pageattr.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398
  1. /*
  2. * Copyright 2002 Andi Kleen, SuSE Labs.
  3. * Thanks to Ben LaHaise for precious feedback.
  4. */
  5. #include <linux/highmem.h>
  6. #include <linux/bootmem.h>
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/mm.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/seq_file.h>
  12. #include <linux/debugfs.h>
  13. #include <linux/pfn.h>
  14. #include <linux/percpu.h>
  15. #include <linux/gfp.h>
  16. #include <linux/pci.h>
  17. #include <asm/e820.h>
  18. #include <asm/processor.h>
  19. #include <asm/tlbflush.h>
  20. #include <asm/sections.h>
  21. #include <asm/setup.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/pgalloc.h>
  24. #include <asm/proto.h>
  25. #include <asm/pat.h>
  26. /*
  27. * The current flushing context - we pass it instead of 5 arguments:
  28. */
  29. struct cpa_data {
  30. unsigned long *vaddr;
  31. pgprot_t mask_set;
  32. pgprot_t mask_clr;
  33. int numpages;
  34. int flags;
  35. unsigned long pfn;
  36. unsigned force_split : 1;
  37. int curpage;
  38. struct page **pages;
  39. };
  40. /*
  41. * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  42. * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  43. * entries change the page attribute in parallel to some other cpu
  44. * splitting a large page entry along with changing the attribute.
  45. */
  46. static DEFINE_SPINLOCK(cpa_lock);
  47. #define CPA_FLUSHTLB 1
  48. #define CPA_ARRAY 2
  49. #define CPA_PAGES_ARRAY 4
  50. #ifdef CONFIG_PROC_FS
  51. static unsigned long direct_pages_count[PG_LEVEL_NUM];
  52. void update_page_count(int level, unsigned long pages)
  53. {
  54. /* Protect against CPA */
  55. spin_lock(&pgd_lock);
  56. direct_pages_count[level] += pages;
  57. spin_unlock(&pgd_lock);
  58. }
  59. static void split_page_count(int level)
  60. {
  61. direct_pages_count[level]--;
  62. direct_pages_count[level - 1] += PTRS_PER_PTE;
  63. }
  64. void arch_report_meminfo(struct seq_file *m)
  65. {
  66. seq_printf(m, "DirectMap4k: %8lu kB\n",
  67. direct_pages_count[PG_LEVEL_4K] << 2);
  68. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  69. seq_printf(m, "DirectMap2M: %8lu kB\n",
  70. direct_pages_count[PG_LEVEL_2M] << 11);
  71. #else
  72. seq_printf(m, "DirectMap4M: %8lu kB\n",
  73. direct_pages_count[PG_LEVEL_2M] << 12);
  74. #endif
  75. #ifdef CONFIG_X86_64
  76. if (direct_gbpages)
  77. seq_printf(m, "DirectMap1G: %8lu kB\n",
  78. direct_pages_count[PG_LEVEL_1G] << 20);
  79. #endif
  80. }
  81. #else
  82. static inline void split_page_count(int level) { }
  83. #endif
  84. #ifdef CONFIG_X86_64
  85. static inline unsigned long highmap_start_pfn(void)
  86. {
  87. return __pa_symbol(_text) >> PAGE_SHIFT;
  88. }
  89. static inline unsigned long highmap_end_pfn(void)
  90. {
  91. return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
  92. }
  93. #endif
  94. #ifdef CONFIG_DEBUG_PAGEALLOC
  95. # define debug_pagealloc 1
  96. #else
  97. # define debug_pagealloc 0
  98. #endif
  99. static inline int
  100. within(unsigned long addr, unsigned long start, unsigned long end)
  101. {
  102. return addr >= start && addr < end;
  103. }
  104. /*
  105. * Flushing functions
  106. */
  107. /**
  108. * clflush_cache_range - flush a cache range with clflush
  109. * @vaddr: virtual start address
  110. * @size: number of bytes to flush
  111. *
  112. * clflush is an unordered instruction which needs fencing with mfence
  113. * to avoid ordering issues.
  114. */
  115. void clflush_cache_range(void *vaddr, unsigned int size)
  116. {
  117. void *vend = vaddr + size - 1;
  118. mb();
  119. for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
  120. clflush(vaddr);
  121. /*
  122. * Flush any possible final partial cacheline:
  123. */
  124. clflush(vend);
  125. mb();
  126. }
  127. EXPORT_SYMBOL_GPL(clflush_cache_range);
  128. static void __cpa_flush_all(void *arg)
  129. {
  130. unsigned long cache = (unsigned long)arg;
  131. /*
  132. * Flush all to work around Errata in early athlons regarding
  133. * large page flushing.
  134. */
  135. __flush_tlb_all();
  136. if (cache && boot_cpu_data.x86 >= 4)
  137. wbinvd();
  138. }
  139. static void cpa_flush_all(unsigned long cache)
  140. {
  141. BUG_ON(irqs_disabled());
  142. on_each_cpu(__cpa_flush_all, (void *) cache, 1);
  143. }
  144. static void __cpa_flush_range(void *arg)
  145. {
  146. /*
  147. * We could optimize that further and do individual per page
  148. * tlb invalidates for a low number of pages. Caveat: we must
  149. * flush the high aliases on 64bit as well.
  150. */
  151. __flush_tlb_all();
  152. }
  153. static void cpa_flush_range(unsigned long start, int numpages, int cache)
  154. {
  155. unsigned int i, level;
  156. unsigned long addr;
  157. BUG_ON(irqs_disabled());
  158. WARN_ON(PAGE_ALIGN(start) != start);
  159. on_each_cpu(__cpa_flush_range, NULL, 1);
  160. if (!cache)
  161. return;
  162. /*
  163. * We only need to flush on one CPU,
  164. * clflush is a MESI-coherent instruction that
  165. * will cause all other CPUs to flush the same
  166. * cachelines:
  167. */
  168. for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
  169. pte_t *pte = lookup_address(addr, &level);
  170. /*
  171. * Only flush present addresses:
  172. */
  173. if (pte && (pte_val(*pte) & _PAGE_PRESENT))
  174. clflush_cache_range((void *) addr, PAGE_SIZE);
  175. }
  176. }
  177. static void cpa_flush_array(unsigned long *start, int numpages, int cache,
  178. int in_flags, struct page **pages)
  179. {
  180. unsigned int i, level;
  181. unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
  182. BUG_ON(irqs_disabled());
  183. on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
  184. if (!cache || do_wbinvd)
  185. return;
  186. /*
  187. * We only need to flush on one CPU,
  188. * clflush is a MESI-coherent instruction that
  189. * will cause all other CPUs to flush the same
  190. * cachelines:
  191. */
  192. for (i = 0; i < numpages; i++) {
  193. unsigned long addr;
  194. pte_t *pte;
  195. if (in_flags & CPA_PAGES_ARRAY)
  196. addr = (unsigned long)page_address(pages[i]);
  197. else
  198. addr = start[i];
  199. pte = lookup_address(addr, &level);
  200. /*
  201. * Only flush present addresses:
  202. */
  203. if (pte && (pte_val(*pte) & _PAGE_PRESENT))
  204. clflush_cache_range((void *)addr, PAGE_SIZE);
  205. }
  206. }
  207. /*
  208. * Certain areas of memory on x86 require very specific protection flags,
  209. * for example the BIOS area or kernel text. Callers don't always get this
  210. * right (again, ioremap() on BIOS memory is not uncommon) so this function
  211. * checks and fixes these known static required protection bits.
  212. */
  213. static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
  214. unsigned long pfn)
  215. {
  216. pgprot_t forbidden = __pgprot(0);
  217. /*
  218. * The BIOS area between 640k and 1Mb needs to be executable for
  219. * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
  220. */
  221. #ifdef CONFIG_PCI_BIOS
  222. if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
  223. pgprot_val(forbidden) |= _PAGE_NX;
  224. #endif
  225. /*
  226. * The kernel text needs to be executable for obvious reasons
  227. * Does not cover __inittext since that is gone later on. On
  228. * 64bit we do not enforce !NX on the low mapping
  229. */
  230. if (within(address, (unsigned long)_text, (unsigned long)_etext))
  231. pgprot_val(forbidden) |= _PAGE_NX;
  232. /*
  233. * The .rodata section needs to be read-only. Using the pfn
  234. * catches all aliases.
  235. */
  236. if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
  237. __pa_symbol(__end_rodata) >> PAGE_SHIFT))
  238. pgprot_val(forbidden) |= _PAGE_RW;
  239. #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
  240. /*
  241. * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
  242. * kernel text mappings for the large page aligned text, rodata sections
  243. * will be always read-only. For the kernel identity mappings covering
  244. * the holes caused by this alignment can be anything that user asks.
  245. *
  246. * This will preserve the large page mappings for kernel text/data
  247. * at no extra cost.
  248. */
  249. if (kernel_set_to_readonly &&
  250. within(address, (unsigned long)_text,
  251. (unsigned long)__end_rodata_hpage_align)) {
  252. unsigned int level;
  253. /*
  254. * Don't enforce the !RW mapping for the kernel text mapping,
  255. * if the current mapping is already using small page mapping.
  256. * No need to work hard to preserve large page mappings in this
  257. * case.
  258. *
  259. * This also fixes the Linux Xen paravirt guest boot failure
  260. * (because of unexpected read-only mappings for kernel identity
  261. * mappings). In this paravirt guest case, the kernel text
  262. * mapping and the kernel identity mapping share the same
  263. * page-table pages. Thus we can't really use different
  264. * protections for the kernel text and identity mappings. Also,
  265. * these shared mappings are made of small page mappings.
  266. * Thus this don't enforce !RW mapping for small page kernel
  267. * text mapping logic will help Linux Xen parvirt guest boot
  268. * as well.
  269. */
  270. if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
  271. pgprot_val(forbidden) |= _PAGE_RW;
  272. }
  273. #endif
  274. prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
  275. return prot;
  276. }
  277. /*
  278. * Lookup the page table entry for a virtual address. Return a pointer
  279. * to the entry and the level of the mapping.
  280. *
  281. * Note: We return pud and pmd either when the entry is marked large
  282. * or when the present bit is not set. Otherwise we would return a
  283. * pointer to a nonexisting mapping.
  284. */
  285. pte_t *lookup_address(unsigned long address, unsigned int *level)
  286. {
  287. pgd_t *pgd = pgd_offset_k(address);
  288. pud_t *pud;
  289. pmd_t *pmd;
  290. *level = PG_LEVEL_NONE;
  291. if (pgd_none(*pgd))
  292. return NULL;
  293. pud = pud_offset(pgd, address);
  294. if (pud_none(*pud))
  295. return NULL;
  296. *level = PG_LEVEL_1G;
  297. if (pud_large(*pud) || !pud_present(*pud))
  298. return (pte_t *)pud;
  299. pmd = pmd_offset(pud, address);
  300. if (pmd_none(*pmd))
  301. return NULL;
  302. *level = PG_LEVEL_2M;
  303. if (pmd_large(*pmd) || !pmd_present(*pmd))
  304. return (pte_t *)pmd;
  305. *level = PG_LEVEL_4K;
  306. return pte_offset_kernel(pmd, address);
  307. }
  308. EXPORT_SYMBOL_GPL(lookup_address);
  309. /*
  310. * This is necessary because __pa() does not work on some
  311. * kinds of memory, like vmalloc() or the alloc_remap()
  312. * areas on 32-bit NUMA systems. The percpu areas can
  313. * end up in this kind of memory, for instance.
  314. *
  315. * This could be optimized, but it is only intended to be
  316. * used at inititalization time, and keeping it
  317. * unoptimized should increase the testing coverage for
  318. * the more obscure platforms.
  319. */
  320. phys_addr_t slow_virt_to_phys(void *__virt_addr)
  321. {
  322. unsigned long virt_addr = (unsigned long)__virt_addr;
  323. phys_addr_t phys_addr;
  324. unsigned long offset;
  325. enum pg_level level;
  326. unsigned long psize;
  327. unsigned long pmask;
  328. pte_t *pte;
  329. pte = lookup_address(virt_addr, &level);
  330. BUG_ON(!pte);
  331. psize = page_level_size(level);
  332. pmask = page_level_mask(level);
  333. offset = virt_addr & ~pmask;
  334. phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
  335. return (phys_addr | offset);
  336. }
  337. EXPORT_SYMBOL_GPL(slow_virt_to_phys);
  338. /*
  339. * Set the new pmd in all the pgds we know about:
  340. */
  341. static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
  342. {
  343. /* change init_mm */
  344. set_pte_atomic(kpte, pte);
  345. #ifdef CONFIG_X86_32
  346. if (!SHARED_KERNEL_PMD) {
  347. struct page *page;
  348. list_for_each_entry(page, &pgd_list, lru) {
  349. pgd_t *pgd;
  350. pud_t *pud;
  351. pmd_t *pmd;
  352. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  353. pud = pud_offset(pgd, address);
  354. pmd = pmd_offset(pud, address);
  355. set_pte_atomic((pte_t *)pmd, pte);
  356. }
  357. }
  358. #endif
  359. }
  360. static int
  361. try_preserve_large_page(pte_t *kpte, unsigned long address,
  362. struct cpa_data *cpa)
  363. {
  364. unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
  365. pte_t new_pte, old_pte, *tmp;
  366. pgprot_t old_prot, new_prot, req_prot;
  367. int i, do_split = 1;
  368. enum pg_level level;
  369. if (cpa->force_split)
  370. return 1;
  371. spin_lock(&pgd_lock);
  372. /*
  373. * Check for races, another CPU might have split this page
  374. * up already:
  375. */
  376. tmp = lookup_address(address, &level);
  377. if (tmp != kpte)
  378. goto out_unlock;
  379. switch (level) {
  380. case PG_LEVEL_2M:
  381. #ifdef CONFIG_X86_64
  382. case PG_LEVEL_1G:
  383. #endif
  384. psize = page_level_size(level);
  385. pmask = page_level_mask(level);
  386. break;
  387. default:
  388. do_split = -EINVAL;
  389. goto out_unlock;
  390. }
  391. /*
  392. * Calculate the number of pages, which fit into this large
  393. * page starting at address:
  394. */
  395. nextpage_addr = (address + psize) & pmask;
  396. numpages = (nextpage_addr - address) >> PAGE_SHIFT;
  397. if (numpages < cpa->numpages)
  398. cpa->numpages = numpages;
  399. /*
  400. * We are safe now. Check whether the new pgprot is the same:
  401. */
  402. old_pte = *kpte;
  403. old_prot = new_prot = req_prot = pte_pgprot(old_pte);
  404. pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
  405. pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
  406. /*
  407. * old_pte points to the large page base address. So we need
  408. * to add the offset of the virtual address:
  409. */
  410. pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
  411. cpa->pfn = pfn;
  412. new_prot = static_protections(req_prot, address, pfn);
  413. /*
  414. * We need to check the full range, whether
  415. * static_protection() requires a different pgprot for one of
  416. * the pages in the range we try to preserve:
  417. */
  418. addr = address & pmask;
  419. pfn = pte_pfn(old_pte);
  420. for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
  421. pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
  422. if (pgprot_val(chk_prot) != pgprot_val(new_prot))
  423. goto out_unlock;
  424. }
  425. /*
  426. * If there are no changes, return. maxpages has been updated
  427. * above:
  428. */
  429. if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
  430. do_split = 0;
  431. goto out_unlock;
  432. }
  433. /*
  434. * We need to change the attributes. Check, whether we can
  435. * change the large page in one go. We request a split, when
  436. * the address is not aligned and the number of pages is
  437. * smaller than the number of pages in the large page. Note
  438. * that we limited the number of possible pages already to
  439. * the number of pages in the large page.
  440. */
  441. if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
  442. /*
  443. * The address is aligned and the number of pages
  444. * covers the full page.
  445. */
  446. new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
  447. __set_pmd_pte(kpte, address, new_pte);
  448. cpa->flags |= CPA_FLUSHTLB;
  449. do_split = 0;
  450. }
  451. out_unlock:
  452. spin_unlock(&pgd_lock);
  453. return do_split;
  454. }
  455. int __split_large_page(pte_t *kpte, unsigned long address, pte_t *pbase)
  456. {
  457. unsigned long pfn, pfninc = 1;
  458. unsigned int i, level;
  459. pte_t *tmp;
  460. pgprot_t ref_prot;
  461. struct page *base = virt_to_page(pbase);
  462. spin_lock(&pgd_lock);
  463. /*
  464. * Check for races, another CPU might have split this page
  465. * up for us already:
  466. */
  467. tmp = lookup_address(address, &level);
  468. if (tmp != kpte) {
  469. spin_unlock(&pgd_lock);
  470. return 1;
  471. }
  472. paravirt_alloc_pte(&init_mm, page_to_pfn(base));
  473. ref_prot = pte_pgprot(pte_clrhuge(*kpte));
  474. /*
  475. * If we ever want to utilize the PAT bit, we need to
  476. * update this function to make sure it's converted from
  477. * bit 12 to bit 7 when we cross from the 2MB level to
  478. * the 4K level:
  479. */
  480. WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
  481. #ifdef CONFIG_X86_64
  482. if (level == PG_LEVEL_1G) {
  483. pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
  484. pgprot_val(ref_prot) |= _PAGE_PSE;
  485. }
  486. #endif
  487. /*
  488. * Get the target pfn from the original entry:
  489. */
  490. pfn = pte_pfn(*kpte);
  491. for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
  492. set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
  493. if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
  494. PFN_DOWN(__pa(address)) + 1))
  495. split_page_count(level);
  496. /*
  497. * Install the new, split up pagetable.
  498. *
  499. * We use the standard kernel pagetable protections for the new
  500. * pagetable protections, the actual ptes set above control the
  501. * primary protection behavior:
  502. */
  503. __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
  504. /*
  505. * Intel Atom errata AAH41 workaround.
  506. *
  507. * The real fix should be in hw or in a microcode update, but
  508. * we also probabilistically try to reduce the window of having
  509. * a large TLB mixed with 4K TLBs while instruction fetches are
  510. * going on.
  511. */
  512. __flush_tlb_all();
  513. spin_unlock(&pgd_lock);
  514. return 0;
  515. }
  516. static int split_large_page(pte_t *kpte, unsigned long address)
  517. {
  518. pte_t *pbase;
  519. struct page *base;
  520. if (!debug_pagealloc)
  521. spin_unlock(&cpa_lock);
  522. base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
  523. if (!debug_pagealloc)
  524. spin_lock(&cpa_lock);
  525. if (!base)
  526. return -ENOMEM;
  527. pbase = (pte_t *)page_address(base);
  528. if (__split_large_page(kpte, address, pbase))
  529. __free_page(base);
  530. return 0;
  531. }
  532. static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
  533. int primary)
  534. {
  535. /*
  536. * Ignore all non primary paths.
  537. */
  538. if (!primary)
  539. return 0;
  540. /*
  541. * Ignore the NULL PTE for kernel identity mapping, as it is expected
  542. * to have holes.
  543. * Also set numpages to '1' indicating that we processed cpa req for
  544. * one virtual address page and its pfn. TBD: numpages can be set based
  545. * on the initial value and the level returned by lookup_address().
  546. */
  547. if (within(vaddr, PAGE_OFFSET,
  548. PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
  549. cpa->numpages = 1;
  550. cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
  551. return 0;
  552. } else {
  553. WARN(1, KERN_WARNING "CPA: called for zero pte. "
  554. "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
  555. *cpa->vaddr);
  556. return -EFAULT;
  557. }
  558. }
  559. static int __change_page_attr(struct cpa_data *cpa, int primary)
  560. {
  561. unsigned long address;
  562. int do_split, err;
  563. unsigned int level;
  564. pte_t *kpte, old_pte;
  565. if (cpa->flags & CPA_PAGES_ARRAY) {
  566. struct page *page = cpa->pages[cpa->curpage];
  567. if (unlikely(PageHighMem(page)))
  568. return 0;
  569. address = (unsigned long)page_address(page);
  570. } else if (cpa->flags & CPA_ARRAY)
  571. address = cpa->vaddr[cpa->curpage];
  572. else
  573. address = *cpa->vaddr;
  574. repeat:
  575. kpte = lookup_address(address, &level);
  576. if (!kpte)
  577. return __cpa_process_fault(cpa, address, primary);
  578. old_pte = *kpte;
  579. if (!pte_val(old_pte))
  580. return __cpa_process_fault(cpa, address, primary);
  581. if (level == PG_LEVEL_4K) {
  582. pte_t new_pte;
  583. pgprot_t new_prot = pte_pgprot(old_pte);
  584. unsigned long pfn = pte_pfn(old_pte);
  585. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  586. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  587. new_prot = static_protections(new_prot, address, pfn);
  588. /*
  589. * We need to keep the pfn from the existing PTE,
  590. * after all we're only going to change it's attributes
  591. * not the memory it points to
  592. */
  593. new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
  594. cpa->pfn = pfn;
  595. /*
  596. * Do we really change anything ?
  597. */
  598. if (pte_val(old_pte) != pte_val(new_pte)) {
  599. set_pte_atomic(kpte, new_pte);
  600. cpa->flags |= CPA_FLUSHTLB;
  601. }
  602. cpa->numpages = 1;
  603. return 0;
  604. }
  605. /*
  606. * Check, whether we can keep the large page intact
  607. * and just change the pte:
  608. */
  609. do_split = try_preserve_large_page(kpte, address, cpa);
  610. /*
  611. * When the range fits into the existing large page,
  612. * return. cp->numpages and cpa->tlbflush have been updated in
  613. * try_large_page:
  614. */
  615. if (do_split <= 0)
  616. return do_split;
  617. /*
  618. * We have to split the large page:
  619. */
  620. err = split_large_page(kpte, address);
  621. if (!err) {
  622. /*
  623. * Do a global flush tlb after splitting the large page
  624. * and before we do the actual change page attribute in the PTE.
  625. *
  626. * With out this, we violate the TLB application note, that says
  627. * "The TLBs may contain both ordinary and large-page
  628. * translations for a 4-KByte range of linear addresses. This
  629. * may occur if software modifies the paging structures so that
  630. * the page size used for the address range changes. If the two
  631. * translations differ with respect to page frame or attributes
  632. * (e.g., permissions), processor behavior is undefined and may
  633. * be implementation-specific."
  634. *
  635. * We do this global tlb flush inside the cpa_lock, so that we
  636. * don't allow any other cpu, with stale tlb entries change the
  637. * page attribute in parallel, that also falls into the
  638. * just split large page entry.
  639. */
  640. flush_tlb_all();
  641. goto repeat;
  642. }
  643. return err;
  644. }
  645. static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
  646. static int cpa_process_alias(struct cpa_data *cpa)
  647. {
  648. struct cpa_data alias_cpa;
  649. unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
  650. unsigned long vaddr;
  651. int ret;
  652. if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
  653. return 0;
  654. /*
  655. * No need to redo, when the primary call touched the direct
  656. * mapping already:
  657. */
  658. if (cpa->flags & CPA_PAGES_ARRAY) {
  659. struct page *page = cpa->pages[cpa->curpage];
  660. if (unlikely(PageHighMem(page)))
  661. return 0;
  662. vaddr = (unsigned long)page_address(page);
  663. } else if (cpa->flags & CPA_ARRAY)
  664. vaddr = cpa->vaddr[cpa->curpage];
  665. else
  666. vaddr = *cpa->vaddr;
  667. if (!(within(vaddr, PAGE_OFFSET,
  668. PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
  669. alias_cpa = *cpa;
  670. alias_cpa.vaddr = &laddr;
  671. alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
  672. ret = __change_page_attr_set_clr(&alias_cpa, 0);
  673. if (ret)
  674. return ret;
  675. }
  676. #ifdef CONFIG_X86_64
  677. /*
  678. * If the primary call didn't touch the high mapping already
  679. * and the physical address is inside the kernel map, we need
  680. * to touch the high mapped kernel as well:
  681. */
  682. if (!within(vaddr, (unsigned long)_text, _brk_end) &&
  683. within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
  684. unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
  685. __START_KERNEL_map - phys_base;
  686. alias_cpa = *cpa;
  687. alias_cpa.vaddr = &temp_cpa_vaddr;
  688. alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
  689. /*
  690. * The high mapping range is imprecise, so ignore the
  691. * return value.
  692. */
  693. __change_page_attr_set_clr(&alias_cpa, 0);
  694. }
  695. #endif
  696. return 0;
  697. }
  698. static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
  699. {
  700. int ret, numpages = cpa->numpages;
  701. while (numpages) {
  702. /*
  703. * Store the remaining nr of pages for the large page
  704. * preservation check.
  705. */
  706. cpa->numpages = numpages;
  707. /* for array changes, we can't use large page */
  708. if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
  709. cpa->numpages = 1;
  710. if (!debug_pagealloc)
  711. spin_lock(&cpa_lock);
  712. ret = __change_page_attr(cpa, checkalias);
  713. if (!debug_pagealloc)
  714. spin_unlock(&cpa_lock);
  715. if (ret)
  716. return ret;
  717. if (checkalias) {
  718. ret = cpa_process_alias(cpa);
  719. if (ret)
  720. return ret;
  721. }
  722. /*
  723. * Adjust the number of pages with the result of the
  724. * CPA operation. Either a large page has been
  725. * preserved or a single page update happened.
  726. */
  727. BUG_ON(cpa->numpages > numpages);
  728. numpages -= cpa->numpages;
  729. if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
  730. cpa->curpage++;
  731. else
  732. *cpa->vaddr += cpa->numpages * PAGE_SIZE;
  733. }
  734. return 0;
  735. }
  736. static inline int cache_attr(pgprot_t attr)
  737. {
  738. return pgprot_val(attr) &
  739. (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
  740. }
  741. static int change_page_attr_set_clr(unsigned long *addr, int numpages,
  742. pgprot_t mask_set, pgprot_t mask_clr,
  743. int force_split, int in_flag,
  744. struct page **pages)
  745. {
  746. struct cpa_data cpa;
  747. int ret, cache, checkalias;
  748. unsigned long baddr = 0;
  749. /*
  750. * Check, if we are requested to change a not supported
  751. * feature:
  752. */
  753. mask_set = canon_pgprot(mask_set);
  754. mask_clr = canon_pgprot(mask_clr);
  755. if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
  756. return 0;
  757. /* Ensure we are PAGE_SIZE aligned */
  758. if (in_flag & CPA_ARRAY) {
  759. int i;
  760. for (i = 0; i < numpages; i++) {
  761. if (addr[i] & ~PAGE_MASK) {
  762. addr[i] &= PAGE_MASK;
  763. WARN_ON_ONCE(1);
  764. }
  765. }
  766. } else if (!(in_flag & CPA_PAGES_ARRAY)) {
  767. /*
  768. * in_flag of CPA_PAGES_ARRAY implies it is aligned.
  769. * No need to cehck in that case
  770. */
  771. if (*addr & ~PAGE_MASK) {
  772. *addr &= PAGE_MASK;
  773. /*
  774. * People should not be passing in unaligned addresses:
  775. */
  776. WARN_ON_ONCE(1);
  777. }
  778. /*
  779. * Save address for cache flush. *addr is modified in the call
  780. * to __change_page_attr_set_clr() below.
  781. */
  782. baddr = *addr;
  783. }
  784. /* Must avoid aliasing mappings in the highmem code */
  785. kmap_flush_unused();
  786. vm_unmap_aliases();
  787. cpa.vaddr = addr;
  788. cpa.pages = pages;
  789. cpa.numpages = numpages;
  790. cpa.mask_set = mask_set;
  791. cpa.mask_clr = mask_clr;
  792. cpa.flags = 0;
  793. cpa.curpage = 0;
  794. cpa.force_split = force_split;
  795. if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
  796. cpa.flags |= in_flag;
  797. /* No alias checking for _NX bit modifications */
  798. checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
  799. ret = __change_page_attr_set_clr(&cpa, checkalias);
  800. /*
  801. * Check whether we really changed something:
  802. */
  803. if (!(cpa.flags & CPA_FLUSHTLB))
  804. goto out;
  805. /*
  806. * No need to flush, when we did not set any of the caching
  807. * attributes:
  808. */
  809. cache = cache_attr(mask_set);
  810. /*
  811. * On success we use clflush, when the CPU supports it to
  812. * avoid the wbindv. If the CPU does not support it and in the
  813. * error case we fall back to cpa_flush_all (which uses
  814. * wbindv):
  815. */
  816. if (!ret && cpu_has_clflush) {
  817. if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
  818. cpa_flush_array(addr, numpages, cache,
  819. cpa.flags, pages);
  820. } else
  821. cpa_flush_range(baddr, numpages, cache);
  822. } else
  823. cpa_flush_all(cache);
  824. out:
  825. return ret;
  826. }
  827. static inline int change_page_attr_set(unsigned long *addr, int numpages,
  828. pgprot_t mask, int array)
  829. {
  830. return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
  831. (array ? CPA_ARRAY : 0), NULL);
  832. }
  833. static inline int change_page_attr_clear(unsigned long *addr, int numpages,
  834. pgprot_t mask, int array)
  835. {
  836. return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
  837. (array ? CPA_ARRAY : 0), NULL);
  838. }
  839. static inline int cpa_set_pages_array(struct page **pages, int numpages,
  840. pgprot_t mask)
  841. {
  842. return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
  843. CPA_PAGES_ARRAY, pages);
  844. }
  845. static inline int cpa_clear_pages_array(struct page **pages, int numpages,
  846. pgprot_t mask)
  847. {
  848. return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
  849. CPA_PAGES_ARRAY, pages);
  850. }
  851. int _set_memory_uc(unsigned long addr, int numpages)
  852. {
  853. /*
  854. * for now UC MINUS. see comments in ioremap_nocache()
  855. */
  856. return change_page_attr_set(&addr, numpages,
  857. __pgprot(_PAGE_CACHE_UC_MINUS), 0);
  858. }
  859. int set_memory_uc(unsigned long addr, int numpages)
  860. {
  861. int ret;
  862. /*
  863. * for now UC MINUS. see comments in ioremap_nocache()
  864. */
  865. ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
  866. _PAGE_CACHE_UC_MINUS, NULL);
  867. if (ret)
  868. goto out_err;
  869. ret = _set_memory_uc(addr, numpages);
  870. if (ret)
  871. goto out_free;
  872. return 0;
  873. out_free:
  874. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  875. out_err:
  876. return ret;
  877. }
  878. EXPORT_SYMBOL(set_memory_uc);
  879. static int _set_memory_array(unsigned long *addr, int addrinarray,
  880. unsigned long new_type)
  881. {
  882. int i, j;
  883. int ret;
  884. /*
  885. * for now UC MINUS. see comments in ioremap_nocache()
  886. */
  887. for (i = 0; i < addrinarray; i++) {
  888. ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
  889. new_type, NULL);
  890. if (ret)
  891. goto out_free;
  892. }
  893. ret = change_page_attr_set(addr, addrinarray,
  894. __pgprot(_PAGE_CACHE_UC_MINUS), 1);
  895. if (!ret && new_type == _PAGE_CACHE_WC)
  896. ret = change_page_attr_set_clr(addr, addrinarray,
  897. __pgprot(_PAGE_CACHE_WC),
  898. __pgprot(_PAGE_CACHE_MASK),
  899. 0, CPA_ARRAY, NULL);
  900. if (ret)
  901. goto out_free;
  902. return 0;
  903. out_free:
  904. for (j = 0; j < i; j++)
  905. free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
  906. return ret;
  907. }
  908. int set_memory_array_uc(unsigned long *addr, int addrinarray)
  909. {
  910. return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
  911. }
  912. EXPORT_SYMBOL(set_memory_array_uc);
  913. int set_memory_array_wc(unsigned long *addr, int addrinarray)
  914. {
  915. return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
  916. }
  917. EXPORT_SYMBOL(set_memory_array_wc);
  918. int _set_memory_wc(unsigned long addr, int numpages)
  919. {
  920. int ret;
  921. unsigned long addr_copy = addr;
  922. ret = change_page_attr_set(&addr, numpages,
  923. __pgprot(_PAGE_CACHE_UC_MINUS), 0);
  924. if (!ret) {
  925. ret = change_page_attr_set_clr(&addr_copy, numpages,
  926. __pgprot(_PAGE_CACHE_WC),
  927. __pgprot(_PAGE_CACHE_MASK),
  928. 0, 0, NULL);
  929. }
  930. return ret;
  931. }
  932. int set_memory_wc(unsigned long addr, int numpages)
  933. {
  934. int ret;
  935. if (!pat_enabled)
  936. return set_memory_uc(addr, numpages);
  937. ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
  938. _PAGE_CACHE_WC, NULL);
  939. if (ret)
  940. goto out_err;
  941. ret = _set_memory_wc(addr, numpages);
  942. if (ret)
  943. goto out_free;
  944. return 0;
  945. out_free:
  946. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  947. out_err:
  948. return ret;
  949. }
  950. EXPORT_SYMBOL(set_memory_wc);
  951. int _set_memory_wb(unsigned long addr, int numpages)
  952. {
  953. return change_page_attr_clear(&addr, numpages,
  954. __pgprot(_PAGE_CACHE_MASK), 0);
  955. }
  956. int set_memory_wb(unsigned long addr, int numpages)
  957. {
  958. int ret;
  959. ret = _set_memory_wb(addr, numpages);
  960. if (ret)
  961. return ret;
  962. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  963. return 0;
  964. }
  965. EXPORT_SYMBOL(set_memory_wb);
  966. int set_memory_array_wb(unsigned long *addr, int addrinarray)
  967. {
  968. int i;
  969. int ret;
  970. ret = change_page_attr_clear(addr, addrinarray,
  971. __pgprot(_PAGE_CACHE_MASK), 1);
  972. if (ret)
  973. return ret;
  974. for (i = 0; i < addrinarray; i++)
  975. free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
  976. return 0;
  977. }
  978. EXPORT_SYMBOL(set_memory_array_wb);
  979. int set_memory_x(unsigned long addr, int numpages)
  980. {
  981. if (!(__supported_pte_mask & _PAGE_NX))
  982. return 0;
  983. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
  984. }
  985. EXPORT_SYMBOL(set_memory_x);
  986. int set_memory_nx(unsigned long addr, int numpages)
  987. {
  988. if (!(__supported_pte_mask & _PAGE_NX))
  989. return 0;
  990. return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
  991. }
  992. EXPORT_SYMBOL(set_memory_nx);
  993. int set_memory_ro(unsigned long addr, int numpages)
  994. {
  995. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
  996. }
  997. EXPORT_SYMBOL_GPL(set_memory_ro);
  998. int set_memory_rw(unsigned long addr, int numpages)
  999. {
  1000. return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
  1001. }
  1002. EXPORT_SYMBOL_GPL(set_memory_rw);
  1003. int set_memory_np(unsigned long addr, int numpages)
  1004. {
  1005. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
  1006. }
  1007. int set_memory_4k(unsigned long addr, int numpages)
  1008. {
  1009. return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
  1010. __pgprot(0), 1, 0, NULL);
  1011. }
  1012. int set_pages_uc(struct page *page, int numpages)
  1013. {
  1014. unsigned long addr = (unsigned long)page_address(page);
  1015. return set_memory_uc(addr, numpages);
  1016. }
  1017. EXPORT_SYMBOL(set_pages_uc);
  1018. static int _set_pages_array(struct page **pages, int addrinarray,
  1019. unsigned long new_type)
  1020. {
  1021. unsigned long start;
  1022. unsigned long end;
  1023. int i;
  1024. int free_idx;
  1025. int ret;
  1026. for (i = 0; i < addrinarray; i++) {
  1027. if (PageHighMem(pages[i]))
  1028. continue;
  1029. start = page_to_pfn(pages[i]) << PAGE_SHIFT;
  1030. end = start + PAGE_SIZE;
  1031. if (reserve_memtype(start, end, new_type, NULL))
  1032. goto err_out;
  1033. }
  1034. ret = cpa_set_pages_array(pages, addrinarray,
  1035. __pgprot(_PAGE_CACHE_UC_MINUS));
  1036. if (!ret && new_type == _PAGE_CACHE_WC)
  1037. ret = change_page_attr_set_clr(NULL, addrinarray,
  1038. __pgprot(_PAGE_CACHE_WC),
  1039. __pgprot(_PAGE_CACHE_MASK),
  1040. 0, CPA_PAGES_ARRAY, pages);
  1041. if (ret)
  1042. goto err_out;
  1043. return 0; /* Success */
  1044. err_out:
  1045. free_idx = i;
  1046. for (i = 0; i < free_idx; i++) {
  1047. if (PageHighMem(pages[i]))
  1048. continue;
  1049. start = page_to_pfn(pages[i]) << PAGE_SHIFT;
  1050. end = start + PAGE_SIZE;
  1051. free_memtype(start, end);
  1052. }
  1053. return -EINVAL;
  1054. }
  1055. int set_pages_array_uc(struct page **pages, int addrinarray)
  1056. {
  1057. return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
  1058. }
  1059. EXPORT_SYMBOL(set_pages_array_uc);
  1060. int set_pages_array_wc(struct page **pages, int addrinarray)
  1061. {
  1062. return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
  1063. }
  1064. EXPORT_SYMBOL(set_pages_array_wc);
  1065. int set_pages_wb(struct page *page, int numpages)
  1066. {
  1067. unsigned long addr = (unsigned long)page_address(page);
  1068. return set_memory_wb(addr, numpages);
  1069. }
  1070. EXPORT_SYMBOL(set_pages_wb);
  1071. int set_pages_array_wb(struct page **pages, int addrinarray)
  1072. {
  1073. int retval;
  1074. unsigned long start;
  1075. unsigned long end;
  1076. int i;
  1077. retval = cpa_clear_pages_array(pages, addrinarray,
  1078. __pgprot(_PAGE_CACHE_MASK));
  1079. if (retval)
  1080. return retval;
  1081. for (i = 0; i < addrinarray; i++) {
  1082. if (PageHighMem(pages[i]))
  1083. continue;
  1084. start = page_to_pfn(pages[i]) << PAGE_SHIFT;
  1085. end = start + PAGE_SIZE;
  1086. free_memtype(start, end);
  1087. }
  1088. return 0;
  1089. }
  1090. EXPORT_SYMBOL(set_pages_array_wb);
  1091. int set_pages_x(struct page *page, int numpages)
  1092. {
  1093. unsigned long addr = (unsigned long)page_address(page);
  1094. return set_memory_x(addr, numpages);
  1095. }
  1096. EXPORT_SYMBOL(set_pages_x);
  1097. int set_pages_nx(struct page *page, int numpages)
  1098. {
  1099. unsigned long addr = (unsigned long)page_address(page);
  1100. return set_memory_nx(addr, numpages);
  1101. }
  1102. EXPORT_SYMBOL(set_pages_nx);
  1103. int set_pages_ro(struct page *page, int numpages)
  1104. {
  1105. unsigned long addr = (unsigned long)page_address(page);
  1106. return set_memory_ro(addr, numpages);
  1107. }
  1108. int set_pages_rw(struct page *page, int numpages)
  1109. {
  1110. unsigned long addr = (unsigned long)page_address(page);
  1111. return set_memory_rw(addr, numpages);
  1112. }
  1113. #ifdef CONFIG_DEBUG_PAGEALLOC
  1114. static int __set_pages_p(struct page *page, int numpages)
  1115. {
  1116. unsigned long tempaddr = (unsigned long) page_address(page);
  1117. struct cpa_data cpa = { .vaddr = &tempaddr,
  1118. .numpages = numpages,
  1119. .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
  1120. .mask_clr = __pgprot(0),
  1121. .flags = 0};
  1122. /*
  1123. * No alias checking needed for setting present flag. otherwise,
  1124. * we may need to break large pages for 64-bit kernel text
  1125. * mappings (this adds to complexity if we want to do this from
  1126. * atomic context especially). Let's keep it simple!
  1127. */
  1128. return __change_page_attr_set_clr(&cpa, 0);
  1129. }
  1130. static int __set_pages_np(struct page *page, int numpages)
  1131. {
  1132. unsigned long tempaddr = (unsigned long) page_address(page);
  1133. struct cpa_data cpa = { .vaddr = &tempaddr,
  1134. .numpages = numpages,
  1135. .mask_set = __pgprot(0),
  1136. .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
  1137. .flags = 0};
  1138. /*
  1139. * No alias checking needed for setting not present flag. otherwise,
  1140. * we may need to break large pages for 64-bit kernel text
  1141. * mappings (this adds to complexity if we want to do this from
  1142. * atomic context especially). Let's keep it simple!
  1143. */
  1144. return __change_page_attr_set_clr(&cpa, 0);
  1145. }
  1146. void kernel_map_pages(struct page *page, int numpages, int enable)
  1147. {
  1148. if (PageHighMem(page))
  1149. return;
  1150. if (!enable) {
  1151. debug_check_no_locks_freed(page_address(page),
  1152. numpages * PAGE_SIZE);
  1153. }
  1154. /*
  1155. * The return value is ignored as the calls cannot fail.
  1156. * Large pages for identity mappings are not used at boot time
  1157. * and hence no memory allocations during large page split.
  1158. */
  1159. if (enable)
  1160. __set_pages_p(page, numpages);
  1161. else
  1162. __set_pages_np(page, numpages);
  1163. /*
  1164. * We should perform an IPI and flush all tlbs,
  1165. * but that can deadlock->flush only current cpu:
  1166. */
  1167. __flush_tlb_all();
  1168. }
  1169. #ifdef CONFIG_HIBERNATION
  1170. bool kernel_page_present(struct page *page)
  1171. {
  1172. unsigned int level;
  1173. pte_t *pte;
  1174. if (PageHighMem(page))
  1175. return false;
  1176. pte = lookup_address((unsigned long)page_address(page), &level);
  1177. return (pte_val(*pte) & _PAGE_PRESENT);
  1178. }
  1179. #endif /* CONFIG_HIBERNATION */
  1180. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1181. /*
  1182. * The testcases use internal knowledge of the implementation that shouldn't
  1183. * be exposed to the rest of the kernel. Include these directly here.
  1184. */
  1185. #ifdef CONFIG_CPA_DEBUG
  1186. #include "pageattr-test.c"
  1187. #endif