security.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* Boot-time LSM user choice */
  19. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
  20. /* things that live in capability.c */
  21. extern struct security_operations default_security_ops;
  22. extern void security_fixup_ops(struct security_operations *ops);
  23. struct security_operations *security_ops; /* Initialized to NULL */
  24. /* amount of vm to protect from userspace access */
  25. unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
  26. static inline int verify(struct security_operations *ops)
  27. {
  28. /* verify the security_operations structure exists */
  29. if (!ops)
  30. return -EINVAL;
  31. security_fixup_ops(ops);
  32. return 0;
  33. }
  34. static void __init do_security_initcalls(void)
  35. {
  36. initcall_t *call;
  37. call = __security_initcall_start;
  38. while (call < __security_initcall_end) {
  39. (*call) ();
  40. call++;
  41. }
  42. }
  43. /**
  44. * security_init - initializes the security framework
  45. *
  46. * This should be called early in the kernel initialization sequence.
  47. */
  48. int __init security_init(void)
  49. {
  50. printk(KERN_INFO "Security Framework initialized\n");
  51. security_fixup_ops(&default_security_ops);
  52. security_ops = &default_security_ops;
  53. do_security_initcalls();
  54. return 0;
  55. }
  56. /* Save user chosen LSM */
  57. static int __init choose_lsm(char *str)
  58. {
  59. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  60. return 1;
  61. }
  62. __setup("security=", choose_lsm);
  63. /**
  64. * security_module_enable - Load given security module on boot ?
  65. * @ops: a pointer to the struct security_operations that is to be checked.
  66. *
  67. * Each LSM must pass this method before registering its own operations
  68. * to avoid security registration races. This method may also be used
  69. * to check if your LSM is currently loaded during kernel initialization.
  70. *
  71. * Return true if:
  72. * -The passed LSM is the one chosen by user at boot time,
  73. * -or user didsn't specify a specific LSM and we're the first to ask
  74. * for registeration permissoin,
  75. * -or the passed LSM is currently loaded.
  76. * Otherwise, return false.
  77. */
  78. int __init security_module_enable(struct security_operations *ops)
  79. {
  80. if (!*chosen_lsm)
  81. strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
  82. else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
  83. return 0;
  84. return 1;
  85. }
  86. /**
  87. * register_security - registers a security framework with the kernel
  88. * @ops: a pointer to the struct security_options that is to be registered
  89. *
  90. * This function is to allow a security module to register itself with the
  91. * kernel security subsystem. Some rudimentary checking is done on the @ops
  92. * value passed to this function. You'll need to check first if your LSM
  93. * is allowed to register its @ops by calling security_module_enable(@ops).
  94. *
  95. * If there is already a security module registered with the kernel,
  96. * an error will be returned. Otherwise 0 is returned on success.
  97. */
  98. int register_security(struct security_operations *ops)
  99. {
  100. if (verify(ops)) {
  101. printk(KERN_DEBUG "%s could not verify "
  102. "security_operations structure.\n", __func__);
  103. return -EINVAL;
  104. }
  105. if (security_ops != &default_security_ops)
  106. return -EAGAIN;
  107. security_ops = ops;
  108. return 0;
  109. }
  110. /* Security operations */
  111. int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
  112. {
  113. return security_ops->ptrace_may_access(child, mode);
  114. }
  115. int security_ptrace_traceme(struct task_struct *parent)
  116. {
  117. return security_ops->ptrace_traceme(parent);
  118. }
  119. int security_capget(struct task_struct *target,
  120. kernel_cap_t *effective,
  121. kernel_cap_t *inheritable,
  122. kernel_cap_t *permitted)
  123. {
  124. return security_ops->capget(target, effective, inheritable, permitted);
  125. }
  126. int security_capset_check(struct task_struct *target,
  127. kernel_cap_t *effective,
  128. kernel_cap_t *inheritable,
  129. kernel_cap_t *permitted)
  130. {
  131. return security_ops->capset_check(target, effective, inheritable, permitted);
  132. }
  133. void security_capset_set(struct task_struct *target,
  134. kernel_cap_t *effective,
  135. kernel_cap_t *inheritable,
  136. kernel_cap_t *permitted)
  137. {
  138. security_ops->capset_set(target, effective, inheritable, permitted);
  139. }
  140. int security_capable(struct task_struct *tsk, int cap)
  141. {
  142. return security_ops->capable(tsk, cap);
  143. }
  144. int security_acct(struct file *file)
  145. {
  146. return security_ops->acct(file);
  147. }
  148. int security_sysctl(struct ctl_table *table, int op)
  149. {
  150. return security_ops->sysctl(table, op);
  151. }
  152. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  153. {
  154. return security_ops->quotactl(cmds, type, id, sb);
  155. }
  156. int security_quota_on(struct dentry *dentry)
  157. {
  158. return security_ops->quota_on(dentry);
  159. }
  160. int security_syslog(int type)
  161. {
  162. return security_ops->syslog(type);
  163. }
  164. int security_settime(struct timespec *ts, struct timezone *tz)
  165. {
  166. return security_ops->settime(ts, tz);
  167. }
  168. int security_vm_enough_memory(long pages)
  169. {
  170. return security_ops->vm_enough_memory(current->mm, pages);
  171. }
  172. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  173. {
  174. return security_ops->vm_enough_memory(mm, pages);
  175. }
  176. int security_bprm_alloc(struct linux_binprm *bprm)
  177. {
  178. return security_ops->bprm_alloc_security(bprm);
  179. }
  180. void security_bprm_free(struct linux_binprm *bprm)
  181. {
  182. security_ops->bprm_free_security(bprm);
  183. }
  184. void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
  185. {
  186. security_ops->bprm_apply_creds(bprm, unsafe);
  187. }
  188. void security_bprm_post_apply_creds(struct linux_binprm *bprm)
  189. {
  190. security_ops->bprm_post_apply_creds(bprm);
  191. }
  192. int security_bprm_set(struct linux_binprm *bprm)
  193. {
  194. return security_ops->bprm_set_security(bprm);
  195. }
  196. int security_bprm_check(struct linux_binprm *bprm)
  197. {
  198. return security_ops->bprm_check_security(bprm);
  199. }
  200. int security_bprm_secureexec(struct linux_binprm *bprm)
  201. {
  202. return security_ops->bprm_secureexec(bprm);
  203. }
  204. int security_sb_alloc(struct super_block *sb)
  205. {
  206. return security_ops->sb_alloc_security(sb);
  207. }
  208. void security_sb_free(struct super_block *sb)
  209. {
  210. security_ops->sb_free_security(sb);
  211. }
  212. int security_sb_copy_data(char *orig, char *copy)
  213. {
  214. return security_ops->sb_copy_data(orig, copy);
  215. }
  216. EXPORT_SYMBOL(security_sb_copy_data);
  217. int security_sb_kern_mount(struct super_block *sb, void *data)
  218. {
  219. return security_ops->sb_kern_mount(sb, data);
  220. }
  221. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  222. {
  223. return security_ops->sb_show_options(m, sb);
  224. }
  225. int security_sb_statfs(struct dentry *dentry)
  226. {
  227. return security_ops->sb_statfs(dentry);
  228. }
  229. int security_sb_mount(char *dev_name, struct path *path,
  230. char *type, unsigned long flags, void *data)
  231. {
  232. return security_ops->sb_mount(dev_name, path, type, flags, data);
  233. }
  234. int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
  235. {
  236. return security_ops->sb_check_sb(mnt, path);
  237. }
  238. int security_sb_umount(struct vfsmount *mnt, int flags)
  239. {
  240. return security_ops->sb_umount(mnt, flags);
  241. }
  242. void security_sb_umount_close(struct vfsmount *mnt)
  243. {
  244. security_ops->sb_umount_close(mnt);
  245. }
  246. void security_sb_umount_busy(struct vfsmount *mnt)
  247. {
  248. security_ops->sb_umount_busy(mnt);
  249. }
  250. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  251. {
  252. security_ops->sb_post_remount(mnt, flags, data);
  253. }
  254. void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
  255. {
  256. security_ops->sb_post_addmount(mnt, mountpoint);
  257. }
  258. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  259. {
  260. return security_ops->sb_pivotroot(old_path, new_path);
  261. }
  262. void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
  263. {
  264. security_ops->sb_post_pivotroot(old_path, new_path);
  265. }
  266. int security_sb_set_mnt_opts(struct super_block *sb,
  267. struct security_mnt_opts *opts)
  268. {
  269. return security_ops->sb_set_mnt_opts(sb, opts);
  270. }
  271. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  272. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  273. struct super_block *newsb)
  274. {
  275. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  276. }
  277. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  278. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  279. {
  280. return security_ops->sb_parse_opts_str(options, opts);
  281. }
  282. EXPORT_SYMBOL(security_sb_parse_opts_str);
  283. int security_inode_alloc(struct inode *inode)
  284. {
  285. inode->i_security = NULL;
  286. return security_ops->inode_alloc_security(inode);
  287. }
  288. void security_inode_free(struct inode *inode)
  289. {
  290. security_ops->inode_free_security(inode);
  291. }
  292. int security_inode_init_security(struct inode *inode, struct inode *dir,
  293. char **name, void **value, size_t *len)
  294. {
  295. if (unlikely(IS_PRIVATE(inode)))
  296. return -EOPNOTSUPP;
  297. return security_ops->inode_init_security(inode, dir, name, value, len);
  298. }
  299. EXPORT_SYMBOL(security_inode_init_security);
  300. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  301. {
  302. if (unlikely(IS_PRIVATE(dir)))
  303. return 0;
  304. return security_ops->inode_create(dir, dentry, mode);
  305. }
  306. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  307. struct dentry *new_dentry)
  308. {
  309. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  310. return 0;
  311. return security_ops->inode_link(old_dentry, dir, new_dentry);
  312. }
  313. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  314. {
  315. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  316. return 0;
  317. return security_ops->inode_unlink(dir, dentry);
  318. }
  319. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  320. const char *old_name)
  321. {
  322. if (unlikely(IS_PRIVATE(dir)))
  323. return 0;
  324. return security_ops->inode_symlink(dir, dentry, old_name);
  325. }
  326. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  327. {
  328. if (unlikely(IS_PRIVATE(dir)))
  329. return 0;
  330. return security_ops->inode_mkdir(dir, dentry, mode);
  331. }
  332. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  333. {
  334. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  335. return 0;
  336. return security_ops->inode_rmdir(dir, dentry);
  337. }
  338. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  339. {
  340. if (unlikely(IS_PRIVATE(dir)))
  341. return 0;
  342. return security_ops->inode_mknod(dir, dentry, mode, dev);
  343. }
  344. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  345. struct inode *new_dir, struct dentry *new_dentry)
  346. {
  347. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  348. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  349. return 0;
  350. return security_ops->inode_rename(old_dir, old_dentry,
  351. new_dir, new_dentry);
  352. }
  353. int security_inode_readlink(struct dentry *dentry)
  354. {
  355. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  356. return 0;
  357. return security_ops->inode_readlink(dentry);
  358. }
  359. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  360. {
  361. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  362. return 0;
  363. return security_ops->inode_follow_link(dentry, nd);
  364. }
  365. int security_inode_permission(struct inode *inode, int mask)
  366. {
  367. if (unlikely(IS_PRIVATE(inode)))
  368. return 0;
  369. return security_ops->inode_permission(inode, mask);
  370. }
  371. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  372. {
  373. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  374. return 0;
  375. return security_ops->inode_setattr(dentry, attr);
  376. }
  377. EXPORT_SYMBOL_GPL(security_inode_setattr);
  378. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  379. {
  380. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  381. return 0;
  382. return security_ops->inode_getattr(mnt, dentry);
  383. }
  384. void security_inode_delete(struct inode *inode)
  385. {
  386. if (unlikely(IS_PRIVATE(inode)))
  387. return;
  388. security_ops->inode_delete(inode);
  389. }
  390. int security_inode_setxattr(struct dentry *dentry, const char *name,
  391. const void *value, size_t size, int flags)
  392. {
  393. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  394. return 0;
  395. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  396. }
  397. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  398. const void *value, size_t size, int flags)
  399. {
  400. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  401. return;
  402. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  403. }
  404. int security_inode_getxattr(struct dentry *dentry, const char *name)
  405. {
  406. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  407. return 0;
  408. return security_ops->inode_getxattr(dentry, name);
  409. }
  410. int security_inode_listxattr(struct dentry *dentry)
  411. {
  412. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  413. return 0;
  414. return security_ops->inode_listxattr(dentry);
  415. }
  416. int security_inode_removexattr(struct dentry *dentry, const char *name)
  417. {
  418. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  419. return 0;
  420. return security_ops->inode_removexattr(dentry, name);
  421. }
  422. int security_inode_need_killpriv(struct dentry *dentry)
  423. {
  424. return security_ops->inode_need_killpriv(dentry);
  425. }
  426. int security_inode_killpriv(struct dentry *dentry)
  427. {
  428. return security_ops->inode_killpriv(dentry);
  429. }
  430. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  431. {
  432. if (unlikely(IS_PRIVATE(inode)))
  433. return 0;
  434. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  435. }
  436. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  437. {
  438. if (unlikely(IS_PRIVATE(inode)))
  439. return 0;
  440. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  441. }
  442. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  443. {
  444. if (unlikely(IS_PRIVATE(inode)))
  445. return 0;
  446. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  447. }
  448. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  449. {
  450. security_ops->inode_getsecid(inode, secid);
  451. }
  452. int security_file_permission(struct file *file, int mask)
  453. {
  454. return security_ops->file_permission(file, mask);
  455. }
  456. int security_file_alloc(struct file *file)
  457. {
  458. return security_ops->file_alloc_security(file);
  459. }
  460. void security_file_free(struct file *file)
  461. {
  462. security_ops->file_free_security(file);
  463. }
  464. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  465. {
  466. return security_ops->file_ioctl(file, cmd, arg);
  467. }
  468. int security_file_mmap(struct file *file, unsigned long reqprot,
  469. unsigned long prot, unsigned long flags,
  470. unsigned long addr, unsigned long addr_only)
  471. {
  472. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  473. }
  474. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  475. unsigned long prot)
  476. {
  477. return security_ops->file_mprotect(vma, reqprot, prot);
  478. }
  479. int security_file_lock(struct file *file, unsigned int cmd)
  480. {
  481. return security_ops->file_lock(file, cmd);
  482. }
  483. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  484. {
  485. return security_ops->file_fcntl(file, cmd, arg);
  486. }
  487. int security_file_set_fowner(struct file *file)
  488. {
  489. return security_ops->file_set_fowner(file);
  490. }
  491. int security_file_send_sigiotask(struct task_struct *tsk,
  492. struct fown_struct *fown, int sig)
  493. {
  494. return security_ops->file_send_sigiotask(tsk, fown, sig);
  495. }
  496. int security_file_receive(struct file *file)
  497. {
  498. return security_ops->file_receive(file);
  499. }
  500. int security_dentry_open(struct file *file)
  501. {
  502. return security_ops->dentry_open(file);
  503. }
  504. int security_task_create(unsigned long clone_flags)
  505. {
  506. return security_ops->task_create(clone_flags);
  507. }
  508. int security_task_alloc(struct task_struct *p)
  509. {
  510. return security_ops->task_alloc_security(p);
  511. }
  512. void security_task_free(struct task_struct *p)
  513. {
  514. security_ops->task_free_security(p);
  515. }
  516. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  517. {
  518. return security_ops->task_setuid(id0, id1, id2, flags);
  519. }
  520. int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
  521. uid_t old_suid, int flags)
  522. {
  523. return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
  524. }
  525. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  526. {
  527. return security_ops->task_setgid(id0, id1, id2, flags);
  528. }
  529. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  530. {
  531. return security_ops->task_setpgid(p, pgid);
  532. }
  533. int security_task_getpgid(struct task_struct *p)
  534. {
  535. return security_ops->task_getpgid(p);
  536. }
  537. int security_task_getsid(struct task_struct *p)
  538. {
  539. return security_ops->task_getsid(p);
  540. }
  541. void security_task_getsecid(struct task_struct *p, u32 *secid)
  542. {
  543. security_ops->task_getsecid(p, secid);
  544. }
  545. EXPORT_SYMBOL(security_task_getsecid);
  546. int security_task_setgroups(struct group_info *group_info)
  547. {
  548. return security_ops->task_setgroups(group_info);
  549. }
  550. int security_task_setnice(struct task_struct *p, int nice)
  551. {
  552. return security_ops->task_setnice(p, nice);
  553. }
  554. int security_task_setioprio(struct task_struct *p, int ioprio)
  555. {
  556. return security_ops->task_setioprio(p, ioprio);
  557. }
  558. int security_task_getioprio(struct task_struct *p)
  559. {
  560. return security_ops->task_getioprio(p);
  561. }
  562. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  563. {
  564. return security_ops->task_setrlimit(resource, new_rlim);
  565. }
  566. int security_task_setscheduler(struct task_struct *p,
  567. int policy, struct sched_param *lp)
  568. {
  569. return security_ops->task_setscheduler(p, policy, lp);
  570. }
  571. int security_task_getscheduler(struct task_struct *p)
  572. {
  573. return security_ops->task_getscheduler(p);
  574. }
  575. int security_task_movememory(struct task_struct *p)
  576. {
  577. return security_ops->task_movememory(p);
  578. }
  579. int security_task_kill(struct task_struct *p, struct siginfo *info,
  580. int sig, u32 secid)
  581. {
  582. return security_ops->task_kill(p, info, sig, secid);
  583. }
  584. int security_task_wait(struct task_struct *p)
  585. {
  586. return security_ops->task_wait(p);
  587. }
  588. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  589. unsigned long arg4, unsigned long arg5, long *rc_p)
  590. {
  591. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
  592. }
  593. void security_task_reparent_to_init(struct task_struct *p)
  594. {
  595. security_ops->task_reparent_to_init(p);
  596. }
  597. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  598. {
  599. security_ops->task_to_inode(p, inode);
  600. }
  601. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  602. {
  603. return security_ops->ipc_permission(ipcp, flag);
  604. }
  605. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  606. {
  607. security_ops->ipc_getsecid(ipcp, secid);
  608. }
  609. int security_msg_msg_alloc(struct msg_msg *msg)
  610. {
  611. return security_ops->msg_msg_alloc_security(msg);
  612. }
  613. void security_msg_msg_free(struct msg_msg *msg)
  614. {
  615. security_ops->msg_msg_free_security(msg);
  616. }
  617. int security_msg_queue_alloc(struct msg_queue *msq)
  618. {
  619. return security_ops->msg_queue_alloc_security(msq);
  620. }
  621. void security_msg_queue_free(struct msg_queue *msq)
  622. {
  623. security_ops->msg_queue_free_security(msq);
  624. }
  625. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  626. {
  627. return security_ops->msg_queue_associate(msq, msqflg);
  628. }
  629. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  630. {
  631. return security_ops->msg_queue_msgctl(msq, cmd);
  632. }
  633. int security_msg_queue_msgsnd(struct msg_queue *msq,
  634. struct msg_msg *msg, int msqflg)
  635. {
  636. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  637. }
  638. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  639. struct task_struct *target, long type, int mode)
  640. {
  641. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  642. }
  643. int security_shm_alloc(struct shmid_kernel *shp)
  644. {
  645. return security_ops->shm_alloc_security(shp);
  646. }
  647. void security_shm_free(struct shmid_kernel *shp)
  648. {
  649. security_ops->shm_free_security(shp);
  650. }
  651. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  652. {
  653. return security_ops->shm_associate(shp, shmflg);
  654. }
  655. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  656. {
  657. return security_ops->shm_shmctl(shp, cmd);
  658. }
  659. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  660. {
  661. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  662. }
  663. int security_sem_alloc(struct sem_array *sma)
  664. {
  665. return security_ops->sem_alloc_security(sma);
  666. }
  667. void security_sem_free(struct sem_array *sma)
  668. {
  669. security_ops->sem_free_security(sma);
  670. }
  671. int security_sem_associate(struct sem_array *sma, int semflg)
  672. {
  673. return security_ops->sem_associate(sma, semflg);
  674. }
  675. int security_sem_semctl(struct sem_array *sma, int cmd)
  676. {
  677. return security_ops->sem_semctl(sma, cmd);
  678. }
  679. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  680. unsigned nsops, int alter)
  681. {
  682. return security_ops->sem_semop(sma, sops, nsops, alter);
  683. }
  684. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  685. {
  686. if (unlikely(inode && IS_PRIVATE(inode)))
  687. return;
  688. security_ops->d_instantiate(dentry, inode);
  689. }
  690. EXPORT_SYMBOL(security_d_instantiate);
  691. int security_getprocattr(struct task_struct *p, char *name, char **value)
  692. {
  693. return security_ops->getprocattr(p, name, value);
  694. }
  695. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  696. {
  697. return security_ops->setprocattr(p, name, value, size);
  698. }
  699. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  700. {
  701. return security_ops->netlink_send(sk, skb);
  702. }
  703. int security_netlink_recv(struct sk_buff *skb, int cap)
  704. {
  705. return security_ops->netlink_recv(skb, cap);
  706. }
  707. EXPORT_SYMBOL(security_netlink_recv);
  708. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  709. {
  710. return security_ops->secid_to_secctx(secid, secdata, seclen);
  711. }
  712. EXPORT_SYMBOL(security_secid_to_secctx);
  713. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  714. {
  715. return security_ops->secctx_to_secid(secdata, seclen, secid);
  716. }
  717. EXPORT_SYMBOL(security_secctx_to_secid);
  718. void security_release_secctx(char *secdata, u32 seclen)
  719. {
  720. security_ops->release_secctx(secdata, seclen);
  721. }
  722. EXPORT_SYMBOL(security_release_secctx);
  723. #ifdef CONFIG_SECURITY_NETWORK
  724. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  725. struct sock *newsk)
  726. {
  727. return security_ops->unix_stream_connect(sock, other, newsk);
  728. }
  729. EXPORT_SYMBOL(security_unix_stream_connect);
  730. int security_unix_may_send(struct socket *sock, struct socket *other)
  731. {
  732. return security_ops->unix_may_send(sock, other);
  733. }
  734. EXPORT_SYMBOL(security_unix_may_send);
  735. int security_socket_create(int family, int type, int protocol, int kern)
  736. {
  737. return security_ops->socket_create(family, type, protocol, kern);
  738. }
  739. int security_socket_post_create(struct socket *sock, int family,
  740. int type, int protocol, int kern)
  741. {
  742. return security_ops->socket_post_create(sock, family, type,
  743. protocol, kern);
  744. }
  745. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  746. {
  747. return security_ops->socket_bind(sock, address, addrlen);
  748. }
  749. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  750. {
  751. return security_ops->socket_connect(sock, address, addrlen);
  752. }
  753. int security_socket_listen(struct socket *sock, int backlog)
  754. {
  755. return security_ops->socket_listen(sock, backlog);
  756. }
  757. int security_socket_accept(struct socket *sock, struct socket *newsock)
  758. {
  759. return security_ops->socket_accept(sock, newsock);
  760. }
  761. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  762. {
  763. security_ops->socket_post_accept(sock, newsock);
  764. }
  765. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  766. {
  767. return security_ops->socket_sendmsg(sock, msg, size);
  768. }
  769. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  770. int size, int flags)
  771. {
  772. return security_ops->socket_recvmsg(sock, msg, size, flags);
  773. }
  774. int security_socket_getsockname(struct socket *sock)
  775. {
  776. return security_ops->socket_getsockname(sock);
  777. }
  778. int security_socket_getpeername(struct socket *sock)
  779. {
  780. return security_ops->socket_getpeername(sock);
  781. }
  782. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  783. {
  784. return security_ops->socket_getsockopt(sock, level, optname);
  785. }
  786. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  787. {
  788. return security_ops->socket_setsockopt(sock, level, optname);
  789. }
  790. int security_socket_shutdown(struct socket *sock, int how)
  791. {
  792. return security_ops->socket_shutdown(sock, how);
  793. }
  794. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  795. {
  796. return security_ops->socket_sock_rcv_skb(sk, skb);
  797. }
  798. EXPORT_SYMBOL(security_sock_rcv_skb);
  799. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  800. int __user *optlen, unsigned len)
  801. {
  802. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  803. }
  804. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  805. {
  806. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  807. }
  808. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  809. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  810. {
  811. return security_ops->sk_alloc_security(sk, family, priority);
  812. }
  813. void security_sk_free(struct sock *sk)
  814. {
  815. security_ops->sk_free_security(sk);
  816. }
  817. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  818. {
  819. security_ops->sk_clone_security(sk, newsk);
  820. }
  821. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  822. {
  823. security_ops->sk_getsecid(sk, &fl->secid);
  824. }
  825. EXPORT_SYMBOL(security_sk_classify_flow);
  826. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  827. {
  828. security_ops->req_classify_flow(req, fl);
  829. }
  830. EXPORT_SYMBOL(security_req_classify_flow);
  831. void security_sock_graft(struct sock *sk, struct socket *parent)
  832. {
  833. security_ops->sock_graft(sk, parent);
  834. }
  835. EXPORT_SYMBOL(security_sock_graft);
  836. int security_inet_conn_request(struct sock *sk,
  837. struct sk_buff *skb, struct request_sock *req)
  838. {
  839. return security_ops->inet_conn_request(sk, skb, req);
  840. }
  841. EXPORT_SYMBOL(security_inet_conn_request);
  842. void security_inet_csk_clone(struct sock *newsk,
  843. const struct request_sock *req)
  844. {
  845. security_ops->inet_csk_clone(newsk, req);
  846. }
  847. void security_inet_conn_established(struct sock *sk,
  848. struct sk_buff *skb)
  849. {
  850. security_ops->inet_conn_established(sk, skb);
  851. }
  852. #endif /* CONFIG_SECURITY_NETWORK */
  853. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  854. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  855. {
  856. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  857. }
  858. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  859. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  860. struct xfrm_sec_ctx **new_ctxp)
  861. {
  862. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  863. }
  864. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  865. {
  866. security_ops->xfrm_policy_free_security(ctx);
  867. }
  868. EXPORT_SYMBOL(security_xfrm_policy_free);
  869. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  870. {
  871. return security_ops->xfrm_policy_delete_security(ctx);
  872. }
  873. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  874. {
  875. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  876. }
  877. EXPORT_SYMBOL(security_xfrm_state_alloc);
  878. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  879. struct xfrm_sec_ctx *polsec, u32 secid)
  880. {
  881. if (!polsec)
  882. return 0;
  883. /*
  884. * We want the context to be taken from secid which is usually
  885. * from the sock.
  886. */
  887. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  888. }
  889. int security_xfrm_state_delete(struct xfrm_state *x)
  890. {
  891. return security_ops->xfrm_state_delete_security(x);
  892. }
  893. EXPORT_SYMBOL(security_xfrm_state_delete);
  894. void security_xfrm_state_free(struct xfrm_state *x)
  895. {
  896. security_ops->xfrm_state_free_security(x);
  897. }
  898. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  899. {
  900. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  901. }
  902. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  903. struct xfrm_policy *xp, struct flowi *fl)
  904. {
  905. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  906. }
  907. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  908. {
  909. return security_ops->xfrm_decode_session(skb, secid, 1);
  910. }
  911. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  912. {
  913. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  914. BUG_ON(rc);
  915. }
  916. EXPORT_SYMBOL(security_skb_classify_flow);
  917. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  918. #ifdef CONFIG_KEYS
  919. int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
  920. {
  921. return security_ops->key_alloc(key, tsk, flags);
  922. }
  923. void security_key_free(struct key *key)
  924. {
  925. security_ops->key_free(key);
  926. }
  927. int security_key_permission(key_ref_t key_ref,
  928. struct task_struct *context, key_perm_t perm)
  929. {
  930. return security_ops->key_permission(key_ref, context, perm);
  931. }
  932. int security_key_getsecurity(struct key *key, char **_buffer)
  933. {
  934. return security_ops->key_getsecurity(key, _buffer);
  935. }
  936. #endif /* CONFIG_KEYS */
  937. #ifdef CONFIG_AUDIT
  938. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  939. {
  940. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  941. }
  942. int security_audit_rule_known(struct audit_krule *krule)
  943. {
  944. return security_ops->audit_rule_known(krule);
  945. }
  946. void security_audit_rule_free(void *lsmrule)
  947. {
  948. security_ops->audit_rule_free(lsmrule);
  949. }
  950. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  951. struct audit_context *actx)
  952. {
  953. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  954. }
  955. #endif /* CONFIG_AUDIT */