kvm_main.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <asm/processor.h>
  40. #include <asm/msr.h>
  41. #include <asm/io.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/desc.h>
  44. MODULE_AUTHOR("Qumranet");
  45. MODULE_LICENSE("GPL");
  46. static DEFINE_SPINLOCK(kvm_lock);
  47. static LIST_HEAD(vm_list);
  48. static cpumask_t cpus_hardware_enabled;
  49. struct kvm_arch_ops *kvm_arch_ops;
  50. struct kmem_cache *kvm_vcpu_cache;
  51. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  52. static __read_mostly struct preempt_ops kvm_preempt_ops;
  53. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  54. static struct kvm_stats_debugfs_item {
  55. const char *name;
  56. int offset;
  57. struct dentry *dentry;
  58. } debugfs_entries[] = {
  59. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  60. { "pf_guest", STAT_OFFSET(pf_guest) },
  61. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  62. { "invlpg", STAT_OFFSET(invlpg) },
  63. { "exits", STAT_OFFSET(exits) },
  64. { "io_exits", STAT_OFFSET(io_exits) },
  65. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  66. { "signal_exits", STAT_OFFSET(signal_exits) },
  67. { "irq_window", STAT_OFFSET(irq_window_exits) },
  68. { "halt_exits", STAT_OFFSET(halt_exits) },
  69. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  70. { "request_irq", STAT_OFFSET(request_irq_exits) },
  71. { "irq_exits", STAT_OFFSET(irq_exits) },
  72. { "light_exits", STAT_OFFSET(light_exits) },
  73. { "efer_reload", STAT_OFFSET(efer_reload) },
  74. { NULL }
  75. };
  76. static struct dentry *debugfs_dir;
  77. #define MAX_IO_MSRS 256
  78. #define CR0_RESERVED_BITS \
  79. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  80. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  81. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  82. #define CR4_RESERVED_BITS \
  83. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  84. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  85. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  86. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  87. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  88. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  89. #ifdef CONFIG_X86_64
  90. // LDT or TSS descriptor in the GDT. 16 bytes.
  91. struct segment_descriptor_64 {
  92. struct segment_descriptor s;
  93. u32 base_higher;
  94. u32 pad_zero;
  95. };
  96. #endif
  97. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  98. unsigned long arg);
  99. unsigned long segment_base(u16 selector)
  100. {
  101. struct descriptor_table gdt;
  102. struct segment_descriptor *d;
  103. unsigned long table_base;
  104. typedef unsigned long ul;
  105. unsigned long v;
  106. if (selector == 0)
  107. return 0;
  108. asm ("sgdt %0" : "=m"(gdt));
  109. table_base = gdt.base;
  110. if (selector & 4) { /* from ldt */
  111. u16 ldt_selector;
  112. asm ("sldt %0" : "=g"(ldt_selector));
  113. table_base = segment_base(ldt_selector);
  114. }
  115. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  116. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  117. #ifdef CONFIG_X86_64
  118. if (d->system == 0
  119. && (d->type == 2 || d->type == 9 || d->type == 11))
  120. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  121. #endif
  122. return v;
  123. }
  124. EXPORT_SYMBOL_GPL(segment_base);
  125. static inline int valid_vcpu(int n)
  126. {
  127. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  128. }
  129. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  130. {
  131. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  132. return;
  133. vcpu->guest_fpu_loaded = 1;
  134. fx_save(&vcpu->host_fx_image);
  135. fx_restore(&vcpu->guest_fx_image);
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  138. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  139. {
  140. if (!vcpu->guest_fpu_loaded)
  141. return;
  142. vcpu->guest_fpu_loaded = 0;
  143. fx_save(&vcpu->guest_fx_image);
  144. fx_restore(&vcpu->host_fx_image);
  145. }
  146. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  147. /*
  148. * Switches to specified vcpu, until a matching vcpu_put()
  149. */
  150. static void vcpu_load(struct kvm_vcpu *vcpu)
  151. {
  152. int cpu;
  153. mutex_lock(&vcpu->mutex);
  154. cpu = get_cpu();
  155. preempt_notifier_register(&vcpu->preempt_notifier);
  156. kvm_arch_ops->vcpu_load(vcpu, cpu);
  157. put_cpu();
  158. }
  159. static void vcpu_put(struct kvm_vcpu *vcpu)
  160. {
  161. preempt_disable();
  162. kvm_arch_ops->vcpu_put(vcpu);
  163. preempt_notifier_unregister(&vcpu->preempt_notifier);
  164. preempt_enable();
  165. mutex_unlock(&vcpu->mutex);
  166. }
  167. static void ack_flush(void *_completed)
  168. {
  169. atomic_t *completed = _completed;
  170. atomic_inc(completed);
  171. }
  172. void kvm_flush_remote_tlbs(struct kvm *kvm)
  173. {
  174. int i, cpu, needed;
  175. cpumask_t cpus;
  176. struct kvm_vcpu *vcpu;
  177. atomic_t completed;
  178. atomic_set(&completed, 0);
  179. cpus_clear(cpus);
  180. needed = 0;
  181. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  182. vcpu = kvm->vcpus[i];
  183. if (!vcpu)
  184. continue;
  185. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  186. continue;
  187. cpu = vcpu->cpu;
  188. if (cpu != -1 && cpu != raw_smp_processor_id())
  189. if (!cpu_isset(cpu, cpus)) {
  190. cpu_set(cpu, cpus);
  191. ++needed;
  192. }
  193. }
  194. /*
  195. * We really want smp_call_function_mask() here. But that's not
  196. * available, so ipi all cpus in parallel and wait for them
  197. * to complete.
  198. */
  199. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  200. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  201. while (atomic_read(&completed) != needed) {
  202. cpu_relax();
  203. barrier();
  204. }
  205. }
  206. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  207. {
  208. struct page *page;
  209. int r;
  210. mutex_init(&vcpu->mutex);
  211. vcpu->cpu = -1;
  212. vcpu->mmu.root_hpa = INVALID_PAGE;
  213. vcpu->kvm = kvm;
  214. vcpu->vcpu_id = id;
  215. init_waitqueue_head(&vcpu->wq);
  216. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  217. if (!page) {
  218. r = -ENOMEM;
  219. goto fail;
  220. }
  221. vcpu->run = page_address(page);
  222. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  223. if (!page) {
  224. r = -ENOMEM;
  225. goto fail_free_run;
  226. }
  227. vcpu->pio_data = page_address(page);
  228. r = kvm_mmu_create(vcpu);
  229. if (r < 0)
  230. goto fail_free_pio_data;
  231. return 0;
  232. fail_free_pio_data:
  233. free_page((unsigned long)vcpu->pio_data);
  234. fail_free_run:
  235. free_page((unsigned long)vcpu->run);
  236. fail:
  237. return -ENOMEM;
  238. }
  239. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  240. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  241. {
  242. kvm_mmu_destroy(vcpu);
  243. if (vcpu->apic)
  244. hrtimer_cancel(&vcpu->apic->timer.dev);
  245. kvm_free_apic(vcpu->apic);
  246. free_page((unsigned long)vcpu->pio_data);
  247. free_page((unsigned long)vcpu->run);
  248. }
  249. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  250. static struct kvm *kvm_create_vm(void)
  251. {
  252. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  253. if (!kvm)
  254. return ERR_PTR(-ENOMEM);
  255. kvm_io_bus_init(&kvm->pio_bus);
  256. mutex_init(&kvm->lock);
  257. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  258. kvm_io_bus_init(&kvm->mmio_bus);
  259. spin_lock(&kvm_lock);
  260. list_add(&kvm->vm_list, &vm_list);
  261. spin_unlock(&kvm_lock);
  262. return kvm;
  263. }
  264. /*
  265. * Free any memory in @free but not in @dont.
  266. */
  267. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  268. struct kvm_memory_slot *dont)
  269. {
  270. int i;
  271. if (!dont || free->phys_mem != dont->phys_mem)
  272. if (free->phys_mem) {
  273. for (i = 0; i < free->npages; ++i)
  274. if (free->phys_mem[i])
  275. __free_page(free->phys_mem[i]);
  276. vfree(free->phys_mem);
  277. }
  278. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  279. vfree(free->dirty_bitmap);
  280. free->phys_mem = NULL;
  281. free->npages = 0;
  282. free->dirty_bitmap = NULL;
  283. }
  284. static void kvm_free_physmem(struct kvm *kvm)
  285. {
  286. int i;
  287. for (i = 0; i < kvm->nmemslots; ++i)
  288. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  289. }
  290. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  291. {
  292. int i;
  293. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  294. if (vcpu->pio.guest_pages[i]) {
  295. __free_page(vcpu->pio.guest_pages[i]);
  296. vcpu->pio.guest_pages[i] = NULL;
  297. }
  298. }
  299. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  300. {
  301. vcpu_load(vcpu);
  302. kvm_mmu_unload(vcpu);
  303. vcpu_put(vcpu);
  304. }
  305. static void kvm_free_vcpus(struct kvm *kvm)
  306. {
  307. unsigned int i;
  308. /*
  309. * Unpin any mmu pages first.
  310. */
  311. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  312. if (kvm->vcpus[i])
  313. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  314. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  315. if (kvm->vcpus[i]) {
  316. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  317. kvm->vcpus[i] = NULL;
  318. }
  319. }
  320. }
  321. static void kvm_destroy_vm(struct kvm *kvm)
  322. {
  323. spin_lock(&kvm_lock);
  324. list_del(&kvm->vm_list);
  325. spin_unlock(&kvm_lock);
  326. kvm_io_bus_destroy(&kvm->pio_bus);
  327. kvm_io_bus_destroy(&kvm->mmio_bus);
  328. kfree(kvm->vpic);
  329. kfree(kvm->vioapic);
  330. kvm_free_vcpus(kvm);
  331. kvm_free_physmem(kvm);
  332. kfree(kvm);
  333. }
  334. static int kvm_vm_release(struct inode *inode, struct file *filp)
  335. {
  336. struct kvm *kvm = filp->private_data;
  337. kvm_destroy_vm(kvm);
  338. return 0;
  339. }
  340. static void inject_gp(struct kvm_vcpu *vcpu)
  341. {
  342. kvm_arch_ops->inject_gp(vcpu, 0);
  343. }
  344. /*
  345. * Load the pae pdptrs. Return true is they are all valid.
  346. */
  347. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  348. {
  349. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  350. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  351. int i;
  352. u64 *pdpt;
  353. int ret;
  354. struct page *page;
  355. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  356. mutex_lock(&vcpu->kvm->lock);
  357. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  358. if (!page) {
  359. ret = 0;
  360. goto out;
  361. }
  362. pdpt = kmap_atomic(page, KM_USER0);
  363. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  364. kunmap_atomic(pdpt, KM_USER0);
  365. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  366. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  367. ret = 0;
  368. goto out;
  369. }
  370. }
  371. ret = 1;
  372. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  373. out:
  374. mutex_unlock(&vcpu->kvm->lock);
  375. return ret;
  376. }
  377. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  378. {
  379. if (cr0 & CR0_RESERVED_BITS) {
  380. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  381. cr0, vcpu->cr0);
  382. inject_gp(vcpu);
  383. return;
  384. }
  385. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  386. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  387. inject_gp(vcpu);
  388. return;
  389. }
  390. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  391. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  392. "and a clear PE flag\n");
  393. inject_gp(vcpu);
  394. return;
  395. }
  396. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  397. #ifdef CONFIG_X86_64
  398. if ((vcpu->shadow_efer & EFER_LME)) {
  399. int cs_db, cs_l;
  400. if (!is_pae(vcpu)) {
  401. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  402. "in long mode while PAE is disabled\n");
  403. inject_gp(vcpu);
  404. return;
  405. }
  406. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  407. if (cs_l) {
  408. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  409. "in long mode while CS.L == 1\n");
  410. inject_gp(vcpu);
  411. return;
  412. }
  413. } else
  414. #endif
  415. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  416. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  417. "reserved bits\n");
  418. inject_gp(vcpu);
  419. return;
  420. }
  421. }
  422. kvm_arch_ops->set_cr0(vcpu, cr0);
  423. vcpu->cr0 = cr0;
  424. mutex_lock(&vcpu->kvm->lock);
  425. kvm_mmu_reset_context(vcpu);
  426. mutex_unlock(&vcpu->kvm->lock);
  427. return;
  428. }
  429. EXPORT_SYMBOL_GPL(set_cr0);
  430. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  431. {
  432. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  433. }
  434. EXPORT_SYMBOL_GPL(lmsw);
  435. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  436. {
  437. if (cr4 & CR4_RESERVED_BITS) {
  438. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  439. inject_gp(vcpu);
  440. return;
  441. }
  442. if (is_long_mode(vcpu)) {
  443. if (!(cr4 & X86_CR4_PAE)) {
  444. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  445. "in long mode\n");
  446. inject_gp(vcpu);
  447. return;
  448. }
  449. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  450. && !load_pdptrs(vcpu, vcpu->cr3)) {
  451. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  452. inject_gp(vcpu);
  453. return;
  454. }
  455. if (cr4 & X86_CR4_VMXE) {
  456. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. kvm_arch_ops->set_cr4(vcpu, cr4);
  461. mutex_lock(&vcpu->kvm->lock);
  462. kvm_mmu_reset_context(vcpu);
  463. mutex_unlock(&vcpu->kvm->lock);
  464. }
  465. EXPORT_SYMBOL_GPL(set_cr4);
  466. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  467. {
  468. if (is_long_mode(vcpu)) {
  469. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  470. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. } else {
  475. if (is_pae(vcpu)) {
  476. if (cr3 & CR3_PAE_RESERVED_BITS) {
  477. printk(KERN_DEBUG
  478. "set_cr3: #GP, reserved bits\n");
  479. inject_gp(vcpu);
  480. return;
  481. }
  482. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  483. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  484. "reserved bits\n");
  485. inject_gp(vcpu);
  486. return;
  487. }
  488. } else {
  489. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  490. printk(KERN_DEBUG
  491. "set_cr3: #GP, reserved bits\n");
  492. inject_gp(vcpu);
  493. return;
  494. }
  495. }
  496. }
  497. mutex_lock(&vcpu->kvm->lock);
  498. /*
  499. * Does the new cr3 value map to physical memory? (Note, we
  500. * catch an invalid cr3 even in real-mode, because it would
  501. * cause trouble later on when we turn on paging anyway.)
  502. *
  503. * A real CPU would silently accept an invalid cr3 and would
  504. * attempt to use it - with largely undefined (and often hard
  505. * to debug) behavior on the guest side.
  506. */
  507. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  508. inject_gp(vcpu);
  509. else {
  510. vcpu->cr3 = cr3;
  511. vcpu->mmu.new_cr3(vcpu);
  512. }
  513. mutex_unlock(&vcpu->kvm->lock);
  514. }
  515. EXPORT_SYMBOL_GPL(set_cr3);
  516. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  517. {
  518. if (cr8 & CR8_RESERVED_BITS) {
  519. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  520. inject_gp(vcpu);
  521. return;
  522. }
  523. if (irqchip_in_kernel(vcpu->kvm))
  524. kvm_lapic_set_tpr(vcpu, cr8);
  525. else
  526. vcpu->cr8 = cr8;
  527. }
  528. EXPORT_SYMBOL_GPL(set_cr8);
  529. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  530. {
  531. if (irqchip_in_kernel(vcpu->kvm))
  532. return kvm_lapic_get_cr8(vcpu);
  533. else
  534. return vcpu->cr8;
  535. }
  536. EXPORT_SYMBOL_GPL(get_cr8);
  537. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  538. {
  539. if (irqchip_in_kernel(vcpu->kvm))
  540. return vcpu->apic_base;
  541. else
  542. return vcpu->apic_base;
  543. }
  544. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  545. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  546. {
  547. /* TODO: reserve bits check */
  548. if (irqchip_in_kernel(vcpu->kvm))
  549. kvm_lapic_set_base(vcpu, data);
  550. else
  551. vcpu->apic_base = data;
  552. }
  553. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  554. void fx_init(struct kvm_vcpu *vcpu)
  555. {
  556. unsigned after_mxcsr_mask;
  557. /* Initialize guest FPU by resetting ours and saving into guest's */
  558. preempt_disable();
  559. fx_save(&vcpu->host_fx_image);
  560. fpu_init();
  561. fx_save(&vcpu->guest_fx_image);
  562. fx_restore(&vcpu->host_fx_image);
  563. preempt_enable();
  564. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  565. vcpu->guest_fx_image.mxcsr = 0x1f80;
  566. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  567. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  568. }
  569. EXPORT_SYMBOL_GPL(fx_init);
  570. /*
  571. * Allocate some memory and give it an address in the guest physical address
  572. * space.
  573. *
  574. * Discontiguous memory is allowed, mostly for framebuffers.
  575. */
  576. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  577. struct kvm_memory_region *mem)
  578. {
  579. int r;
  580. gfn_t base_gfn;
  581. unsigned long npages;
  582. unsigned long i;
  583. struct kvm_memory_slot *memslot;
  584. struct kvm_memory_slot old, new;
  585. int memory_config_version;
  586. r = -EINVAL;
  587. /* General sanity checks */
  588. if (mem->memory_size & (PAGE_SIZE - 1))
  589. goto out;
  590. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  591. goto out;
  592. if (mem->slot >= KVM_MEMORY_SLOTS)
  593. goto out;
  594. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  595. goto out;
  596. memslot = &kvm->memslots[mem->slot];
  597. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  598. npages = mem->memory_size >> PAGE_SHIFT;
  599. if (!npages)
  600. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  601. raced:
  602. mutex_lock(&kvm->lock);
  603. memory_config_version = kvm->memory_config_version;
  604. new = old = *memslot;
  605. new.base_gfn = base_gfn;
  606. new.npages = npages;
  607. new.flags = mem->flags;
  608. /* Disallow changing a memory slot's size. */
  609. r = -EINVAL;
  610. if (npages && old.npages && npages != old.npages)
  611. goto out_unlock;
  612. /* Check for overlaps */
  613. r = -EEXIST;
  614. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  615. struct kvm_memory_slot *s = &kvm->memslots[i];
  616. if (s == memslot)
  617. continue;
  618. if (!((base_gfn + npages <= s->base_gfn) ||
  619. (base_gfn >= s->base_gfn + s->npages)))
  620. goto out_unlock;
  621. }
  622. /*
  623. * Do memory allocations outside lock. memory_config_version will
  624. * detect any races.
  625. */
  626. mutex_unlock(&kvm->lock);
  627. /* Deallocate if slot is being removed */
  628. if (!npages)
  629. new.phys_mem = NULL;
  630. /* Free page dirty bitmap if unneeded */
  631. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  632. new.dirty_bitmap = NULL;
  633. r = -ENOMEM;
  634. /* Allocate if a slot is being created */
  635. if (npages && !new.phys_mem) {
  636. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  637. if (!new.phys_mem)
  638. goto out_free;
  639. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  640. for (i = 0; i < npages; ++i) {
  641. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  642. | __GFP_ZERO);
  643. if (!new.phys_mem[i])
  644. goto out_free;
  645. set_page_private(new.phys_mem[i],0);
  646. }
  647. }
  648. /* Allocate page dirty bitmap if needed */
  649. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  650. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  651. new.dirty_bitmap = vmalloc(dirty_bytes);
  652. if (!new.dirty_bitmap)
  653. goto out_free;
  654. memset(new.dirty_bitmap, 0, dirty_bytes);
  655. }
  656. mutex_lock(&kvm->lock);
  657. if (memory_config_version != kvm->memory_config_version) {
  658. mutex_unlock(&kvm->lock);
  659. kvm_free_physmem_slot(&new, &old);
  660. goto raced;
  661. }
  662. r = -EAGAIN;
  663. if (kvm->busy)
  664. goto out_unlock;
  665. if (mem->slot >= kvm->nmemslots)
  666. kvm->nmemslots = mem->slot + 1;
  667. *memslot = new;
  668. ++kvm->memory_config_version;
  669. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  670. kvm_flush_remote_tlbs(kvm);
  671. mutex_unlock(&kvm->lock);
  672. kvm_free_physmem_slot(&old, &new);
  673. return 0;
  674. out_unlock:
  675. mutex_unlock(&kvm->lock);
  676. out_free:
  677. kvm_free_physmem_slot(&new, &old);
  678. out:
  679. return r;
  680. }
  681. /*
  682. * Get (and clear) the dirty memory log for a memory slot.
  683. */
  684. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  685. struct kvm_dirty_log *log)
  686. {
  687. struct kvm_memory_slot *memslot;
  688. int r, i;
  689. int n;
  690. unsigned long any = 0;
  691. mutex_lock(&kvm->lock);
  692. /*
  693. * Prevent changes to guest memory configuration even while the lock
  694. * is not taken.
  695. */
  696. ++kvm->busy;
  697. mutex_unlock(&kvm->lock);
  698. r = -EINVAL;
  699. if (log->slot >= KVM_MEMORY_SLOTS)
  700. goto out;
  701. memslot = &kvm->memslots[log->slot];
  702. r = -ENOENT;
  703. if (!memslot->dirty_bitmap)
  704. goto out;
  705. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  706. for (i = 0; !any && i < n/sizeof(long); ++i)
  707. any = memslot->dirty_bitmap[i];
  708. r = -EFAULT;
  709. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  710. goto out;
  711. /* If nothing is dirty, don't bother messing with page tables. */
  712. if (any) {
  713. mutex_lock(&kvm->lock);
  714. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  715. kvm_flush_remote_tlbs(kvm);
  716. memset(memslot->dirty_bitmap, 0, n);
  717. mutex_unlock(&kvm->lock);
  718. }
  719. r = 0;
  720. out:
  721. mutex_lock(&kvm->lock);
  722. --kvm->busy;
  723. mutex_unlock(&kvm->lock);
  724. return r;
  725. }
  726. /*
  727. * Set a new alias region. Aliases map a portion of physical memory into
  728. * another portion. This is useful for memory windows, for example the PC
  729. * VGA region.
  730. */
  731. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  732. struct kvm_memory_alias *alias)
  733. {
  734. int r, n;
  735. struct kvm_mem_alias *p;
  736. r = -EINVAL;
  737. /* General sanity checks */
  738. if (alias->memory_size & (PAGE_SIZE - 1))
  739. goto out;
  740. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  741. goto out;
  742. if (alias->slot >= KVM_ALIAS_SLOTS)
  743. goto out;
  744. if (alias->guest_phys_addr + alias->memory_size
  745. < alias->guest_phys_addr)
  746. goto out;
  747. if (alias->target_phys_addr + alias->memory_size
  748. < alias->target_phys_addr)
  749. goto out;
  750. mutex_lock(&kvm->lock);
  751. p = &kvm->aliases[alias->slot];
  752. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  753. p->npages = alias->memory_size >> PAGE_SHIFT;
  754. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  755. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  756. if (kvm->aliases[n - 1].npages)
  757. break;
  758. kvm->naliases = n;
  759. kvm_mmu_zap_all(kvm);
  760. mutex_unlock(&kvm->lock);
  761. return 0;
  762. out:
  763. return r;
  764. }
  765. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  766. {
  767. int r;
  768. r = 0;
  769. switch (chip->chip_id) {
  770. case KVM_IRQCHIP_PIC_MASTER:
  771. memcpy (&chip->chip.pic,
  772. &pic_irqchip(kvm)->pics[0],
  773. sizeof(struct kvm_pic_state));
  774. break;
  775. case KVM_IRQCHIP_PIC_SLAVE:
  776. memcpy (&chip->chip.pic,
  777. &pic_irqchip(kvm)->pics[1],
  778. sizeof(struct kvm_pic_state));
  779. break;
  780. case KVM_IRQCHIP_IOAPIC:
  781. memcpy (&chip->chip.ioapic,
  782. ioapic_irqchip(kvm),
  783. sizeof(struct kvm_ioapic_state));
  784. break;
  785. default:
  786. r = -EINVAL;
  787. break;
  788. }
  789. return r;
  790. }
  791. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  792. {
  793. int r;
  794. r = 0;
  795. switch (chip->chip_id) {
  796. case KVM_IRQCHIP_PIC_MASTER:
  797. memcpy (&pic_irqchip(kvm)->pics[0],
  798. &chip->chip.pic,
  799. sizeof(struct kvm_pic_state));
  800. break;
  801. case KVM_IRQCHIP_PIC_SLAVE:
  802. memcpy (&pic_irqchip(kvm)->pics[1],
  803. &chip->chip.pic,
  804. sizeof(struct kvm_pic_state));
  805. break;
  806. case KVM_IRQCHIP_IOAPIC:
  807. memcpy (ioapic_irqchip(kvm),
  808. &chip->chip.ioapic,
  809. sizeof(struct kvm_ioapic_state));
  810. break;
  811. default:
  812. r = -EINVAL;
  813. break;
  814. }
  815. kvm_pic_update_irq(pic_irqchip(kvm));
  816. return r;
  817. }
  818. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  819. {
  820. int i;
  821. struct kvm_mem_alias *alias;
  822. for (i = 0; i < kvm->naliases; ++i) {
  823. alias = &kvm->aliases[i];
  824. if (gfn >= alias->base_gfn
  825. && gfn < alias->base_gfn + alias->npages)
  826. return alias->target_gfn + gfn - alias->base_gfn;
  827. }
  828. return gfn;
  829. }
  830. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  831. {
  832. int i;
  833. for (i = 0; i < kvm->nmemslots; ++i) {
  834. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  835. if (gfn >= memslot->base_gfn
  836. && gfn < memslot->base_gfn + memslot->npages)
  837. return memslot;
  838. }
  839. return NULL;
  840. }
  841. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  842. {
  843. gfn = unalias_gfn(kvm, gfn);
  844. return __gfn_to_memslot(kvm, gfn);
  845. }
  846. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  847. {
  848. struct kvm_memory_slot *slot;
  849. gfn = unalias_gfn(kvm, gfn);
  850. slot = __gfn_to_memslot(kvm, gfn);
  851. if (!slot)
  852. return NULL;
  853. return slot->phys_mem[gfn - slot->base_gfn];
  854. }
  855. EXPORT_SYMBOL_GPL(gfn_to_page);
  856. /* WARNING: Does not work on aliased pages. */
  857. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  858. {
  859. struct kvm_memory_slot *memslot;
  860. memslot = __gfn_to_memslot(kvm, gfn);
  861. if (memslot && memslot->dirty_bitmap) {
  862. unsigned long rel_gfn = gfn - memslot->base_gfn;
  863. /* avoid RMW */
  864. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  865. set_bit(rel_gfn, memslot->dirty_bitmap);
  866. }
  867. }
  868. int emulator_read_std(unsigned long addr,
  869. void *val,
  870. unsigned int bytes,
  871. struct kvm_vcpu *vcpu)
  872. {
  873. void *data = val;
  874. while (bytes) {
  875. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  876. unsigned offset = addr & (PAGE_SIZE-1);
  877. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  878. unsigned long pfn;
  879. struct page *page;
  880. void *page_virt;
  881. if (gpa == UNMAPPED_GVA)
  882. return X86EMUL_PROPAGATE_FAULT;
  883. pfn = gpa >> PAGE_SHIFT;
  884. page = gfn_to_page(vcpu->kvm, pfn);
  885. if (!page)
  886. return X86EMUL_UNHANDLEABLE;
  887. page_virt = kmap_atomic(page, KM_USER0);
  888. memcpy(data, page_virt + offset, tocopy);
  889. kunmap_atomic(page_virt, KM_USER0);
  890. bytes -= tocopy;
  891. data += tocopy;
  892. addr += tocopy;
  893. }
  894. return X86EMUL_CONTINUE;
  895. }
  896. EXPORT_SYMBOL_GPL(emulator_read_std);
  897. static int emulator_write_std(unsigned long addr,
  898. const void *val,
  899. unsigned int bytes,
  900. struct kvm_vcpu *vcpu)
  901. {
  902. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  903. return X86EMUL_UNHANDLEABLE;
  904. }
  905. /*
  906. * Only apic need an MMIO device hook, so shortcut now..
  907. */
  908. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  909. gpa_t addr)
  910. {
  911. struct kvm_io_device *dev;
  912. if (vcpu->apic) {
  913. dev = &vcpu->apic->dev;
  914. if (dev->in_range(dev, addr))
  915. return dev;
  916. }
  917. return NULL;
  918. }
  919. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  920. gpa_t addr)
  921. {
  922. struct kvm_io_device *dev;
  923. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  924. if (dev == NULL)
  925. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  926. return dev;
  927. }
  928. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  929. gpa_t addr)
  930. {
  931. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  932. }
  933. static int emulator_read_emulated(unsigned long addr,
  934. void *val,
  935. unsigned int bytes,
  936. struct kvm_vcpu *vcpu)
  937. {
  938. struct kvm_io_device *mmio_dev;
  939. gpa_t gpa;
  940. if (vcpu->mmio_read_completed) {
  941. memcpy(val, vcpu->mmio_data, bytes);
  942. vcpu->mmio_read_completed = 0;
  943. return X86EMUL_CONTINUE;
  944. } else if (emulator_read_std(addr, val, bytes, vcpu)
  945. == X86EMUL_CONTINUE)
  946. return X86EMUL_CONTINUE;
  947. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  948. if (gpa == UNMAPPED_GVA)
  949. return X86EMUL_PROPAGATE_FAULT;
  950. /*
  951. * Is this MMIO handled locally?
  952. */
  953. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  954. if (mmio_dev) {
  955. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  956. return X86EMUL_CONTINUE;
  957. }
  958. vcpu->mmio_needed = 1;
  959. vcpu->mmio_phys_addr = gpa;
  960. vcpu->mmio_size = bytes;
  961. vcpu->mmio_is_write = 0;
  962. return X86EMUL_UNHANDLEABLE;
  963. }
  964. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  965. const void *val, int bytes)
  966. {
  967. struct page *page;
  968. void *virt;
  969. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  970. return 0;
  971. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  972. if (!page)
  973. return 0;
  974. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  975. virt = kmap_atomic(page, KM_USER0);
  976. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  977. memcpy(virt + offset_in_page(gpa), val, bytes);
  978. kunmap_atomic(virt, KM_USER0);
  979. return 1;
  980. }
  981. static int emulator_write_emulated_onepage(unsigned long addr,
  982. const void *val,
  983. unsigned int bytes,
  984. struct kvm_vcpu *vcpu)
  985. {
  986. struct kvm_io_device *mmio_dev;
  987. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  988. if (gpa == UNMAPPED_GVA) {
  989. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  990. return X86EMUL_PROPAGATE_FAULT;
  991. }
  992. if (emulator_write_phys(vcpu, gpa, val, bytes))
  993. return X86EMUL_CONTINUE;
  994. /*
  995. * Is this MMIO handled locally?
  996. */
  997. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  998. if (mmio_dev) {
  999. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1000. return X86EMUL_CONTINUE;
  1001. }
  1002. vcpu->mmio_needed = 1;
  1003. vcpu->mmio_phys_addr = gpa;
  1004. vcpu->mmio_size = bytes;
  1005. vcpu->mmio_is_write = 1;
  1006. memcpy(vcpu->mmio_data, val, bytes);
  1007. return X86EMUL_CONTINUE;
  1008. }
  1009. int emulator_write_emulated(unsigned long addr,
  1010. const void *val,
  1011. unsigned int bytes,
  1012. struct kvm_vcpu *vcpu)
  1013. {
  1014. /* Crossing a page boundary? */
  1015. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1016. int rc, now;
  1017. now = -addr & ~PAGE_MASK;
  1018. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1019. if (rc != X86EMUL_CONTINUE)
  1020. return rc;
  1021. addr += now;
  1022. val += now;
  1023. bytes -= now;
  1024. }
  1025. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1026. }
  1027. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1028. static int emulator_cmpxchg_emulated(unsigned long addr,
  1029. const void *old,
  1030. const void *new,
  1031. unsigned int bytes,
  1032. struct kvm_vcpu *vcpu)
  1033. {
  1034. static int reported;
  1035. if (!reported) {
  1036. reported = 1;
  1037. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1038. }
  1039. return emulator_write_emulated(addr, new, bytes, vcpu);
  1040. }
  1041. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1042. {
  1043. return kvm_arch_ops->get_segment_base(vcpu, seg);
  1044. }
  1045. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1046. {
  1047. return X86EMUL_CONTINUE;
  1048. }
  1049. int emulate_clts(struct kvm_vcpu *vcpu)
  1050. {
  1051. unsigned long cr0;
  1052. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  1053. kvm_arch_ops->set_cr0(vcpu, cr0);
  1054. return X86EMUL_CONTINUE;
  1055. }
  1056. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  1057. {
  1058. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1059. switch (dr) {
  1060. case 0 ... 3:
  1061. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  1062. return X86EMUL_CONTINUE;
  1063. default:
  1064. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1065. return X86EMUL_UNHANDLEABLE;
  1066. }
  1067. }
  1068. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1069. {
  1070. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1071. int exception;
  1072. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1073. if (exception) {
  1074. /* FIXME: better handling */
  1075. return X86EMUL_UNHANDLEABLE;
  1076. }
  1077. return X86EMUL_CONTINUE;
  1078. }
  1079. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1080. {
  1081. static int reported;
  1082. u8 opcodes[4];
  1083. unsigned long rip = ctxt->vcpu->rip;
  1084. unsigned long rip_linear;
  1085. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1086. if (reported)
  1087. return;
  1088. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  1089. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1090. " rip %lx %02x %02x %02x %02x\n",
  1091. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1092. reported = 1;
  1093. }
  1094. struct x86_emulate_ops emulate_ops = {
  1095. .read_std = emulator_read_std,
  1096. .write_std = emulator_write_std,
  1097. .read_emulated = emulator_read_emulated,
  1098. .write_emulated = emulator_write_emulated,
  1099. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1100. };
  1101. int emulate_instruction(struct kvm_vcpu *vcpu,
  1102. struct kvm_run *run,
  1103. unsigned long cr2,
  1104. u16 error_code)
  1105. {
  1106. struct x86_emulate_ctxt emulate_ctxt;
  1107. int r;
  1108. int cs_db, cs_l;
  1109. vcpu->mmio_fault_cr2 = cr2;
  1110. kvm_arch_ops->cache_regs(vcpu);
  1111. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1112. emulate_ctxt.vcpu = vcpu;
  1113. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1114. emulate_ctxt.cr2 = cr2;
  1115. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1116. ? X86EMUL_MODE_REAL : cs_l
  1117. ? X86EMUL_MODE_PROT64 : cs_db
  1118. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1119. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1120. emulate_ctxt.cs_base = 0;
  1121. emulate_ctxt.ds_base = 0;
  1122. emulate_ctxt.es_base = 0;
  1123. emulate_ctxt.ss_base = 0;
  1124. } else {
  1125. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1126. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1127. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1128. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1129. }
  1130. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1131. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1132. vcpu->mmio_is_write = 0;
  1133. vcpu->pio.string = 0;
  1134. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1135. if (vcpu->pio.string)
  1136. return EMULATE_DO_MMIO;
  1137. if ((r || vcpu->mmio_is_write) && run) {
  1138. run->exit_reason = KVM_EXIT_MMIO;
  1139. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1140. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1141. run->mmio.len = vcpu->mmio_size;
  1142. run->mmio.is_write = vcpu->mmio_is_write;
  1143. }
  1144. if (r) {
  1145. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1146. return EMULATE_DONE;
  1147. if (!vcpu->mmio_needed) {
  1148. report_emulation_failure(&emulate_ctxt);
  1149. return EMULATE_FAIL;
  1150. }
  1151. return EMULATE_DO_MMIO;
  1152. }
  1153. kvm_arch_ops->decache_regs(vcpu);
  1154. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1155. if (vcpu->mmio_is_write) {
  1156. vcpu->mmio_needed = 0;
  1157. return EMULATE_DO_MMIO;
  1158. }
  1159. return EMULATE_DONE;
  1160. }
  1161. EXPORT_SYMBOL_GPL(emulate_instruction);
  1162. /*
  1163. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1164. */
  1165. static void kvm_vcpu_kernel_halt(struct kvm_vcpu *vcpu)
  1166. {
  1167. DECLARE_WAITQUEUE(wait, current);
  1168. add_wait_queue(&vcpu->wq, &wait);
  1169. /*
  1170. * We will block until either an interrupt or a signal wakes us up
  1171. */
  1172. while(!(irqchip_in_kernel(vcpu->kvm) && kvm_cpu_has_interrupt(vcpu))
  1173. && !vcpu->irq_summary
  1174. && !signal_pending(current)) {
  1175. set_current_state(TASK_INTERRUPTIBLE);
  1176. vcpu_put(vcpu);
  1177. schedule();
  1178. vcpu_load(vcpu);
  1179. }
  1180. remove_wait_queue(&vcpu->wq, &wait);
  1181. set_current_state(TASK_RUNNING);
  1182. }
  1183. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1184. {
  1185. ++vcpu->stat.halt_exits;
  1186. if (irqchip_in_kernel(vcpu->kvm)) {
  1187. kvm_vcpu_kernel_halt(vcpu);
  1188. return 1;
  1189. } else {
  1190. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1191. return 0;
  1192. }
  1193. }
  1194. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1195. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1196. {
  1197. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1198. kvm_arch_ops->cache_regs(vcpu);
  1199. ret = -KVM_EINVAL;
  1200. #ifdef CONFIG_X86_64
  1201. if (is_long_mode(vcpu)) {
  1202. nr = vcpu->regs[VCPU_REGS_RAX];
  1203. a0 = vcpu->regs[VCPU_REGS_RDI];
  1204. a1 = vcpu->regs[VCPU_REGS_RSI];
  1205. a2 = vcpu->regs[VCPU_REGS_RDX];
  1206. a3 = vcpu->regs[VCPU_REGS_RCX];
  1207. a4 = vcpu->regs[VCPU_REGS_R8];
  1208. a5 = vcpu->regs[VCPU_REGS_R9];
  1209. } else
  1210. #endif
  1211. {
  1212. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1213. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1214. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1215. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1216. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1217. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1218. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1219. }
  1220. switch (nr) {
  1221. default:
  1222. run->hypercall.nr = nr;
  1223. run->hypercall.args[0] = a0;
  1224. run->hypercall.args[1] = a1;
  1225. run->hypercall.args[2] = a2;
  1226. run->hypercall.args[3] = a3;
  1227. run->hypercall.args[4] = a4;
  1228. run->hypercall.args[5] = a5;
  1229. run->hypercall.ret = ret;
  1230. run->hypercall.longmode = is_long_mode(vcpu);
  1231. kvm_arch_ops->decache_regs(vcpu);
  1232. return 0;
  1233. }
  1234. vcpu->regs[VCPU_REGS_RAX] = ret;
  1235. kvm_arch_ops->decache_regs(vcpu);
  1236. return 1;
  1237. }
  1238. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1239. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1240. {
  1241. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1242. }
  1243. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1244. {
  1245. struct descriptor_table dt = { limit, base };
  1246. kvm_arch_ops->set_gdt(vcpu, &dt);
  1247. }
  1248. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1249. {
  1250. struct descriptor_table dt = { limit, base };
  1251. kvm_arch_ops->set_idt(vcpu, &dt);
  1252. }
  1253. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1254. unsigned long *rflags)
  1255. {
  1256. lmsw(vcpu, msw);
  1257. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1258. }
  1259. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1260. {
  1261. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1262. switch (cr) {
  1263. case 0:
  1264. return vcpu->cr0;
  1265. case 2:
  1266. return vcpu->cr2;
  1267. case 3:
  1268. return vcpu->cr3;
  1269. case 4:
  1270. return vcpu->cr4;
  1271. default:
  1272. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1273. return 0;
  1274. }
  1275. }
  1276. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1277. unsigned long *rflags)
  1278. {
  1279. switch (cr) {
  1280. case 0:
  1281. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1282. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1283. break;
  1284. case 2:
  1285. vcpu->cr2 = val;
  1286. break;
  1287. case 3:
  1288. set_cr3(vcpu, val);
  1289. break;
  1290. case 4:
  1291. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1292. break;
  1293. default:
  1294. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1295. }
  1296. }
  1297. /*
  1298. * Register the para guest with the host:
  1299. */
  1300. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1301. {
  1302. struct kvm_vcpu_para_state *para_state;
  1303. hpa_t para_state_hpa, hypercall_hpa;
  1304. struct page *para_state_page;
  1305. unsigned char *hypercall;
  1306. gpa_t hypercall_gpa;
  1307. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1308. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1309. /*
  1310. * Needs to be page aligned:
  1311. */
  1312. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1313. goto err_gp;
  1314. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1315. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1316. if (is_error_hpa(para_state_hpa))
  1317. goto err_gp;
  1318. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1319. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1320. para_state = kmap(para_state_page);
  1321. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1322. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1323. para_state->host_version = KVM_PARA_API_VERSION;
  1324. /*
  1325. * We cannot support guests that try to register themselves
  1326. * with a newer API version than the host supports:
  1327. */
  1328. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1329. para_state->ret = -KVM_EINVAL;
  1330. goto err_kunmap_skip;
  1331. }
  1332. hypercall_gpa = para_state->hypercall_gpa;
  1333. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1334. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1335. if (is_error_hpa(hypercall_hpa)) {
  1336. para_state->ret = -KVM_EINVAL;
  1337. goto err_kunmap_skip;
  1338. }
  1339. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1340. vcpu->para_state_page = para_state_page;
  1341. vcpu->para_state_gpa = para_state_gpa;
  1342. vcpu->hypercall_gpa = hypercall_gpa;
  1343. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1344. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1345. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1346. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1347. kunmap_atomic(hypercall, KM_USER1);
  1348. para_state->ret = 0;
  1349. err_kunmap_skip:
  1350. kunmap(para_state_page);
  1351. return 0;
  1352. err_gp:
  1353. return 1;
  1354. }
  1355. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1356. {
  1357. u64 data;
  1358. switch (msr) {
  1359. case 0xc0010010: /* SYSCFG */
  1360. case 0xc0010015: /* HWCR */
  1361. case MSR_IA32_PLATFORM_ID:
  1362. case MSR_IA32_P5_MC_ADDR:
  1363. case MSR_IA32_P5_MC_TYPE:
  1364. case MSR_IA32_MC0_CTL:
  1365. case MSR_IA32_MCG_STATUS:
  1366. case MSR_IA32_MCG_CAP:
  1367. case MSR_IA32_MC0_MISC:
  1368. case MSR_IA32_MC0_MISC+4:
  1369. case MSR_IA32_MC0_MISC+8:
  1370. case MSR_IA32_MC0_MISC+12:
  1371. case MSR_IA32_MC0_MISC+16:
  1372. case MSR_IA32_UCODE_REV:
  1373. case MSR_IA32_PERF_STATUS:
  1374. case MSR_IA32_EBL_CR_POWERON:
  1375. /* MTRR registers */
  1376. case 0xfe:
  1377. case 0x200 ... 0x2ff:
  1378. data = 0;
  1379. break;
  1380. case 0xcd: /* fsb frequency */
  1381. data = 3;
  1382. break;
  1383. case MSR_IA32_APICBASE:
  1384. data = kvm_get_apic_base(vcpu);
  1385. break;
  1386. case MSR_IA32_MISC_ENABLE:
  1387. data = vcpu->ia32_misc_enable_msr;
  1388. break;
  1389. #ifdef CONFIG_X86_64
  1390. case MSR_EFER:
  1391. data = vcpu->shadow_efer;
  1392. break;
  1393. #endif
  1394. default:
  1395. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1396. return 1;
  1397. }
  1398. *pdata = data;
  1399. return 0;
  1400. }
  1401. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1402. /*
  1403. * Reads an msr value (of 'msr_index') into 'pdata'.
  1404. * Returns 0 on success, non-0 otherwise.
  1405. * Assumes vcpu_load() was already called.
  1406. */
  1407. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1408. {
  1409. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1410. }
  1411. #ifdef CONFIG_X86_64
  1412. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1413. {
  1414. if (efer & EFER_RESERVED_BITS) {
  1415. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1416. efer);
  1417. inject_gp(vcpu);
  1418. return;
  1419. }
  1420. if (is_paging(vcpu)
  1421. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1422. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1423. inject_gp(vcpu);
  1424. return;
  1425. }
  1426. kvm_arch_ops->set_efer(vcpu, efer);
  1427. efer &= ~EFER_LMA;
  1428. efer |= vcpu->shadow_efer & EFER_LMA;
  1429. vcpu->shadow_efer = efer;
  1430. }
  1431. #endif
  1432. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1433. {
  1434. switch (msr) {
  1435. #ifdef CONFIG_X86_64
  1436. case MSR_EFER:
  1437. set_efer(vcpu, data);
  1438. break;
  1439. #endif
  1440. case MSR_IA32_MC0_STATUS:
  1441. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1442. __FUNCTION__, data);
  1443. break;
  1444. case MSR_IA32_MCG_STATUS:
  1445. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1446. __FUNCTION__, data);
  1447. break;
  1448. case MSR_IA32_UCODE_REV:
  1449. case MSR_IA32_UCODE_WRITE:
  1450. case 0x200 ... 0x2ff: /* MTRRs */
  1451. break;
  1452. case MSR_IA32_APICBASE:
  1453. kvm_set_apic_base(vcpu, data);
  1454. break;
  1455. case MSR_IA32_MISC_ENABLE:
  1456. vcpu->ia32_misc_enable_msr = data;
  1457. break;
  1458. /*
  1459. * This is the 'probe whether the host is KVM' logic:
  1460. */
  1461. case MSR_KVM_API_MAGIC:
  1462. return vcpu_register_para(vcpu, data);
  1463. default:
  1464. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1465. return 1;
  1466. }
  1467. return 0;
  1468. }
  1469. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1470. /*
  1471. * Writes msr value into into the appropriate "register".
  1472. * Returns 0 on success, non-0 otherwise.
  1473. * Assumes vcpu_load() was already called.
  1474. */
  1475. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1476. {
  1477. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1478. }
  1479. void kvm_resched(struct kvm_vcpu *vcpu)
  1480. {
  1481. if (!need_resched())
  1482. return;
  1483. cond_resched();
  1484. }
  1485. EXPORT_SYMBOL_GPL(kvm_resched);
  1486. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1487. {
  1488. int i;
  1489. u32 function;
  1490. struct kvm_cpuid_entry *e, *best;
  1491. kvm_arch_ops->cache_regs(vcpu);
  1492. function = vcpu->regs[VCPU_REGS_RAX];
  1493. vcpu->regs[VCPU_REGS_RAX] = 0;
  1494. vcpu->regs[VCPU_REGS_RBX] = 0;
  1495. vcpu->regs[VCPU_REGS_RCX] = 0;
  1496. vcpu->regs[VCPU_REGS_RDX] = 0;
  1497. best = NULL;
  1498. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1499. e = &vcpu->cpuid_entries[i];
  1500. if (e->function == function) {
  1501. best = e;
  1502. break;
  1503. }
  1504. /*
  1505. * Both basic or both extended?
  1506. */
  1507. if (((e->function ^ function) & 0x80000000) == 0)
  1508. if (!best || e->function > best->function)
  1509. best = e;
  1510. }
  1511. if (best) {
  1512. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1513. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1514. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1515. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1516. }
  1517. kvm_arch_ops->decache_regs(vcpu);
  1518. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1519. }
  1520. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1521. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1522. {
  1523. void *p = vcpu->pio_data;
  1524. void *q;
  1525. unsigned bytes;
  1526. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1527. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1528. PAGE_KERNEL);
  1529. if (!q) {
  1530. free_pio_guest_pages(vcpu);
  1531. return -ENOMEM;
  1532. }
  1533. q += vcpu->pio.guest_page_offset;
  1534. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1535. if (vcpu->pio.in)
  1536. memcpy(q, p, bytes);
  1537. else
  1538. memcpy(p, q, bytes);
  1539. q -= vcpu->pio.guest_page_offset;
  1540. vunmap(q);
  1541. free_pio_guest_pages(vcpu);
  1542. return 0;
  1543. }
  1544. static int complete_pio(struct kvm_vcpu *vcpu)
  1545. {
  1546. struct kvm_pio_request *io = &vcpu->pio;
  1547. long delta;
  1548. int r;
  1549. kvm_arch_ops->cache_regs(vcpu);
  1550. if (!io->string) {
  1551. if (io->in)
  1552. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1553. io->size);
  1554. } else {
  1555. if (io->in) {
  1556. r = pio_copy_data(vcpu);
  1557. if (r) {
  1558. kvm_arch_ops->cache_regs(vcpu);
  1559. return r;
  1560. }
  1561. }
  1562. delta = 1;
  1563. if (io->rep) {
  1564. delta *= io->cur_count;
  1565. /*
  1566. * The size of the register should really depend on
  1567. * current address size.
  1568. */
  1569. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1570. }
  1571. if (io->down)
  1572. delta = -delta;
  1573. delta *= io->size;
  1574. if (io->in)
  1575. vcpu->regs[VCPU_REGS_RDI] += delta;
  1576. else
  1577. vcpu->regs[VCPU_REGS_RSI] += delta;
  1578. }
  1579. kvm_arch_ops->decache_regs(vcpu);
  1580. io->count -= io->cur_count;
  1581. io->cur_count = 0;
  1582. if (!io->count)
  1583. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1584. return 0;
  1585. }
  1586. static void kernel_pio(struct kvm_io_device *pio_dev,
  1587. struct kvm_vcpu *vcpu,
  1588. void *pd)
  1589. {
  1590. /* TODO: String I/O for in kernel device */
  1591. mutex_lock(&vcpu->kvm->lock);
  1592. if (vcpu->pio.in)
  1593. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1594. vcpu->pio.size,
  1595. pd);
  1596. else
  1597. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1598. vcpu->pio.size,
  1599. pd);
  1600. mutex_unlock(&vcpu->kvm->lock);
  1601. }
  1602. static void pio_string_write(struct kvm_io_device *pio_dev,
  1603. struct kvm_vcpu *vcpu)
  1604. {
  1605. struct kvm_pio_request *io = &vcpu->pio;
  1606. void *pd = vcpu->pio_data;
  1607. int i;
  1608. mutex_lock(&vcpu->kvm->lock);
  1609. for (i = 0; i < io->cur_count; i++) {
  1610. kvm_iodevice_write(pio_dev, io->port,
  1611. io->size,
  1612. pd);
  1613. pd += io->size;
  1614. }
  1615. mutex_unlock(&vcpu->kvm->lock);
  1616. }
  1617. int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1618. int size, unsigned port)
  1619. {
  1620. struct kvm_io_device *pio_dev;
  1621. vcpu->run->exit_reason = KVM_EXIT_IO;
  1622. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1623. vcpu->run->io.size = vcpu->pio.size = size;
  1624. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1625. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1626. vcpu->run->io.port = vcpu->pio.port = port;
  1627. vcpu->pio.in = in;
  1628. vcpu->pio.string = 0;
  1629. vcpu->pio.down = 0;
  1630. vcpu->pio.guest_page_offset = 0;
  1631. vcpu->pio.rep = 0;
  1632. kvm_arch_ops->cache_regs(vcpu);
  1633. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1634. kvm_arch_ops->decache_regs(vcpu);
  1635. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1636. if (pio_dev) {
  1637. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1638. complete_pio(vcpu);
  1639. return 1;
  1640. }
  1641. return 0;
  1642. }
  1643. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1644. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1645. int size, unsigned long count, int down,
  1646. gva_t address, int rep, unsigned port)
  1647. {
  1648. unsigned now, in_page;
  1649. int i, ret = 0;
  1650. int nr_pages = 1;
  1651. struct page *page;
  1652. struct kvm_io_device *pio_dev;
  1653. vcpu->run->exit_reason = KVM_EXIT_IO;
  1654. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1655. vcpu->run->io.size = vcpu->pio.size = size;
  1656. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1657. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1658. vcpu->run->io.port = vcpu->pio.port = port;
  1659. vcpu->pio.in = in;
  1660. vcpu->pio.string = 1;
  1661. vcpu->pio.down = down;
  1662. vcpu->pio.guest_page_offset = offset_in_page(address);
  1663. vcpu->pio.rep = rep;
  1664. if (!count) {
  1665. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1666. return 1;
  1667. }
  1668. if (!down)
  1669. in_page = PAGE_SIZE - offset_in_page(address);
  1670. else
  1671. in_page = offset_in_page(address) + size;
  1672. now = min(count, (unsigned long)in_page / size);
  1673. if (!now) {
  1674. /*
  1675. * String I/O straddles page boundary. Pin two guest pages
  1676. * so that we satisfy atomicity constraints. Do just one
  1677. * transaction to avoid complexity.
  1678. */
  1679. nr_pages = 2;
  1680. now = 1;
  1681. }
  1682. if (down) {
  1683. /*
  1684. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1685. */
  1686. pr_unimpl(vcpu, "guest string pio down\n");
  1687. inject_gp(vcpu);
  1688. return 1;
  1689. }
  1690. vcpu->run->io.count = now;
  1691. vcpu->pio.cur_count = now;
  1692. for (i = 0; i < nr_pages; ++i) {
  1693. mutex_lock(&vcpu->kvm->lock);
  1694. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1695. if (page)
  1696. get_page(page);
  1697. vcpu->pio.guest_pages[i] = page;
  1698. mutex_unlock(&vcpu->kvm->lock);
  1699. if (!page) {
  1700. inject_gp(vcpu);
  1701. free_pio_guest_pages(vcpu);
  1702. return 1;
  1703. }
  1704. }
  1705. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1706. if (!vcpu->pio.in) {
  1707. /* string PIO write */
  1708. ret = pio_copy_data(vcpu);
  1709. if (ret >= 0 && pio_dev) {
  1710. pio_string_write(pio_dev, vcpu);
  1711. complete_pio(vcpu);
  1712. if (vcpu->pio.count == 0)
  1713. ret = 1;
  1714. }
  1715. } else if (pio_dev)
  1716. pr_unimpl(vcpu, "no string pio read support yet, "
  1717. "port %x size %d count %ld\n",
  1718. port, size, count);
  1719. return ret;
  1720. }
  1721. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1722. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1723. {
  1724. int r;
  1725. sigset_t sigsaved;
  1726. vcpu_load(vcpu);
  1727. if (vcpu->sigset_active)
  1728. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1729. /* re-sync apic's tpr */
  1730. if (!irqchip_in_kernel(vcpu->kvm))
  1731. set_cr8(vcpu, kvm_run->cr8);
  1732. if (vcpu->pio.cur_count) {
  1733. r = complete_pio(vcpu);
  1734. if (r)
  1735. goto out;
  1736. }
  1737. if (vcpu->mmio_needed) {
  1738. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1739. vcpu->mmio_read_completed = 1;
  1740. vcpu->mmio_needed = 0;
  1741. r = emulate_instruction(vcpu, kvm_run,
  1742. vcpu->mmio_fault_cr2, 0);
  1743. if (r == EMULATE_DO_MMIO) {
  1744. /*
  1745. * Read-modify-write. Back to userspace.
  1746. */
  1747. r = 0;
  1748. goto out;
  1749. }
  1750. }
  1751. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1752. kvm_arch_ops->cache_regs(vcpu);
  1753. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1754. kvm_arch_ops->decache_regs(vcpu);
  1755. }
  1756. r = kvm_arch_ops->run(vcpu, kvm_run);
  1757. out:
  1758. if (vcpu->sigset_active)
  1759. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1760. vcpu_put(vcpu);
  1761. return r;
  1762. }
  1763. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1764. struct kvm_regs *regs)
  1765. {
  1766. vcpu_load(vcpu);
  1767. kvm_arch_ops->cache_regs(vcpu);
  1768. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1769. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1770. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1771. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1772. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1773. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1774. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1775. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1776. #ifdef CONFIG_X86_64
  1777. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1778. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1779. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1780. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1781. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1782. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1783. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1784. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1785. #endif
  1786. regs->rip = vcpu->rip;
  1787. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1788. /*
  1789. * Don't leak debug flags in case they were set for guest debugging
  1790. */
  1791. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1792. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1793. vcpu_put(vcpu);
  1794. return 0;
  1795. }
  1796. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1797. struct kvm_regs *regs)
  1798. {
  1799. vcpu_load(vcpu);
  1800. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1801. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1802. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1803. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1804. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1805. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1806. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1807. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1808. #ifdef CONFIG_X86_64
  1809. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1810. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1811. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1812. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1813. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1814. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1815. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1816. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1817. #endif
  1818. vcpu->rip = regs->rip;
  1819. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1820. kvm_arch_ops->decache_regs(vcpu);
  1821. vcpu_put(vcpu);
  1822. return 0;
  1823. }
  1824. static void get_segment(struct kvm_vcpu *vcpu,
  1825. struct kvm_segment *var, int seg)
  1826. {
  1827. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1828. }
  1829. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1830. struct kvm_sregs *sregs)
  1831. {
  1832. struct descriptor_table dt;
  1833. int pending_vec;
  1834. vcpu_load(vcpu);
  1835. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1836. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1837. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1838. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1839. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1840. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1841. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1842. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1843. kvm_arch_ops->get_idt(vcpu, &dt);
  1844. sregs->idt.limit = dt.limit;
  1845. sregs->idt.base = dt.base;
  1846. kvm_arch_ops->get_gdt(vcpu, &dt);
  1847. sregs->gdt.limit = dt.limit;
  1848. sregs->gdt.base = dt.base;
  1849. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1850. sregs->cr0 = vcpu->cr0;
  1851. sregs->cr2 = vcpu->cr2;
  1852. sregs->cr3 = vcpu->cr3;
  1853. sregs->cr4 = vcpu->cr4;
  1854. sregs->cr8 = get_cr8(vcpu);
  1855. sregs->efer = vcpu->shadow_efer;
  1856. sregs->apic_base = kvm_get_apic_base(vcpu);
  1857. if (irqchip_in_kernel(vcpu->kvm)) {
  1858. memset(sregs->interrupt_bitmap, 0,
  1859. sizeof sregs->interrupt_bitmap);
  1860. pending_vec = kvm_arch_ops->get_irq(vcpu);
  1861. if (pending_vec >= 0)
  1862. set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
  1863. } else
  1864. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1865. sizeof sregs->interrupt_bitmap);
  1866. vcpu_put(vcpu);
  1867. return 0;
  1868. }
  1869. static void set_segment(struct kvm_vcpu *vcpu,
  1870. struct kvm_segment *var, int seg)
  1871. {
  1872. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1873. }
  1874. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1875. struct kvm_sregs *sregs)
  1876. {
  1877. int mmu_reset_needed = 0;
  1878. int i, pending_vec, max_bits;
  1879. struct descriptor_table dt;
  1880. vcpu_load(vcpu);
  1881. dt.limit = sregs->idt.limit;
  1882. dt.base = sregs->idt.base;
  1883. kvm_arch_ops->set_idt(vcpu, &dt);
  1884. dt.limit = sregs->gdt.limit;
  1885. dt.base = sregs->gdt.base;
  1886. kvm_arch_ops->set_gdt(vcpu, &dt);
  1887. vcpu->cr2 = sregs->cr2;
  1888. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1889. vcpu->cr3 = sregs->cr3;
  1890. set_cr8(vcpu, sregs->cr8);
  1891. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1892. #ifdef CONFIG_X86_64
  1893. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1894. #endif
  1895. kvm_set_apic_base(vcpu, sregs->apic_base);
  1896. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1897. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1898. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1899. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1900. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1901. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1902. load_pdptrs(vcpu, vcpu->cr3);
  1903. if (mmu_reset_needed)
  1904. kvm_mmu_reset_context(vcpu);
  1905. if (!irqchip_in_kernel(vcpu->kvm)) {
  1906. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1907. sizeof vcpu->irq_pending);
  1908. vcpu->irq_summary = 0;
  1909. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1910. if (vcpu->irq_pending[i])
  1911. __set_bit(i, &vcpu->irq_summary);
  1912. } else {
  1913. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1914. pending_vec = find_first_bit(
  1915. (const unsigned long *)sregs->interrupt_bitmap,
  1916. max_bits);
  1917. /* Only pending external irq is handled here */
  1918. if (pending_vec < max_bits) {
  1919. kvm_arch_ops->set_irq(vcpu, pending_vec);
  1920. printk("Set back pending irq %d\n", pending_vec);
  1921. }
  1922. }
  1923. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1924. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1925. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1926. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1927. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1928. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1929. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1930. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1931. vcpu_put(vcpu);
  1932. return 0;
  1933. }
  1934. /*
  1935. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1936. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1937. *
  1938. * This list is modified at module load time to reflect the
  1939. * capabilities of the host cpu.
  1940. */
  1941. static u32 msrs_to_save[] = {
  1942. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1943. MSR_K6_STAR,
  1944. #ifdef CONFIG_X86_64
  1945. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1946. #endif
  1947. MSR_IA32_TIME_STAMP_COUNTER,
  1948. };
  1949. static unsigned num_msrs_to_save;
  1950. static u32 emulated_msrs[] = {
  1951. MSR_IA32_MISC_ENABLE,
  1952. };
  1953. static __init void kvm_init_msr_list(void)
  1954. {
  1955. u32 dummy[2];
  1956. unsigned i, j;
  1957. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1958. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1959. continue;
  1960. if (j < i)
  1961. msrs_to_save[j] = msrs_to_save[i];
  1962. j++;
  1963. }
  1964. num_msrs_to_save = j;
  1965. }
  1966. /*
  1967. * Adapt set_msr() to msr_io()'s calling convention
  1968. */
  1969. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1970. {
  1971. return kvm_set_msr(vcpu, index, *data);
  1972. }
  1973. /*
  1974. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1975. *
  1976. * @return number of msrs set successfully.
  1977. */
  1978. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1979. struct kvm_msr_entry *entries,
  1980. int (*do_msr)(struct kvm_vcpu *vcpu,
  1981. unsigned index, u64 *data))
  1982. {
  1983. int i;
  1984. vcpu_load(vcpu);
  1985. for (i = 0; i < msrs->nmsrs; ++i)
  1986. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1987. break;
  1988. vcpu_put(vcpu);
  1989. return i;
  1990. }
  1991. /*
  1992. * Read or write a bunch of msrs. Parameters are user addresses.
  1993. *
  1994. * @return number of msrs set successfully.
  1995. */
  1996. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1997. int (*do_msr)(struct kvm_vcpu *vcpu,
  1998. unsigned index, u64 *data),
  1999. int writeback)
  2000. {
  2001. struct kvm_msrs msrs;
  2002. struct kvm_msr_entry *entries;
  2003. int r, n;
  2004. unsigned size;
  2005. r = -EFAULT;
  2006. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  2007. goto out;
  2008. r = -E2BIG;
  2009. if (msrs.nmsrs >= MAX_IO_MSRS)
  2010. goto out;
  2011. r = -ENOMEM;
  2012. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  2013. entries = vmalloc(size);
  2014. if (!entries)
  2015. goto out;
  2016. r = -EFAULT;
  2017. if (copy_from_user(entries, user_msrs->entries, size))
  2018. goto out_free;
  2019. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  2020. if (r < 0)
  2021. goto out_free;
  2022. r = -EFAULT;
  2023. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  2024. goto out_free;
  2025. r = n;
  2026. out_free:
  2027. vfree(entries);
  2028. out:
  2029. return r;
  2030. }
  2031. /*
  2032. * Translate a guest virtual address to a guest physical address.
  2033. */
  2034. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2035. struct kvm_translation *tr)
  2036. {
  2037. unsigned long vaddr = tr->linear_address;
  2038. gpa_t gpa;
  2039. vcpu_load(vcpu);
  2040. mutex_lock(&vcpu->kvm->lock);
  2041. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2042. tr->physical_address = gpa;
  2043. tr->valid = gpa != UNMAPPED_GVA;
  2044. tr->writeable = 1;
  2045. tr->usermode = 0;
  2046. mutex_unlock(&vcpu->kvm->lock);
  2047. vcpu_put(vcpu);
  2048. return 0;
  2049. }
  2050. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2051. struct kvm_interrupt *irq)
  2052. {
  2053. if (irq->irq < 0 || irq->irq >= 256)
  2054. return -EINVAL;
  2055. if (irqchip_in_kernel(vcpu->kvm))
  2056. return -ENXIO;
  2057. vcpu_load(vcpu);
  2058. set_bit(irq->irq, vcpu->irq_pending);
  2059. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2060. vcpu_put(vcpu);
  2061. return 0;
  2062. }
  2063. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2064. struct kvm_debug_guest *dbg)
  2065. {
  2066. int r;
  2067. vcpu_load(vcpu);
  2068. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  2069. vcpu_put(vcpu);
  2070. return r;
  2071. }
  2072. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2073. unsigned long address,
  2074. int *type)
  2075. {
  2076. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2077. unsigned long pgoff;
  2078. struct page *page;
  2079. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2080. if (pgoff == 0)
  2081. page = virt_to_page(vcpu->run);
  2082. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2083. page = virt_to_page(vcpu->pio_data);
  2084. else
  2085. return NOPAGE_SIGBUS;
  2086. get_page(page);
  2087. if (type != NULL)
  2088. *type = VM_FAULT_MINOR;
  2089. return page;
  2090. }
  2091. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2092. .nopage = kvm_vcpu_nopage,
  2093. };
  2094. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2095. {
  2096. vma->vm_ops = &kvm_vcpu_vm_ops;
  2097. return 0;
  2098. }
  2099. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2100. {
  2101. struct kvm_vcpu *vcpu = filp->private_data;
  2102. fput(vcpu->kvm->filp);
  2103. return 0;
  2104. }
  2105. static struct file_operations kvm_vcpu_fops = {
  2106. .release = kvm_vcpu_release,
  2107. .unlocked_ioctl = kvm_vcpu_ioctl,
  2108. .compat_ioctl = kvm_vcpu_ioctl,
  2109. .mmap = kvm_vcpu_mmap,
  2110. };
  2111. /*
  2112. * Allocates an inode for the vcpu.
  2113. */
  2114. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2115. {
  2116. int fd, r;
  2117. struct inode *inode;
  2118. struct file *file;
  2119. r = anon_inode_getfd(&fd, &inode, &file,
  2120. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2121. if (r)
  2122. return r;
  2123. atomic_inc(&vcpu->kvm->filp->f_count);
  2124. return fd;
  2125. }
  2126. /*
  2127. * Creates some virtual cpus. Good luck creating more than one.
  2128. */
  2129. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2130. {
  2131. int r;
  2132. struct kvm_vcpu *vcpu;
  2133. if (!valid_vcpu(n))
  2134. return -EINVAL;
  2135. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  2136. if (IS_ERR(vcpu))
  2137. return PTR_ERR(vcpu);
  2138. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2139. /* We do fxsave: this must be aligned. */
  2140. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2141. vcpu_load(vcpu);
  2142. r = kvm_mmu_setup(vcpu);
  2143. vcpu_put(vcpu);
  2144. if (r < 0)
  2145. goto free_vcpu;
  2146. mutex_lock(&kvm->lock);
  2147. if (kvm->vcpus[n]) {
  2148. r = -EEXIST;
  2149. mutex_unlock(&kvm->lock);
  2150. goto mmu_unload;
  2151. }
  2152. kvm->vcpus[n] = vcpu;
  2153. mutex_unlock(&kvm->lock);
  2154. /* Now it's all set up, let userspace reach it */
  2155. r = create_vcpu_fd(vcpu);
  2156. if (r < 0)
  2157. goto unlink;
  2158. return r;
  2159. unlink:
  2160. mutex_lock(&kvm->lock);
  2161. kvm->vcpus[n] = NULL;
  2162. mutex_unlock(&kvm->lock);
  2163. mmu_unload:
  2164. vcpu_load(vcpu);
  2165. kvm_mmu_unload(vcpu);
  2166. vcpu_put(vcpu);
  2167. free_vcpu:
  2168. kvm_arch_ops->vcpu_free(vcpu);
  2169. return r;
  2170. }
  2171. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2172. {
  2173. u64 efer;
  2174. int i;
  2175. struct kvm_cpuid_entry *e, *entry;
  2176. rdmsrl(MSR_EFER, efer);
  2177. entry = NULL;
  2178. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2179. e = &vcpu->cpuid_entries[i];
  2180. if (e->function == 0x80000001) {
  2181. entry = e;
  2182. break;
  2183. }
  2184. }
  2185. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2186. entry->edx &= ~(1 << 20);
  2187. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2188. }
  2189. }
  2190. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2191. struct kvm_cpuid *cpuid,
  2192. struct kvm_cpuid_entry __user *entries)
  2193. {
  2194. int r;
  2195. r = -E2BIG;
  2196. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2197. goto out;
  2198. r = -EFAULT;
  2199. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2200. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2201. goto out;
  2202. vcpu->cpuid_nent = cpuid->nent;
  2203. cpuid_fix_nx_cap(vcpu);
  2204. return 0;
  2205. out:
  2206. return r;
  2207. }
  2208. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2209. {
  2210. if (sigset) {
  2211. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2212. vcpu->sigset_active = 1;
  2213. vcpu->sigset = *sigset;
  2214. } else
  2215. vcpu->sigset_active = 0;
  2216. return 0;
  2217. }
  2218. /*
  2219. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2220. * we have asm/x86/processor.h
  2221. */
  2222. struct fxsave {
  2223. u16 cwd;
  2224. u16 swd;
  2225. u16 twd;
  2226. u16 fop;
  2227. u64 rip;
  2228. u64 rdp;
  2229. u32 mxcsr;
  2230. u32 mxcsr_mask;
  2231. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2232. #ifdef CONFIG_X86_64
  2233. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2234. #else
  2235. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2236. #endif
  2237. };
  2238. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2239. {
  2240. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2241. vcpu_load(vcpu);
  2242. memcpy(fpu->fpr, fxsave->st_space, 128);
  2243. fpu->fcw = fxsave->cwd;
  2244. fpu->fsw = fxsave->swd;
  2245. fpu->ftwx = fxsave->twd;
  2246. fpu->last_opcode = fxsave->fop;
  2247. fpu->last_ip = fxsave->rip;
  2248. fpu->last_dp = fxsave->rdp;
  2249. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2250. vcpu_put(vcpu);
  2251. return 0;
  2252. }
  2253. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2254. {
  2255. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2256. vcpu_load(vcpu);
  2257. memcpy(fxsave->st_space, fpu->fpr, 128);
  2258. fxsave->cwd = fpu->fcw;
  2259. fxsave->swd = fpu->fsw;
  2260. fxsave->twd = fpu->ftwx;
  2261. fxsave->fop = fpu->last_opcode;
  2262. fxsave->rip = fpu->last_ip;
  2263. fxsave->rdp = fpu->last_dp;
  2264. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2265. vcpu_put(vcpu);
  2266. return 0;
  2267. }
  2268. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2269. struct kvm_lapic_state *s)
  2270. {
  2271. vcpu_load(vcpu);
  2272. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  2273. vcpu_put(vcpu);
  2274. return 0;
  2275. }
  2276. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2277. struct kvm_lapic_state *s)
  2278. {
  2279. vcpu_load(vcpu);
  2280. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  2281. kvm_apic_post_state_restore(vcpu);
  2282. vcpu_put(vcpu);
  2283. return 0;
  2284. }
  2285. static long kvm_vcpu_ioctl(struct file *filp,
  2286. unsigned int ioctl, unsigned long arg)
  2287. {
  2288. struct kvm_vcpu *vcpu = filp->private_data;
  2289. void __user *argp = (void __user *)arg;
  2290. int r = -EINVAL;
  2291. switch (ioctl) {
  2292. case KVM_RUN:
  2293. r = -EINVAL;
  2294. if (arg)
  2295. goto out;
  2296. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2297. break;
  2298. case KVM_GET_REGS: {
  2299. struct kvm_regs kvm_regs;
  2300. memset(&kvm_regs, 0, sizeof kvm_regs);
  2301. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2302. if (r)
  2303. goto out;
  2304. r = -EFAULT;
  2305. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2306. goto out;
  2307. r = 0;
  2308. break;
  2309. }
  2310. case KVM_SET_REGS: {
  2311. struct kvm_regs kvm_regs;
  2312. r = -EFAULT;
  2313. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2314. goto out;
  2315. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2316. if (r)
  2317. goto out;
  2318. r = 0;
  2319. break;
  2320. }
  2321. case KVM_GET_SREGS: {
  2322. struct kvm_sregs kvm_sregs;
  2323. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2324. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2325. if (r)
  2326. goto out;
  2327. r = -EFAULT;
  2328. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2329. goto out;
  2330. r = 0;
  2331. break;
  2332. }
  2333. case KVM_SET_SREGS: {
  2334. struct kvm_sregs kvm_sregs;
  2335. r = -EFAULT;
  2336. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2337. goto out;
  2338. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2339. if (r)
  2340. goto out;
  2341. r = 0;
  2342. break;
  2343. }
  2344. case KVM_TRANSLATE: {
  2345. struct kvm_translation tr;
  2346. r = -EFAULT;
  2347. if (copy_from_user(&tr, argp, sizeof tr))
  2348. goto out;
  2349. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2350. if (r)
  2351. goto out;
  2352. r = -EFAULT;
  2353. if (copy_to_user(argp, &tr, sizeof tr))
  2354. goto out;
  2355. r = 0;
  2356. break;
  2357. }
  2358. case KVM_INTERRUPT: {
  2359. struct kvm_interrupt irq;
  2360. r = -EFAULT;
  2361. if (copy_from_user(&irq, argp, sizeof irq))
  2362. goto out;
  2363. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2364. if (r)
  2365. goto out;
  2366. r = 0;
  2367. break;
  2368. }
  2369. case KVM_DEBUG_GUEST: {
  2370. struct kvm_debug_guest dbg;
  2371. r = -EFAULT;
  2372. if (copy_from_user(&dbg, argp, sizeof dbg))
  2373. goto out;
  2374. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2375. if (r)
  2376. goto out;
  2377. r = 0;
  2378. break;
  2379. }
  2380. case KVM_GET_MSRS:
  2381. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2382. break;
  2383. case KVM_SET_MSRS:
  2384. r = msr_io(vcpu, argp, do_set_msr, 0);
  2385. break;
  2386. case KVM_SET_CPUID: {
  2387. struct kvm_cpuid __user *cpuid_arg = argp;
  2388. struct kvm_cpuid cpuid;
  2389. r = -EFAULT;
  2390. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2391. goto out;
  2392. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2393. if (r)
  2394. goto out;
  2395. break;
  2396. }
  2397. case KVM_SET_SIGNAL_MASK: {
  2398. struct kvm_signal_mask __user *sigmask_arg = argp;
  2399. struct kvm_signal_mask kvm_sigmask;
  2400. sigset_t sigset, *p;
  2401. p = NULL;
  2402. if (argp) {
  2403. r = -EFAULT;
  2404. if (copy_from_user(&kvm_sigmask, argp,
  2405. sizeof kvm_sigmask))
  2406. goto out;
  2407. r = -EINVAL;
  2408. if (kvm_sigmask.len != sizeof sigset)
  2409. goto out;
  2410. r = -EFAULT;
  2411. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2412. sizeof sigset))
  2413. goto out;
  2414. p = &sigset;
  2415. }
  2416. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2417. break;
  2418. }
  2419. case KVM_GET_FPU: {
  2420. struct kvm_fpu fpu;
  2421. memset(&fpu, 0, sizeof fpu);
  2422. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2423. if (r)
  2424. goto out;
  2425. r = -EFAULT;
  2426. if (copy_to_user(argp, &fpu, sizeof fpu))
  2427. goto out;
  2428. r = 0;
  2429. break;
  2430. }
  2431. case KVM_SET_FPU: {
  2432. struct kvm_fpu fpu;
  2433. r = -EFAULT;
  2434. if (copy_from_user(&fpu, argp, sizeof fpu))
  2435. goto out;
  2436. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2437. if (r)
  2438. goto out;
  2439. r = 0;
  2440. break;
  2441. }
  2442. case KVM_GET_LAPIC: {
  2443. struct kvm_lapic_state lapic;
  2444. memset(&lapic, 0, sizeof lapic);
  2445. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  2446. if (r)
  2447. goto out;
  2448. r = -EFAULT;
  2449. if (copy_to_user(argp, &lapic, sizeof lapic))
  2450. goto out;
  2451. r = 0;
  2452. break;
  2453. }
  2454. case KVM_SET_LAPIC: {
  2455. struct kvm_lapic_state lapic;
  2456. r = -EFAULT;
  2457. if (copy_from_user(&lapic, argp, sizeof lapic))
  2458. goto out;
  2459. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  2460. if (r)
  2461. goto out;
  2462. r = 0;
  2463. break;
  2464. }
  2465. default:
  2466. ;
  2467. }
  2468. out:
  2469. return r;
  2470. }
  2471. static long kvm_vm_ioctl(struct file *filp,
  2472. unsigned int ioctl, unsigned long arg)
  2473. {
  2474. struct kvm *kvm = filp->private_data;
  2475. void __user *argp = (void __user *)arg;
  2476. int r = -EINVAL;
  2477. switch (ioctl) {
  2478. case KVM_CREATE_VCPU:
  2479. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2480. if (r < 0)
  2481. goto out;
  2482. break;
  2483. case KVM_SET_MEMORY_REGION: {
  2484. struct kvm_memory_region kvm_mem;
  2485. r = -EFAULT;
  2486. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2487. goto out;
  2488. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2489. if (r)
  2490. goto out;
  2491. break;
  2492. }
  2493. case KVM_GET_DIRTY_LOG: {
  2494. struct kvm_dirty_log log;
  2495. r = -EFAULT;
  2496. if (copy_from_user(&log, argp, sizeof log))
  2497. goto out;
  2498. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2499. if (r)
  2500. goto out;
  2501. break;
  2502. }
  2503. case KVM_SET_MEMORY_ALIAS: {
  2504. struct kvm_memory_alias alias;
  2505. r = -EFAULT;
  2506. if (copy_from_user(&alias, argp, sizeof alias))
  2507. goto out;
  2508. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2509. if (r)
  2510. goto out;
  2511. break;
  2512. }
  2513. case KVM_CREATE_IRQCHIP:
  2514. r = -ENOMEM;
  2515. kvm->vpic = kvm_create_pic(kvm);
  2516. if (kvm->vpic) {
  2517. r = kvm_ioapic_init(kvm);
  2518. if (r) {
  2519. kfree(kvm->vpic);
  2520. kvm->vpic = NULL;
  2521. goto out;
  2522. }
  2523. }
  2524. else
  2525. goto out;
  2526. break;
  2527. case KVM_IRQ_LINE: {
  2528. struct kvm_irq_level irq_event;
  2529. r = -EFAULT;
  2530. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2531. goto out;
  2532. if (irqchip_in_kernel(kvm)) {
  2533. mutex_lock(&kvm->lock);
  2534. if (irq_event.irq < 16)
  2535. kvm_pic_set_irq(pic_irqchip(kvm),
  2536. irq_event.irq,
  2537. irq_event.level);
  2538. kvm_ioapic_set_irq(kvm->vioapic,
  2539. irq_event.irq,
  2540. irq_event.level);
  2541. mutex_unlock(&kvm->lock);
  2542. r = 0;
  2543. }
  2544. break;
  2545. }
  2546. case KVM_GET_IRQCHIP: {
  2547. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2548. struct kvm_irqchip chip;
  2549. r = -EFAULT;
  2550. if (copy_from_user(&chip, argp, sizeof chip))
  2551. goto out;
  2552. r = -ENXIO;
  2553. if (!irqchip_in_kernel(kvm))
  2554. goto out;
  2555. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2556. if (r)
  2557. goto out;
  2558. r = -EFAULT;
  2559. if (copy_to_user(argp, &chip, sizeof chip))
  2560. goto out;
  2561. r = 0;
  2562. break;
  2563. }
  2564. case KVM_SET_IRQCHIP: {
  2565. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2566. struct kvm_irqchip chip;
  2567. r = -EFAULT;
  2568. if (copy_from_user(&chip, argp, sizeof chip))
  2569. goto out;
  2570. r = -ENXIO;
  2571. if (!irqchip_in_kernel(kvm))
  2572. goto out;
  2573. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2574. if (r)
  2575. goto out;
  2576. r = 0;
  2577. break;
  2578. }
  2579. default:
  2580. ;
  2581. }
  2582. out:
  2583. return r;
  2584. }
  2585. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2586. unsigned long address,
  2587. int *type)
  2588. {
  2589. struct kvm *kvm = vma->vm_file->private_data;
  2590. unsigned long pgoff;
  2591. struct page *page;
  2592. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2593. page = gfn_to_page(kvm, pgoff);
  2594. if (!page)
  2595. return NOPAGE_SIGBUS;
  2596. get_page(page);
  2597. if (type != NULL)
  2598. *type = VM_FAULT_MINOR;
  2599. return page;
  2600. }
  2601. static struct vm_operations_struct kvm_vm_vm_ops = {
  2602. .nopage = kvm_vm_nopage,
  2603. };
  2604. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2605. {
  2606. vma->vm_ops = &kvm_vm_vm_ops;
  2607. return 0;
  2608. }
  2609. static struct file_operations kvm_vm_fops = {
  2610. .release = kvm_vm_release,
  2611. .unlocked_ioctl = kvm_vm_ioctl,
  2612. .compat_ioctl = kvm_vm_ioctl,
  2613. .mmap = kvm_vm_mmap,
  2614. };
  2615. static int kvm_dev_ioctl_create_vm(void)
  2616. {
  2617. int fd, r;
  2618. struct inode *inode;
  2619. struct file *file;
  2620. struct kvm *kvm;
  2621. kvm = kvm_create_vm();
  2622. if (IS_ERR(kvm))
  2623. return PTR_ERR(kvm);
  2624. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2625. if (r) {
  2626. kvm_destroy_vm(kvm);
  2627. return r;
  2628. }
  2629. kvm->filp = file;
  2630. return fd;
  2631. }
  2632. static long kvm_dev_ioctl(struct file *filp,
  2633. unsigned int ioctl, unsigned long arg)
  2634. {
  2635. void __user *argp = (void __user *)arg;
  2636. long r = -EINVAL;
  2637. switch (ioctl) {
  2638. case KVM_GET_API_VERSION:
  2639. r = -EINVAL;
  2640. if (arg)
  2641. goto out;
  2642. r = KVM_API_VERSION;
  2643. break;
  2644. case KVM_CREATE_VM:
  2645. r = -EINVAL;
  2646. if (arg)
  2647. goto out;
  2648. r = kvm_dev_ioctl_create_vm();
  2649. break;
  2650. case KVM_GET_MSR_INDEX_LIST: {
  2651. struct kvm_msr_list __user *user_msr_list = argp;
  2652. struct kvm_msr_list msr_list;
  2653. unsigned n;
  2654. r = -EFAULT;
  2655. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2656. goto out;
  2657. n = msr_list.nmsrs;
  2658. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2659. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2660. goto out;
  2661. r = -E2BIG;
  2662. if (n < num_msrs_to_save)
  2663. goto out;
  2664. r = -EFAULT;
  2665. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2666. num_msrs_to_save * sizeof(u32)))
  2667. goto out;
  2668. if (copy_to_user(user_msr_list->indices
  2669. + num_msrs_to_save * sizeof(u32),
  2670. &emulated_msrs,
  2671. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2672. goto out;
  2673. r = 0;
  2674. break;
  2675. }
  2676. case KVM_CHECK_EXTENSION: {
  2677. int ext = (long)argp;
  2678. switch (ext) {
  2679. case KVM_CAP_IRQCHIP:
  2680. case KVM_CAP_HLT:
  2681. r = 1;
  2682. break;
  2683. default:
  2684. r = 0;
  2685. break;
  2686. }
  2687. break;
  2688. }
  2689. case KVM_GET_VCPU_MMAP_SIZE:
  2690. r = -EINVAL;
  2691. if (arg)
  2692. goto out;
  2693. r = 2 * PAGE_SIZE;
  2694. break;
  2695. default:
  2696. ;
  2697. }
  2698. out:
  2699. return r;
  2700. }
  2701. static struct file_operations kvm_chardev_ops = {
  2702. .unlocked_ioctl = kvm_dev_ioctl,
  2703. .compat_ioctl = kvm_dev_ioctl,
  2704. };
  2705. static struct miscdevice kvm_dev = {
  2706. KVM_MINOR,
  2707. "kvm",
  2708. &kvm_chardev_ops,
  2709. };
  2710. /*
  2711. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2712. * cached on it.
  2713. */
  2714. static void decache_vcpus_on_cpu(int cpu)
  2715. {
  2716. struct kvm *vm;
  2717. struct kvm_vcpu *vcpu;
  2718. int i;
  2719. spin_lock(&kvm_lock);
  2720. list_for_each_entry(vm, &vm_list, vm_list)
  2721. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2722. vcpu = vm->vcpus[i];
  2723. if (!vcpu)
  2724. continue;
  2725. /*
  2726. * If the vcpu is locked, then it is running on some
  2727. * other cpu and therefore it is not cached on the
  2728. * cpu in question.
  2729. *
  2730. * If it's not locked, check the last cpu it executed
  2731. * on.
  2732. */
  2733. if (mutex_trylock(&vcpu->mutex)) {
  2734. if (vcpu->cpu == cpu) {
  2735. kvm_arch_ops->vcpu_decache(vcpu);
  2736. vcpu->cpu = -1;
  2737. }
  2738. mutex_unlock(&vcpu->mutex);
  2739. }
  2740. }
  2741. spin_unlock(&kvm_lock);
  2742. }
  2743. static void hardware_enable(void *junk)
  2744. {
  2745. int cpu = raw_smp_processor_id();
  2746. if (cpu_isset(cpu, cpus_hardware_enabled))
  2747. return;
  2748. cpu_set(cpu, cpus_hardware_enabled);
  2749. kvm_arch_ops->hardware_enable(NULL);
  2750. }
  2751. static void hardware_disable(void *junk)
  2752. {
  2753. int cpu = raw_smp_processor_id();
  2754. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2755. return;
  2756. cpu_clear(cpu, cpus_hardware_enabled);
  2757. decache_vcpus_on_cpu(cpu);
  2758. kvm_arch_ops->hardware_disable(NULL);
  2759. }
  2760. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2761. void *v)
  2762. {
  2763. int cpu = (long)v;
  2764. switch (val) {
  2765. case CPU_DYING:
  2766. case CPU_DYING_FROZEN:
  2767. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2768. cpu);
  2769. hardware_disable(NULL);
  2770. break;
  2771. case CPU_UP_CANCELED:
  2772. case CPU_UP_CANCELED_FROZEN:
  2773. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2774. cpu);
  2775. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2776. break;
  2777. case CPU_ONLINE:
  2778. case CPU_ONLINE_FROZEN:
  2779. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2780. cpu);
  2781. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2782. break;
  2783. }
  2784. return NOTIFY_OK;
  2785. }
  2786. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2787. void *v)
  2788. {
  2789. if (val == SYS_RESTART) {
  2790. /*
  2791. * Some (well, at least mine) BIOSes hang on reboot if
  2792. * in vmx root mode.
  2793. */
  2794. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2795. on_each_cpu(hardware_disable, NULL, 0, 1);
  2796. }
  2797. return NOTIFY_OK;
  2798. }
  2799. static struct notifier_block kvm_reboot_notifier = {
  2800. .notifier_call = kvm_reboot,
  2801. .priority = 0,
  2802. };
  2803. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2804. {
  2805. memset(bus, 0, sizeof(*bus));
  2806. }
  2807. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2808. {
  2809. int i;
  2810. for (i = 0; i < bus->dev_count; i++) {
  2811. struct kvm_io_device *pos = bus->devs[i];
  2812. kvm_iodevice_destructor(pos);
  2813. }
  2814. }
  2815. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2816. {
  2817. int i;
  2818. for (i = 0; i < bus->dev_count; i++) {
  2819. struct kvm_io_device *pos = bus->devs[i];
  2820. if (pos->in_range(pos, addr))
  2821. return pos;
  2822. }
  2823. return NULL;
  2824. }
  2825. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2826. {
  2827. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2828. bus->devs[bus->dev_count++] = dev;
  2829. }
  2830. static struct notifier_block kvm_cpu_notifier = {
  2831. .notifier_call = kvm_cpu_hotplug,
  2832. .priority = 20, /* must be > scheduler priority */
  2833. };
  2834. static u64 stat_get(void *_offset)
  2835. {
  2836. unsigned offset = (long)_offset;
  2837. u64 total = 0;
  2838. struct kvm *kvm;
  2839. struct kvm_vcpu *vcpu;
  2840. int i;
  2841. spin_lock(&kvm_lock);
  2842. list_for_each_entry(kvm, &vm_list, vm_list)
  2843. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2844. vcpu = kvm->vcpus[i];
  2845. if (vcpu)
  2846. total += *(u32 *)((void *)vcpu + offset);
  2847. }
  2848. spin_unlock(&kvm_lock);
  2849. return total;
  2850. }
  2851. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2852. static __init void kvm_init_debug(void)
  2853. {
  2854. struct kvm_stats_debugfs_item *p;
  2855. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2856. for (p = debugfs_entries; p->name; ++p)
  2857. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2858. (void *)(long)p->offset,
  2859. &stat_fops);
  2860. }
  2861. static void kvm_exit_debug(void)
  2862. {
  2863. struct kvm_stats_debugfs_item *p;
  2864. for (p = debugfs_entries; p->name; ++p)
  2865. debugfs_remove(p->dentry);
  2866. debugfs_remove(debugfs_dir);
  2867. }
  2868. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2869. {
  2870. hardware_disable(NULL);
  2871. return 0;
  2872. }
  2873. static int kvm_resume(struct sys_device *dev)
  2874. {
  2875. hardware_enable(NULL);
  2876. return 0;
  2877. }
  2878. static struct sysdev_class kvm_sysdev_class = {
  2879. set_kset_name("kvm"),
  2880. .suspend = kvm_suspend,
  2881. .resume = kvm_resume,
  2882. };
  2883. static struct sys_device kvm_sysdev = {
  2884. .id = 0,
  2885. .cls = &kvm_sysdev_class,
  2886. };
  2887. hpa_t bad_page_address;
  2888. static inline
  2889. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2890. {
  2891. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2892. }
  2893. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2894. {
  2895. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2896. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2897. }
  2898. static void kvm_sched_out(struct preempt_notifier *pn,
  2899. struct task_struct *next)
  2900. {
  2901. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2902. kvm_arch_ops->vcpu_put(vcpu);
  2903. }
  2904. int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
  2905. struct module *module)
  2906. {
  2907. int r;
  2908. int cpu;
  2909. if (kvm_arch_ops) {
  2910. printk(KERN_ERR "kvm: already loaded the other module\n");
  2911. return -EEXIST;
  2912. }
  2913. if (!ops->cpu_has_kvm_support()) {
  2914. printk(KERN_ERR "kvm: no hardware support\n");
  2915. return -EOPNOTSUPP;
  2916. }
  2917. if (ops->disabled_by_bios()) {
  2918. printk(KERN_ERR "kvm: disabled by bios\n");
  2919. return -EOPNOTSUPP;
  2920. }
  2921. kvm_arch_ops = ops;
  2922. r = kvm_arch_ops->hardware_setup();
  2923. if (r < 0)
  2924. goto out;
  2925. for_each_online_cpu(cpu) {
  2926. smp_call_function_single(cpu,
  2927. kvm_arch_ops->check_processor_compatibility,
  2928. &r, 0, 1);
  2929. if (r < 0)
  2930. goto out_free_0;
  2931. }
  2932. on_each_cpu(hardware_enable, NULL, 0, 1);
  2933. r = register_cpu_notifier(&kvm_cpu_notifier);
  2934. if (r)
  2935. goto out_free_1;
  2936. register_reboot_notifier(&kvm_reboot_notifier);
  2937. r = sysdev_class_register(&kvm_sysdev_class);
  2938. if (r)
  2939. goto out_free_2;
  2940. r = sysdev_register(&kvm_sysdev);
  2941. if (r)
  2942. goto out_free_3;
  2943. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2944. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2945. __alignof__(struct kvm_vcpu), 0, 0);
  2946. if (!kvm_vcpu_cache) {
  2947. r = -ENOMEM;
  2948. goto out_free_4;
  2949. }
  2950. kvm_chardev_ops.owner = module;
  2951. r = misc_register(&kvm_dev);
  2952. if (r) {
  2953. printk (KERN_ERR "kvm: misc device register failed\n");
  2954. goto out_free;
  2955. }
  2956. kvm_preempt_ops.sched_in = kvm_sched_in;
  2957. kvm_preempt_ops.sched_out = kvm_sched_out;
  2958. return r;
  2959. out_free:
  2960. kmem_cache_destroy(kvm_vcpu_cache);
  2961. out_free_4:
  2962. sysdev_unregister(&kvm_sysdev);
  2963. out_free_3:
  2964. sysdev_class_unregister(&kvm_sysdev_class);
  2965. out_free_2:
  2966. unregister_reboot_notifier(&kvm_reboot_notifier);
  2967. unregister_cpu_notifier(&kvm_cpu_notifier);
  2968. out_free_1:
  2969. on_each_cpu(hardware_disable, NULL, 0, 1);
  2970. out_free_0:
  2971. kvm_arch_ops->hardware_unsetup();
  2972. out:
  2973. kvm_arch_ops = NULL;
  2974. return r;
  2975. }
  2976. void kvm_exit_arch(void)
  2977. {
  2978. misc_deregister(&kvm_dev);
  2979. kmem_cache_destroy(kvm_vcpu_cache);
  2980. sysdev_unregister(&kvm_sysdev);
  2981. sysdev_class_unregister(&kvm_sysdev_class);
  2982. unregister_reboot_notifier(&kvm_reboot_notifier);
  2983. unregister_cpu_notifier(&kvm_cpu_notifier);
  2984. on_each_cpu(hardware_disable, NULL, 0, 1);
  2985. kvm_arch_ops->hardware_unsetup();
  2986. kvm_arch_ops = NULL;
  2987. }
  2988. static __init int kvm_init(void)
  2989. {
  2990. static struct page *bad_page;
  2991. int r;
  2992. r = kvm_mmu_module_init();
  2993. if (r)
  2994. goto out4;
  2995. kvm_init_debug();
  2996. kvm_init_msr_list();
  2997. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2998. r = -ENOMEM;
  2999. goto out;
  3000. }
  3001. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  3002. memset(__va(bad_page_address), 0, PAGE_SIZE);
  3003. return 0;
  3004. out:
  3005. kvm_exit_debug();
  3006. kvm_mmu_module_exit();
  3007. out4:
  3008. return r;
  3009. }
  3010. static __exit void kvm_exit(void)
  3011. {
  3012. kvm_exit_debug();
  3013. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  3014. kvm_mmu_module_exit();
  3015. }
  3016. module_init(kvm_init)
  3017. module_exit(kvm_exit)
  3018. EXPORT_SYMBOL_GPL(kvm_init_arch);
  3019. EXPORT_SYMBOL_GPL(kvm_exit_arch);