process.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. /*
  2. * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
  3. * Copyright 2003 PathScale, Inc.
  4. * Licensed under the GPL
  5. */
  6. #include "linux/kernel.h"
  7. #include "linux/sched.h"
  8. #include "linux/interrupt.h"
  9. #include "linux/string.h"
  10. #include "linux/mm.h"
  11. #include "linux/slab.h"
  12. #include "linux/utsname.h"
  13. #include "linux/fs.h"
  14. #include "linux/utime.h"
  15. #include "linux/smp_lock.h"
  16. #include "linux/module.h"
  17. #include "linux/init.h"
  18. #include "linux/capability.h"
  19. #include "linux/vmalloc.h"
  20. #include "linux/spinlock.h"
  21. #include "linux/proc_fs.h"
  22. #include "linux/ptrace.h"
  23. #include "linux/random.h"
  24. #include "linux/personality.h"
  25. #include "asm/unistd.h"
  26. #include "asm/mman.h"
  27. #include "asm/segment.h"
  28. #include "asm/stat.h"
  29. #include "asm/pgtable.h"
  30. #include "asm/processor.h"
  31. #include "asm/tlbflush.h"
  32. #include "asm/uaccess.h"
  33. #include "asm/user.h"
  34. #include "kern_util.h"
  35. #include "as-layout.h"
  36. #include "kern.h"
  37. #include "signal_kern.h"
  38. #include "init.h"
  39. #include "irq_user.h"
  40. #include "mem_user.h"
  41. #include "tlb.h"
  42. #include "frame_kern.h"
  43. #include "sigcontext.h"
  44. #include "os.h"
  45. #include "mode.h"
  46. #include "mode_kern.h"
  47. #include "choose-mode.h"
  48. /* This is a per-cpu array. A processor only modifies its entry and it only
  49. * cares about its entry, so it's OK if another processor is modifying its
  50. * entry.
  51. */
  52. struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
  53. static inline int external_pid(struct task_struct *task)
  54. {
  55. return CHOOSE_MODE_PROC(external_pid_tt, external_pid_skas, task);
  56. }
  57. int pid_to_processor_id(int pid)
  58. {
  59. int i;
  60. for(i = 0; i < ncpus; i++){
  61. if(cpu_tasks[i].pid == pid)
  62. return i;
  63. }
  64. return -1;
  65. }
  66. void free_stack(unsigned long stack, int order)
  67. {
  68. free_pages(stack, order);
  69. }
  70. unsigned long alloc_stack(int order, int atomic)
  71. {
  72. unsigned long page;
  73. gfp_t flags = GFP_KERNEL;
  74. if (atomic)
  75. flags = GFP_ATOMIC;
  76. page = __get_free_pages(flags, order);
  77. if (page == 0)
  78. return 0;
  79. return page;
  80. }
  81. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  82. {
  83. int pid;
  84. current->thread.request.u.thread.proc = fn;
  85. current->thread.request.u.thread.arg = arg;
  86. pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
  87. &current->thread.regs, 0, NULL, NULL);
  88. return pid;
  89. }
  90. static inline void set_current(struct task_struct *task)
  91. {
  92. cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
  93. { external_pid(task), task });
  94. }
  95. void *_switch_to(void *prev, void *next, void *last)
  96. {
  97. struct task_struct *from = prev;
  98. struct task_struct *to= next;
  99. to->thread.prev_sched = from;
  100. set_current(to);
  101. do {
  102. current->thread.saved_task = NULL ;
  103. CHOOSE_MODE_PROC(switch_to_tt, switch_to_skas, prev, next);
  104. if(current->thread.saved_task)
  105. show_regs(&(current->thread.regs));
  106. next= current->thread.saved_task;
  107. prev= current;
  108. } while(current->thread.saved_task);
  109. return current->thread.prev_sched;
  110. }
  111. void interrupt_end(void)
  112. {
  113. if(need_resched())
  114. schedule();
  115. if(test_tsk_thread_flag(current, TIF_SIGPENDING))
  116. do_signal();
  117. }
  118. void release_thread(struct task_struct *task)
  119. {
  120. CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task));
  121. }
  122. void exit_thread(void)
  123. {
  124. }
  125. void *get_current(void)
  126. {
  127. return current;
  128. }
  129. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  130. unsigned long stack_top, struct task_struct * p,
  131. struct pt_regs *regs)
  132. {
  133. int ret;
  134. p->thread = (struct thread_struct) INIT_THREAD;
  135. ret = CHOOSE_MODE_PROC(copy_thread_tt, copy_thread_skas, nr,
  136. clone_flags, sp, stack_top, p, regs);
  137. if (ret || !current->thread.forking)
  138. goto out;
  139. clear_flushed_tls(p);
  140. /*
  141. * Set a new TLS for the child thread?
  142. */
  143. if (clone_flags & CLONE_SETTLS)
  144. ret = arch_copy_tls(p);
  145. out:
  146. return ret;
  147. }
  148. void initial_thread_cb(void (*proc)(void *), void *arg)
  149. {
  150. int save_kmalloc_ok = kmalloc_ok;
  151. kmalloc_ok = 0;
  152. CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc,
  153. arg);
  154. kmalloc_ok = save_kmalloc_ok;
  155. }
  156. #ifdef CONFIG_MODE_TT
  157. unsigned long stack_sp(unsigned long page)
  158. {
  159. return page + PAGE_SIZE - sizeof(void *);
  160. }
  161. #endif
  162. void default_idle(void)
  163. {
  164. CHOOSE_MODE(uml_idle_timer(), (void) 0);
  165. while(1){
  166. /* endless idle loop with no priority at all */
  167. /*
  168. * although we are an idle CPU, we do not want to
  169. * get into the scheduler unnecessarily.
  170. */
  171. if(need_resched())
  172. schedule();
  173. idle_sleep(10);
  174. }
  175. }
  176. void cpu_idle(void)
  177. {
  178. CHOOSE_MODE(init_idle_tt(), init_idle_skas());
  179. }
  180. void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
  181. pte_t *pte_out)
  182. {
  183. pgd_t *pgd;
  184. pud_t *pud;
  185. pmd_t *pmd;
  186. pte_t *pte;
  187. pte_t ptent;
  188. if(task->mm == NULL)
  189. return ERR_PTR(-EINVAL);
  190. pgd = pgd_offset(task->mm, addr);
  191. if(!pgd_present(*pgd))
  192. return ERR_PTR(-EINVAL);
  193. pud = pud_offset(pgd, addr);
  194. if(!pud_present(*pud))
  195. return ERR_PTR(-EINVAL);
  196. pmd = pmd_offset(pud, addr);
  197. if(!pmd_present(*pmd))
  198. return ERR_PTR(-EINVAL);
  199. pte = pte_offset_kernel(pmd, addr);
  200. ptent = *pte;
  201. if(!pte_present(ptent))
  202. return ERR_PTR(-EINVAL);
  203. if(pte_out != NULL)
  204. *pte_out = ptent;
  205. return (void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK);
  206. }
  207. char *current_cmd(void)
  208. {
  209. #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
  210. return "(Unknown)";
  211. #else
  212. void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
  213. return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
  214. #endif
  215. }
  216. void dump_thread(struct pt_regs *regs, struct user *u)
  217. {
  218. }
  219. int __cant_sleep(void) {
  220. return in_atomic() || irqs_disabled() || in_interrupt();
  221. /* Is in_interrupt() really needed? */
  222. }
  223. int user_context(unsigned long sp)
  224. {
  225. unsigned long stack;
  226. stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
  227. return stack != (unsigned long) current_thread;
  228. }
  229. extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
  230. void do_uml_exitcalls(void)
  231. {
  232. exitcall_t *call;
  233. call = &__uml_exitcall_end;
  234. while (--call >= &__uml_exitcall_begin)
  235. (*call)();
  236. }
  237. char *uml_strdup(char *string)
  238. {
  239. return kstrdup(string, GFP_KERNEL);
  240. }
  241. int copy_to_user_proc(void __user *to, void *from, int size)
  242. {
  243. return copy_to_user(to, from, size);
  244. }
  245. int copy_from_user_proc(void *to, void __user *from, int size)
  246. {
  247. return copy_from_user(to, from, size);
  248. }
  249. int clear_user_proc(void __user *buf, int size)
  250. {
  251. return clear_user(buf, size);
  252. }
  253. int strlen_user_proc(char __user *str)
  254. {
  255. return strlen_user(str);
  256. }
  257. int smp_sigio_handler(void)
  258. {
  259. #ifdef CONFIG_SMP
  260. int cpu = current_thread->cpu;
  261. IPI_handler(cpu);
  262. if(cpu != 0)
  263. return 1;
  264. #endif
  265. return 0;
  266. }
  267. int cpu(void)
  268. {
  269. return current_thread->cpu;
  270. }
  271. static atomic_t using_sysemu = ATOMIC_INIT(0);
  272. int sysemu_supported;
  273. void set_using_sysemu(int value)
  274. {
  275. if (value > sysemu_supported)
  276. return;
  277. atomic_set(&using_sysemu, value);
  278. }
  279. int get_using_sysemu(void)
  280. {
  281. return atomic_read(&using_sysemu);
  282. }
  283. static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
  284. {
  285. if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/
  286. *eof = 1;
  287. return strlen(buf);
  288. }
  289. static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
  290. {
  291. char tmp[2];
  292. if (copy_from_user(tmp, buf, 1))
  293. return -EFAULT;
  294. if (tmp[0] >= '0' && tmp[0] <= '2')
  295. set_using_sysemu(tmp[0] - '0');
  296. return count; /*We use the first char, but pretend to write everything*/
  297. }
  298. int __init make_proc_sysemu(void)
  299. {
  300. struct proc_dir_entry *ent;
  301. if (!sysemu_supported)
  302. return 0;
  303. ent = create_proc_entry("sysemu", 0600, &proc_root);
  304. if (ent == NULL)
  305. {
  306. printk(KERN_WARNING "Failed to register /proc/sysemu\n");
  307. return 0;
  308. }
  309. ent->read_proc = proc_read_sysemu;
  310. ent->write_proc = proc_write_sysemu;
  311. return 0;
  312. }
  313. late_initcall(make_proc_sysemu);
  314. int singlestepping(void * t)
  315. {
  316. struct task_struct *task = t ? t : current;
  317. if ( ! (task->ptrace & PT_DTRACE) )
  318. return(0);
  319. if (task->thread.singlestep_syscall)
  320. return(1);
  321. return 2;
  322. }
  323. /*
  324. * Only x86 and x86_64 have an arch_align_stack().
  325. * All other arches have "#define arch_align_stack(x) (x)"
  326. * in their asm/system.h
  327. * As this is included in UML from asm-um/system-generic.h,
  328. * we can use it to behave as the subarch does.
  329. */
  330. #ifndef arch_align_stack
  331. unsigned long arch_align_stack(unsigned long sp)
  332. {
  333. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  334. sp -= get_random_int() % 8192;
  335. return sp & ~0xf;
  336. }
  337. #endif