spi_bfin5xx.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/slab.h>
  15. #include <linux/io.h>
  16. #include <linux/ioport.h>
  17. #include <linux/irq.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/workqueue.h>
  24. #include <asm/dma.h>
  25. #include <asm/portmux.h>
  26. #include <asm/bfin5xx_spi.h>
  27. #include <asm/cacheflush.h>
  28. #define DRV_NAME "bfin-spi"
  29. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  30. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  31. #define DRV_VERSION "1.0"
  32. MODULE_AUTHOR(DRV_AUTHOR);
  33. MODULE_DESCRIPTION(DRV_DESC);
  34. MODULE_LICENSE("GPL");
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. #define QUEUE_RUNNING 0
  40. #define QUEUE_STOPPED 1
  41. /* Value to send if no TX value is supplied */
  42. #define SPI_IDLE_TXVAL 0x0000
  43. struct driver_data {
  44. /* Driver model hookup */
  45. struct platform_device *pdev;
  46. /* SPI framework hookup */
  47. struct spi_master *master;
  48. /* Regs base of SPI controller */
  49. void __iomem *regs_base;
  50. /* Pin request list */
  51. u16 *pin_req;
  52. /* BFIN hookup */
  53. struct bfin5xx_spi_master *master_info;
  54. /* Driver message queue */
  55. struct workqueue_struct *workqueue;
  56. struct work_struct pump_messages;
  57. spinlock_t lock;
  58. struct list_head queue;
  59. int busy;
  60. int run;
  61. /* Message Transfer pump */
  62. struct tasklet_struct pump_transfers;
  63. /* Current message transfer state info */
  64. struct spi_message *cur_msg;
  65. struct spi_transfer *cur_transfer;
  66. struct chip_data *cur_chip;
  67. size_t len_in_bytes;
  68. size_t len;
  69. void *tx;
  70. void *tx_end;
  71. void *rx;
  72. void *rx_end;
  73. /* DMA stuffs */
  74. int dma_channel;
  75. int dma_mapped;
  76. int dma_requested;
  77. dma_addr_t rx_dma;
  78. dma_addr_t tx_dma;
  79. int irq_requested;
  80. int spi_irq;
  81. size_t rx_map_len;
  82. size_t tx_map_len;
  83. u8 n_bytes;
  84. int cs_change;
  85. void (*write) (struct driver_data *);
  86. void (*read) (struct driver_data *);
  87. void (*duplex) (struct driver_data *);
  88. };
  89. struct chip_data {
  90. u16 ctl_reg;
  91. u16 baud;
  92. u16 flag;
  93. u8 chip_select_num;
  94. u8 n_bytes;
  95. u8 width; /* 0 or 1 */
  96. u8 enable_dma;
  97. u8 bits_per_word; /* 8 or 16 */
  98. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  99. u32 cs_gpio;
  100. u16 idle_tx_val;
  101. u8 pio_interrupt; /* use spi data irq */
  102. void (*write) (struct driver_data *);
  103. void (*read) (struct driver_data *);
  104. void (*duplex) (struct driver_data *);
  105. };
  106. #define DEFINE_SPI_REG(reg, off) \
  107. static inline u16 read_##reg(struct driver_data *drv_data) \
  108. { return bfin_read16(drv_data->regs_base + off); } \
  109. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  110. { bfin_write16(drv_data->regs_base + off, v); }
  111. DEFINE_SPI_REG(CTRL, 0x00)
  112. DEFINE_SPI_REG(FLAG, 0x04)
  113. DEFINE_SPI_REG(STAT, 0x08)
  114. DEFINE_SPI_REG(TDBR, 0x0C)
  115. DEFINE_SPI_REG(RDBR, 0x10)
  116. DEFINE_SPI_REG(BAUD, 0x14)
  117. DEFINE_SPI_REG(SHAW, 0x18)
  118. static void bfin_spi_enable(struct driver_data *drv_data)
  119. {
  120. u16 cr;
  121. cr = read_CTRL(drv_data);
  122. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  123. }
  124. static void bfin_spi_disable(struct driver_data *drv_data)
  125. {
  126. u16 cr;
  127. cr = read_CTRL(drv_data);
  128. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  129. }
  130. /* Caculate the SPI_BAUD register value based on input HZ */
  131. static u16 hz_to_spi_baud(u32 speed_hz)
  132. {
  133. u_long sclk = get_sclk();
  134. u16 spi_baud = (sclk / (2 * speed_hz));
  135. if ((sclk % (2 * speed_hz)) > 0)
  136. spi_baud++;
  137. if (spi_baud < MIN_SPI_BAUD_VAL)
  138. spi_baud = MIN_SPI_BAUD_VAL;
  139. return spi_baud;
  140. }
  141. static int bfin_spi_flush(struct driver_data *drv_data)
  142. {
  143. unsigned long limit = loops_per_jiffy << 1;
  144. /* wait for stop and clear stat */
  145. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && --limit)
  146. cpu_relax();
  147. write_STAT(drv_data, BIT_STAT_CLR);
  148. return limit;
  149. }
  150. /* Chip select operation functions for cs_change flag */
  151. static void bfin_spi_cs_active(struct driver_data *drv_data, struct chip_data *chip)
  152. {
  153. if (likely(chip->chip_select_num)) {
  154. u16 flag = read_FLAG(drv_data);
  155. flag &= ~chip->flag;
  156. write_FLAG(drv_data, flag);
  157. } else {
  158. gpio_set_value(chip->cs_gpio, 0);
  159. }
  160. }
  161. static void bfin_spi_cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  162. {
  163. if (likely(chip->chip_select_num)) {
  164. u16 flag = read_FLAG(drv_data);
  165. flag |= chip->flag;
  166. write_FLAG(drv_data, flag);
  167. } else {
  168. gpio_set_value(chip->cs_gpio, 1);
  169. }
  170. /* Move delay here for consistency */
  171. if (chip->cs_chg_udelay)
  172. udelay(chip->cs_chg_udelay);
  173. }
  174. /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
  175. static inline void bfin_spi_cs_enable(struct driver_data *drv_data, struct chip_data *chip)
  176. {
  177. u16 flag = read_FLAG(drv_data);
  178. flag |= (chip->flag >> 8);
  179. write_FLAG(drv_data, flag);
  180. }
  181. static inline void bfin_spi_cs_disable(struct driver_data *drv_data, struct chip_data *chip)
  182. {
  183. u16 flag = read_FLAG(drv_data);
  184. flag &= ~(chip->flag >> 8);
  185. write_FLAG(drv_data, flag);
  186. }
  187. /* stop controller and re-config current chip*/
  188. static void bfin_spi_restore_state(struct driver_data *drv_data)
  189. {
  190. struct chip_data *chip = drv_data->cur_chip;
  191. /* Clear status and disable clock */
  192. write_STAT(drv_data, BIT_STAT_CLR);
  193. bfin_spi_disable(drv_data);
  194. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  195. /* Load the registers */
  196. write_CTRL(drv_data, chip->ctl_reg);
  197. write_BAUD(drv_data, chip->baud);
  198. bfin_spi_enable(drv_data);
  199. bfin_spi_cs_active(drv_data, chip);
  200. }
  201. /* used to kick off transfer in rx mode and read unwanted RX data */
  202. static inline void bfin_spi_dummy_read(struct driver_data *drv_data)
  203. {
  204. (void) read_RDBR(drv_data);
  205. }
  206. static void bfin_spi_u8_writer(struct driver_data *drv_data)
  207. {
  208. /* clear RXS (we check for RXS inside the loop) */
  209. bfin_spi_dummy_read(drv_data);
  210. while (drv_data->tx < drv_data->tx_end) {
  211. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  212. /* wait until transfer finished.
  213. checking SPIF or TXS may not guarantee transfer completion */
  214. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  215. cpu_relax();
  216. /* discard RX data and clear RXS */
  217. bfin_spi_dummy_read(drv_data);
  218. }
  219. }
  220. static void bfin_spi_u8_reader(struct driver_data *drv_data)
  221. {
  222. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  223. /* discard old RX data and clear RXS */
  224. bfin_spi_dummy_read(drv_data);
  225. while (drv_data->rx < drv_data->rx_end) {
  226. write_TDBR(drv_data, tx_val);
  227. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  228. cpu_relax();
  229. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  230. }
  231. }
  232. static void bfin_spi_u8_duplex(struct driver_data *drv_data)
  233. {
  234. /* discard old RX data and clear RXS */
  235. bfin_spi_dummy_read(drv_data);
  236. while (drv_data->rx < drv_data->rx_end) {
  237. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  238. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  239. cpu_relax();
  240. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  241. }
  242. }
  243. static void bfin_spi_u16_writer(struct driver_data *drv_data)
  244. {
  245. /* clear RXS (we check for RXS inside the loop) */
  246. bfin_spi_dummy_read(drv_data);
  247. while (drv_data->tx < drv_data->tx_end) {
  248. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  249. drv_data->tx += 2;
  250. /* wait until transfer finished.
  251. checking SPIF or TXS may not guarantee transfer completion */
  252. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  253. cpu_relax();
  254. /* discard RX data and clear RXS */
  255. bfin_spi_dummy_read(drv_data);
  256. }
  257. }
  258. static void bfin_spi_u16_reader(struct driver_data *drv_data)
  259. {
  260. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  261. /* discard old RX data and clear RXS */
  262. bfin_spi_dummy_read(drv_data);
  263. while (drv_data->rx < drv_data->rx_end) {
  264. write_TDBR(drv_data, tx_val);
  265. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  266. cpu_relax();
  267. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  268. drv_data->rx += 2;
  269. }
  270. }
  271. static void bfin_spi_u16_duplex(struct driver_data *drv_data)
  272. {
  273. /* discard old RX data and clear RXS */
  274. bfin_spi_dummy_read(drv_data);
  275. while (drv_data->rx < drv_data->rx_end) {
  276. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  277. drv_data->tx += 2;
  278. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  279. cpu_relax();
  280. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  281. drv_data->rx += 2;
  282. }
  283. }
  284. /* test if ther is more transfer to be done */
  285. static void *bfin_spi_next_transfer(struct driver_data *drv_data)
  286. {
  287. struct spi_message *msg = drv_data->cur_msg;
  288. struct spi_transfer *trans = drv_data->cur_transfer;
  289. /* Move to next transfer */
  290. if (trans->transfer_list.next != &msg->transfers) {
  291. drv_data->cur_transfer =
  292. list_entry(trans->transfer_list.next,
  293. struct spi_transfer, transfer_list);
  294. return RUNNING_STATE;
  295. } else
  296. return DONE_STATE;
  297. }
  298. /*
  299. * caller already set message->status;
  300. * dma and pio irqs are blocked give finished message back
  301. */
  302. static void bfin_spi_giveback(struct driver_data *drv_data)
  303. {
  304. struct chip_data *chip = drv_data->cur_chip;
  305. struct spi_transfer *last_transfer;
  306. unsigned long flags;
  307. struct spi_message *msg;
  308. spin_lock_irqsave(&drv_data->lock, flags);
  309. msg = drv_data->cur_msg;
  310. drv_data->cur_msg = NULL;
  311. drv_data->cur_transfer = NULL;
  312. drv_data->cur_chip = NULL;
  313. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  314. spin_unlock_irqrestore(&drv_data->lock, flags);
  315. last_transfer = list_entry(msg->transfers.prev,
  316. struct spi_transfer, transfer_list);
  317. msg->state = NULL;
  318. if (!drv_data->cs_change)
  319. bfin_spi_cs_deactive(drv_data, chip);
  320. /* Not stop spi in autobuffer mode */
  321. if (drv_data->tx_dma != 0xFFFF)
  322. bfin_spi_disable(drv_data);
  323. if (msg->complete)
  324. msg->complete(msg->context);
  325. }
  326. /* spi data irq handler */
  327. static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
  328. {
  329. struct driver_data *drv_data = dev_id;
  330. struct chip_data *chip = drv_data->cur_chip;
  331. struct spi_message *msg = drv_data->cur_msg;
  332. int n_bytes = drv_data->n_bytes;
  333. /* wait until transfer finished. */
  334. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  335. cpu_relax();
  336. if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
  337. (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
  338. /* last read */
  339. if (drv_data->rx) {
  340. dev_dbg(&drv_data->pdev->dev, "last read\n");
  341. if (n_bytes == 2)
  342. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  343. else if (n_bytes == 1)
  344. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  345. drv_data->rx += n_bytes;
  346. }
  347. msg->actual_length += drv_data->len_in_bytes;
  348. if (drv_data->cs_change)
  349. bfin_spi_cs_deactive(drv_data, chip);
  350. /* Move to next transfer */
  351. msg->state = bfin_spi_next_transfer(drv_data);
  352. disable_irq(drv_data->spi_irq);
  353. /* Schedule transfer tasklet */
  354. tasklet_schedule(&drv_data->pump_transfers);
  355. return IRQ_HANDLED;
  356. }
  357. if (drv_data->rx && drv_data->tx) {
  358. /* duplex */
  359. dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
  360. if (drv_data->n_bytes == 2) {
  361. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  362. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  363. } else if (drv_data->n_bytes == 1) {
  364. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  365. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  366. }
  367. } else if (drv_data->rx) {
  368. /* read */
  369. dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
  370. if (drv_data->n_bytes == 2)
  371. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  372. else if (drv_data->n_bytes == 1)
  373. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  374. write_TDBR(drv_data, chip->idle_tx_val);
  375. } else if (drv_data->tx) {
  376. /* write */
  377. dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
  378. bfin_spi_dummy_read(drv_data);
  379. if (drv_data->n_bytes == 2)
  380. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  381. else if (drv_data->n_bytes == 1)
  382. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  383. }
  384. if (drv_data->tx)
  385. drv_data->tx += n_bytes;
  386. if (drv_data->rx)
  387. drv_data->rx += n_bytes;
  388. return IRQ_HANDLED;
  389. }
  390. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  391. {
  392. struct driver_data *drv_data = dev_id;
  393. struct chip_data *chip = drv_data->cur_chip;
  394. struct spi_message *msg = drv_data->cur_msg;
  395. unsigned long timeout;
  396. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  397. u16 spistat = read_STAT(drv_data);
  398. dev_dbg(&drv_data->pdev->dev,
  399. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  400. dmastat, spistat);
  401. clear_dma_irqstat(drv_data->dma_channel);
  402. /*
  403. * wait for the last transaction shifted out. HRM states:
  404. * at this point there may still be data in the SPI DMA FIFO waiting
  405. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  406. * register until it goes low for 2 successive reads
  407. */
  408. if (drv_data->tx != NULL) {
  409. while ((read_STAT(drv_data) & TXS) ||
  410. (read_STAT(drv_data) & TXS))
  411. cpu_relax();
  412. }
  413. dev_dbg(&drv_data->pdev->dev,
  414. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  415. dmastat, read_STAT(drv_data));
  416. timeout = jiffies + HZ;
  417. while (!(read_STAT(drv_data) & SPIF))
  418. if (!time_before(jiffies, timeout)) {
  419. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  420. break;
  421. } else
  422. cpu_relax();
  423. if ((dmastat & DMA_ERR) && (spistat & RBSY)) {
  424. msg->state = ERROR_STATE;
  425. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  426. } else {
  427. msg->actual_length += drv_data->len_in_bytes;
  428. if (drv_data->cs_change)
  429. bfin_spi_cs_deactive(drv_data, chip);
  430. /* Move to next transfer */
  431. msg->state = bfin_spi_next_transfer(drv_data);
  432. }
  433. /* Schedule transfer tasklet */
  434. tasklet_schedule(&drv_data->pump_transfers);
  435. /* free the irq handler before next transfer */
  436. dev_dbg(&drv_data->pdev->dev,
  437. "disable dma channel irq%d\n",
  438. drv_data->dma_channel);
  439. dma_disable_irq(drv_data->dma_channel);
  440. return IRQ_HANDLED;
  441. }
  442. static void bfin_spi_pump_transfers(unsigned long data)
  443. {
  444. struct driver_data *drv_data = (struct driver_data *)data;
  445. struct spi_message *message = NULL;
  446. struct spi_transfer *transfer = NULL;
  447. struct spi_transfer *previous = NULL;
  448. struct chip_data *chip = NULL;
  449. u8 width;
  450. u16 cr, dma_width, dma_config;
  451. u32 tranf_success = 1;
  452. u8 full_duplex = 0;
  453. /* Get current state information */
  454. message = drv_data->cur_msg;
  455. transfer = drv_data->cur_transfer;
  456. chip = drv_data->cur_chip;
  457. /*
  458. * if msg is error or done, report it back using complete() callback
  459. */
  460. /* Handle for abort */
  461. if (message->state == ERROR_STATE) {
  462. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  463. message->status = -EIO;
  464. bfin_spi_giveback(drv_data);
  465. return;
  466. }
  467. /* Handle end of message */
  468. if (message->state == DONE_STATE) {
  469. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  470. message->status = 0;
  471. bfin_spi_giveback(drv_data);
  472. return;
  473. }
  474. /* Delay if requested at end of transfer */
  475. if (message->state == RUNNING_STATE) {
  476. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  477. previous = list_entry(transfer->transfer_list.prev,
  478. struct spi_transfer, transfer_list);
  479. if (previous->delay_usecs)
  480. udelay(previous->delay_usecs);
  481. }
  482. /* Setup the transfer state based on the type of transfer */
  483. if (bfin_spi_flush(drv_data) == 0) {
  484. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  485. message->status = -EIO;
  486. bfin_spi_giveback(drv_data);
  487. return;
  488. }
  489. if (transfer->len == 0) {
  490. /* Move to next transfer of this msg */
  491. message->state = bfin_spi_next_transfer(drv_data);
  492. /* Schedule next transfer tasklet */
  493. tasklet_schedule(&drv_data->pump_transfers);
  494. }
  495. if (transfer->tx_buf != NULL) {
  496. drv_data->tx = (void *)transfer->tx_buf;
  497. drv_data->tx_end = drv_data->tx + transfer->len;
  498. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  499. transfer->tx_buf, drv_data->tx_end);
  500. } else {
  501. drv_data->tx = NULL;
  502. }
  503. if (transfer->rx_buf != NULL) {
  504. full_duplex = transfer->tx_buf != NULL;
  505. drv_data->rx = transfer->rx_buf;
  506. drv_data->rx_end = drv_data->rx + transfer->len;
  507. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  508. transfer->rx_buf, drv_data->rx_end);
  509. } else {
  510. drv_data->rx = NULL;
  511. }
  512. drv_data->rx_dma = transfer->rx_dma;
  513. drv_data->tx_dma = transfer->tx_dma;
  514. drv_data->len_in_bytes = transfer->len;
  515. drv_data->cs_change = transfer->cs_change;
  516. /* Bits per word setup */
  517. switch (transfer->bits_per_word) {
  518. case 8:
  519. drv_data->n_bytes = 1;
  520. width = CFG_SPI_WORDSIZE8;
  521. drv_data->read = bfin_spi_u8_reader;
  522. drv_data->write = bfin_spi_u8_writer;
  523. drv_data->duplex = bfin_spi_u8_duplex;
  524. break;
  525. case 16:
  526. drv_data->n_bytes = 2;
  527. width = CFG_SPI_WORDSIZE16;
  528. drv_data->read = bfin_spi_u16_reader;
  529. drv_data->write = bfin_spi_u16_writer;
  530. drv_data->duplex = bfin_spi_u16_duplex;
  531. break;
  532. default:
  533. /* No change, the same as default setting */
  534. transfer->bits_per_word = chip->bits_per_word;
  535. drv_data->n_bytes = chip->n_bytes;
  536. width = chip->width;
  537. drv_data->write = chip->write;
  538. drv_data->read = chip->read;
  539. drv_data->duplex = chip->duplex;
  540. break;
  541. }
  542. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  543. cr |= (width << 8);
  544. write_CTRL(drv_data, cr);
  545. if (width == CFG_SPI_WORDSIZE16) {
  546. drv_data->len = (transfer->len) >> 1;
  547. } else {
  548. drv_data->len = transfer->len;
  549. }
  550. dev_dbg(&drv_data->pdev->dev,
  551. "transfer: drv_data->write is %p, chip->write is %p\n",
  552. drv_data->write, chip->write);
  553. /* speed and width has been set on per message */
  554. message->state = RUNNING_STATE;
  555. dma_config = 0;
  556. /* Speed setup (surely valid because already checked) */
  557. if (transfer->speed_hz)
  558. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  559. else
  560. write_BAUD(drv_data, chip->baud);
  561. write_STAT(drv_data, BIT_STAT_CLR);
  562. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  563. if (drv_data->cs_change)
  564. bfin_spi_cs_active(drv_data, chip);
  565. dev_dbg(&drv_data->pdev->dev,
  566. "now pumping a transfer: width is %d, len is %d\n",
  567. width, transfer->len);
  568. /*
  569. * Try to map dma buffer and do a dma transfer. If successful use,
  570. * different way to r/w according to the enable_dma settings and if
  571. * we are not doing a full duplex transfer (since the hardware does
  572. * not support full duplex DMA transfers).
  573. */
  574. if (!full_duplex && drv_data->cur_chip->enable_dma
  575. && drv_data->len > 6) {
  576. unsigned long dma_start_addr, flags;
  577. disable_dma(drv_data->dma_channel);
  578. clear_dma_irqstat(drv_data->dma_channel);
  579. /* config dma channel */
  580. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  581. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  582. if (width == CFG_SPI_WORDSIZE16) {
  583. set_dma_x_modify(drv_data->dma_channel, 2);
  584. dma_width = WDSIZE_16;
  585. } else {
  586. set_dma_x_modify(drv_data->dma_channel, 1);
  587. dma_width = WDSIZE_8;
  588. }
  589. /* poll for SPI completion before start */
  590. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  591. cpu_relax();
  592. /* dirty hack for autobuffer DMA mode */
  593. if (drv_data->tx_dma == 0xFFFF) {
  594. dev_dbg(&drv_data->pdev->dev,
  595. "doing autobuffer DMA out.\n");
  596. /* no irq in autobuffer mode */
  597. dma_config =
  598. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  599. set_dma_config(drv_data->dma_channel, dma_config);
  600. set_dma_start_addr(drv_data->dma_channel,
  601. (unsigned long)drv_data->tx);
  602. enable_dma(drv_data->dma_channel);
  603. /* start SPI transfer */
  604. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  605. /* just return here, there can only be one transfer
  606. * in this mode
  607. */
  608. message->status = 0;
  609. bfin_spi_giveback(drv_data);
  610. return;
  611. }
  612. /* In dma mode, rx or tx must be NULL in one transfer */
  613. dma_config = (RESTART | dma_width | DI_EN);
  614. if (drv_data->rx != NULL) {
  615. /* set transfer mode, and enable SPI */
  616. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  617. drv_data->rx, drv_data->len_in_bytes);
  618. /* invalidate caches, if needed */
  619. if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
  620. invalidate_dcache_range((unsigned long) drv_data->rx,
  621. (unsigned long) (drv_data->rx +
  622. drv_data->len_in_bytes));
  623. dma_config |= WNR;
  624. dma_start_addr = (unsigned long)drv_data->rx;
  625. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  626. } else if (drv_data->tx != NULL) {
  627. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  628. /* flush caches, if needed */
  629. if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
  630. flush_dcache_range((unsigned long) drv_data->tx,
  631. (unsigned long) (drv_data->tx +
  632. drv_data->len_in_bytes));
  633. dma_start_addr = (unsigned long)drv_data->tx;
  634. cr |= BIT_CTL_TIMOD_DMA_TX;
  635. } else
  636. BUG();
  637. /* oh man, here there be monsters ... and i dont mean the
  638. * fluffy cute ones from pixar, i mean the kind that'll eat
  639. * your data, kick your dog, and love it all. do *not* try
  640. * and change these lines unless you (1) heavily test DMA
  641. * with SPI flashes on a loaded system (e.g. ping floods),
  642. * (2) know just how broken the DMA engine interaction with
  643. * the SPI peripheral is, and (3) have someone else to blame
  644. * when you screw it all up anyways.
  645. */
  646. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  647. set_dma_config(drv_data->dma_channel, dma_config);
  648. local_irq_save(flags);
  649. SSYNC();
  650. write_CTRL(drv_data, cr);
  651. enable_dma(drv_data->dma_channel);
  652. dma_enable_irq(drv_data->dma_channel);
  653. local_irq_restore(flags);
  654. return;
  655. }
  656. if (chip->pio_interrupt) {
  657. /* use write mode. spi irq should have been disabled */
  658. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  659. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  660. /* discard old RX data and clear RXS */
  661. bfin_spi_dummy_read(drv_data);
  662. /* start transfer */
  663. if (drv_data->tx == NULL)
  664. write_TDBR(drv_data, chip->idle_tx_val);
  665. else {
  666. if (transfer->bits_per_word == 8)
  667. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  668. else if (transfer->bits_per_word == 16)
  669. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  670. drv_data->tx += drv_data->n_bytes;
  671. }
  672. /* once TDBR is empty, interrupt is triggered */
  673. enable_irq(drv_data->spi_irq);
  674. return;
  675. }
  676. /* IO mode */
  677. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  678. /* we always use SPI_WRITE mode. SPI_READ mode
  679. seems to have problems with setting up the
  680. output value in TDBR prior to the transfer. */
  681. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  682. if (full_duplex) {
  683. /* full duplex mode */
  684. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  685. (drv_data->rx_end - drv_data->rx));
  686. dev_dbg(&drv_data->pdev->dev,
  687. "IO duplex: cr is 0x%x\n", cr);
  688. drv_data->duplex(drv_data);
  689. if (drv_data->tx != drv_data->tx_end)
  690. tranf_success = 0;
  691. } else if (drv_data->tx != NULL) {
  692. /* write only half duplex */
  693. dev_dbg(&drv_data->pdev->dev,
  694. "IO write: cr is 0x%x\n", cr);
  695. drv_data->write(drv_data);
  696. if (drv_data->tx != drv_data->tx_end)
  697. tranf_success = 0;
  698. } else if (drv_data->rx != NULL) {
  699. /* read only half duplex */
  700. dev_dbg(&drv_data->pdev->dev,
  701. "IO read: cr is 0x%x\n", cr);
  702. drv_data->read(drv_data);
  703. if (drv_data->rx != drv_data->rx_end)
  704. tranf_success = 0;
  705. }
  706. if (!tranf_success) {
  707. dev_dbg(&drv_data->pdev->dev,
  708. "IO write error!\n");
  709. message->state = ERROR_STATE;
  710. } else {
  711. /* Update total byte transfered */
  712. message->actual_length += drv_data->len_in_bytes;
  713. /* Move to next transfer of this msg */
  714. message->state = bfin_spi_next_transfer(drv_data);
  715. if (drv_data->cs_change)
  716. bfin_spi_cs_deactive(drv_data, chip);
  717. }
  718. /* Schedule next transfer tasklet */
  719. tasklet_schedule(&drv_data->pump_transfers);
  720. }
  721. /* pop a msg from queue and kick off real transfer */
  722. static void bfin_spi_pump_messages(struct work_struct *work)
  723. {
  724. struct driver_data *drv_data;
  725. unsigned long flags;
  726. drv_data = container_of(work, struct driver_data, pump_messages);
  727. /* Lock queue and check for queue work */
  728. spin_lock_irqsave(&drv_data->lock, flags);
  729. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  730. /* pumper kicked off but no work to do */
  731. drv_data->busy = 0;
  732. spin_unlock_irqrestore(&drv_data->lock, flags);
  733. return;
  734. }
  735. /* Make sure we are not already running a message */
  736. if (drv_data->cur_msg) {
  737. spin_unlock_irqrestore(&drv_data->lock, flags);
  738. return;
  739. }
  740. /* Extract head of queue */
  741. drv_data->cur_msg = list_entry(drv_data->queue.next,
  742. struct spi_message, queue);
  743. /* Setup the SSP using the per chip configuration */
  744. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  745. bfin_spi_restore_state(drv_data);
  746. list_del_init(&drv_data->cur_msg->queue);
  747. /* Initial message state */
  748. drv_data->cur_msg->state = START_STATE;
  749. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  750. struct spi_transfer, transfer_list);
  751. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  752. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  753. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  754. drv_data->cur_chip->ctl_reg);
  755. dev_dbg(&drv_data->pdev->dev,
  756. "the first transfer len is %d\n",
  757. drv_data->cur_transfer->len);
  758. /* Mark as busy and launch transfers */
  759. tasklet_schedule(&drv_data->pump_transfers);
  760. drv_data->busy = 1;
  761. spin_unlock_irqrestore(&drv_data->lock, flags);
  762. }
  763. /*
  764. * got a msg to transfer, queue it in drv_data->queue.
  765. * And kick off message pumper
  766. */
  767. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  768. {
  769. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  770. unsigned long flags;
  771. spin_lock_irqsave(&drv_data->lock, flags);
  772. if (drv_data->run == QUEUE_STOPPED) {
  773. spin_unlock_irqrestore(&drv_data->lock, flags);
  774. return -ESHUTDOWN;
  775. }
  776. msg->actual_length = 0;
  777. msg->status = -EINPROGRESS;
  778. msg->state = START_STATE;
  779. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  780. list_add_tail(&msg->queue, &drv_data->queue);
  781. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  782. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  783. spin_unlock_irqrestore(&drv_data->lock, flags);
  784. return 0;
  785. }
  786. #define MAX_SPI_SSEL 7
  787. static u16 ssel[][MAX_SPI_SSEL] = {
  788. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  789. P_SPI0_SSEL4, P_SPI0_SSEL5,
  790. P_SPI0_SSEL6, P_SPI0_SSEL7},
  791. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  792. P_SPI1_SSEL4, P_SPI1_SSEL5,
  793. P_SPI1_SSEL6, P_SPI1_SSEL7},
  794. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  795. P_SPI2_SSEL4, P_SPI2_SSEL5,
  796. P_SPI2_SSEL6, P_SPI2_SSEL7},
  797. };
  798. /* first setup for new devices */
  799. static int bfin_spi_setup(struct spi_device *spi)
  800. {
  801. struct bfin5xx_spi_chip *chip_info;
  802. struct chip_data *chip = NULL;
  803. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  804. int ret = -EINVAL;
  805. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  806. goto error;
  807. /* Only alloc (or use chip_info) on first setup */
  808. chip_info = NULL;
  809. chip = spi_get_ctldata(spi);
  810. if (chip == NULL) {
  811. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  812. if (!chip) {
  813. dev_err(&spi->dev, "cannot allocate chip data\n");
  814. ret = -ENOMEM;
  815. goto error;
  816. }
  817. chip->enable_dma = 0;
  818. chip_info = spi->controller_data;
  819. }
  820. /* chip_info isn't always needed */
  821. if (chip_info) {
  822. /* Make sure people stop trying to set fields via ctl_reg
  823. * when they should actually be using common SPI framework.
  824. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  825. * Not sure if a user actually needs/uses any of these,
  826. * but let's assume (for now) they do.
  827. */
  828. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  829. dev_err(&spi->dev, "do not set bits in ctl_reg "
  830. "that the SPI framework manages\n");
  831. goto error;
  832. }
  833. chip->enable_dma = chip_info->enable_dma != 0
  834. && drv_data->master_info->enable_dma;
  835. chip->ctl_reg = chip_info->ctl_reg;
  836. chip->bits_per_word = chip_info->bits_per_word;
  837. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  838. chip->cs_gpio = chip_info->cs_gpio;
  839. chip->idle_tx_val = chip_info->idle_tx_val;
  840. chip->pio_interrupt = chip_info->pio_interrupt;
  841. }
  842. /* translate common spi framework into our register */
  843. if (spi->mode & SPI_CPOL)
  844. chip->ctl_reg |= CPOL;
  845. if (spi->mode & SPI_CPHA)
  846. chip->ctl_reg |= CPHA;
  847. if (spi->mode & SPI_LSB_FIRST)
  848. chip->ctl_reg |= LSBF;
  849. /* we dont support running in slave mode (yet?) */
  850. chip->ctl_reg |= MSTR;
  851. /*
  852. * Notice: for blackfin, the speed_hz is the value of register
  853. * SPI_BAUD, not the real baudrate
  854. */
  855. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  856. chip->flag = (1 << (spi->chip_select)) << 8;
  857. chip->chip_select_num = spi->chip_select;
  858. switch (chip->bits_per_word) {
  859. case 8:
  860. chip->n_bytes = 1;
  861. chip->width = CFG_SPI_WORDSIZE8;
  862. chip->read = bfin_spi_u8_reader;
  863. chip->write = bfin_spi_u8_writer;
  864. chip->duplex = bfin_spi_u8_duplex;
  865. break;
  866. case 16:
  867. chip->n_bytes = 2;
  868. chip->width = CFG_SPI_WORDSIZE16;
  869. chip->read = bfin_spi_u16_reader;
  870. chip->write = bfin_spi_u16_writer;
  871. chip->duplex = bfin_spi_u16_duplex;
  872. break;
  873. default:
  874. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  875. chip->bits_per_word);
  876. goto error;
  877. }
  878. if (chip->enable_dma && chip->pio_interrupt) {
  879. dev_err(&spi->dev, "enable_dma is set, "
  880. "do not set pio_interrupt\n");
  881. goto error;
  882. }
  883. /*
  884. * if any one SPI chip is registered and wants DMA, request the
  885. * DMA channel for it
  886. */
  887. if (chip->enable_dma && !drv_data->dma_requested) {
  888. /* register dma irq handler */
  889. ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
  890. if (ret) {
  891. dev_err(&spi->dev,
  892. "Unable to request BlackFin SPI DMA channel\n");
  893. goto error;
  894. }
  895. drv_data->dma_requested = 1;
  896. ret = set_dma_callback(drv_data->dma_channel,
  897. bfin_spi_dma_irq_handler, drv_data);
  898. if (ret) {
  899. dev_err(&spi->dev, "Unable to set dma callback\n");
  900. goto error;
  901. }
  902. dma_disable_irq(drv_data->dma_channel);
  903. }
  904. if (chip->pio_interrupt && !drv_data->irq_requested) {
  905. ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
  906. IRQF_DISABLED, "BFIN_SPI", drv_data);
  907. if (ret) {
  908. dev_err(&spi->dev, "Unable to register spi IRQ\n");
  909. goto error;
  910. }
  911. drv_data->irq_requested = 1;
  912. /* we use write mode, spi irq has to be disabled here */
  913. disable_irq(drv_data->spi_irq);
  914. }
  915. if (chip->chip_select_num == 0) {
  916. ret = gpio_request(chip->cs_gpio, spi->modalias);
  917. if (ret) {
  918. dev_err(&spi->dev, "gpio_request() error\n");
  919. goto pin_error;
  920. }
  921. gpio_direction_output(chip->cs_gpio, 1);
  922. }
  923. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  924. spi->modalias, chip->width, chip->enable_dma);
  925. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  926. chip->ctl_reg, chip->flag);
  927. spi_set_ctldata(spi, chip);
  928. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  929. if (chip->chip_select_num > 0 &&
  930. chip->chip_select_num <= spi->master->num_chipselect) {
  931. ret = peripheral_request(ssel[spi->master->bus_num]
  932. [chip->chip_select_num-1], spi->modalias);
  933. if (ret) {
  934. dev_err(&spi->dev, "peripheral_request() error\n");
  935. goto pin_error;
  936. }
  937. }
  938. bfin_spi_cs_enable(drv_data, chip);
  939. bfin_spi_cs_deactive(drv_data, chip);
  940. return 0;
  941. pin_error:
  942. if (chip->chip_select_num == 0)
  943. gpio_free(chip->cs_gpio);
  944. else
  945. peripheral_free(ssel[spi->master->bus_num]
  946. [chip->chip_select_num - 1]);
  947. error:
  948. if (chip) {
  949. if (drv_data->dma_requested)
  950. free_dma(drv_data->dma_channel);
  951. drv_data->dma_requested = 0;
  952. kfree(chip);
  953. /* prevent free 'chip' twice */
  954. spi_set_ctldata(spi, NULL);
  955. }
  956. return ret;
  957. }
  958. /*
  959. * callback for spi framework.
  960. * clean driver specific data
  961. */
  962. static void bfin_spi_cleanup(struct spi_device *spi)
  963. {
  964. struct chip_data *chip = spi_get_ctldata(spi);
  965. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  966. if (!chip)
  967. return;
  968. if ((chip->chip_select_num > 0)
  969. && (chip->chip_select_num <= spi->master->num_chipselect)) {
  970. peripheral_free(ssel[spi->master->bus_num]
  971. [chip->chip_select_num-1]);
  972. bfin_spi_cs_disable(drv_data, chip);
  973. }
  974. if (chip->chip_select_num == 0)
  975. gpio_free(chip->cs_gpio);
  976. kfree(chip);
  977. /* prevent free 'chip' twice */
  978. spi_set_ctldata(spi, NULL);
  979. }
  980. static inline int bfin_spi_init_queue(struct driver_data *drv_data)
  981. {
  982. INIT_LIST_HEAD(&drv_data->queue);
  983. spin_lock_init(&drv_data->lock);
  984. drv_data->run = QUEUE_STOPPED;
  985. drv_data->busy = 0;
  986. /* init transfer tasklet */
  987. tasklet_init(&drv_data->pump_transfers,
  988. bfin_spi_pump_transfers, (unsigned long)drv_data);
  989. /* init messages workqueue */
  990. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  991. drv_data->workqueue = create_singlethread_workqueue(
  992. dev_name(drv_data->master->dev.parent));
  993. if (drv_data->workqueue == NULL)
  994. return -EBUSY;
  995. return 0;
  996. }
  997. static inline int bfin_spi_start_queue(struct driver_data *drv_data)
  998. {
  999. unsigned long flags;
  1000. spin_lock_irqsave(&drv_data->lock, flags);
  1001. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1002. spin_unlock_irqrestore(&drv_data->lock, flags);
  1003. return -EBUSY;
  1004. }
  1005. drv_data->run = QUEUE_RUNNING;
  1006. drv_data->cur_msg = NULL;
  1007. drv_data->cur_transfer = NULL;
  1008. drv_data->cur_chip = NULL;
  1009. spin_unlock_irqrestore(&drv_data->lock, flags);
  1010. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1011. return 0;
  1012. }
  1013. static inline int bfin_spi_stop_queue(struct driver_data *drv_data)
  1014. {
  1015. unsigned long flags;
  1016. unsigned limit = 500;
  1017. int status = 0;
  1018. spin_lock_irqsave(&drv_data->lock, flags);
  1019. /*
  1020. * This is a bit lame, but is optimized for the common execution path.
  1021. * A wait_queue on the drv_data->busy could be used, but then the common
  1022. * execution path (pump_messages) would be required to call wake_up or
  1023. * friends on every SPI message. Do this instead
  1024. */
  1025. drv_data->run = QUEUE_STOPPED;
  1026. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1027. spin_unlock_irqrestore(&drv_data->lock, flags);
  1028. msleep(10);
  1029. spin_lock_irqsave(&drv_data->lock, flags);
  1030. }
  1031. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1032. status = -EBUSY;
  1033. spin_unlock_irqrestore(&drv_data->lock, flags);
  1034. return status;
  1035. }
  1036. static inline int bfin_spi_destroy_queue(struct driver_data *drv_data)
  1037. {
  1038. int status;
  1039. status = bfin_spi_stop_queue(drv_data);
  1040. if (status != 0)
  1041. return status;
  1042. destroy_workqueue(drv_data->workqueue);
  1043. return 0;
  1044. }
  1045. static int __init bfin_spi_probe(struct platform_device *pdev)
  1046. {
  1047. struct device *dev = &pdev->dev;
  1048. struct bfin5xx_spi_master *platform_info;
  1049. struct spi_master *master;
  1050. struct driver_data *drv_data = 0;
  1051. struct resource *res;
  1052. int status = 0;
  1053. platform_info = dev->platform_data;
  1054. /* Allocate master with space for drv_data */
  1055. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1056. if (!master) {
  1057. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1058. return -ENOMEM;
  1059. }
  1060. drv_data = spi_master_get_devdata(master);
  1061. drv_data->master = master;
  1062. drv_data->master_info = platform_info;
  1063. drv_data->pdev = pdev;
  1064. drv_data->pin_req = platform_info->pin_req;
  1065. /* the spi->mode bits supported by this driver: */
  1066. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1067. master->bus_num = pdev->id;
  1068. master->num_chipselect = platform_info->num_chipselect;
  1069. master->cleanup = bfin_spi_cleanup;
  1070. master->setup = bfin_spi_setup;
  1071. master->transfer = bfin_spi_transfer;
  1072. /* Find and map our resources */
  1073. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1074. if (res == NULL) {
  1075. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1076. status = -ENOENT;
  1077. goto out_error_get_res;
  1078. }
  1079. drv_data->regs_base = ioremap(res->start, resource_size(res));
  1080. if (drv_data->regs_base == NULL) {
  1081. dev_err(dev, "Cannot map IO\n");
  1082. status = -ENXIO;
  1083. goto out_error_ioremap;
  1084. }
  1085. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1086. if (res == NULL) {
  1087. dev_err(dev, "No DMA channel specified\n");
  1088. status = -ENOENT;
  1089. goto out_error_free_io;
  1090. }
  1091. drv_data->dma_channel = res->start;
  1092. drv_data->spi_irq = platform_get_irq(pdev, 0);
  1093. if (drv_data->spi_irq < 0) {
  1094. dev_err(dev, "No spi pio irq specified\n");
  1095. status = -ENOENT;
  1096. goto out_error_free_io;
  1097. }
  1098. /* Initial and start queue */
  1099. status = bfin_spi_init_queue(drv_data);
  1100. if (status != 0) {
  1101. dev_err(dev, "problem initializing queue\n");
  1102. goto out_error_queue_alloc;
  1103. }
  1104. status = bfin_spi_start_queue(drv_data);
  1105. if (status != 0) {
  1106. dev_err(dev, "problem starting queue\n");
  1107. goto out_error_queue_alloc;
  1108. }
  1109. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1110. if (status != 0) {
  1111. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1112. goto out_error_queue_alloc;
  1113. }
  1114. /* Reset SPI registers. If these registers were used by the boot loader,
  1115. * the sky may fall on your head if you enable the dma controller.
  1116. */
  1117. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1118. write_FLAG(drv_data, 0xFF00);
  1119. /* Register with the SPI framework */
  1120. platform_set_drvdata(pdev, drv_data);
  1121. status = spi_register_master(master);
  1122. if (status != 0) {
  1123. dev_err(dev, "problem registering spi master\n");
  1124. goto out_error_queue_alloc;
  1125. }
  1126. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1127. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1128. drv_data->dma_channel);
  1129. return status;
  1130. out_error_queue_alloc:
  1131. bfin_spi_destroy_queue(drv_data);
  1132. out_error_free_io:
  1133. iounmap((void *) drv_data->regs_base);
  1134. out_error_ioremap:
  1135. out_error_get_res:
  1136. spi_master_put(master);
  1137. return status;
  1138. }
  1139. /* stop hardware and remove the driver */
  1140. static int __devexit bfin_spi_remove(struct platform_device *pdev)
  1141. {
  1142. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1143. int status = 0;
  1144. if (!drv_data)
  1145. return 0;
  1146. /* Remove the queue */
  1147. status = bfin_spi_destroy_queue(drv_data);
  1148. if (status != 0)
  1149. return status;
  1150. /* Disable the SSP at the peripheral and SOC level */
  1151. bfin_spi_disable(drv_data);
  1152. /* Release DMA */
  1153. if (drv_data->master_info->enable_dma) {
  1154. if (dma_channel_active(drv_data->dma_channel))
  1155. free_dma(drv_data->dma_channel);
  1156. }
  1157. if (drv_data->irq_requested) {
  1158. free_irq(drv_data->spi_irq, drv_data);
  1159. drv_data->irq_requested = 0;
  1160. }
  1161. /* Disconnect from the SPI framework */
  1162. spi_unregister_master(drv_data->master);
  1163. peripheral_free_list(drv_data->pin_req);
  1164. /* Prevent double remove */
  1165. platform_set_drvdata(pdev, NULL);
  1166. return 0;
  1167. }
  1168. #ifdef CONFIG_PM
  1169. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1170. {
  1171. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1172. int status = 0;
  1173. status = bfin_spi_stop_queue(drv_data);
  1174. if (status != 0)
  1175. return status;
  1176. /* stop hardware */
  1177. bfin_spi_disable(drv_data);
  1178. return 0;
  1179. }
  1180. static int bfin_spi_resume(struct platform_device *pdev)
  1181. {
  1182. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1183. int status = 0;
  1184. /* Enable the SPI interface */
  1185. bfin_spi_enable(drv_data);
  1186. /* Start the queue running */
  1187. status = bfin_spi_start_queue(drv_data);
  1188. if (status != 0) {
  1189. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1190. return status;
  1191. }
  1192. return 0;
  1193. }
  1194. #else
  1195. #define bfin_spi_suspend NULL
  1196. #define bfin_spi_resume NULL
  1197. #endif /* CONFIG_PM */
  1198. MODULE_ALIAS("platform:bfin-spi");
  1199. static struct platform_driver bfin_spi_driver = {
  1200. .driver = {
  1201. .name = DRV_NAME,
  1202. .owner = THIS_MODULE,
  1203. },
  1204. .suspend = bfin_spi_suspend,
  1205. .resume = bfin_spi_resume,
  1206. .remove = __devexit_p(bfin_spi_remove),
  1207. };
  1208. static int __init bfin_spi_init(void)
  1209. {
  1210. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1211. }
  1212. module_init(bfin_spi_init);
  1213. static void __exit bfin_spi_exit(void)
  1214. {
  1215. platform_driver_unregister(&bfin_spi_driver);
  1216. }
  1217. module_exit(bfin_spi_exit);