session.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974
  1. #define _FILE_OFFSET_BITS 64
  2. #include <linux/kernel.h>
  3. #include <byteswap.h>
  4. #include <unistd.h>
  5. #include <sys/types.h>
  6. #include <sys/mman.h>
  7. #include "session.h"
  8. #include "sort.h"
  9. #include "util.h"
  10. static int perf_session__open(struct perf_session *self, bool force)
  11. {
  12. struct stat input_stat;
  13. if (!strcmp(self->filename, "-")) {
  14. self->fd_pipe = true;
  15. self->fd = STDIN_FILENO;
  16. if (perf_header__read(self, self->fd) < 0)
  17. pr_err("incompatible file format");
  18. return 0;
  19. }
  20. self->fd = open(self->filename, O_RDONLY);
  21. if (self->fd < 0) {
  22. int err = errno;
  23. pr_err("failed to open %s: %s", self->filename, strerror(err));
  24. if (err == ENOENT && !strcmp(self->filename, "perf.data"))
  25. pr_err(" (try 'perf record' first)");
  26. pr_err("\n");
  27. return -errno;
  28. }
  29. if (fstat(self->fd, &input_stat) < 0)
  30. goto out_close;
  31. if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
  32. pr_err("file %s not owned by current user or root\n",
  33. self->filename);
  34. goto out_close;
  35. }
  36. if (!input_stat.st_size) {
  37. pr_info("zero-sized file (%s), nothing to do!\n",
  38. self->filename);
  39. goto out_close;
  40. }
  41. if (perf_header__read(self, self->fd) < 0) {
  42. pr_err("incompatible file format");
  43. goto out_close;
  44. }
  45. self->size = input_stat.st_size;
  46. return 0;
  47. out_close:
  48. close(self->fd);
  49. self->fd = -1;
  50. return -1;
  51. }
  52. void perf_session__update_sample_type(struct perf_session *self)
  53. {
  54. self->sample_type = perf_header__sample_type(&self->header);
  55. }
  56. int perf_session__create_kernel_maps(struct perf_session *self)
  57. {
  58. int ret = machine__create_kernel_maps(&self->host_machine);
  59. if (ret >= 0)
  60. ret = machines__create_guest_kernel_maps(&self->machines);
  61. return ret;
  62. }
  63. static void perf_session__destroy_kernel_maps(struct perf_session *self)
  64. {
  65. machine__destroy_kernel_maps(&self->host_machine);
  66. machines__destroy_guest_kernel_maps(&self->machines);
  67. }
  68. struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
  69. {
  70. size_t len = filename ? strlen(filename) + 1 : 0;
  71. struct perf_session *self = zalloc(sizeof(*self) + len);
  72. if (self == NULL)
  73. goto out;
  74. if (perf_header__init(&self->header) < 0)
  75. goto out_free;
  76. memcpy(self->filename, filename, len);
  77. self->threads = RB_ROOT;
  78. INIT_LIST_HEAD(&self->dead_threads);
  79. self->hists_tree = RB_ROOT;
  80. self->last_match = NULL;
  81. /*
  82. * On 64bit we can mmap the data file in one go. No need for tiny mmap
  83. * slices. On 32bit we use 32MB.
  84. */
  85. #if BITS_PER_LONG == 64
  86. self->mmap_window = ULLONG_MAX;
  87. #else
  88. self->mmap_window = 32 * 1024 * 1024ULL;
  89. #endif
  90. self->machines = RB_ROOT;
  91. self->repipe = repipe;
  92. INIT_LIST_HEAD(&self->ordered_samples.samples);
  93. INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
  94. INIT_LIST_HEAD(&self->ordered_samples.to_free);
  95. machine__init(&self->host_machine, "", HOST_KERNEL_ID);
  96. if (mode == O_RDONLY) {
  97. if (perf_session__open(self, force) < 0)
  98. goto out_delete;
  99. } else if (mode == O_WRONLY) {
  100. /*
  101. * In O_RDONLY mode this will be performed when reading the
  102. * kernel MMAP event, in event__process_mmap().
  103. */
  104. if (perf_session__create_kernel_maps(self) < 0)
  105. goto out_delete;
  106. }
  107. perf_session__update_sample_type(self);
  108. out:
  109. return self;
  110. out_free:
  111. free(self);
  112. return NULL;
  113. out_delete:
  114. perf_session__delete(self);
  115. return NULL;
  116. }
  117. static void perf_session__delete_dead_threads(struct perf_session *self)
  118. {
  119. struct thread *n, *t;
  120. list_for_each_entry_safe(t, n, &self->dead_threads, node) {
  121. list_del(&t->node);
  122. thread__delete(t);
  123. }
  124. }
  125. static void perf_session__delete_threads(struct perf_session *self)
  126. {
  127. struct rb_node *nd = rb_first(&self->threads);
  128. while (nd) {
  129. struct thread *t = rb_entry(nd, struct thread, rb_node);
  130. rb_erase(&t->rb_node, &self->threads);
  131. nd = rb_next(nd);
  132. thread__delete(t);
  133. }
  134. }
  135. void perf_session__delete(struct perf_session *self)
  136. {
  137. perf_header__exit(&self->header);
  138. perf_session__destroy_kernel_maps(self);
  139. perf_session__delete_dead_threads(self);
  140. perf_session__delete_threads(self);
  141. machine__exit(&self->host_machine);
  142. close(self->fd);
  143. free(self);
  144. }
  145. void perf_session__remove_thread(struct perf_session *self, struct thread *th)
  146. {
  147. self->last_match = NULL;
  148. rb_erase(&th->rb_node, &self->threads);
  149. /*
  150. * We may have references to this thread, for instance in some hist_entry
  151. * instances, so just move them to a separate list.
  152. */
  153. list_add_tail(&th->node, &self->dead_threads);
  154. }
  155. static bool symbol__match_parent_regex(struct symbol *sym)
  156. {
  157. if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
  158. return 1;
  159. return 0;
  160. }
  161. struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
  162. struct thread *thread,
  163. struct ip_callchain *chain,
  164. struct symbol **parent)
  165. {
  166. u8 cpumode = PERF_RECORD_MISC_USER;
  167. unsigned int i;
  168. struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
  169. if (!syms)
  170. return NULL;
  171. for (i = 0; i < chain->nr; i++) {
  172. u64 ip = chain->ips[i];
  173. struct addr_location al;
  174. if (ip >= PERF_CONTEXT_MAX) {
  175. switch (ip) {
  176. case PERF_CONTEXT_HV:
  177. cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
  178. case PERF_CONTEXT_KERNEL:
  179. cpumode = PERF_RECORD_MISC_KERNEL; break;
  180. case PERF_CONTEXT_USER:
  181. cpumode = PERF_RECORD_MISC_USER; break;
  182. default:
  183. break;
  184. }
  185. continue;
  186. }
  187. al.filtered = false;
  188. thread__find_addr_location(thread, self, cpumode,
  189. MAP__FUNCTION, thread->pid, ip, &al, NULL);
  190. if (al.sym != NULL) {
  191. if (sort__has_parent && !*parent &&
  192. symbol__match_parent_regex(al.sym))
  193. *parent = al.sym;
  194. if (!symbol_conf.use_callchain)
  195. break;
  196. syms[i].map = al.map;
  197. syms[i].sym = al.sym;
  198. }
  199. }
  200. return syms;
  201. }
  202. static int process_event_stub(event_t *event __used,
  203. struct perf_session *session __used)
  204. {
  205. dump_printf(": unhandled!\n");
  206. return 0;
  207. }
  208. static int process_finished_round_stub(event_t *event __used,
  209. struct perf_session *session __used,
  210. struct perf_event_ops *ops __used)
  211. {
  212. dump_printf(": unhandled!\n");
  213. return 0;
  214. }
  215. static int process_finished_round(event_t *event,
  216. struct perf_session *session,
  217. struct perf_event_ops *ops);
  218. static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
  219. {
  220. if (handler->sample == NULL)
  221. handler->sample = process_event_stub;
  222. if (handler->mmap == NULL)
  223. handler->mmap = process_event_stub;
  224. if (handler->comm == NULL)
  225. handler->comm = process_event_stub;
  226. if (handler->fork == NULL)
  227. handler->fork = process_event_stub;
  228. if (handler->exit == NULL)
  229. handler->exit = process_event_stub;
  230. if (handler->lost == NULL)
  231. handler->lost = event__process_lost;
  232. if (handler->read == NULL)
  233. handler->read = process_event_stub;
  234. if (handler->throttle == NULL)
  235. handler->throttle = process_event_stub;
  236. if (handler->unthrottle == NULL)
  237. handler->unthrottle = process_event_stub;
  238. if (handler->attr == NULL)
  239. handler->attr = process_event_stub;
  240. if (handler->event_type == NULL)
  241. handler->event_type = process_event_stub;
  242. if (handler->tracing_data == NULL)
  243. handler->tracing_data = process_event_stub;
  244. if (handler->build_id == NULL)
  245. handler->build_id = process_event_stub;
  246. if (handler->finished_round == NULL) {
  247. if (handler->ordered_samples)
  248. handler->finished_round = process_finished_round;
  249. else
  250. handler->finished_round = process_finished_round_stub;
  251. }
  252. }
  253. void mem_bswap_64(void *src, int byte_size)
  254. {
  255. u64 *m = src;
  256. while (byte_size > 0) {
  257. *m = bswap_64(*m);
  258. byte_size -= sizeof(u64);
  259. ++m;
  260. }
  261. }
  262. static void event__all64_swap(event_t *self)
  263. {
  264. struct perf_event_header *hdr = &self->header;
  265. mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
  266. }
  267. static void event__comm_swap(event_t *self)
  268. {
  269. self->comm.pid = bswap_32(self->comm.pid);
  270. self->comm.tid = bswap_32(self->comm.tid);
  271. }
  272. static void event__mmap_swap(event_t *self)
  273. {
  274. self->mmap.pid = bswap_32(self->mmap.pid);
  275. self->mmap.tid = bswap_32(self->mmap.tid);
  276. self->mmap.start = bswap_64(self->mmap.start);
  277. self->mmap.len = bswap_64(self->mmap.len);
  278. self->mmap.pgoff = bswap_64(self->mmap.pgoff);
  279. }
  280. static void event__task_swap(event_t *self)
  281. {
  282. self->fork.pid = bswap_32(self->fork.pid);
  283. self->fork.tid = bswap_32(self->fork.tid);
  284. self->fork.ppid = bswap_32(self->fork.ppid);
  285. self->fork.ptid = bswap_32(self->fork.ptid);
  286. self->fork.time = bswap_64(self->fork.time);
  287. }
  288. static void event__read_swap(event_t *self)
  289. {
  290. self->read.pid = bswap_32(self->read.pid);
  291. self->read.tid = bswap_32(self->read.tid);
  292. self->read.value = bswap_64(self->read.value);
  293. self->read.time_enabled = bswap_64(self->read.time_enabled);
  294. self->read.time_running = bswap_64(self->read.time_running);
  295. self->read.id = bswap_64(self->read.id);
  296. }
  297. static void event__attr_swap(event_t *self)
  298. {
  299. size_t size;
  300. self->attr.attr.type = bswap_32(self->attr.attr.type);
  301. self->attr.attr.size = bswap_32(self->attr.attr.size);
  302. self->attr.attr.config = bswap_64(self->attr.attr.config);
  303. self->attr.attr.sample_period = bswap_64(self->attr.attr.sample_period);
  304. self->attr.attr.sample_type = bswap_64(self->attr.attr.sample_type);
  305. self->attr.attr.read_format = bswap_64(self->attr.attr.read_format);
  306. self->attr.attr.wakeup_events = bswap_32(self->attr.attr.wakeup_events);
  307. self->attr.attr.bp_type = bswap_32(self->attr.attr.bp_type);
  308. self->attr.attr.bp_addr = bswap_64(self->attr.attr.bp_addr);
  309. self->attr.attr.bp_len = bswap_64(self->attr.attr.bp_len);
  310. size = self->header.size;
  311. size -= (void *)&self->attr.id - (void *)self;
  312. mem_bswap_64(self->attr.id, size);
  313. }
  314. static void event__event_type_swap(event_t *self)
  315. {
  316. self->event_type.event_type.event_id =
  317. bswap_64(self->event_type.event_type.event_id);
  318. }
  319. static void event__tracing_data_swap(event_t *self)
  320. {
  321. self->tracing_data.size = bswap_32(self->tracing_data.size);
  322. }
  323. typedef void (*event__swap_op)(event_t *self);
  324. static event__swap_op event__swap_ops[] = {
  325. [PERF_RECORD_MMAP] = event__mmap_swap,
  326. [PERF_RECORD_COMM] = event__comm_swap,
  327. [PERF_RECORD_FORK] = event__task_swap,
  328. [PERF_RECORD_EXIT] = event__task_swap,
  329. [PERF_RECORD_LOST] = event__all64_swap,
  330. [PERF_RECORD_READ] = event__read_swap,
  331. [PERF_RECORD_SAMPLE] = event__all64_swap,
  332. [PERF_RECORD_HEADER_ATTR] = event__attr_swap,
  333. [PERF_RECORD_HEADER_EVENT_TYPE] = event__event_type_swap,
  334. [PERF_RECORD_HEADER_TRACING_DATA] = event__tracing_data_swap,
  335. [PERF_RECORD_HEADER_BUILD_ID] = NULL,
  336. [PERF_RECORD_HEADER_MAX] = NULL,
  337. };
  338. struct sample_queue {
  339. u64 timestamp;
  340. event_t *event;
  341. struct list_head list;
  342. };
  343. static void perf_session_free_sample_buffers(struct perf_session *session)
  344. {
  345. struct ordered_samples *os = &session->ordered_samples;
  346. while (!list_empty(&os->to_free)) {
  347. struct sample_queue *sq;
  348. sq = list_entry(os->to_free.next, struct sample_queue, list);
  349. list_del(&sq->list);
  350. free(sq);
  351. }
  352. }
  353. static void flush_sample_queue(struct perf_session *s,
  354. struct perf_event_ops *ops)
  355. {
  356. struct ordered_samples *os = &s->ordered_samples;
  357. struct list_head *head = &os->samples;
  358. struct sample_queue *tmp, *iter;
  359. u64 limit = os->next_flush;
  360. u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
  361. if (!ops->ordered_samples || !limit)
  362. return;
  363. list_for_each_entry_safe(iter, tmp, head, list) {
  364. if (iter->timestamp > limit)
  365. break;
  366. ops->sample(iter->event, s);
  367. os->last_flush = iter->timestamp;
  368. list_del(&iter->list);
  369. list_add(&iter->list, &os->sample_cache);
  370. }
  371. if (list_empty(head)) {
  372. os->last_sample = NULL;
  373. } else if (last_ts <= limit) {
  374. os->last_sample =
  375. list_entry(head->prev, struct sample_queue, list);
  376. }
  377. }
  378. /*
  379. * When perf record finishes a pass on every buffers, it records this pseudo
  380. * event.
  381. * We record the max timestamp t found in the pass n.
  382. * Assuming these timestamps are monotonic across cpus, we know that if
  383. * a buffer still has events with timestamps below t, they will be all
  384. * available and then read in the pass n + 1.
  385. * Hence when we start to read the pass n + 2, we can safely flush every
  386. * events with timestamps below t.
  387. *
  388. * ============ PASS n =================
  389. * CPU 0 | CPU 1
  390. * |
  391. * cnt1 timestamps | cnt2 timestamps
  392. * 1 | 2
  393. * 2 | 3
  394. * - | 4 <--- max recorded
  395. *
  396. * ============ PASS n + 1 ==============
  397. * CPU 0 | CPU 1
  398. * |
  399. * cnt1 timestamps | cnt2 timestamps
  400. * 3 | 5
  401. * 4 | 6
  402. * 5 | 7 <---- max recorded
  403. *
  404. * Flush every events below timestamp 4
  405. *
  406. * ============ PASS n + 2 ==============
  407. * CPU 0 | CPU 1
  408. * |
  409. * cnt1 timestamps | cnt2 timestamps
  410. * 6 | 8
  411. * 7 | 9
  412. * - | 10
  413. *
  414. * Flush every events below timestamp 7
  415. * etc...
  416. */
  417. static int process_finished_round(event_t *event __used,
  418. struct perf_session *session,
  419. struct perf_event_ops *ops)
  420. {
  421. flush_sample_queue(session, ops);
  422. session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
  423. return 0;
  424. }
  425. /* The queue is ordered by time */
  426. static void __queue_sample_event(struct sample_queue *new,
  427. struct perf_session *s)
  428. {
  429. struct ordered_samples *os = &s->ordered_samples;
  430. struct sample_queue *sample = os->last_sample;
  431. u64 timestamp = new->timestamp;
  432. struct list_head *p;
  433. os->last_sample = new;
  434. if (!sample) {
  435. list_add(&new->list, &os->samples);
  436. os->max_timestamp = timestamp;
  437. return;
  438. }
  439. /*
  440. * last_sample might point to some random place in the list as it's
  441. * the last queued event. We expect that the new event is close to
  442. * this.
  443. */
  444. if (sample->timestamp <= timestamp) {
  445. while (sample->timestamp <= timestamp) {
  446. p = sample->list.next;
  447. if (p == &os->samples) {
  448. list_add_tail(&new->list, &os->samples);
  449. os->max_timestamp = timestamp;
  450. return;
  451. }
  452. sample = list_entry(p, struct sample_queue, list);
  453. }
  454. list_add_tail(&new->list, &sample->list);
  455. } else {
  456. while (sample->timestamp > timestamp) {
  457. p = sample->list.prev;
  458. if (p == &os->samples) {
  459. list_add(&new->list, &os->samples);
  460. return;
  461. }
  462. sample = list_entry(p, struct sample_queue, list);
  463. }
  464. list_add(&new->list, &sample->list);
  465. }
  466. }
  467. #define MAX_SAMPLE_BUFFER (64 * 1024 / sizeof(struct sample_queue))
  468. static int queue_sample_event(event_t *event, struct sample_data *data,
  469. struct perf_session *s)
  470. {
  471. struct ordered_samples *os = &s->ordered_samples;
  472. struct list_head *sc = &os->sample_cache;
  473. u64 timestamp = data->time;
  474. struct sample_queue *new;
  475. if (timestamp < s->ordered_samples.last_flush) {
  476. printf("Warning: Timestamp below last timeslice flush\n");
  477. return -EINVAL;
  478. }
  479. if (!list_empty(sc)) {
  480. new = list_entry(sc->next, struct sample_queue, list);
  481. list_del(&new->list);
  482. } else if (os->sample_buffer) {
  483. new = os->sample_buffer + os->sample_buffer_idx;
  484. if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
  485. os->sample_buffer = NULL;
  486. } else {
  487. os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
  488. if (!os->sample_buffer)
  489. return -ENOMEM;
  490. list_add(&os->sample_buffer->list, &os->to_free);
  491. os->sample_buffer_idx = 2;
  492. new = os->sample_buffer + 1;
  493. }
  494. new->timestamp = timestamp;
  495. new->event = event;
  496. __queue_sample_event(new, s);
  497. return 0;
  498. }
  499. static int perf_session__process_sample(event_t *event, struct perf_session *s,
  500. struct perf_event_ops *ops)
  501. {
  502. struct sample_data data;
  503. if (!ops->ordered_samples)
  504. return ops->sample(event, s);
  505. bzero(&data, sizeof(struct sample_data));
  506. event__parse_sample(event, s->sample_type, &data);
  507. queue_sample_event(event, &data, s);
  508. return 0;
  509. }
  510. static int perf_session__process_event(struct perf_session *self,
  511. event_t *event,
  512. struct perf_event_ops *ops,
  513. u64 file_offset)
  514. {
  515. trace_event(event);
  516. if (event->header.type < PERF_RECORD_HEADER_MAX) {
  517. dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
  518. file_offset, event->header.size,
  519. event__name[event->header.type]);
  520. hists__inc_nr_events(&self->hists, event->header.type);
  521. }
  522. if (self->header.needs_swap && event__swap_ops[event->header.type])
  523. event__swap_ops[event->header.type](event);
  524. switch (event->header.type) {
  525. case PERF_RECORD_SAMPLE:
  526. return perf_session__process_sample(event, self, ops);
  527. case PERF_RECORD_MMAP:
  528. return ops->mmap(event, self);
  529. case PERF_RECORD_COMM:
  530. return ops->comm(event, self);
  531. case PERF_RECORD_FORK:
  532. return ops->fork(event, self);
  533. case PERF_RECORD_EXIT:
  534. return ops->exit(event, self);
  535. case PERF_RECORD_LOST:
  536. return ops->lost(event, self);
  537. case PERF_RECORD_READ:
  538. return ops->read(event, self);
  539. case PERF_RECORD_THROTTLE:
  540. return ops->throttle(event, self);
  541. case PERF_RECORD_UNTHROTTLE:
  542. return ops->unthrottle(event, self);
  543. case PERF_RECORD_HEADER_ATTR:
  544. return ops->attr(event, self);
  545. case PERF_RECORD_HEADER_EVENT_TYPE:
  546. return ops->event_type(event, self);
  547. case PERF_RECORD_HEADER_TRACING_DATA:
  548. /* setup for reading amidst mmap */
  549. lseek(self->fd, file_offset, SEEK_SET);
  550. return ops->tracing_data(event, self);
  551. case PERF_RECORD_HEADER_BUILD_ID:
  552. return ops->build_id(event, self);
  553. case PERF_RECORD_FINISHED_ROUND:
  554. return ops->finished_round(event, self, ops);
  555. default:
  556. ++self->hists.stats.nr_unknown_events;
  557. return -1;
  558. }
  559. }
  560. void perf_event_header__bswap(struct perf_event_header *self)
  561. {
  562. self->type = bswap_32(self->type);
  563. self->misc = bswap_16(self->misc);
  564. self->size = bswap_16(self->size);
  565. }
  566. static struct thread *perf_session__register_idle_thread(struct perf_session *self)
  567. {
  568. struct thread *thread = perf_session__findnew(self, 0);
  569. if (thread == NULL || thread__set_comm(thread, "swapper")) {
  570. pr_err("problem inserting idle task.\n");
  571. thread = NULL;
  572. }
  573. return thread;
  574. }
  575. int do_read(int fd, void *buf, size_t size)
  576. {
  577. void *buf_start = buf;
  578. while (size) {
  579. int ret = read(fd, buf, size);
  580. if (ret <= 0)
  581. return ret;
  582. size -= ret;
  583. buf += ret;
  584. }
  585. return buf - buf_start;
  586. }
  587. #define session_done() (*(volatile int *)(&session_done))
  588. volatile int session_done;
  589. static int __perf_session__process_pipe_events(struct perf_session *self,
  590. struct perf_event_ops *ops)
  591. {
  592. event_t event;
  593. uint32_t size;
  594. int skip = 0;
  595. u64 head;
  596. int err;
  597. void *p;
  598. perf_event_ops__fill_defaults(ops);
  599. head = 0;
  600. more:
  601. err = do_read(self->fd, &event, sizeof(struct perf_event_header));
  602. if (err <= 0) {
  603. if (err == 0)
  604. goto done;
  605. pr_err("failed to read event header\n");
  606. goto out_err;
  607. }
  608. if (self->header.needs_swap)
  609. perf_event_header__bswap(&event.header);
  610. size = event.header.size;
  611. if (size == 0)
  612. size = 8;
  613. p = &event;
  614. p += sizeof(struct perf_event_header);
  615. if (size - sizeof(struct perf_event_header)) {
  616. err = do_read(self->fd, p,
  617. size - sizeof(struct perf_event_header));
  618. if (err <= 0) {
  619. if (err == 0) {
  620. pr_err("unexpected end of event stream\n");
  621. goto done;
  622. }
  623. pr_err("failed to read event data\n");
  624. goto out_err;
  625. }
  626. }
  627. if (size == 0 ||
  628. (skip = perf_session__process_event(self, &event, ops, head)) < 0) {
  629. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  630. head, event.header.size, event.header.type);
  631. /*
  632. * assume we lost track of the stream, check alignment, and
  633. * increment a single u64 in the hope to catch on again 'soon'.
  634. */
  635. if (unlikely(head & 7))
  636. head &= ~7ULL;
  637. size = 8;
  638. }
  639. head += size;
  640. dump_printf("\n%#Lx [%#x]: event: %d\n",
  641. head, event.header.size, event.header.type);
  642. if (skip > 0)
  643. head += skip;
  644. if (!session_done())
  645. goto more;
  646. done:
  647. err = 0;
  648. out_err:
  649. perf_session_free_sample_buffers(self);
  650. return err;
  651. }
  652. int __perf_session__process_events(struct perf_session *session,
  653. u64 data_offset, u64 data_size,
  654. u64 file_size, struct perf_event_ops *ops)
  655. {
  656. u64 head, page_offset, file_offset, file_pos, progress_next;
  657. int err, mmap_prot, mmap_flags, map_idx = 0;
  658. struct ui_progress *progress;
  659. size_t page_size, mmap_size;
  660. char *buf, *mmaps[8];
  661. event_t *event;
  662. uint32_t size;
  663. perf_event_ops__fill_defaults(ops);
  664. page_size = sysconf(_SC_PAGESIZE);
  665. page_offset = page_size * (data_offset / page_size);
  666. file_offset = page_offset;
  667. head = data_offset - page_offset;
  668. if (data_offset + data_size < file_size)
  669. file_size = data_offset + data_size;
  670. progress_next = file_size / 16;
  671. progress = ui_progress__new("Processing events...", file_size);
  672. if (progress == NULL)
  673. return -1;
  674. mmap_size = session->mmap_window;
  675. if (mmap_size > file_size)
  676. mmap_size = file_size;
  677. memset(mmaps, 0, sizeof(mmaps));
  678. mmap_prot = PROT_READ;
  679. mmap_flags = MAP_SHARED;
  680. if (session->header.needs_swap) {
  681. mmap_prot |= PROT_WRITE;
  682. mmap_flags = MAP_PRIVATE;
  683. }
  684. remap:
  685. buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
  686. file_offset);
  687. if (buf == MAP_FAILED) {
  688. pr_err("failed to mmap file\n");
  689. err = -errno;
  690. goto out_err;
  691. }
  692. mmaps[map_idx] = buf;
  693. map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
  694. file_pos = file_offset + head;
  695. more:
  696. event = (event_t *)(buf + head);
  697. if (session->header.needs_swap)
  698. perf_event_header__bswap(&event->header);
  699. size = event->header.size;
  700. if (size == 0)
  701. size = 8;
  702. if (head + event->header.size >= mmap_size) {
  703. if (mmaps[map_idx]) {
  704. munmap(mmaps[map_idx], mmap_size);
  705. mmaps[map_idx] = NULL;
  706. }
  707. page_offset = page_size * (head / page_size);
  708. file_offset += page_offset;
  709. head -= page_offset;
  710. goto remap;
  711. }
  712. size = event->header.size;
  713. dump_printf("\n%#Lx [%#x]: event: %d\n",
  714. file_pos, event->header.size, event->header.type);
  715. if (size == 0 ||
  716. perf_session__process_event(session, event, ops, file_pos) < 0) {
  717. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  718. file_offset + head, event->header.size,
  719. event->header.type);
  720. /*
  721. * assume we lost track of the stream, check alignment, and
  722. * increment a single u64 in the hope to catch on again 'soon'.
  723. */
  724. if (unlikely(head & 7))
  725. head &= ~7ULL;
  726. size = 8;
  727. }
  728. head += size;
  729. file_pos += size;
  730. if (file_pos >= progress_next) {
  731. progress_next += file_size / 16;
  732. ui_progress__update(progress, file_pos);
  733. }
  734. if (file_pos < file_size)
  735. goto more;
  736. err = 0;
  737. /* do the final flush for ordered samples */
  738. session->ordered_samples.next_flush = ULLONG_MAX;
  739. flush_sample_queue(session, ops);
  740. out_err:
  741. ui_progress__delete(progress);
  742. if (ops->lost == event__process_lost &&
  743. session->hists.stats.total_lost != 0) {
  744. ui__warning("Processed %Lu events and LOST %Lu!\n\n"
  745. "Check IO/CPU overload!\n\n",
  746. session->hists.stats.total_period,
  747. session->hists.stats.total_lost);
  748. }
  749. if (session->hists.stats.nr_unknown_events != 0) {
  750. ui__warning("Found %u unknown events!\n\n"
  751. "Is this an older tool processing a perf.data "
  752. "file generated by a more recent tool?\n\n"
  753. "If that is not the case, consider "
  754. "reporting to linux-kernel@vger.kernel.org.\n\n",
  755. session->hists.stats.nr_unknown_events);
  756. }
  757. perf_session_free_sample_buffers(session);
  758. return err;
  759. }
  760. int perf_session__process_events(struct perf_session *self,
  761. struct perf_event_ops *ops)
  762. {
  763. int err;
  764. if (perf_session__register_idle_thread(self) == NULL)
  765. return -ENOMEM;
  766. if (!self->fd_pipe)
  767. err = __perf_session__process_events(self,
  768. self->header.data_offset,
  769. self->header.data_size,
  770. self->size, ops);
  771. else
  772. err = __perf_session__process_pipe_events(self, ops);
  773. return err;
  774. }
  775. bool perf_session__has_traces(struct perf_session *self, const char *msg)
  776. {
  777. if (!(self->sample_type & PERF_SAMPLE_RAW)) {
  778. pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
  779. return false;
  780. }
  781. return true;
  782. }
  783. int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
  784. const char *symbol_name,
  785. u64 addr)
  786. {
  787. char *bracket;
  788. enum map_type i;
  789. struct ref_reloc_sym *ref;
  790. ref = zalloc(sizeof(struct ref_reloc_sym));
  791. if (ref == NULL)
  792. return -ENOMEM;
  793. ref->name = strdup(symbol_name);
  794. if (ref->name == NULL) {
  795. free(ref);
  796. return -ENOMEM;
  797. }
  798. bracket = strchr(ref->name, ']');
  799. if (bracket)
  800. *bracket = '\0';
  801. ref->addr = addr;
  802. for (i = 0; i < MAP__NR_TYPES; ++i) {
  803. struct kmap *kmap = map__kmap(maps[i]);
  804. kmap->ref_reloc_sym = ref;
  805. }
  806. return 0;
  807. }
  808. size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
  809. {
  810. return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
  811. __dsos__fprintf(&self->host_machine.user_dsos, fp) +
  812. machines__fprintf_dsos(&self->machines, fp);
  813. }
  814. size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
  815. bool with_hits)
  816. {
  817. size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
  818. return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
  819. }