  91. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  92. void __iomem *ioaddr = pdata->ioaddr;
  93. u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
  94. switch (time_alarm) {
  95. case MXC_RTC_TIME:
  96. day = readw(ioaddr + RTC_DAYR);
  97. hr_min = readw(ioaddr + RTC_HOURMIN);
  98. sec = readw(ioaddr + RTC_SECOND);
  99. break;
  100. case MXC_RTC_ALARM:
  101. day = readw(ioaddr + RTC_DAYALARM);
  102. hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
  103. sec = readw(ioaddr + RTC_ALRM_SEC);
  104. break;
  105. }
  106. hr = hr_min >> 8;
  107. min = hr_min & 0xff;
  108. return (((day * 24 + hr) * 60) + min) * 60 + sec;
  109. }
  110. /*
  111. * This function sets the RTC alarm value or the time value.
  112. */
  113. static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
  114. {
  115. u32 day, hr, min, sec, temp;
  116. struct platform_device *pdev = to_platform_device(dev);
  117. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  118. void __iomem *ioaddr = pdata->ioaddr;
  119. day = time / 86400;
  120. time -= day * 86400;
  121. /* time is within a day now */
  122. hr = time / 3600;
  123. time -= hr * 3600;
  124. /* time is within an hour now */
  125. min = time / 60;
  126. sec = time - min * 60;
  127. temp = (hr << 8) + min;
  128. switch (time_alarm) {
  129. case MXC_RTC_TIME:
  130. writew(day, ioaddr + RTC_DAYR);
  131. writew(sec, ioaddr + RTC_SECOND);
  132. writew(temp, ioaddr + RTC_HOURMIN);
  133. break;
  134. case MXC_RTC_ALARM:
  135. writew(day, ioaddr + RTC_DAYALARM);
  136. writew(sec, ioaddr + RTC_ALRM_SEC);
  137. writew(temp, ioaddr + RTC_ALRM_HM);
  138. break;
  139. }
  140. }
  141. /*
  142. * This function updates the RTC alarm registers and then clears all the
  143. * interrupt status bits.
  144. */
  145. static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
  146. {
  147. struct rtc_time alarm_tm, now_tm;
  148. unsigned long now, time;
  149. int ret;
  150. struct platform_device *pdev = to_platform_device(dev);
  151. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  152. void __iomem *ioaddr = pdata->ioaddr;
  153. now = get_alarm_or_time(dev, MXC_RTC_TIME);
  154. rtc_time_to_tm(now, &now_tm);
  155. alarm_tm.tm_year = now_tm.tm_year;
  156. alarm_tm.tm_mon = now_tm.tm_mon;
  157. alarm_tm.tm_mday = now_tm.tm_mday;
  158. alarm_tm.tm_hour = alrm->tm_hour;
  159. alarm_tm.tm_min = alrm->tm_min;
  160. alarm_tm.tm_sec = alrm->tm_sec;
  161. rtc_tm_to_time(&now_tm, &now);
  162. rtc_tm_to_time(&alarm_tm, &time);
  163. if (time < now) {
  164. time += 60 * 60 * 24;
  165. rtc_time_to_tm(time, &alarm_tm);
  166. }
  167. ret = rtc_tm_to_time(&alarm_tm, &time);
  168. /* clear all the interrupt status bits */
  169. writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
  170. set_alarm_or_time(dev, MXC_RTC_ALARM, time);
  171. return ret;
  172. }
  173. /* This function is the RTC interrupt service routine. */
  174. static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
  175. {
  176. struct platform_device *pdev = dev_id;
  177. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  178. void __iomem *ioaddr = pdata->ioaddr;
  179. u32 status;
  180. u32 events = 0;
  181. spin_lock_irq(&pdata->rtc->irq_lock);
  182. status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
  183. /* clear interrupt sources */
  184. writew(status, ioaddr + RTC_RTCISR);
  185. /* clear alarm interrupt if it has occurred */
  186. if (status & RTC_ALM_BIT)
  187. status &= ~RTC_ALM_BIT;
  188. /* update irq data & counter */
  189. if (status & RTC_ALM_BIT)
  190. events |= (RTC_AF | RTC_IRQF);
  191. if (status & RTC_1HZ_BIT)
  192. events |= (RTC_UF | RTC_IRQF);
  193. if (status & PIT_ALL_ON)
  194. events |= (RTC_PF | RTC_IRQF);
  195. if ((status & RTC_ALM_BIT) && rtc_valid_tm(&pdata->g_rtc_alarm))
  196. rtc_update_alarm(&pdev->dev, &pdata->g_rtc_alarm);
  197. rtc_update_irq(pdata->rtc, 1, events);
  198. spin_unlock_irq(&pdata->rtc->irq_lock);
  199. return IRQ_HANDLED;
  200. }
  201. /*
  202. * Clear all interrupts and release the IRQ
  203. */
  204. static void mxc_rtc_release(struct device *dev)
  205. {
  206. struct platform_device *pdev = to_platform_device(dev);
  207. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  208. void __iomem *ioaddr = pdata->ioaddr;
  209. spin_lock_irq(&pdata->rtc->irq_lock);
  210. /* Disable all rtc interrupts */
  211. writew(0, ioaddr + RTC_RTCIENR);
  212. /* Clear all interrupt status */
  213. writew(0xffffffff, ioaddr + RTC_RTCISR);
  214. spin_unlock_irq(&pdata->rtc->irq_lock);
  215. }
  216. static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
  217. unsigned int enabled)
  218. {
  219. struct platform_device *pdev = to_platform_device(dev);
  220. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  221. void __iomem *ioaddr = pdata->ioaddr;
  222. u32 reg;
  223. spin_lock_irq(&pdata->rtc->irq_lock);
  224. reg = readw(ioaddr + RTC_RTCIENR);
  225. if (enabled)
  226. reg |= bit;
  227. else
  228. reg &= ~bit;
  229. writew(reg, ioaddr + RTC_RTCIENR);
  230. spin_unlock_irq(&pdata->rtc->irq_lock);
  231. }
  232. static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
  233. {
  234. mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
  235. return 0;
  236. }
  237. static int mxc_rtc_update_irq_enable(struct device *dev, unsigned int enabled)
  238. {
  239. mxc_rtc_irq_enable(dev, RTC_1HZ_BIT, enabled);
  240. return 0;
  241. }
  242. /*
  243. * This function reads the current RTC time into tm in Gregorian date.
  244. */
  245. static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
  246. {
  247. u32 val;
  248. /* Avoid roll-over from reading the different registers */
  249. do {
  250. val = get_alarm_or_time(dev, MXC_RTC_TIME);
  251. } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
  252. rtc_time_to_tm(val, tm);
  253. return 0;
  254. }
  255. /*
  256. * This function sets the internal RTC time based on tm in Gregorian date.
  257. */
  258. static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
  259. {
  260. /* Avoid roll-over from reading the different registers */
  261. do {
  262. set_alarm_or_time(dev, MXC_RTC_TIME, time);
  263. } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
  264. return 0;
  265. }
  266. /*
  267. * This function reads the current alarm value into the passed in 'alrm'
  268. * argument. It updates the alrm's pending field value based on the whether
  269. * an alarm interrupt occurs or not.
  270. */
  271. static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  272. {
  273. struct platform_device *pdev = to_platform_device(dev);
  274. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  275. void __iomem *ioaddr = pdata->ioaddr;
  276. rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
  277. alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
  278. return 0;
  279. }
  280. /*
  281. * This function sets the RTC alarm based on passed in alrm.
  282. */
  283. static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  284. {
  285. struct platform_device *pdev = to_platform_device(dev);
  286. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  287. int ret;
  288. if (rtc_valid_tm(&alrm->time)) {
  289. if (alrm->time.tm_sec > 59 ||
  290. alrm->time.tm_hour > 23 ||
  291. alrm->time.tm_min > 59)
  292. return -EINVAL;
  293. ret = rtc_update_alarm(dev, &alrm->time);
  294. } else {
  295. ret = rtc_valid_tm(&alrm->time);
  296. if (ret)
  297. return ret;
  298. ret = rtc_update_alarm(dev, &alrm->time);
  299. }
  300. if (ret)
  301. return ret;
  302. memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
  303. mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
  304. return 0;
  305. }
  306. /* RTC layer */
  307. static struct rtc_class_ops mxc_rtc_ops = {
  308. .release = mxc_rtc_release,
  309. .read_time = mxc_rtc_read_time,
  310. .set_mmss = mxc_rtc_set_mmss,
  311. .read_alarm = mxc_rtc_read_alarm,
  312. .set_alarm = mxc_rtc_set_alarm,
  313. .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
  314. .update_irq_enable = mxc_rtc_update_irq_enable,
  315. };
  316. static int __init mxc_rtc_probe(struct platform_device *pdev)
  317. {
  318. struct resource *res;
  319. struct rtc_device *rtc;
  320. struct rtc_plat_data *pdata = NULL;
  321. u32 reg;
  322. unsigned long rate;
  323. int ret;
  324. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  325. if (!res)
  326. return -ENODEV;
  327. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  328. if (!pdata)
  329. return -ENOMEM;
  330. if (!devm_request_mem_region(&pdev->dev, res->start,
  331. resource_size(res), pdev->name))
  332. return -EBUSY;
  333. pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
  334. resource_size(res));
  335. pdata->clk = clk_get(&pdev->dev, "rtc");
  336. if (IS_ERR(pdata->clk)) {
  337. dev_err(&pdev->dev, "unable to get clock!\n");
  338. ret = PTR_ERR(pdata->clk);
  339. goto exit_free_pdata;
  340. }
  341. clk_enable(pdata->clk);
  342. rate = clk_get_rate(pdata->clk);
  343. if (rate == 32768)
  344. reg = RTC_INPUT_CLK_32768HZ;
  345. else if (rate == 32000)
  346. reg = RTC_INPUT_CLK_32000HZ;
  347. else if (rate == 38400)
  348. reg = RTC_INPUT_CLK_38400HZ;
  349. else {
  350. dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
  351. ret = -EINVAL;
  352. goto exit_put_clk;
  353. }
  354. reg |= RTC_ENABLE_BIT;
  355. writew(reg, (pdata->ioaddr + RTC_RTCCTL));
  356. if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
  357. dev_err(&pdev->dev, "hardware module can't be enabled!\n");
  358. ret = -EIO;
  359. goto exit_put_clk;
  360. }
  361. rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
  362. THIS_MODULE);
  363. if (IS_ERR(rtc)) {
  364. ret = PTR_ERR(rtc);
  365. goto exit_put_clk;
  366. }
  367. pdata->rtc = rtc;
  368. platform_set_drvdata(pdev, pdata);
  369. /* Configure and enable the RTC */
  370. pdata->irq = platform_get_irq(pdev, 0);
  371. if (pdata->irq >= 0 &&
  372. devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
  373. IRQF_SHARED, pdev->name, pdev) < 0) {
  374. dev_warn(&pdev->dev, "interrupt not available.\n");
  375. pdata->irq = -1;
  376. }
  377. return 0;
  378. exit_put_clk:
  379. clk_disable(pdata->clk);
  380. clk_put(pdata->clk);
  381. exit_free_pdata:
  382. return ret;
  383. }
  384. static int __exit mxc_rtc_remove(struct platform_device *pdev)
  385. {
  386. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  387. rtc_device_unregister(pdata->rtc);
  388. clk_disable(pdata->clk);
  389. clk_put(pdata->clk);
  390. platform_set_drvdata(pdev, NULL);
  391. return 0;
  392. }
  393. static struct platform_driver mxc_rtc_driver = {
  394. .driver = {
  395. .name = "mxc_rtc",
  396. .owner = THIS_MODULE,
  397. },
  398. .remove = __exit_p(mxc_rtc_remove),
  399. };
  400. static int __init mxc_rtc_init(void)
  401. {
  402. return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
  403. }
  404. static void __exit mxc_rtc_exit(void)
  405. {
  406. platform_driver_unregister(&mxc_rtc_driver);
  407. }
  408. module_init(mxc_rtc_init);
  409. module_exit(mxc_rtc_exit);
  410. MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
  411. MODULE_DESCRIPTION("RTC driver for Freescale MXC");
  412. MODULE_LICENSE("GPL");