rtc-cmos.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217
  1. /*
  2. * RTC class driver for "CMOS RTC": PCs, ACPI, etc
  3. *
  4. * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
  5. * Copyright (C) 2006 David Brownell (convert to new framework)
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. /*
  13. * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  14. * That defined the register interface now provided by all PCs, some
  15. * non-PC systems, and incorporated into ACPI. Modern PC chipsets
  16. * integrate an MC146818 clone in their southbridge, and boards use
  17. * that instead of discrete clones like the DS12887 or M48T86. There
  18. * are also clones that connect using the LPC bus.
  19. *
  20. * That register API is also used directly by various other drivers
  21. * (notably for integrated NVRAM), infrastructure (x86 has code to
  22. * bypass the RTC framework, directly reading the RTC during boot
  23. * and updating minutes/seconds for systems using NTP synch) and
  24. * utilities (like userspace 'hwclock', if no /dev node exists).
  25. *
  26. * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  27. * interrupts disabled, holding the global rtc_lock, to exclude those
  28. * other drivers and utilities on correctly configured systems.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/mod_devicetable.h>
  37. #include <linux/log2.h>
  38. /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  39. #include <asm-generic/rtc.h>
  40. struct cmos_rtc {
  41. struct rtc_device *rtc;
  42. struct device *dev;
  43. int irq;
  44. struct resource *iomem;
  45. void (*wake_on)(struct device *);
  46. void (*wake_off)(struct device *);
  47. u8 enabled_wake;
  48. u8 suspend_ctrl;
  49. /* newer hardware extends the original register set */
  50. u8 day_alrm;
  51. u8 mon_alrm;
  52. u8 century;
  53. };
  54. /* both platform and pnp busses use negative numbers for invalid irqs */
  55. #define is_valid_irq(n) ((n) > 0)
  56. static const char driver_name[] = "rtc_cmos";
  57. /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  58. * always mask it against the irq enable bits in RTC_CONTROL. Bit values
  59. * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  60. */
  61. #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
  62. static inline int is_intr(u8 rtc_intr)
  63. {
  64. if (!(rtc_intr & RTC_IRQF))
  65. return 0;
  66. return rtc_intr & RTC_IRQMASK;
  67. }
  68. /*----------------------------------------------------------------*/
  69. /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  70. * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  71. * used in a broken "legacy replacement" mode. The breakage includes
  72. * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  73. * other (better) use.
  74. *
  75. * When that broken mode is in use, platform glue provides a partial
  76. * emulation of hardware RTC IRQ facilities using HPET #1. We don't
  77. * want to use HPET for anything except those IRQs though...
  78. */
  79. #ifdef CONFIG_HPET_EMULATE_RTC
  80. #include <asm/hpet.h>
  81. #else
  82. static inline int is_hpet_enabled(void)
  83. {
  84. return 0;
  85. }
  86. static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
  87. {
  88. return 0;
  89. }
  90. static inline int hpet_set_rtc_irq_bit(unsigned long mask)
  91. {
  92. return 0;
  93. }
  94. static inline int
  95. hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
  96. {
  97. return 0;
  98. }
  99. static inline int hpet_set_periodic_freq(unsigned long freq)
  100. {
  101. return 0;
  102. }
  103. static inline int hpet_rtc_dropped_irq(void)
  104. {
  105. return 0;
  106. }
  107. static inline int hpet_rtc_timer_init(void)
  108. {
  109. return 0;
  110. }
  111. extern irq_handler_t hpet_rtc_interrupt;
  112. static inline int hpet_register_irq_handler(irq_handler_t handler)
  113. {
  114. return 0;
  115. }
  116. static inline int hpet_unregister_irq_handler(irq_handler_t handler)
  117. {
  118. return 0;
  119. }
  120. #endif
  121. /*----------------------------------------------------------------*/
  122. #ifdef RTC_PORT
  123. /* Most newer x86 systems have two register banks, the first used
  124. * for RTC and NVRAM and the second only for NVRAM. Caller must
  125. * own rtc_lock ... and we won't worry about access during NMI.
  126. */
  127. #define can_bank2 true
  128. static inline unsigned char cmos_read_bank2(unsigned char addr)
  129. {
  130. outb(addr, RTC_PORT(2));
  131. return inb(RTC_PORT(3));
  132. }
  133. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  134. {
  135. outb(addr, RTC_PORT(2));
  136. outb(val, RTC_PORT(2));
  137. }
  138. #else
  139. #define can_bank2 false
  140. static inline unsigned char cmos_read_bank2(unsigned char addr)
  141. {
  142. return 0;
  143. }
  144. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  145. {
  146. }
  147. #endif
  148. /*----------------------------------------------------------------*/
  149. static int cmos_read_time(struct device *dev, struct rtc_time *t)
  150. {
  151. /* REVISIT: if the clock has a "century" register, use
  152. * that instead of the heuristic in get_rtc_time().
  153. * That'll make Y3K compatility (year > 2070) easy!
  154. */
  155. get_rtc_time(t);
  156. return 0;
  157. }
  158. static int cmos_set_time(struct device *dev, struct rtc_time *t)
  159. {
  160. /* REVISIT: set the "century" register if available
  161. *
  162. * NOTE: this ignores the issue whereby updating the seconds
  163. * takes effect exactly 500ms after we write the register.
  164. * (Also queueing and other delays before we get this far.)
  165. */
  166. return set_rtc_time(t);
  167. }
  168. static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
  169. {
  170. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  171. unsigned char rtc_control;
  172. if (!is_valid_irq(cmos->irq))
  173. return -EIO;
  174. /* Basic alarms only support hour, minute, and seconds fields.
  175. * Some also support day and month, for alarms up to a year in
  176. * the future.
  177. */
  178. t->time.tm_mday = -1;
  179. t->time.tm_mon = -1;
  180. spin_lock_irq(&rtc_lock);
  181. t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
  182. t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
  183. t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
  184. if (cmos->day_alrm) {
  185. /* ignore upper bits on readback per ACPI spec */
  186. t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
  187. if (!t->time.tm_mday)
  188. t->time.tm_mday = -1;
  189. if (cmos->mon_alrm) {
  190. t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
  191. if (!t->time.tm_mon)
  192. t->time.tm_mon = -1;
  193. }
  194. }
  195. rtc_control = CMOS_READ(RTC_CONTROL);
  196. spin_unlock_irq(&rtc_lock);
  197. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  198. if (((unsigned)t->time.tm_sec) < 0x60)
  199. t->time.tm_sec = bcd2bin(t->time.tm_sec);
  200. else
  201. t->time.tm_sec = -1;
  202. if (((unsigned)t->time.tm_min) < 0x60)
  203. t->time.tm_min = bcd2bin(t->time.tm_min);
  204. else
  205. t->time.tm_min = -1;
  206. if (((unsigned)t->time.tm_hour) < 0x24)
  207. t->time.tm_hour = bcd2bin(t->time.tm_hour);
  208. else
  209. t->time.tm_hour = -1;
  210. if (cmos->day_alrm) {
  211. if (((unsigned)t->time.tm_mday) <= 0x31)
  212. t->time.tm_mday = bcd2bin(t->time.tm_mday);
  213. else
  214. t->time.tm_mday = -1;
  215. if (cmos->mon_alrm) {
  216. if (((unsigned)t->time.tm_mon) <= 0x12)
  217. t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
  218. else
  219. t->time.tm_mon = -1;
  220. }
  221. }
  222. }
  223. t->time.tm_year = -1;
  224. t->enabled = !!(rtc_control & RTC_AIE);
  225. t->pending = 0;
  226. return 0;
  227. }
  228. static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
  229. {
  230. unsigned char rtc_intr;
  231. /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
  232. * allegedly some older rtcs need that to handle irqs properly
  233. */
  234. rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
  235. if (is_hpet_enabled())
  236. return;
  237. rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  238. if (is_intr(rtc_intr))
  239. rtc_update_irq(cmos->rtc, 1, rtc_intr);
  240. }
  241. static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
  242. {
  243. unsigned char rtc_control;
  244. /* flush any pending IRQ status, notably for update irqs,
  245. * before we enable new IRQs
  246. */
  247. rtc_control = CMOS_READ(RTC_CONTROL);
  248. cmos_checkintr(cmos, rtc_control);
  249. rtc_control |= mask;
  250. CMOS_WRITE(rtc_control, RTC_CONTROL);
  251. hpet_set_rtc_irq_bit(mask);
  252. cmos_checkintr(cmos, rtc_control);
  253. }
  254. static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
  255. {
  256. unsigned char rtc_control;
  257. rtc_control = CMOS_READ(RTC_CONTROL);
  258. rtc_control &= ~mask;
  259. CMOS_WRITE(rtc_control, RTC_CONTROL);
  260. hpet_mask_rtc_irq_bit(mask);
  261. cmos_checkintr(cmos, rtc_control);
  262. }
  263. static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
  264. {
  265. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  266. unsigned char mon, mday, hrs, min, sec, rtc_control;
  267. if (!is_valid_irq(cmos->irq))
  268. return -EIO;
  269. mon = t->time.tm_mon + 1;
  270. mday = t->time.tm_mday;
  271. hrs = t->time.tm_hour;
  272. min = t->time.tm_min;
  273. sec = t->time.tm_sec;
  274. rtc_control = CMOS_READ(RTC_CONTROL);
  275. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  276. /* Writing 0xff means "don't care" or "match all". */
  277. mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
  278. mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
  279. hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
  280. min = (min < 60) ? bin2bcd(min) : 0xff;
  281. sec = (sec < 60) ? bin2bcd(sec) : 0xff;
  282. }
  283. spin_lock_irq(&rtc_lock);
  284. /* next rtc irq must not be from previous alarm setting */
  285. cmos_irq_disable(cmos, RTC_AIE);
  286. /* update alarm */
  287. CMOS_WRITE(hrs, RTC_HOURS_ALARM);
  288. CMOS_WRITE(min, RTC_MINUTES_ALARM);
  289. CMOS_WRITE(sec, RTC_SECONDS_ALARM);
  290. /* the system may support an "enhanced" alarm */
  291. if (cmos->day_alrm) {
  292. CMOS_WRITE(mday, cmos->day_alrm);
  293. if (cmos->mon_alrm)
  294. CMOS_WRITE(mon, cmos->mon_alrm);
  295. }
  296. /* FIXME the HPET alarm glue currently ignores day_alrm
  297. * and mon_alrm ...
  298. */
  299. hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
  300. if (t->enabled)
  301. cmos_irq_enable(cmos, RTC_AIE);
  302. spin_unlock_irq(&rtc_lock);
  303. return 0;
  304. }
  305. static int cmos_irq_set_freq(struct device *dev, int freq)
  306. {
  307. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  308. int f;
  309. unsigned long flags;
  310. if (!is_valid_irq(cmos->irq))
  311. return -ENXIO;
  312. if (!is_power_of_2(freq))
  313. return -EINVAL;
  314. /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
  315. f = ffs(freq);
  316. if (f-- > 16)
  317. return -EINVAL;
  318. f = 16 - f;
  319. spin_lock_irqsave(&rtc_lock, flags);
  320. hpet_set_periodic_freq(freq);
  321. CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
  322. spin_unlock_irqrestore(&rtc_lock, flags);
  323. return 0;
  324. }
  325. static int cmos_irq_set_state(struct device *dev, int enabled)
  326. {
  327. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  328. unsigned long flags;
  329. if (!is_valid_irq(cmos->irq))
  330. return -ENXIO;
  331. spin_lock_irqsave(&rtc_lock, flags);
  332. if (enabled)
  333. cmos_irq_enable(cmos, RTC_PIE);
  334. else
  335. cmos_irq_disable(cmos, RTC_PIE);
  336. spin_unlock_irqrestore(&rtc_lock, flags);
  337. return 0;
  338. }
  339. static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
  340. {
  341. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  342. unsigned long flags;
  343. if (!is_valid_irq(cmos->irq))
  344. return -EINVAL;
  345. spin_lock_irqsave(&rtc_lock, flags);
  346. if (enabled)
  347. cmos_irq_enable(cmos, RTC_AIE);
  348. else
  349. cmos_irq_disable(cmos, RTC_AIE);
  350. spin_unlock_irqrestore(&rtc_lock, flags);
  351. return 0;
  352. }
  353. static int cmos_update_irq_enable(struct device *dev, unsigned int enabled)
  354. {
  355. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  356. unsigned long flags;
  357. if (!is_valid_irq(cmos->irq))
  358. return -EINVAL;
  359. spin_lock_irqsave(&rtc_lock, flags);
  360. if (enabled)
  361. cmos_irq_enable(cmos, RTC_UIE);
  362. else
  363. cmos_irq_disable(cmos, RTC_UIE);
  364. spin_unlock_irqrestore(&rtc_lock, flags);
  365. return 0;
  366. }
  367. #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
  368. static int cmos_procfs(struct device *dev, struct seq_file *seq)
  369. {
  370. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  371. unsigned char rtc_control, valid;
  372. spin_lock_irq(&rtc_lock);
  373. rtc_control = CMOS_READ(RTC_CONTROL);
  374. valid = CMOS_READ(RTC_VALID);
  375. spin_unlock_irq(&rtc_lock);
  376. /* NOTE: at least ICH6 reports battery status using a different
  377. * (non-RTC) bit; and SQWE is ignored on many current systems.
  378. */
  379. return seq_printf(seq,
  380. "periodic_IRQ\t: %s\n"
  381. "update_IRQ\t: %s\n"
  382. "HPET_emulated\t: %s\n"
  383. // "square_wave\t: %s\n"
  384. "BCD\t\t: %s\n"
  385. "DST_enable\t: %s\n"
  386. "periodic_freq\t: %d\n"
  387. "batt_status\t: %s\n",
  388. (rtc_control & RTC_PIE) ? "yes" : "no",
  389. (rtc_control & RTC_UIE) ? "yes" : "no",
  390. is_hpet_enabled() ? "yes" : "no",
  391. // (rtc_control & RTC_SQWE) ? "yes" : "no",
  392. (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
  393. (rtc_control & RTC_DST_EN) ? "yes" : "no",
  394. cmos->rtc->irq_freq,
  395. (valid & RTC_VRT) ? "okay" : "dead");
  396. }
  397. #else
  398. #define cmos_procfs NULL
  399. #endif
  400. static const struct rtc_class_ops cmos_rtc_ops = {
  401. .read_time = cmos_read_time,
  402. .set_time = cmos_set_time,
  403. .read_alarm = cmos_read_alarm,
  404. .set_alarm = cmos_set_alarm,
  405. .proc = cmos_procfs,
  406. .irq_set_freq = cmos_irq_set_freq,
  407. .irq_set_state = cmos_irq_set_state,
  408. .alarm_irq_enable = cmos_alarm_irq_enable,
  409. .update_irq_enable = cmos_update_irq_enable,
  410. };
  411. /*----------------------------------------------------------------*/
  412. /*
  413. * All these chips have at least 64 bytes of address space, shared by
  414. * RTC registers and NVRAM. Most of those bytes of NVRAM are used
  415. * by boot firmware. Modern chips have 128 or 256 bytes.
  416. */
  417. #define NVRAM_OFFSET (RTC_REG_D + 1)
  418. static ssize_t
  419. cmos_nvram_read(struct file *filp, struct kobject *kobj,
  420. struct bin_attribute *attr,
  421. char *buf, loff_t off, size_t count)
  422. {
  423. int retval;
  424. if (unlikely(off >= attr->size))
  425. return 0;
  426. if (unlikely(off < 0))
  427. return -EINVAL;
  428. if ((off + count) > attr->size)
  429. count = attr->size - off;
  430. off += NVRAM_OFFSET;
  431. spin_lock_irq(&rtc_lock);
  432. for (retval = 0; count; count--, off++, retval++) {
  433. if (off < 128)
  434. *buf++ = CMOS_READ(off);
  435. else if (can_bank2)
  436. *buf++ = cmos_read_bank2(off);
  437. else
  438. break;
  439. }
  440. spin_unlock_irq(&rtc_lock);
  441. return retval;
  442. }
  443. static ssize_t
  444. cmos_nvram_write(struct file *filp, struct kobject *kobj,
  445. struct bin_attribute *attr,
  446. char *buf, loff_t off, size_t count)
  447. {
  448. struct cmos_rtc *cmos;
  449. int retval;
  450. cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
  451. if (unlikely(off >= attr->size))
  452. return -EFBIG;
  453. if (unlikely(off < 0))
  454. return -EINVAL;
  455. if ((off + count) > attr->size)
  456. count = attr->size - off;
  457. /* NOTE: on at least PCs and Ataris, the boot firmware uses a
  458. * checksum on part of the NVRAM data. That's currently ignored
  459. * here. If userspace is smart enough to know what fields of
  460. * NVRAM to update, updating checksums is also part of its job.
  461. */
  462. off += NVRAM_OFFSET;
  463. spin_lock_irq(&rtc_lock);
  464. for (retval = 0; count; count--, off++, retval++) {
  465. /* don't trash RTC registers */
  466. if (off == cmos->day_alrm
  467. || off == cmos->mon_alrm
  468. || off == cmos->century)
  469. buf++;
  470. else if (off < 128)
  471. CMOS_WRITE(*buf++, off);
  472. else if (can_bank2)
  473. cmos_write_bank2(*buf++, off);
  474. else
  475. break;
  476. }
  477. spin_unlock_irq(&rtc_lock);
  478. return retval;
  479. }
  480. static struct bin_attribute nvram = {
  481. .attr = {
  482. .name = "nvram",
  483. .mode = S_IRUGO | S_IWUSR,
  484. },
  485. .read = cmos_nvram_read,
  486. .write = cmos_nvram_write,
  487. /* size gets set up later */
  488. };
  489. /*----------------------------------------------------------------*/
  490. static struct cmos_rtc cmos_rtc;
  491. static irqreturn_t cmos_interrupt(int irq, void *p)
  492. {
  493. u8 irqstat;
  494. u8 rtc_control;
  495. spin_lock(&rtc_lock);
  496. /* When the HPET interrupt handler calls us, the interrupt
  497. * status is passed as arg1 instead of the irq number. But
  498. * always clear irq status, even when HPET is in the way.
  499. *
  500. * Note that HPET and RTC are almost certainly out of phase,
  501. * giving different IRQ status ...
  502. */
  503. irqstat = CMOS_READ(RTC_INTR_FLAGS);
  504. rtc_control = CMOS_READ(RTC_CONTROL);
  505. if (is_hpet_enabled())
  506. irqstat = (unsigned long)irq & 0xF0;
  507. irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  508. /* All Linux RTC alarms should be treated as if they were oneshot.
  509. * Similar code may be needed in system wakeup paths, in case the
  510. * alarm woke the system.
  511. */
  512. if (irqstat & RTC_AIE) {
  513. rtc_control &= ~RTC_AIE;
  514. CMOS_WRITE(rtc_control, RTC_CONTROL);
  515. hpet_mask_rtc_irq_bit(RTC_AIE);
  516. CMOS_READ(RTC_INTR_FLAGS);
  517. }
  518. spin_unlock(&rtc_lock);
  519. if (is_intr(irqstat)) {
  520. rtc_update_irq(p, 1, irqstat);
  521. return IRQ_HANDLED;
  522. } else
  523. return IRQ_NONE;
  524. }
  525. #ifdef CONFIG_PNP
  526. #define INITSECTION
  527. #else
  528. #define INITSECTION __init
  529. #endif
  530. static int INITSECTION
  531. cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
  532. {
  533. struct cmos_rtc_board_info *info = dev->platform_data;
  534. int retval = 0;
  535. unsigned char rtc_control;
  536. unsigned address_space;
  537. /* there can be only one ... */
  538. if (cmos_rtc.dev)
  539. return -EBUSY;
  540. if (!ports)
  541. return -ENODEV;
  542. /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
  543. *
  544. * REVISIT non-x86 systems may instead use memory space resources
  545. * (needing ioremap etc), not i/o space resources like this ...
  546. */
  547. ports = request_region(ports->start,
  548. ports->end + 1 - ports->start,
  549. driver_name);
  550. if (!ports) {
  551. dev_dbg(dev, "i/o registers already in use\n");
  552. return -EBUSY;
  553. }
  554. cmos_rtc.irq = rtc_irq;
  555. cmos_rtc.iomem = ports;
  556. /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
  557. * driver did, but don't reject unknown configs. Old hardware
  558. * won't address 128 bytes. Newer chips have multiple banks,
  559. * though they may not be listed in one I/O resource.
  560. */
  561. #if defined(CONFIG_ATARI)
  562. address_space = 64;
  563. #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
  564. || defined(__sparc__) || defined(__mips__)
  565. address_space = 128;
  566. #else
  567. #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
  568. address_space = 128;
  569. #endif
  570. if (can_bank2 && ports->end > (ports->start + 1))
  571. address_space = 256;
  572. /* For ACPI systems extension info comes from the FADT. On others,
  573. * board specific setup provides it as appropriate. Systems where
  574. * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
  575. * some almost-clones) can provide hooks to make that behave.
  576. *
  577. * Note that ACPI doesn't preclude putting these registers into
  578. * "extended" areas of the chip, including some that we won't yet
  579. * expect CMOS_READ and friends to handle.
  580. */
  581. if (info) {
  582. if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
  583. cmos_rtc.day_alrm = info->rtc_day_alarm;
  584. if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
  585. cmos_rtc.mon_alrm = info->rtc_mon_alarm;
  586. if (info->rtc_century && info->rtc_century < 128)
  587. cmos_rtc.century = info->rtc_century;
  588. if (info->wake_on && info->wake_off) {
  589. cmos_rtc.wake_on = info->wake_on;
  590. cmos_rtc.wake_off = info->wake_off;
  591. }
  592. }
  593. cmos_rtc.rtc = rtc_device_register(driver_name, dev,
  594. &cmos_rtc_ops, THIS_MODULE);
  595. if (IS_ERR(cmos_rtc.rtc)) {
  596. retval = PTR_ERR(cmos_rtc.rtc);
  597. goto cleanup0;
  598. }
  599. cmos_rtc.dev = dev;
  600. dev_set_drvdata(dev, &cmos_rtc);
  601. rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
  602. spin_lock_irq(&rtc_lock);
  603. /* force periodic irq to CMOS reset default of 1024Hz;
  604. *
  605. * REVISIT it's been reported that at least one x86_64 ALI mobo
  606. * doesn't use 32KHz here ... for portability we might need to
  607. * do something about other clock frequencies.
  608. */
  609. cmos_rtc.rtc->irq_freq = 1024;
  610. hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
  611. CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
  612. /* disable irqs */
  613. cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
  614. rtc_control = CMOS_READ(RTC_CONTROL);
  615. spin_unlock_irq(&rtc_lock);
  616. /* FIXME:
  617. * <asm-generic/rtc.h> doesn't know 12-hour mode either.
  618. */
  619. if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
  620. dev_warn(dev, "only 24-hr supported\n");
  621. retval = -ENXIO;
  622. goto cleanup1;
  623. }
  624. if (is_valid_irq(rtc_irq)) {
  625. irq_handler_t rtc_cmos_int_handler;
  626. if (is_hpet_enabled()) {
  627. int err;
  628. rtc_cmos_int_handler = hpet_rtc_interrupt;
  629. err = hpet_register_irq_handler(cmos_interrupt);
  630. if (err != 0) {
  631. printk(KERN_WARNING "hpet_register_irq_handler "
  632. " failed in rtc_init().");
  633. goto cleanup1;
  634. }
  635. } else
  636. rtc_cmos_int_handler = cmos_interrupt;
  637. retval = request_irq(rtc_irq, rtc_cmos_int_handler,
  638. IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev),
  639. cmos_rtc.rtc);
  640. if (retval < 0) {
  641. dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
  642. goto cleanup1;
  643. }
  644. }
  645. hpet_rtc_timer_init();
  646. /* export at least the first block of NVRAM */
  647. nvram.size = address_space - NVRAM_OFFSET;
  648. retval = sysfs_create_bin_file(&dev->kobj, &nvram);
  649. if (retval < 0) {
  650. dev_dbg(dev, "can't create nvram file? %d\n", retval);
  651. goto cleanup2;
  652. }
  653. pr_info("%s: %s%s, %zd bytes nvram%s\n",
  654. dev_name(&cmos_rtc.rtc->dev),
  655. !is_valid_irq(rtc_irq) ? "no alarms" :
  656. cmos_rtc.mon_alrm ? "alarms up to one year" :
  657. cmos_rtc.day_alrm ? "alarms up to one month" :
  658. "alarms up to one day",
  659. cmos_rtc.century ? ", y3k" : "",
  660. nvram.size,
  661. is_hpet_enabled() ? ", hpet irqs" : "");
  662. return 0;
  663. cleanup2:
  664. if (is_valid_irq(rtc_irq))
  665. free_irq(rtc_irq, cmos_rtc.rtc);
  666. cleanup1:
  667. cmos_rtc.dev = NULL;
  668. rtc_device_unregister(cmos_rtc.rtc);
  669. cleanup0:
  670. release_region(ports->start, ports->end + 1 - ports->start);
  671. return retval;
  672. }
  673. static void cmos_do_shutdown(void)
  674. {
  675. spin_lock_irq(&rtc_lock);
  676. cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
  677. spin_unlock_irq(&rtc_lock);
  678. }
  679. static void __exit cmos_do_remove(struct device *dev)
  680. {
  681. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  682. struct resource *ports;
  683. cmos_do_shutdown();
  684. sysfs_remove_bin_file(&dev->kobj, &nvram);
  685. if (is_valid_irq(cmos->irq)) {
  686. free_irq(cmos->irq, cmos->rtc);
  687. hpet_unregister_irq_handler(cmos_interrupt);
  688. }
  689. rtc_device_unregister(cmos->rtc);
  690. cmos->rtc = NULL;
  691. ports = cmos->iomem;
  692. release_region(ports->start, ports->end + 1 - ports->start);
  693. cmos->iomem = NULL;
  694. cmos->dev = NULL;
  695. dev_set_drvdata(dev, NULL);
  696. }
  697. #ifdef CONFIG_PM
  698. static int cmos_suspend(struct device *dev, pm_message_t mesg)
  699. {
  700. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  701. unsigned char tmp;
  702. /* only the alarm might be a wakeup event source */
  703. spin_lock_irq(&rtc_lock);
  704. cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
  705. if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
  706. unsigned char mask;
  707. if (device_may_wakeup(dev))
  708. mask = RTC_IRQMASK & ~RTC_AIE;
  709. else
  710. mask = RTC_IRQMASK;
  711. tmp &= ~mask;
  712. CMOS_WRITE(tmp, RTC_CONTROL);
  713. /* shut down hpet emulation - we don't need it for alarm */
  714. hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE);
  715. cmos_checkintr(cmos, tmp);
  716. }
  717. spin_unlock_irq(&rtc_lock);
  718. if (tmp & RTC_AIE) {
  719. cmos->enabled_wake = 1;
  720. if (cmos->wake_on)
  721. cmos->wake_on(dev);
  722. else
  723. enable_irq_wake(cmos->irq);
  724. }
  725. pr_debug("%s: suspend%s, ctrl %02x\n",
  726. dev_name(&cmos_rtc.rtc->dev),
  727. (tmp & RTC_AIE) ? ", alarm may wake" : "",
  728. tmp);
  729. return 0;
  730. }
  731. /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
  732. * after a detour through G3 "mechanical off", although the ACPI spec
  733. * says wakeup should only work from G1/S4 "hibernate". To most users,
  734. * distinctions between S4 and S5 are pointless. So when the hardware
  735. * allows, don't draw that distinction.
  736. */
  737. static inline int cmos_poweroff(struct device *dev)
  738. {
  739. return cmos_suspend(dev, PMSG_HIBERNATE);
  740. }
  741. static int cmos_resume(struct device *dev)
  742. {
  743. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  744. unsigned char tmp = cmos->suspend_ctrl;
  745. /* re-enable any irqs previously active */
  746. if (tmp & RTC_IRQMASK) {
  747. unsigned char mask;
  748. if (cmos->enabled_wake) {
  749. if (cmos->wake_off)
  750. cmos->wake_off(dev);
  751. else
  752. disable_irq_wake(cmos->irq);
  753. cmos->enabled_wake = 0;
  754. }
  755. spin_lock_irq(&rtc_lock);
  756. do {
  757. CMOS_WRITE(tmp, RTC_CONTROL);
  758. hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
  759. mask = CMOS_READ(RTC_INTR_FLAGS);
  760. mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
  761. if (!is_hpet_enabled() || !is_intr(mask))
  762. break;
  763. /* force one-shot behavior if HPET blocked
  764. * the wake alarm's irq
  765. */
  766. rtc_update_irq(cmos->rtc, 1, mask);
  767. tmp &= ~RTC_AIE;
  768. hpet_mask_rtc_irq_bit(RTC_AIE);
  769. } while (mask & RTC_AIE);
  770. spin_unlock_irq(&rtc_lock);
  771. }
  772. pr_debug("%s: resume, ctrl %02x\n",
  773. dev_name(&cmos_rtc.rtc->dev),
  774. tmp);
  775. return 0;
  776. }
  777. #else
  778. #define cmos_suspend NULL
  779. #define cmos_resume NULL
  780. static inline int cmos_poweroff(struct device *dev)
  781. {
  782. return -ENOSYS;
  783. }
  784. #endif
  785. /*----------------------------------------------------------------*/
  786. /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
  787. * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
  788. * probably list them in similar PNPBIOS tables; so PNP is more common.
  789. *
  790. * We don't use legacy "poke at the hardware" probing. Ancient PCs that
  791. * predate even PNPBIOS should set up platform_bus devices.
  792. */
  793. #ifdef CONFIG_ACPI
  794. #include <linux/acpi.h>
  795. #ifdef CONFIG_PM
  796. static u32 rtc_handler(void *context)
  797. {
  798. acpi_clear_event(ACPI_EVENT_RTC);
  799. acpi_disable_event(ACPI_EVENT_RTC, 0);
  800. return ACPI_INTERRUPT_HANDLED;
  801. }
  802. static inline void rtc_wake_setup(void)
  803. {
  804. acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
  805. /*
  806. * After the RTC handler is installed, the Fixed_RTC event should
  807. * be disabled. Only when the RTC alarm is set will it be enabled.
  808. */
  809. acpi_clear_event(ACPI_EVENT_RTC);
  810. acpi_disable_event(ACPI_EVENT_RTC, 0);
  811. }
  812. static void rtc_wake_on(struct device *dev)
  813. {
  814. acpi_clear_event(ACPI_EVENT_RTC);
  815. acpi_enable_event(ACPI_EVENT_RTC, 0);
  816. }
  817. static void rtc_wake_off(struct device *dev)
  818. {
  819. acpi_disable_event(ACPI_EVENT_RTC, 0);
  820. }
  821. #else
  822. #define rtc_wake_setup() do{}while(0)
  823. #define rtc_wake_on NULL
  824. #define rtc_wake_off NULL
  825. #endif
  826. /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
  827. * its device node and pass extra config data. This helps its driver use
  828. * capabilities that the now-obsolete mc146818 didn't have, and informs it
  829. * that this board's RTC is wakeup-capable (per ACPI spec).
  830. */
  831. static struct cmos_rtc_board_info acpi_rtc_info;
  832. static void __devinit
  833. cmos_wake_setup(struct device *dev)
  834. {
  835. if (acpi_disabled)
  836. return;
  837. rtc_wake_setup();
  838. acpi_rtc_info.wake_on = rtc_wake_on;
  839. acpi_rtc_info.wake_off = rtc_wake_off;
  840. /* workaround bug in some ACPI tables */
  841. if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
  842. dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
  843. acpi_gbl_FADT.month_alarm);
  844. acpi_gbl_FADT.month_alarm = 0;
  845. }
  846. acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
  847. acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
  848. acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
  849. /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
  850. if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
  851. dev_info(dev, "RTC can wake from S4\n");
  852. dev->platform_data = &acpi_rtc_info;
  853. /* RTC always wakes from S1/S2/S3, and often S4/STD */
  854. device_init_wakeup(dev, 1);
  855. }
  856. #else
  857. static void __devinit
  858. cmos_wake_setup(struct device *dev)
  859. {
  860. }
  861. #endif
  862. #ifdef CONFIG_PNP
  863. #include <linux/pnp.h>
  864. static int __devinit
  865. cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
  866. {
  867. cmos_wake_setup(&pnp->dev);
  868. if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
  869. /* Some machines contain a PNP entry for the RTC, but
  870. * don't define the IRQ. It should always be safe to
  871. * hardcode it in these cases
  872. */
  873. return cmos_do_probe(&pnp->dev,
  874. pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
  875. else
  876. return cmos_do_probe(&pnp->dev,
  877. pnp_get_resource(pnp, IORESOURCE_IO, 0),
  878. pnp_irq(pnp, 0));
  879. }
  880. static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
  881. {
  882. cmos_do_remove(&pnp->dev);
  883. }
  884. #ifdef CONFIG_PM
  885. static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
  886. {
  887. return cmos_suspend(&pnp->dev, mesg);
  888. }
  889. static int cmos_pnp_resume(struct pnp_dev *pnp)
  890. {
  891. return cmos_resume(&pnp->dev);
  892. }
  893. #else
  894. #define cmos_pnp_suspend NULL
  895. #define cmos_pnp_resume NULL
  896. #endif
  897. static void cmos_pnp_shutdown(struct pnp_dev *pnp)
  898. {
  899. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
  900. return;
  901. cmos_do_shutdown();
  902. }
  903. static const struct pnp_device_id rtc_ids[] = {
  904. { .id = "PNP0b00", },
  905. { .id = "PNP0b01", },
  906. { .id = "PNP0b02", },
  907. { },
  908. };
  909. MODULE_DEVICE_TABLE(pnp, rtc_ids);
  910. static struct pnp_driver cmos_pnp_driver = {
  911. .name = (char *) driver_name,
  912. .id_table = rtc_ids,
  913. .probe = cmos_pnp_probe,
  914. .remove = __exit_p(cmos_pnp_remove),
  915. .shutdown = cmos_pnp_shutdown,
  916. /* flag ensures resume() gets called, and stops syslog spam */
  917. .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
  918. .suspend = cmos_pnp_suspend,
  919. .resume = cmos_pnp_resume,
  920. };
  921. #endif /* CONFIG_PNP */
  922. /*----------------------------------------------------------------*/
  923. /* Platform setup should have set up an RTC device, when PNP is
  924. * unavailable ... this could happen even on (older) PCs.
  925. */
  926. static int __init cmos_platform_probe(struct platform_device *pdev)
  927. {
  928. cmos_wake_setup(&pdev->dev);
  929. return cmos_do_probe(&pdev->dev,
  930. platform_get_resource(pdev, IORESOURCE_IO, 0),
  931. platform_get_irq(pdev, 0));
  932. }
  933. static int __exit cmos_platform_remove(struct platform_device *pdev)
  934. {
  935. cmos_do_remove(&pdev->dev);
  936. return 0;
  937. }
  938. static void cmos_platform_shutdown(struct platform_device *pdev)
  939. {
  940. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
  941. return;
  942. cmos_do_shutdown();
  943. }
  944. /* work with hotplug and coldplug */
  945. MODULE_ALIAS("platform:rtc_cmos");
  946. static struct platform_driver cmos_platform_driver = {
  947. .remove = __exit_p(cmos_platform_remove),
  948. .shutdown = cmos_platform_shutdown,
  949. .driver = {
  950. .name = (char *) driver_name,
  951. .suspend = cmos_suspend,
  952. .resume = cmos_resume,
  953. }
  954. };
  955. #ifdef CONFIG_PNP
  956. static bool pnp_driver_registered;
  957. #endif
  958. static bool platform_driver_registered;
  959. static int __init cmos_init(void)
  960. {
  961. int retval = 0;
  962. #ifdef CONFIG_PNP
  963. retval = pnp_register_driver(&cmos_pnp_driver);
  964. if (retval == 0)
  965. pnp_driver_registered = true;
  966. #endif
  967. if (!cmos_rtc.dev) {
  968. retval = platform_driver_probe(&cmos_platform_driver,
  969. cmos_platform_probe);
  970. if (retval == 0)
  971. platform_driver_registered = true;
  972. }
  973. if (retval == 0)
  974. return 0;
  975. #ifdef CONFIG_PNP
  976. if (pnp_driver_registered)
  977. pnp_unregister_driver(&cmos_pnp_driver);
  978. #endif
  979. return retval;
  980. }
  981. module_init(cmos_init);
  982. static void __exit cmos_exit(void)
  983. {
  984. #ifdef CONFIG_PNP
  985. if (pnp_driver_registered)
  986. pnp_unregister_driver(&cmos_pnp_driver);
  987. #endif
  988. if (platform_driver_registered)
  989. platform_driver_unregister(&cmos_platform_driver);
  990. }
  991. module_exit(cmos_exit);
  992. MODULE_AUTHOR("David Brownell");
  993. MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
  994. MODULE_LICENSE("GPL");