i915_gem.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  55. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  56. {
  57. if (obj->tiling_mode)
  58. i915_gem_release_mmap(obj);
  59. /* As we do not have an associated fence register, we will force
  60. * a tiling change if we ever need to acquire one.
  61. */
  62. obj->fence_dirty = false;
  63. obj->fence_reg = I915_FENCE_REG_NONE;
  64. }
  65. /* some bookkeeping */
  66. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count++;
  70. dev_priv->mm.object_memory += size;
  71. }
  72. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  73. size_t size)
  74. {
  75. dev_priv->mm.object_count--;
  76. dev_priv->mm.object_memory -= size;
  77. }
  78. static int
  79. i915_gem_wait_for_error(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. struct completion *x = &dev_priv->error_completion;
  83. unsigned long flags;
  84. int ret;
  85. if (!atomic_read(&dev_priv->mm.wedged))
  86. return 0;
  87. ret = wait_for_completion_interruptible(x);
  88. if (ret)
  89. return ret;
  90. if (atomic_read(&dev_priv->mm.wedged)) {
  91. /* GPU is hung, bump the completion count to account for
  92. * the token we just consumed so that we never hit zero and
  93. * end up waiting upon a subsequent completion event that
  94. * will never happen.
  95. */
  96. spin_lock_irqsave(&x->wait.lock, flags);
  97. x->done++;
  98. spin_unlock_irqrestore(&x->wait.lock, flags);
  99. }
  100. return 0;
  101. }
  102. int i915_mutex_lock_interruptible(struct drm_device *dev)
  103. {
  104. int ret;
  105. ret = i915_gem_wait_for_error(dev);
  106. if (ret)
  107. return ret;
  108. ret = mutex_lock_interruptible(&dev->struct_mutex);
  109. if (ret)
  110. return ret;
  111. WARN_ON(i915_verify_lists(dev));
  112. return 0;
  113. }
  114. static inline bool
  115. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  116. {
  117. return !obj->active;
  118. }
  119. int
  120. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  121. struct drm_file *file)
  122. {
  123. struct drm_i915_gem_init *args = data;
  124. if (drm_core_check_feature(dev, DRIVER_MODESET))
  125. return -ENODEV;
  126. if (args->gtt_start >= args->gtt_end ||
  127. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  128. return -EINVAL;
  129. /* GEM with user mode setting was never supported on ilk and later. */
  130. if (INTEL_INFO(dev)->gen >= 5)
  131. return -ENODEV;
  132. mutex_lock(&dev->struct_mutex);
  133. i915_gem_init_global_gtt(dev, args->gtt_start,
  134. args->gtt_end, args->gtt_end);
  135. mutex_unlock(&dev->struct_mutex);
  136. return 0;
  137. }
  138. int
  139. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  140. struct drm_file *file)
  141. {
  142. struct drm_i915_private *dev_priv = dev->dev_private;
  143. struct drm_i915_gem_get_aperture *args = data;
  144. struct drm_i915_gem_object *obj;
  145. size_t pinned;
  146. pinned = 0;
  147. mutex_lock(&dev->struct_mutex);
  148. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
  149. if (obj->pin_count)
  150. pinned += obj->gtt_space->size;
  151. mutex_unlock(&dev->struct_mutex);
  152. args->aper_size = dev_priv->mm.gtt_total;
  153. args->aper_available_size = args->aper_size - pinned;
  154. return 0;
  155. }
  156. static int
  157. i915_gem_create(struct drm_file *file,
  158. struct drm_device *dev,
  159. uint64_t size,
  160. uint32_t *handle_p)
  161. {
  162. struct drm_i915_gem_object *obj;
  163. int ret;
  164. u32 handle;
  165. size = roundup(size, PAGE_SIZE);
  166. if (size == 0)
  167. return -EINVAL;
  168. /* Allocate the new object */
  169. obj = i915_gem_alloc_object(dev, size);
  170. if (obj == NULL)
  171. return -ENOMEM;
  172. ret = drm_gem_handle_create(file, &obj->base, &handle);
  173. if (ret) {
  174. drm_gem_object_release(&obj->base);
  175. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  176. kfree(obj);
  177. return ret;
  178. }
  179. /* drop reference from allocate - handle holds it now */
  180. drm_gem_object_unreference(&obj->base);
  181. trace_i915_gem_object_create(obj);
  182. *handle_p = handle;
  183. return 0;
  184. }
  185. int
  186. i915_gem_dumb_create(struct drm_file *file,
  187. struct drm_device *dev,
  188. struct drm_mode_create_dumb *args)
  189. {
  190. /* have to work out size/pitch and return them */
  191. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  192. args->size = args->pitch * args->height;
  193. return i915_gem_create(file, dev,
  194. args->size, &args->handle);
  195. }
  196. int i915_gem_dumb_destroy(struct drm_file *file,
  197. struct drm_device *dev,
  198. uint32_t handle)
  199. {
  200. return drm_gem_handle_delete(file, handle);
  201. }
  202. /**
  203. * Creates a new mm object and returns a handle to it.
  204. */
  205. int
  206. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  207. struct drm_file *file)
  208. {
  209. struct drm_i915_gem_create *args = data;
  210. return i915_gem_create(file, dev,
  211. args->size, &args->handle);
  212. }
  213. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  214. {
  215. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  216. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  217. obj->tiling_mode != I915_TILING_NONE;
  218. }
  219. static inline int
  220. __copy_to_user_swizzled(char __user *cpu_vaddr,
  221. const char *gpu_vaddr, int gpu_offset,
  222. int length)
  223. {
  224. int ret, cpu_offset = 0;
  225. while (length > 0) {
  226. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  227. int this_length = min(cacheline_end - gpu_offset, length);
  228. int swizzled_gpu_offset = gpu_offset ^ 64;
  229. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  230. gpu_vaddr + swizzled_gpu_offset,
  231. this_length);
  232. if (ret)
  233. return ret + length;
  234. cpu_offset += this_length;
  235. gpu_offset += this_length;
  236. length -= this_length;
  237. }
  238. return 0;
  239. }
  240. static inline int
  241. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  242. const char __user *cpu_vaddr,
  243. int length)
  244. {
  245. int ret, cpu_offset = 0;
  246. while (length > 0) {
  247. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  248. int this_length = min(cacheline_end - gpu_offset, length);
  249. int swizzled_gpu_offset = gpu_offset ^ 64;
  250. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  251. cpu_vaddr + cpu_offset,
  252. this_length);
  253. if (ret)
  254. return ret + length;
  255. cpu_offset += this_length;
  256. gpu_offset += this_length;
  257. length -= this_length;
  258. }
  259. return 0;
  260. }
  261. /* Per-page copy function for the shmem pread fastpath.
  262. * Flushes invalid cachelines before reading the target if
  263. * needs_clflush is set. */
  264. static int
  265. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  266. char __user *user_data,
  267. bool page_do_bit17_swizzling, bool needs_clflush)
  268. {
  269. char *vaddr;
  270. int ret;
  271. if (unlikely(page_do_bit17_swizzling))
  272. return -EINVAL;
  273. vaddr = kmap_atomic(page);
  274. if (needs_clflush)
  275. drm_clflush_virt_range(vaddr + shmem_page_offset,
  276. page_length);
  277. ret = __copy_to_user_inatomic(user_data,
  278. vaddr + shmem_page_offset,
  279. page_length);
  280. kunmap_atomic(vaddr);
  281. return ret;
  282. }
  283. static void
  284. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  285. bool swizzled)
  286. {
  287. if (unlikely(swizzled)) {
  288. unsigned long start = (unsigned long) addr;
  289. unsigned long end = (unsigned long) addr + length;
  290. /* For swizzling simply ensure that we always flush both
  291. * channels. Lame, but simple and it works. Swizzled
  292. * pwrite/pread is far from a hotpath - current userspace
  293. * doesn't use it at all. */
  294. start = round_down(start, 128);
  295. end = round_up(end, 128);
  296. drm_clflush_virt_range((void *)start, end - start);
  297. } else {
  298. drm_clflush_virt_range(addr, length);
  299. }
  300. }
  301. /* Only difference to the fast-path function is that this can handle bit17
  302. * and uses non-atomic copy and kmap functions. */
  303. static int
  304. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  305. char __user *user_data,
  306. bool page_do_bit17_swizzling, bool needs_clflush)
  307. {
  308. char *vaddr;
  309. int ret;
  310. vaddr = kmap(page);
  311. if (needs_clflush)
  312. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  313. page_length,
  314. page_do_bit17_swizzling);
  315. if (page_do_bit17_swizzling)
  316. ret = __copy_to_user_swizzled(user_data,
  317. vaddr, shmem_page_offset,
  318. page_length);
  319. else
  320. ret = __copy_to_user(user_data,
  321. vaddr + shmem_page_offset,
  322. page_length);
  323. kunmap(page);
  324. return ret;
  325. }
  326. static int
  327. i915_gem_shmem_pread(struct drm_device *dev,
  328. struct drm_i915_gem_object *obj,
  329. struct drm_i915_gem_pread *args,
  330. struct drm_file *file)
  331. {
  332. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  333. char __user *user_data;
  334. ssize_t remain;
  335. loff_t offset;
  336. int shmem_page_offset, page_length, ret = 0;
  337. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  338. int hit_slowpath = 0;
  339. int prefaulted = 0;
  340. int needs_clflush = 0;
  341. int release_page;
  342. user_data = (char __user *) (uintptr_t) args->data_ptr;
  343. remain = args->size;
  344. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  345. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  346. /* If we're not in the cpu read domain, set ourself into the gtt
  347. * read domain and manually flush cachelines (if required). This
  348. * optimizes for the case when the gpu will dirty the data
  349. * anyway again before the next pread happens. */
  350. if (obj->cache_level == I915_CACHE_NONE)
  351. needs_clflush = 1;
  352. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  353. if (ret)
  354. return ret;
  355. }
  356. offset = args->offset;
  357. while (remain > 0) {
  358. struct page *page;
  359. /* Operation in this page
  360. *
  361. * shmem_page_offset = offset within page in shmem file
  362. * page_length = bytes to copy for this page
  363. */
  364. shmem_page_offset = offset_in_page(offset);
  365. page_length = remain;
  366. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  367. page_length = PAGE_SIZE - shmem_page_offset;
  368. if (obj->pages) {
  369. page = obj->pages[offset >> PAGE_SHIFT];
  370. release_page = 0;
  371. } else {
  372. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  373. if (IS_ERR(page)) {
  374. ret = PTR_ERR(page);
  375. goto out;
  376. }
  377. release_page = 1;
  378. }
  379. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  380. (page_to_phys(page) & (1 << 17)) != 0;
  381. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  382. user_data, page_do_bit17_swizzling,
  383. needs_clflush);
  384. if (ret == 0)
  385. goto next_page;
  386. hit_slowpath = 1;
  387. page_cache_get(page);
  388. mutex_unlock(&dev->struct_mutex);
  389. if (!prefaulted) {
  390. ret = fault_in_multipages_writeable(user_data, remain);
  391. /* Userspace is tricking us, but we've already clobbered
  392. * its pages with the prefault and promised to write the
  393. * data up to the first fault. Hence ignore any errors
  394. * and just continue. */
  395. (void)ret;
  396. prefaulted = 1;
  397. }
  398. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  399. user_data, page_do_bit17_swizzling,
  400. needs_clflush);
  401. mutex_lock(&dev->struct_mutex);
  402. page_cache_release(page);
  403. next_page:
  404. mark_page_accessed(page);
  405. if (release_page)
  406. page_cache_release(page);
  407. if (ret) {
  408. ret = -EFAULT;
  409. goto out;
  410. }
  411. remain -= page_length;
  412. user_data += page_length;
  413. offset += page_length;
  414. }
  415. out:
  416. if (hit_slowpath) {
  417. /* Fixup: Kill any reinstated backing storage pages */
  418. if (obj->madv == __I915_MADV_PURGED)
  419. i915_gem_object_truncate(obj);
  420. }
  421. return ret;
  422. }
  423. /**
  424. * Reads data from the object referenced by handle.
  425. *
  426. * On error, the contents of *data are undefined.
  427. */
  428. int
  429. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  430. struct drm_file *file)
  431. {
  432. struct drm_i915_gem_pread *args = data;
  433. struct drm_i915_gem_object *obj;
  434. int ret = 0;
  435. if (args->size == 0)
  436. return 0;
  437. if (!access_ok(VERIFY_WRITE,
  438. (char __user *)(uintptr_t)args->data_ptr,
  439. args->size))
  440. return -EFAULT;
  441. ret = i915_mutex_lock_interruptible(dev);
  442. if (ret)
  443. return ret;
  444. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  445. if (&obj->base == NULL) {
  446. ret = -ENOENT;
  447. goto unlock;
  448. }
  449. /* Bounds check source. */
  450. if (args->offset > obj->base.size ||
  451. args->size > obj->base.size - args->offset) {
  452. ret = -EINVAL;
  453. goto out;
  454. }
  455. trace_i915_gem_object_pread(obj, args->offset, args->size);
  456. ret = i915_gem_shmem_pread(dev, obj, args, file);
  457. out:
  458. drm_gem_object_unreference(&obj->base);
  459. unlock:
  460. mutex_unlock(&dev->struct_mutex);
  461. return ret;
  462. }
  463. /* This is the fast write path which cannot handle
  464. * page faults in the source data
  465. */
  466. static inline int
  467. fast_user_write(struct io_mapping *mapping,
  468. loff_t page_base, int page_offset,
  469. char __user *user_data,
  470. int length)
  471. {
  472. void __iomem *vaddr_atomic;
  473. void *vaddr;
  474. unsigned long unwritten;
  475. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  476. /* We can use the cpu mem copy function because this is X86. */
  477. vaddr = (void __force*)vaddr_atomic + page_offset;
  478. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  479. user_data, length);
  480. io_mapping_unmap_atomic(vaddr_atomic);
  481. return unwritten;
  482. }
  483. /**
  484. * This is the fast pwrite path, where we copy the data directly from the
  485. * user into the GTT, uncached.
  486. */
  487. static int
  488. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  489. struct drm_i915_gem_object *obj,
  490. struct drm_i915_gem_pwrite *args,
  491. struct drm_file *file)
  492. {
  493. drm_i915_private_t *dev_priv = dev->dev_private;
  494. ssize_t remain;
  495. loff_t offset, page_base;
  496. char __user *user_data;
  497. int page_offset, page_length, ret;
  498. ret = i915_gem_object_pin(obj, 0, true);
  499. if (ret)
  500. goto out;
  501. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  502. if (ret)
  503. goto out_unpin;
  504. ret = i915_gem_object_put_fence(obj);
  505. if (ret)
  506. goto out_unpin;
  507. user_data = (char __user *) (uintptr_t) args->data_ptr;
  508. remain = args->size;
  509. offset = obj->gtt_offset + args->offset;
  510. while (remain > 0) {
  511. /* Operation in this page
  512. *
  513. * page_base = page offset within aperture
  514. * page_offset = offset within page
  515. * page_length = bytes to copy for this page
  516. */
  517. page_base = offset & PAGE_MASK;
  518. page_offset = offset_in_page(offset);
  519. page_length = remain;
  520. if ((page_offset + remain) > PAGE_SIZE)
  521. page_length = PAGE_SIZE - page_offset;
  522. /* If we get a fault while copying data, then (presumably) our
  523. * source page isn't available. Return the error and we'll
  524. * retry in the slow path.
  525. */
  526. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  527. page_offset, user_data, page_length)) {
  528. ret = -EFAULT;
  529. goto out_unpin;
  530. }
  531. remain -= page_length;
  532. user_data += page_length;
  533. offset += page_length;
  534. }
  535. out_unpin:
  536. i915_gem_object_unpin(obj);
  537. out:
  538. return ret;
  539. }
  540. /* Per-page copy function for the shmem pwrite fastpath.
  541. * Flushes invalid cachelines before writing to the target if
  542. * needs_clflush_before is set and flushes out any written cachelines after
  543. * writing if needs_clflush is set. */
  544. static int
  545. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  546. char __user *user_data,
  547. bool page_do_bit17_swizzling,
  548. bool needs_clflush_before,
  549. bool needs_clflush_after)
  550. {
  551. char *vaddr;
  552. int ret;
  553. if (unlikely(page_do_bit17_swizzling))
  554. return -EINVAL;
  555. vaddr = kmap_atomic(page);
  556. if (needs_clflush_before)
  557. drm_clflush_virt_range(vaddr + shmem_page_offset,
  558. page_length);
  559. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  560. user_data,
  561. page_length);
  562. if (needs_clflush_after)
  563. drm_clflush_virt_range(vaddr + shmem_page_offset,
  564. page_length);
  565. kunmap_atomic(vaddr);
  566. return ret;
  567. }
  568. /* Only difference to the fast-path function is that this can handle bit17
  569. * and uses non-atomic copy and kmap functions. */
  570. static int
  571. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  572. char __user *user_data,
  573. bool page_do_bit17_swizzling,
  574. bool needs_clflush_before,
  575. bool needs_clflush_after)
  576. {
  577. char *vaddr;
  578. int ret;
  579. vaddr = kmap(page);
  580. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  581. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  582. page_length,
  583. page_do_bit17_swizzling);
  584. if (page_do_bit17_swizzling)
  585. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  586. user_data,
  587. page_length);
  588. else
  589. ret = __copy_from_user(vaddr + shmem_page_offset,
  590. user_data,
  591. page_length);
  592. if (needs_clflush_after)
  593. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  594. page_length,
  595. page_do_bit17_swizzling);
  596. kunmap(page);
  597. return ret;
  598. }
  599. static int
  600. i915_gem_shmem_pwrite(struct drm_device *dev,
  601. struct drm_i915_gem_object *obj,
  602. struct drm_i915_gem_pwrite *args,
  603. struct drm_file *file)
  604. {
  605. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  606. ssize_t remain;
  607. loff_t offset;
  608. char __user *user_data;
  609. int shmem_page_offset, page_length, ret = 0;
  610. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  611. int hit_slowpath = 0;
  612. int needs_clflush_after = 0;
  613. int needs_clflush_before = 0;
  614. int release_page;
  615. user_data = (char __user *) (uintptr_t) args->data_ptr;
  616. remain = args->size;
  617. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  618. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  619. /* If we're not in the cpu write domain, set ourself into the gtt
  620. * write domain and manually flush cachelines (if required). This
  621. * optimizes for the case when the gpu will use the data
  622. * right away and we therefore have to clflush anyway. */
  623. if (obj->cache_level == I915_CACHE_NONE)
  624. needs_clflush_after = 1;
  625. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  626. if (ret)
  627. return ret;
  628. }
  629. /* Same trick applies for invalidate partially written cachelines before
  630. * writing. */
  631. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  632. && obj->cache_level == I915_CACHE_NONE)
  633. needs_clflush_before = 1;
  634. offset = args->offset;
  635. obj->dirty = 1;
  636. while (remain > 0) {
  637. struct page *page;
  638. int partial_cacheline_write;
  639. /* Operation in this page
  640. *
  641. * shmem_page_offset = offset within page in shmem file
  642. * page_length = bytes to copy for this page
  643. */
  644. shmem_page_offset = offset_in_page(offset);
  645. page_length = remain;
  646. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  647. page_length = PAGE_SIZE - shmem_page_offset;
  648. /* If we don't overwrite a cacheline completely we need to be
  649. * careful to have up-to-date data by first clflushing. Don't
  650. * overcomplicate things and flush the entire patch. */
  651. partial_cacheline_write = needs_clflush_before &&
  652. ((shmem_page_offset | page_length)
  653. & (boot_cpu_data.x86_clflush_size - 1));
  654. if (obj->pages) {
  655. page = obj->pages[offset >> PAGE_SHIFT];
  656. release_page = 0;
  657. } else {
  658. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  659. if (IS_ERR(page)) {
  660. ret = PTR_ERR(page);
  661. goto out;
  662. }
  663. release_page = 1;
  664. }
  665. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  666. (page_to_phys(page) & (1 << 17)) != 0;
  667. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  668. user_data, page_do_bit17_swizzling,
  669. partial_cacheline_write,
  670. needs_clflush_after);
  671. if (ret == 0)
  672. goto next_page;
  673. hit_slowpath = 1;
  674. page_cache_get(page);
  675. mutex_unlock(&dev->struct_mutex);
  676. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  677. user_data, page_do_bit17_swizzling,
  678. partial_cacheline_write,
  679. needs_clflush_after);
  680. mutex_lock(&dev->struct_mutex);
  681. page_cache_release(page);
  682. next_page:
  683. set_page_dirty(page);
  684. mark_page_accessed(page);
  685. if (release_page)
  686. page_cache_release(page);
  687. if (ret) {
  688. ret = -EFAULT;
  689. goto out;
  690. }
  691. remain -= page_length;
  692. user_data += page_length;
  693. offset += page_length;
  694. }
  695. out:
  696. if (hit_slowpath) {
  697. /* Fixup: Kill any reinstated backing storage pages */
  698. if (obj->madv == __I915_MADV_PURGED)
  699. i915_gem_object_truncate(obj);
  700. /* and flush dirty cachelines in case the object isn't in the cpu write
  701. * domain anymore. */
  702. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  703. i915_gem_clflush_object(obj);
  704. intel_gtt_chipset_flush();
  705. }
  706. }
  707. if (needs_clflush_after)
  708. intel_gtt_chipset_flush();
  709. return ret;
  710. }
  711. /**
  712. * Writes data to the object referenced by handle.
  713. *
  714. * On error, the contents of the buffer that were to be modified are undefined.
  715. */
  716. int
  717. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  718. struct drm_file *file)
  719. {
  720. struct drm_i915_gem_pwrite *args = data;
  721. struct drm_i915_gem_object *obj;
  722. int ret;
  723. if (args->size == 0)
  724. return 0;
  725. if (!access_ok(VERIFY_READ,
  726. (char __user *)(uintptr_t)args->data_ptr,
  727. args->size))
  728. return -EFAULT;
  729. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  730. args->size);
  731. if (ret)
  732. return -EFAULT;
  733. ret = i915_mutex_lock_interruptible(dev);
  734. if (ret)
  735. return ret;
  736. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  737. if (&obj->base == NULL) {
  738. ret = -ENOENT;
  739. goto unlock;
  740. }
  741. /* Bounds check destination. */
  742. if (args->offset > obj->base.size ||
  743. args->size > obj->base.size - args->offset) {
  744. ret = -EINVAL;
  745. goto out;
  746. }
  747. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  748. ret = -EFAULT;
  749. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  750. * it would end up going through the fenced access, and we'll get
  751. * different detiling behavior between reading and writing.
  752. * pread/pwrite currently are reading and writing from the CPU
  753. * perspective, requiring manual detiling by the client.
  754. */
  755. if (obj->phys_obj) {
  756. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  757. goto out;
  758. }
  759. if (obj->gtt_space &&
  760. obj->cache_level == I915_CACHE_NONE &&
  761. obj->tiling_mode == I915_TILING_NONE &&
  762. obj->map_and_fenceable &&
  763. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  764. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  765. /* Note that the gtt paths might fail with non-page-backed user
  766. * pointers (e.g. gtt mappings when moving data between
  767. * textures). Fallback to the shmem path in that case. */
  768. }
  769. if (ret == -EFAULT)
  770. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  771. out:
  772. drm_gem_object_unreference(&obj->base);
  773. unlock:
  774. mutex_unlock(&dev->struct_mutex);
  775. return ret;
  776. }
  777. /**
  778. * Called when user space prepares to use an object with the CPU, either
  779. * through the mmap ioctl's mapping or a GTT mapping.
  780. */
  781. int
  782. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  783. struct drm_file *file)
  784. {
  785. struct drm_i915_gem_set_domain *args = data;
  786. struct drm_i915_gem_object *obj;
  787. uint32_t read_domains = args->read_domains;
  788. uint32_t write_domain = args->write_domain;
  789. int ret;
  790. /* Only handle setting domains to types used by the CPU. */
  791. if (write_domain & I915_GEM_GPU_DOMAINS)
  792. return -EINVAL;
  793. if (read_domains & I915_GEM_GPU_DOMAINS)
  794. return -EINVAL;
  795. /* Having something in the write domain implies it's in the read
  796. * domain, and only that read domain. Enforce that in the request.
  797. */
  798. if (write_domain != 0 && read_domains != write_domain)
  799. return -EINVAL;
  800. ret = i915_mutex_lock_interruptible(dev);
  801. if (ret)
  802. return ret;
  803. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  804. if (&obj->base == NULL) {
  805. ret = -ENOENT;
  806. goto unlock;
  807. }
  808. if (read_domains & I915_GEM_DOMAIN_GTT) {
  809. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  810. /* Silently promote "you're not bound, there was nothing to do"
  811. * to success, since the client was just asking us to
  812. * make sure everything was done.
  813. */
  814. if (ret == -EINVAL)
  815. ret = 0;
  816. } else {
  817. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  818. }
  819. drm_gem_object_unreference(&obj->base);
  820. unlock:
  821. mutex_unlock(&dev->struct_mutex);
  822. return ret;
  823. }
  824. /**
  825. * Called when user space has done writes to this buffer
  826. */
  827. int
  828. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  829. struct drm_file *file)
  830. {
  831. struct drm_i915_gem_sw_finish *args = data;
  832. struct drm_i915_gem_object *obj;
  833. int ret = 0;
  834. ret = i915_mutex_lock_interruptible(dev);
  835. if (ret)
  836. return ret;
  837. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  838. if (&obj->base == NULL) {
  839. ret = -ENOENT;
  840. goto unlock;
  841. }
  842. /* Pinned buffers may be scanout, so flush the cache */
  843. if (obj->pin_count)
  844. i915_gem_object_flush_cpu_write_domain(obj);
  845. drm_gem_object_unreference(&obj->base);
  846. unlock:
  847. mutex_unlock(&dev->struct_mutex);
  848. return ret;
  849. }
  850. /**
  851. * Maps the contents of an object, returning the address it is mapped
  852. * into.
  853. *
  854. * While the mapping holds a reference on the contents of the object, it doesn't
  855. * imply a ref on the object itself.
  856. */
  857. int
  858. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  859. struct drm_file *file)
  860. {
  861. struct drm_i915_gem_mmap *args = data;
  862. struct drm_gem_object *obj;
  863. unsigned long addr;
  864. obj = drm_gem_object_lookup(dev, file, args->handle);
  865. if (obj == NULL)
  866. return -ENOENT;
  867. addr = vm_mmap(obj->filp, 0, args->size,
  868. PROT_READ | PROT_WRITE, MAP_SHARED,
  869. args->offset);
  870. drm_gem_object_unreference_unlocked(obj);
  871. if (IS_ERR((void *)addr))
  872. return addr;
  873. args->addr_ptr = (uint64_t) addr;
  874. return 0;
  875. }
  876. /**
  877. * i915_gem_fault - fault a page into the GTT
  878. * vma: VMA in question
  879. * vmf: fault info
  880. *
  881. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  882. * from userspace. The fault handler takes care of binding the object to
  883. * the GTT (if needed), allocating and programming a fence register (again,
  884. * only if needed based on whether the old reg is still valid or the object
  885. * is tiled) and inserting a new PTE into the faulting process.
  886. *
  887. * Note that the faulting process may involve evicting existing objects
  888. * from the GTT and/or fence registers to make room. So performance may
  889. * suffer if the GTT working set is large or there are few fence registers
  890. * left.
  891. */
  892. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  893. {
  894. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  895. struct drm_device *dev = obj->base.dev;
  896. drm_i915_private_t *dev_priv = dev->dev_private;
  897. pgoff_t page_offset;
  898. unsigned long pfn;
  899. int ret = 0;
  900. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  901. /* We don't use vmf->pgoff since that has the fake offset */
  902. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  903. PAGE_SHIFT;
  904. ret = i915_mutex_lock_interruptible(dev);
  905. if (ret)
  906. goto out;
  907. trace_i915_gem_object_fault(obj, page_offset, true, write);
  908. /* Now bind it into the GTT if needed */
  909. if (!obj->map_and_fenceable) {
  910. ret = i915_gem_object_unbind(obj);
  911. if (ret)
  912. goto unlock;
  913. }
  914. if (!obj->gtt_space) {
  915. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  916. if (ret)
  917. goto unlock;
  918. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  919. if (ret)
  920. goto unlock;
  921. }
  922. if (!obj->has_global_gtt_mapping)
  923. i915_gem_gtt_bind_object(obj, obj->cache_level);
  924. ret = i915_gem_object_get_fence(obj);
  925. if (ret)
  926. goto unlock;
  927. if (i915_gem_object_is_inactive(obj))
  928. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  929. obj->fault_mappable = true;
  930. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  931. page_offset;
  932. /* Finally, remap it using the new GTT offset */
  933. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  934. unlock:
  935. mutex_unlock(&dev->struct_mutex);
  936. out:
  937. switch (ret) {
  938. case -EIO:
  939. case -EAGAIN:
  940. /* Give the error handler a chance to run and move the
  941. * objects off the GPU active list. Next time we service the
  942. * fault, we should be able to transition the page into the
  943. * GTT without touching the GPU (and so avoid further
  944. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  945. * with coherency, just lost writes.
  946. */
  947. set_need_resched();
  948. case 0:
  949. case -ERESTARTSYS:
  950. case -EINTR:
  951. return VM_FAULT_NOPAGE;
  952. case -ENOMEM:
  953. return VM_FAULT_OOM;
  954. default:
  955. return VM_FAULT_SIGBUS;
  956. }
  957. }
  958. /**
  959. * i915_gem_release_mmap - remove physical page mappings
  960. * @obj: obj in question
  961. *
  962. * Preserve the reservation of the mmapping with the DRM core code, but
  963. * relinquish ownership of the pages back to the system.
  964. *
  965. * It is vital that we remove the page mapping if we have mapped a tiled
  966. * object through the GTT and then lose the fence register due to
  967. * resource pressure. Similarly if the object has been moved out of the
  968. * aperture, than pages mapped into userspace must be revoked. Removing the
  969. * mapping will then trigger a page fault on the next user access, allowing
  970. * fixup by i915_gem_fault().
  971. */
  972. void
  973. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  974. {
  975. if (!obj->fault_mappable)
  976. return;
  977. if (obj->base.dev->dev_mapping)
  978. unmap_mapping_range(obj->base.dev->dev_mapping,
  979. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  980. obj->base.size, 1);
  981. obj->fault_mappable = false;
  982. }
  983. static uint32_t
  984. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  985. {
  986. uint32_t gtt_size;
  987. if (INTEL_INFO(dev)->gen >= 4 ||
  988. tiling_mode == I915_TILING_NONE)
  989. return size;
  990. /* Previous chips need a power-of-two fence region when tiling */
  991. if (INTEL_INFO(dev)->gen == 3)
  992. gtt_size = 1024*1024;
  993. else
  994. gtt_size = 512*1024;
  995. while (gtt_size < size)
  996. gtt_size <<= 1;
  997. return gtt_size;
  998. }
  999. /**
  1000. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1001. * @obj: object to check
  1002. *
  1003. * Return the required GTT alignment for an object, taking into account
  1004. * potential fence register mapping.
  1005. */
  1006. static uint32_t
  1007. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1008. uint32_t size,
  1009. int tiling_mode)
  1010. {
  1011. /*
  1012. * Minimum alignment is 4k (GTT page size), but might be greater
  1013. * if a fence register is needed for the object.
  1014. */
  1015. if (INTEL_INFO(dev)->gen >= 4 ||
  1016. tiling_mode == I915_TILING_NONE)
  1017. return 4096;
  1018. /*
  1019. * Previous chips need to be aligned to the size of the smallest
  1020. * fence register that can contain the object.
  1021. */
  1022. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1023. }
  1024. /**
  1025. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1026. * unfenced object
  1027. * @dev: the device
  1028. * @size: size of the object
  1029. * @tiling_mode: tiling mode of the object
  1030. *
  1031. * Return the required GTT alignment for an object, only taking into account
  1032. * unfenced tiled surface requirements.
  1033. */
  1034. uint32_t
  1035. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1036. uint32_t size,
  1037. int tiling_mode)
  1038. {
  1039. /*
  1040. * Minimum alignment is 4k (GTT page size) for sane hw.
  1041. */
  1042. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1043. tiling_mode == I915_TILING_NONE)
  1044. return 4096;
  1045. /* Previous hardware however needs to be aligned to a power-of-two
  1046. * tile height. The simplest method for determining this is to reuse
  1047. * the power-of-tile object size.
  1048. */
  1049. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1050. }
  1051. int
  1052. i915_gem_mmap_gtt(struct drm_file *file,
  1053. struct drm_device *dev,
  1054. uint32_t handle,
  1055. uint64_t *offset)
  1056. {
  1057. struct drm_i915_private *dev_priv = dev->dev_private;
  1058. struct drm_i915_gem_object *obj;
  1059. int ret;
  1060. ret = i915_mutex_lock_interruptible(dev);
  1061. if (ret)
  1062. return ret;
  1063. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1064. if (&obj->base == NULL) {
  1065. ret = -ENOENT;
  1066. goto unlock;
  1067. }
  1068. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1069. ret = -E2BIG;
  1070. goto out;
  1071. }
  1072. if (obj->madv != I915_MADV_WILLNEED) {
  1073. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1074. ret = -EINVAL;
  1075. goto out;
  1076. }
  1077. if (!obj->base.map_list.map) {
  1078. ret = drm_gem_create_mmap_offset(&obj->base);
  1079. if (ret)
  1080. goto out;
  1081. }
  1082. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1083. out:
  1084. drm_gem_object_unreference(&obj->base);
  1085. unlock:
  1086. mutex_unlock(&dev->struct_mutex);
  1087. return ret;
  1088. }
  1089. /**
  1090. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1091. * @dev: DRM device
  1092. * @data: GTT mapping ioctl data
  1093. * @file: GEM object info
  1094. *
  1095. * Simply returns the fake offset to userspace so it can mmap it.
  1096. * The mmap call will end up in drm_gem_mmap(), which will set things
  1097. * up so we can get faults in the handler above.
  1098. *
  1099. * The fault handler will take care of binding the object into the GTT
  1100. * (since it may have been evicted to make room for something), allocating
  1101. * a fence register, and mapping the appropriate aperture address into
  1102. * userspace.
  1103. */
  1104. int
  1105. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1106. struct drm_file *file)
  1107. {
  1108. struct drm_i915_gem_mmap_gtt *args = data;
  1109. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1110. }
  1111. static int
  1112. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1113. gfp_t gfpmask)
  1114. {
  1115. int page_count, i;
  1116. struct address_space *mapping;
  1117. struct inode *inode;
  1118. struct page *page;
  1119. /* Get the list of pages out of our struct file. They'll be pinned
  1120. * at this point until we release them.
  1121. */
  1122. page_count = obj->base.size / PAGE_SIZE;
  1123. BUG_ON(obj->pages != NULL);
  1124. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1125. if (obj->pages == NULL)
  1126. return -ENOMEM;
  1127. inode = obj->base.filp->f_path.dentry->d_inode;
  1128. mapping = inode->i_mapping;
  1129. gfpmask |= mapping_gfp_mask(mapping);
  1130. for (i = 0; i < page_count; i++) {
  1131. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1132. if (IS_ERR(page))
  1133. goto err_pages;
  1134. obj->pages[i] = page;
  1135. }
  1136. if (i915_gem_object_needs_bit17_swizzle(obj))
  1137. i915_gem_object_do_bit_17_swizzle(obj);
  1138. return 0;
  1139. err_pages:
  1140. while (i--)
  1141. page_cache_release(obj->pages[i]);
  1142. drm_free_large(obj->pages);
  1143. obj->pages = NULL;
  1144. return PTR_ERR(page);
  1145. }
  1146. static void
  1147. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1148. {
  1149. int page_count = obj->base.size / PAGE_SIZE;
  1150. int i;
  1151. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1152. if (i915_gem_object_needs_bit17_swizzle(obj))
  1153. i915_gem_object_save_bit_17_swizzle(obj);
  1154. if (obj->madv == I915_MADV_DONTNEED)
  1155. obj->dirty = 0;
  1156. for (i = 0; i < page_count; i++) {
  1157. if (obj->dirty)
  1158. set_page_dirty(obj->pages[i]);
  1159. if (obj->madv == I915_MADV_WILLNEED)
  1160. mark_page_accessed(obj->pages[i]);
  1161. page_cache_release(obj->pages[i]);
  1162. }
  1163. obj->dirty = 0;
  1164. drm_free_large(obj->pages);
  1165. obj->pages = NULL;
  1166. }
  1167. void
  1168. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1169. struct intel_ring_buffer *ring,
  1170. u32 seqno)
  1171. {
  1172. struct drm_device *dev = obj->base.dev;
  1173. struct drm_i915_private *dev_priv = dev->dev_private;
  1174. BUG_ON(ring == NULL);
  1175. obj->ring = ring;
  1176. /* Add a reference if we're newly entering the active list. */
  1177. if (!obj->active) {
  1178. drm_gem_object_reference(&obj->base);
  1179. obj->active = 1;
  1180. }
  1181. /* Move from whatever list we were on to the tail of execution. */
  1182. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1183. list_move_tail(&obj->ring_list, &ring->active_list);
  1184. obj->last_rendering_seqno = seqno;
  1185. if (obj->fenced_gpu_access) {
  1186. obj->last_fenced_seqno = seqno;
  1187. /* Bump MRU to take account of the delayed flush */
  1188. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1189. struct drm_i915_fence_reg *reg;
  1190. reg = &dev_priv->fence_regs[obj->fence_reg];
  1191. list_move_tail(&reg->lru_list,
  1192. &dev_priv->mm.fence_list);
  1193. }
  1194. }
  1195. }
  1196. static void
  1197. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1198. {
  1199. list_del_init(&obj->ring_list);
  1200. obj->last_rendering_seqno = 0;
  1201. obj->last_fenced_seqno = 0;
  1202. }
  1203. static void
  1204. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1205. {
  1206. struct drm_device *dev = obj->base.dev;
  1207. drm_i915_private_t *dev_priv = dev->dev_private;
  1208. BUG_ON(!obj->active);
  1209. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1210. i915_gem_object_move_off_active(obj);
  1211. }
  1212. static void
  1213. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1214. {
  1215. struct drm_device *dev = obj->base.dev;
  1216. struct drm_i915_private *dev_priv = dev->dev_private;
  1217. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1218. BUG_ON(!list_empty(&obj->gpu_write_list));
  1219. BUG_ON(!obj->active);
  1220. obj->ring = NULL;
  1221. i915_gem_object_move_off_active(obj);
  1222. obj->fenced_gpu_access = false;
  1223. obj->active = 0;
  1224. obj->pending_gpu_write = false;
  1225. drm_gem_object_unreference(&obj->base);
  1226. WARN_ON(i915_verify_lists(dev));
  1227. }
  1228. /* Immediately discard the backing storage */
  1229. static void
  1230. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1231. {
  1232. struct inode *inode;
  1233. /* Our goal here is to return as much of the memory as
  1234. * is possible back to the system as we are called from OOM.
  1235. * To do this we must instruct the shmfs to drop all of its
  1236. * backing pages, *now*.
  1237. */
  1238. inode = obj->base.filp->f_path.dentry->d_inode;
  1239. shmem_truncate_range(inode, 0, (loff_t)-1);
  1240. if (obj->base.map_list.map)
  1241. drm_gem_free_mmap_offset(&obj->base);
  1242. obj->madv = __I915_MADV_PURGED;
  1243. }
  1244. static inline int
  1245. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1246. {
  1247. return obj->madv == I915_MADV_DONTNEED;
  1248. }
  1249. static void
  1250. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1251. uint32_t flush_domains)
  1252. {
  1253. struct drm_i915_gem_object *obj, *next;
  1254. list_for_each_entry_safe(obj, next,
  1255. &ring->gpu_write_list,
  1256. gpu_write_list) {
  1257. if (obj->base.write_domain & flush_domains) {
  1258. uint32_t old_write_domain = obj->base.write_domain;
  1259. obj->base.write_domain = 0;
  1260. list_del_init(&obj->gpu_write_list);
  1261. i915_gem_object_move_to_active(obj, ring,
  1262. i915_gem_next_request_seqno(ring));
  1263. trace_i915_gem_object_change_domain(obj,
  1264. obj->base.read_domains,
  1265. old_write_domain);
  1266. }
  1267. }
  1268. }
  1269. static u32
  1270. i915_gem_get_seqno(struct drm_device *dev)
  1271. {
  1272. drm_i915_private_t *dev_priv = dev->dev_private;
  1273. u32 seqno = dev_priv->next_seqno;
  1274. /* reserve 0 for non-seqno */
  1275. if (++dev_priv->next_seqno == 0)
  1276. dev_priv->next_seqno = 1;
  1277. return seqno;
  1278. }
  1279. u32
  1280. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1281. {
  1282. if (ring->outstanding_lazy_request == 0)
  1283. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1284. return ring->outstanding_lazy_request;
  1285. }
  1286. int
  1287. i915_add_request(struct intel_ring_buffer *ring,
  1288. struct drm_file *file,
  1289. struct drm_i915_gem_request *request)
  1290. {
  1291. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1292. uint32_t seqno;
  1293. u32 request_ring_position;
  1294. int was_empty;
  1295. int ret;
  1296. BUG_ON(request == NULL);
  1297. seqno = i915_gem_next_request_seqno(ring);
  1298. /* Record the position of the start of the request so that
  1299. * should we detect the updated seqno part-way through the
  1300. * GPU processing the request, we never over-estimate the
  1301. * position of the head.
  1302. */
  1303. request_ring_position = intel_ring_get_tail(ring);
  1304. ret = ring->add_request(ring, &seqno);
  1305. if (ret)
  1306. return ret;
  1307. trace_i915_gem_request_add(ring, seqno);
  1308. request->seqno = seqno;
  1309. request->ring = ring;
  1310. request->tail = request_ring_position;
  1311. request->emitted_jiffies = jiffies;
  1312. was_empty = list_empty(&ring->request_list);
  1313. list_add_tail(&request->list, &ring->request_list);
  1314. if (file) {
  1315. struct drm_i915_file_private *file_priv = file->driver_priv;
  1316. spin_lock(&file_priv->mm.lock);
  1317. request->file_priv = file_priv;
  1318. list_add_tail(&request->client_list,
  1319. &file_priv->mm.request_list);
  1320. spin_unlock(&file_priv->mm.lock);
  1321. }
  1322. ring->outstanding_lazy_request = 0;
  1323. if (!dev_priv->mm.suspended) {
  1324. if (i915_enable_hangcheck) {
  1325. mod_timer(&dev_priv->hangcheck_timer,
  1326. jiffies +
  1327. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1328. }
  1329. if (was_empty)
  1330. queue_delayed_work(dev_priv->wq,
  1331. &dev_priv->mm.retire_work, HZ);
  1332. }
  1333. return 0;
  1334. }
  1335. static inline void
  1336. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1337. {
  1338. struct drm_i915_file_private *file_priv = request->file_priv;
  1339. if (!file_priv)
  1340. return;
  1341. spin_lock(&file_priv->mm.lock);
  1342. if (request->file_priv) {
  1343. list_del(&request->client_list);
  1344. request->file_priv = NULL;
  1345. }
  1346. spin_unlock(&file_priv->mm.lock);
  1347. }
  1348. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1349. struct intel_ring_buffer *ring)
  1350. {
  1351. while (!list_empty(&ring->request_list)) {
  1352. struct drm_i915_gem_request *request;
  1353. request = list_first_entry(&ring->request_list,
  1354. struct drm_i915_gem_request,
  1355. list);
  1356. list_del(&request->list);
  1357. i915_gem_request_remove_from_client(request);
  1358. kfree(request);
  1359. }
  1360. while (!list_empty(&ring->active_list)) {
  1361. struct drm_i915_gem_object *obj;
  1362. obj = list_first_entry(&ring->active_list,
  1363. struct drm_i915_gem_object,
  1364. ring_list);
  1365. obj->base.write_domain = 0;
  1366. list_del_init(&obj->gpu_write_list);
  1367. i915_gem_object_move_to_inactive(obj);
  1368. }
  1369. }
  1370. static void i915_gem_reset_fences(struct drm_device *dev)
  1371. {
  1372. struct drm_i915_private *dev_priv = dev->dev_private;
  1373. int i;
  1374. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1375. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1376. i915_gem_write_fence(dev, i, NULL);
  1377. if (reg->obj)
  1378. i915_gem_object_fence_lost(reg->obj);
  1379. reg->pin_count = 0;
  1380. reg->obj = NULL;
  1381. INIT_LIST_HEAD(&reg->lru_list);
  1382. }
  1383. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1384. }
  1385. void i915_gem_reset(struct drm_device *dev)
  1386. {
  1387. struct drm_i915_private *dev_priv = dev->dev_private;
  1388. struct drm_i915_gem_object *obj;
  1389. struct intel_ring_buffer *ring;
  1390. int i;
  1391. for_each_ring(ring, dev_priv, i)
  1392. i915_gem_reset_ring_lists(dev_priv, ring);
  1393. /* Remove anything from the flushing lists. The GPU cache is likely
  1394. * to be lost on reset along with the data, so simply move the
  1395. * lost bo to the inactive list.
  1396. */
  1397. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1398. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1399. struct drm_i915_gem_object,
  1400. mm_list);
  1401. obj->base.write_domain = 0;
  1402. list_del_init(&obj->gpu_write_list);
  1403. i915_gem_object_move_to_inactive(obj);
  1404. }
  1405. /* Move everything out of the GPU domains to ensure we do any
  1406. * necessary invalidation upon reuse.
  1407. */
  1408. list_for_each_entry(obj,
  1409. &dev_priv->mm.inactive_list,
  1410. mm_list)
  1411. {
  1412. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1413. }
  1414. /* The fence registers are invalidated so clear them out */
  1415. i915_gem_reset_fences(dev);
  1416. }
  1417. /**
  1418. * This function clears the request list as sequence numbers are passed.
  1419. */
  1420. void
  1421. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1422. {
  1423. uint32_t seqno;
  1424. int i;
  1425. if (list_empty(&ring->request_list))
  1426. return;
  1427. WARN_ON(i915_verify_lists(ring->dev));
  1428. seqno = ring->get_seqno(ring);
  1429. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1430. if (seqno >= ring->sync_seqno[i])
  1431. ring->sync_seqno[i] = 0;
  1432. while (!list_empty(&ring->request_list)) {
  1433. struct drm_i915_gem_request *request;
  1434. request = list_first_entry(&ring->request_list,
  1435. struct drm_i915_gem_request,
  1436. list);
  1437. if (!i915_seqno_passed(seqno, request->seqno))
  1438. break;
  1439. trace_i915_gem_request_retire(ring, request->seqno);
  1440. /* We know the GPU must have read the request to have
  1441. * sent us the seqno + interrupt, so use the position
  1442. * of tail of the request to update the last known position
  1443. * of the GPU head.
  1444. */
  1445. ring->last_retired_head = request->tail;
  1446. list_del(&request->list);
  1447. i915_gem_request_remove_from_client(request);
  1448. kfree(request);
  1449. }
  1450. /* Move any buffers on the active list that are no longer referenced
  1451. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1452. */
  1453. while (!list_empty(&ring->active_list)) {
  1454. struct drm_i915_gem_object *obj;
  1455. obj = list_first_entry(&ring->active_list,
  1456. struct drm_i915_gem_object,
  1457. ring_list);
  1458. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1459. break;
  1460. if (obj->base.write_domain != 0)
  1461. i915_gem_object_move_to_flushing(obj);
  1462. else
  1463. i915_gem_object_move_to_inactive(obj);
  1464. }
  1465. if (unlikely(ring->trace_irq_seqno &&
  1466. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1467. ring->irq_put(ring);
  1468. ring->trace_irq_seqno = 0;
  1469. }
  1470. WARN_ON(i915_verify_lists(ring->dev));
  1471. }
  1472. void
  1473. i915_gem_retire_requests(struct drm_device *dev)
  1474. {
  1475. drm_i915_private_t *dev_priv = dev->dev_private;
  1476. struct intel_ring_buffer *ring;
  1477. int i;
  1478. for_each_ring(ring, dev_priv, i)
  1479. i915_gem_retire_requests_ring(ring);
  1480. }
  1481. static void
  1482. i915_gem_retire_work_handler(struct work_struct *work)
  1483. {
  1484. drm_i915_private_t *dev_priv;
  1485. struct drm_device *dev;
  1486. struct intel_ring_buffer *ring;
  1487. bool idle;
  1488. int i;
  1489. dev_priv = container_of(work, drm_i915_private_t,
  1490. mm.retire_work.work);
  1491. dev = dev_priv->dev;
  1492. /* Come back later if the device is busy... */
  1493. if (!mutex_trylock(&dev->struct_mutex)) {
  1494. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1495. return;
  1496. }
  1497. i915_gem_retire_requests(dev);
  1498. /* Send a periodic flush down the ring so we don't hold onto GEM
  1499. * objects indefinitely.
  1500. */
  1501. idle = true;
  1502. for_each_ring(ring, dev_priv, i) {
  1503. if (!list_empty(&ring->gpu_write_list)) {
  1504. struct drm_i915_gem_request *request;
  1505. int ret;
  1506. ret = i915_gem_flush_ring(ring,
  1507. 0, I915_GEM_GPU_DOMAINS);
  1508. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1509. if (ret || request == NULL ||
  1510. i915_add_request(ring, NULL, request))
  1511. kfree(request);
  1512. }
  1513. idle &= list_empty(&ring->request_list);
  1514. }
  1515. if (!dev_priv->mm.suspended && !idle)
  1516. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1517. mutex_unlock(&dev->struct_mutex);
  1518. }
  1519. static int
  1520. i915_gem_check_wedge(struct drm_i915_private *dev_priv)
  1521. {
  1522. BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
  1523. if (atomic_read(&dev_priv->mm.wedged)) {
  1524. struct completion *x = &dev_priv->error_completion;
  1525. bool recovery_complete;
  1526. unsigned long flags;
  1527. /* Give the error handler a chance to run. */
  1528. spin_lock_irqsave(&x->wait.lock, flags);
  1529. recovery_complete = x->done > 0;
  1530. spin_unlock_irqrestore(&x->wait.lock, flags);
  1531. return recovery_complete ? -EIO : -EAGAIN;
  1532. }
  1533. return 0;
  1534. }
  1535. /*
  1536. * Compare seqno against outstanding lazy request. Emit a request if they are
  1537. * equal.
  1538. */
  1539. static int
  1540. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  1541. {
  1542. int ret = 0;
  1543. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  1544. if (seqno == ring->outstanding_lazy_request) {
  1545. struct drm_i915_gem_request *request;
  1546. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1547. if (request == NULL)
  1548. return -ENOMEM;
  1549. ret = i915_add_request(ring, NULL, request);
  1550. if (ret) {
  1551. kfree(request);
  1552. return ret;
  1553. }
  1554. BUG_ON(seqno != request->seqno);
  1555. }
  1556. return ret;
  1557. }
  1558. /**
  1559. * __wait_seqno - wait until execution of seqno has finished
  1560. * @ring: the ring expected to report seqno
  1561. * @seqno: duh!
  1562. * @interruptible: do an interruptible wait (normally yes)
  1563. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  1564. *
  1565. * Returns 0 if the seqno was found within the alloted time. Else returns the
  1566. * errno with remaining time filled in timeout argument.
  1567. */
  1568. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  1569. bool interruptible, struct timespec *timeout)
  1570. {
  1571. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1572. struct timespec before, now, wait_time={1,0};
  1573. unsigned long timeout_jiffies;
  1574. long end;
  1575. bool wait_forever = true;
  1576. if (i915_seqno_passed(ring->get_seqno(ring), seqno))
  1577. return 0;
  1578. trace_i915_gem_request_wait_begin(ring, seqno);
  1579. if (timeout != NULL) {
  1580. wait_time = *timeout;
  1581. wait_forever = false;
  1582. }
  1583. timeout_jiffies = timespec_to_jiffies(&wait_time);
  1584. if (WARN_ON(!ring->irq_get(ring)))
  1585. return -ENODEV;
  1586. /* Record current time in case interrupted by signal, or wedged * */
  1587. getrawmonotonic(&before);
  1588. #define EXIT_COND \
  1589. (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
  1590. atomic_read(&dev_priv->mm.wedged))
  1591. do {
  1592. if (interruptible)
  1593. end = wait_event_interruptible_timeout(ring->irq_queue,
  1594. EXIT_COND,
  1595. timeout_jiffies);
  1596. else
  1597. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  1598. timeout_jiffies);
  1599. if (atomic_read(&dev_priv->mm.wedged))
  1600. end = -EAGAIN;
  1601. } while (end == 0 && wait_forever);
  1602. getrawmonotonic(&now);
  1603. ring->irq_put(ring);
  1604. trace_i915_gem_request_wait_end(ring, seqno);
  1605. #undef EXIT_COND
  1606. if (timeout) {
  1607. struct timespec sleep_time = timespec_sub(now, before);
  1608. *timeout = timespec_sub(*timeout, sleep_time);
  1609. }
  1610. switch (end) {
  1611. case -EAGAIN: /* Wedged */
  1612. case -ERESTARTSYS: /* Signal */
  1613. return (int)end;
  1614. case 0: /* Timeout */
  1615. if (timeout)
  1616. set_normalized_timespec(timeout, 0, 0);
  1617. return -ETIME;
  1618. default: /* Completed */
  1619. WARN_ON(end < 0); /* We're not aware of other errors */
  1620. return 0;
  1621. }
  1622. }
  1623. /**
  1624. * Waits for a sequence number to be signaled, and cleans up the
  1625. * request and object lists appropriately for that event.
  1626. */
  1627. int
  1628. i915_wait_request(struct intel_ring_buffer *ring,
  1629. uint32_t seqno)
  1630. {
  1631. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1632. int ret = 0;
  1633. BUG_ON(seqno == 0);
  1634. ret = i915_gem_check_wedge(dev_priv);
  1635. if (ret)
  1636. return ret;
  1637. ret = i915_gem_check_olr(ring, seqno);
  1638. if (ret)
  1639. return ret;
  1640. ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
  1641. return ret;
  1642. }
  1643. /**
  1644. * Ensures that all rendering to the object has completed and the object is
  1645. * safe to unbind from the GTT or access from the CPU.
  1646. */
  1647. int
  1648. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1649. {
  1650. int ret;
  1651. /* This function only exists to support waiting for existing rendering,
  1652. * not for emitting required flushes.
  1653. */
  1654. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1655. /* If there is rendering queued on the buffer being evicted, wait for
  1656. * it.
  1657. */
  1658. if (obj->active) {
  1659. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1660. if (ret)
  1661. return ret;
  1662. i915_gem_retire_requests_ring(obj->ring);
  1663. }
  1664. return 0;
  1665. }
  1666. /**
  1667. * i915_gem_object_sync - sync an object to a ring.
  1668. *
  1669. * @obj: object which may be in use on another ring.
  1670. * @to: ring we wish to use the object on. May be NULL.
  1671. *
  1672. * This code is meant to abstract object synchronization with the GPU.
  1673. * Calling with NULL implies synchronizing the object with the CPU
  1674. * rather than a particular GPU ring.
  1675. *
  1676. * Returns 0 if successful, else propagates up the lower layer error.
  1677. */
  1678. int
  1679. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1680. struct intel_ring_buffer *to)
  1681. {
  1682. struct intel_ring_buffer *from = obj->ring;
  1683. u32 seqno;
  1684. int ret, idx;
  1685. if (from == NULL || to == from)
  1686. return 0;
  1687. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1688. return i915_gem_object_wait_rendering(obj);
  1689. idx = intel_ring_sync_index(from, to);
  1690. seqno = obj->last_rendering_seqno;
  1691. if (seqno <= from->sync_seqno[idx])
  1692. return 0;
  1693. ret = i915_gem_check_olr(obj->ring, seqno);
  1694. if (ret)
  1695. return ret;
  1696. ret = to->sync_to(to, from, seqno);
  1697. if (!ret)
  1698. from->sync_seqno[idx] = seqno;
  1699. return ret;
  1700. }
  1701. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1702. {
  1703. u32 old_write_domain, old_read_domains;
  1704. /* Act a barrier for all accesses through the GTT */
  1705. mb();
  1706. /* Force a pagefault for domain tracking on next user access */
  1707. i915_gem_release_mmap(obj);
  1708. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1709. return;
  1710. old_read_domains = obj->base.read_domains;
  1711. old_write_domain = obj->base.write_domain;
  1712. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1713. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1714. trace_i915_gem_object_change_domain(obj,
  1715. old_read_domains,
  1716. old_write_domain);
  1717. }
  1718. /**
  1719. * Unbinds an object from the GTT aperture.
  1720. */
  1721. int
  1722. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1723. {
  1724. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1725. int ret = 0;
  1726. if (obj->gtt_space == NULL)
  1727. return 0;
  1728. if (obj->pin_count != 0) {
  1729. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1730. return -EINVAL;
  1731. }
  1732. ret = i915_gem_object_finish_gpu(obj);
  1733. if (ret)
  1734. return ret;
  1735. /* Continue on if we fail due to EIO, the GPU is hung so we
  1736. * should be safe and we need to cleanup or else we might
  1737. * cause memory corruption through use-after-free.
  1738. */
  1739. i915_gem_object_finish_gtt(obj);
  1740. /* Move the object to the CPU domain to ensure that
  1741. * any possible CPU writes while it's not in the GTT
  1742. * are flushed when we go to remap it.
  1743. */
  1744. if (ret == 0)
  1745. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1746. if (ret == -ERESTARTSYS)
  1747. return ret;
  1748. if (ret) {
  1749. /* In the event of a disaster, abandon all caches and
  1750. * hope for the best.
  1751. */
  1752. i915_gem_clflush_object(obj);
  1753. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1754. }
  1755. /* release the fence reg _after_ flushing */
  1756. ret = i915_gem_object_put_fence(obj);
  1757. if (ret)
  1758. return ret;
  1759. trace_i915_gem_object_unbind(obj);
  1760. if (obj->has_global_gtt_mapping)
  1761. i915_gem_gtt_unbind_object(obj);
  1762. if (obj->has_aliasing_ppgtt_mapping) {
  1763. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1764. obj->has_aliasing_ppgtt_mapping = 0;
  1765. }
  1766. i915_gem_gtt_finish_object(obj);
  1767. i915_gem_object_put_pages_gtt(obj);
  1768. list_del_init(&obj->gtt_list);
  1769. list_del_init(&obj->mm_list);
  1770. /* Avoid an unnecessary call to unbind on rebind. */
  1771. obj->map_and_fenceable = true;
  1772. drm_mm_put_block(obj->gtt_space);
  1773. obj->gtt_space = NULL;
  1774. obj->gtt_offset = 0;
  1775. if (i915_gem_object_is_purgeable(obj))
  1776. i915_gem_object_truncate(obj);
  1777. return ret;
  1778. }
  1779. int
  1780. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1781. uint32_t invalidate_domains,
  1782. uint32_t flush_domains)
  1783. {
  1784. int ret;
  1785. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1786. return 0;
  1787. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1788. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1789. if (ret)
  1790. return ret;
  1791. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1792. i915_gem_process_flushing_list(ring, flush_domains);
  1793. return 0;
  1794. }
  1795. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1796. {
  1797. int ret;
  1798. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1799. return 0;
  1800. if (!list_empty(&ring->gpu_write_list)) {
  1801. ret = i915_gem_flush_ring(ring,
  1802. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1803. if (ret)
  1804. return ret;
  1805. }
  1806. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1807. }
  1808. int i915_gpu_idle(struct drm_device *dev)
  1809. {
  1810. drm_i915_private_t *dev_priv = dev->dev_private;
  1811. struct intel_ring_buffer *ring;
  1812. int ret, i;
  1813. /* Flush everything onto the inactive list. */
  1814. for_each_ring(ring, dev_priv, i) {
  1815. ret = i915_ring_idle(ring);
  1816. if (ret)
  1817. return ret;
  1818. /* Is the device fubar? */
  1819. if (WARN_ON(!list_empty(&ring->gpu_write_list)))
  1820. return -EBUSY;
  1821. }
  1822. return 0;
  1823. }
  1824. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  1825. struct drm_i915_gem_object *obj)
  1826. {
  1827. drm_i915_private_t *dev_priv = dev->dev_private;
  1828. uint64_t val;
  1829. if (obj) {
  1830. u32 size = obj->gtt_space->size;
  1831. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1832. 0xfffff000) << 32;
  1833. val |= obj->gtt_offset & 0xfffff000;
  1834. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1835. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1836. if (obj->tiling_mode == I915_TILING_Y)
  1837. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1838. val |= I965_FENCE_REG_VALID;
  1839. } else
  1840. val = 0;
  1841. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  1842. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  1843. }
  1844. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  1845. struct drm_i915_gem_object *obj)
  1846. {
  1847. drm_i915_private_t *dev_priv = dev->dev_private;
  1848. uint64_t val;
  1849. if (obj) {
  1850. u32 size = obj->gtt_space->size;
  1851. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1852. 0xfffff000) << 32;
  1853. val |= obj->gtt_offset & 0xfffff000;
  1854. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1855. if (obj->tiling_mode == I915_TILING_Y)
  1856. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1857. val |= I965_FENCE_REG_VALID;
  1858. } else
  1859. val = 0;
  1860. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  1861. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  1862. }
  1863. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  1864. struct drm_i915_gem_object *obj)
  1865. {
  1866. drm_i915_private_t *dev_priv = dev->dev_private;
  1867. u32 val;
  1868. if (obj) {
  1869. u32 size = obj->gtt_space->size;
  1870. int pitch_val;
  1871. int tile_width;
  1872. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1873. (size & -size) != size ||
  1874. (obj->gtt_offset & (size - 1)),
  1875. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1876. obj->gtt_offset, obj->map_and_fenceable, size);
  1877. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1878. tile_width = 128;
  1879. else
  1880. tile_width = 512;
  1881. /* Note: pitch better be a power of two tile widths */
  1882. pitch_val = obj->stride / tile_width;
  1883. pitch_val = ffs(pitch_val) - 1;
  1884. val = obj->gtt_offset;
  1885. if (obj->tiling_mode == I915_TILING_Y)
  1886. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1887. val |= I915_FENCE_SIZE_BITS(size);
  1888. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1889. val |= I830_FENCE_REG_VALID;
  1890. } else
  1891. val = 0;
  1892. if (reg < 8)
  1893. reg = FENCE_REG_830_0 + reg * 4;
  1894. else
  1895. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  1896. I915_WRITE(reg, val);
  1897. POSTING_READ(reg);
  1898. }
  1899. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  1900. struct drm_i915_gem_object *obj)
  1901. {
  1902. drm_i915_private_t *dev_priv = dev->dev_private;
  1903. uint32_t val;
  1904. if (obj) {
  1905. u32 size = obj->gtt_space->size;
  1906. uint32_t pitch_val;
  1907. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1908. (size & -size) != size ||
  1909. (obj->gtt_offset & (size - 1)),
  1910. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1911. obj->gtt_offset, size);
  1912. pitch_val = obj->stride / 128;
  1913. pitch_val = ffs(pitch_val) - 1;
  1914. val = obj->gtt_offset;
  1915. if (obj->tiling_mode == I915_TILING_Y)
  1916. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1917. val |= I830_FENCE_SIZE_BITS(size);
  1918. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1919. val |= I830_FENCE_REG_VALID;
  1920. } else
  1921. val = 0;
  1922. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  1923. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  1924. }
  1925. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  1926. struct drm_i915_gem_object *obj)
  1927. {
  1928. switch (INTEL_INFO(dev)->gen) {
  1929. case 7:
  1930. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  1931. case 5:
  1932. case 4: i965_write_fence_reg(dev, reg, obj); break;
  1933. case 3: i915_write_fence_reg(dev, reg, obj); break;
  1934. case 2: i830_write_fence_reg(dev, reg, obj); break;
  1935. default: break;
  1936. }
  1937. }
  1938. static inline int fence_number(struct drm_i915_private *dev_priv,
  1939. struct drm_i915_fence_reg *fence)
  1940. {
  1941. return fence - dev_priv->fence_regs;
  1942. }
  1943. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  1944. struct drm_i915_fence_reg *fence,
  1945. bool enable)
  1946. {
  1947. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1948. int reg = fence_number(dev_priv, fence);
  1949. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  1950. if (enable) {
  1951. obj->fence_reg = reg;
  1952. fence->obj = obj;
  1953. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  1954. } else {
  1955. obj->fence_reg = I915_FENCE_REG_NONE;
  1956. fence->obj = NULL;
  1957. list_del_init(&fence->lru_list);
  1958. }
  1959. }
  1960. static int
  1961. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  1962. {
  1963. int ret;
  1964. if (obj->fenced_gpu_access) {
  1965. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1966. ret = i915_gem_flush_ring(obj->ring,
  1967. 0, obj->base.write_domain);
  1968. if (ret)
  1969. return ret;
  1970. }
  1971. obj->fenced_gpu_access = false;
  1972. }
  1973. if (obj->last_fenced_seqno) {
  1974. ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
  1975. if (ret)
  1976. return ret;
  1977. obj->last_fenced_seqno = 0;
  1978. }
  1979. /* Ensure that all CPU reads are completed before installing a fence
  1980. * and all writes before removing the fence.
  1981. */
  1982. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1983. mb();
  1984. return 0;
  1985. }
  1986. int
  1987. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1988. {
  1989. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1990. int ret;
  1991. ret = i915_gem_object_flush_fence(obj);
  1992. if (ret)
  1993. return ret;
  1994. if (obj->fence_reg == I915_FENCE_REG_NONE)
  1995. return 0;
  1996. i915_gem_object_update_fence(obj,
  1997. &dev_priv->fence_regs[obj->fence_reg],
  1998. false);
  1999. i915_gem_object_fence_lost(obj);
  2000. return 0;
  2001. }
  2002. static struct drm_i915_fence_reg *
  2003. i915_find_fence_reg(struct drm_device *dev)
  2004. {
  2005. struct drm_i915_private *dev_priv = dev->dev_private;
  2006. struct drm_i915_fence_reg *reg, *avail;
  2007. int i;
  2008. /* First try to find a free reg */
  2009. avail = NULL;
  2010. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2011. reg = &dev_priv->fence_regs[i];
  2012. if (!reg->obj)
  2013. return reg;
  2014. if (!reg->pin_count)
  2015. avail = reg;
  2016. }
  2017. if (avail == NULL)
  2018. return NULL;
  2019. /* None available, try to steal one or wait for a user to finish */
  2020. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2021. if (reg->pin_count)
  2022. continue;
  2023. return reg;
  2024. }
  2025. return NULL;
  2026. }
  2027. /**
  2028. * i915_gem_object_get_fence - set up fencing for an object
  2029. * @obj: object to map through a fence reg
  2030. *
  2031. * When mapping objects through the GTT, userspace wants to be able to write
  2032. * to them without having to worry about swizzling if the object is tiled.
  2033. * This function walks the fence regs looking for a free one for @obj,
  2034. * stealing one if it can't find any.
  2035. *
  2036. * It then sets up the reg based on the object's properties: address, pitch
  2037. * and tiling format.
  2038. *
  2039. * For an untiled surface, this removes any existing fence.
  2040. */
  2041. int
  2042. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2043. {
  2044. struct drm_device *dev = obj->base.dev;
  2045. struct drm_i915_private *dev_priv = dev->dev_private;
  2046. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2047. struct drm_i915_fence_reg *reg;
  2048. int ret;
  2049. /* Have we updated the tiling parameters upon the object and so
  2050. * will need to serialise the write to the associated fence register?
  2051. */
  2052. if (obj->fence_dirty) {
  2053. ret = i915_gem_object_flush_fence(obj);
  2054. if (ret)
  2055. return ret;
  2056. }
  2057. /* Just update our place in the LRU if our fence is getting reused. */
  2058. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2059. reg = &dev_priv->fence_regs[obj->fence_reg];
  2060. if (!obj->fence_dirty) {
  2061. list_move_tail(&reg->lru_list,
  2062. &dev_priv->mm.fence_list);
  2063. return 0;
  2064. }
  2065. } else if (enable) {
  2066. reg = i915_find_fence_reg(dev);
  2067. if (reg == NULL)
  2068. return -EDEADLK;
  2069. if (reg->obj) {
  2070. struct drm_i915_gem_object *old = reg->obj;
  2071. ret = i915_gem_object_flush_fence(old);
  2072. if (ret)
  2073. return ret;
  2074. i915_gem_object_fence_lost(old);
  2075. }
  2076. } else
  2077. return 0;
  2078. i915_gem_object_update_fence(obj, reg, enable);
  2079. obj->fence_dirty = false;
  2080. return 0;
  2081. }
  2082. /**
  2083. * Finds free space in the GTT aperture and binds the object there.
  2084. */
  2085. static int
  2086. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2087. unsigned alignment,
  2088. bool map_and_fenceable)
  2089. {
  2090. struct drm_device *dev = obj->base.dev;
  2091. drm_i915_private_t *dev_priv = dev->dev_private;
  2092. struct drm_mm_node *free_space;
  2093. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2094. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2095. bool mappable, fenceable;
  2096. int ret;
  2097. if (obj->madv != I915_MADV_WILLNEED) {
  2098. DRM_ERROR("Attempting to bind a purgeable object\n");
  2099. return -EINVAL;
  2100. }
  2101. fence_size = i915_gem_get_gtt_size(dev,
  2102. obj->base.size,
  2103. obj->tiling_mode);
  2104. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2105. obj->base.size,
  2106. obj->tiling_mode);
  2107. unfenced_alignment =
  2108. i915_gem_get_unfenced_gtt_alignment(dev,
  2109. obj->base.size,
  2110. obj->tiling_mode);
  2111. if (alignment == 0)
  2112. alignment = map_and_fenceable ? fence_alignment :
  2113. unfenced_alignment;
  2114. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2115. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2116. return -EINVAL;
  2117. }
  2118. size = map_and_fenceable ? fence_size : obj->base.size;
  2119. /* If the object is bigger than the entire aperture, reject it early
  2120. * before evicting everything in a vain attempt to find space.
  2121. */
  2122. if (obj->base.size >
  2123. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2124. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2125. return -E2BIG;
  2126. }
  2127. search_free:
  2128. if (map_and_fenceable)
  2129. free_space =
  2130. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2131. size, alignment, 0,
  2132. dev_priv->mm.gtt_mappable_end,
  2133. 0);
  2134. else
  2135. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2136. size, alignment, 0);
  2137. if (free_space != NULL) {
  2138. if (map_and_fenceable)
  2139. obj->gtt_space =
  2140. drm_mm_get_block_range_generic(free_space,
  2141. size, alignment, 0,
  2142. dev_priv->mm.gtt_mappable_end,
  2143. 0);
  2144. else
  2145. obj->gtt_space =
  2146. drm_mm_get_block(free_space, size, alignment);
  2147. }
  2148. if (obj->gtt_space == NULL) {
  2149. /* If the gtt is empty and we're still having trouble
  2150. * fitting our object in, we're out of memory.
  2151. */
  2152. ret = i915_gem_evict_something(dev, size, alignment,
  2153. map_and_fenceable);
  2154. if (ret)
  2155. return ret;
  2156. goto search_free;
  2157. }
  2158. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2159. if (ret) {
  2160. drm_mm_put_block(obj->gtt_space);
  2161. obj->gtt_space = NULL;
  2162. if (ret == -ENOMEM) {
  2163. /* first try to reclaim some memory by clearing the GTT */
  2164. ret = i915_gem_evict_everything(dev, false);
  2165. if (ret) {
  2166. /* now try to shrink everyone else */
  2167. if (gfpmask) {
  2168. gfpmask = 0;
  2169. goto search_free;
  2170. }
  2171. return -ENOMEM;
  2172. }
  2173. goto search_free;
  2174. }
  2175. return ret;
  2176. }
  2177. ret = i915_gem_gtt_prepare_object(obj);
  2178. if (ret) {
  2179. i915_gem_object_put_pages_gtt(obj);
  2180. drm_mm_put_block(obj->gtt_space);
  2181. obj->gtt_space = NULL;
  2182. if (i915_gem_evict_everything(dev, false))
  2183. return ret;
  2184. goto search_free;
  2185. }
  2186. if (!dev_priv->mm.aliasing_ppgtt)
  2187. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2188. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2189. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2190. /* Assert that the object is not currently in any GPU domain. As it
  2191. * wasn't in the GTT, there shouldn't be any way it could have been in
  2192. * a GPU cache
  2193. */
  2194. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2195. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2196. obj->gtt_offset = obj->gtt_space->start;
  2197. fenceable =
  2198. obj->gtt_space->size == fence_size &&
  2199. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2200. mappable =
  2201. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2202. obj->map_and_fenceable = mappable && fenceable;
  2203. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2204. return 0;
  2205. }
  2206. void
  2207. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2208. {
  2209. /* If we don't have a page list set up, then we're not pinned
  2210. * to GPU, and we can ignore the cache flush because it'll happen
  2211. * again at bind time.
  2212. */
  2213. if (obj->pages == NULL)
  2214. return;
  2215. /* If the GPU is snooping the contents of the CPU cache,
  2216. * we do not need to manually clear the CPU cache lines. However,
  2217. * the caches are only snooped when the render cache is
  2218. * flushed/invalidated. As we always have to emit invalidations
  2219. * and flushes when moving into and out of the RENDER domain, correct
  2220. * snooping behaviour occurs naturally as the result of our domain
  2221. * tracking.
  2222. */
  2223. if (obj->cache_level != I915_CACHE_NONE)
  2224. return;
  2225. trace_i915_gem_object_clflush(obj);
  2226. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2227. }
  2228. /** Flushes any GPU write domain for the object if it's dirty. */
  2229. static int
  2230. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2231. {
  2232. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2233. return 0;
  2234. /* Queue the GPU write cache flushing we need. */
  2235. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2236. }
  2237. /** Flushes the GTT write domain for the object if it's dirty. */
  2238. static void
  2239. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2240. {
  2241. uint32_t old_write_domain;
  2242. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2243. return;
  2244. /* No actual flushing is required for the GTT write domain. Writes
  2245. * to it immediately go to main memory as far as we know, so there's
  2246. * no chipset flush. It also doesn't land in render cache.
  2247. *
  2248. * However, we do have to enforce the order so that all writes through
  2249. * the GTT land before any writes to the device, such as updates to
  2250. * the GATT itself.
  2251. */
  2252. wmb();
  2253. old_write_domain = obj->base.write_domain;
  2254. obj->base.write_domain = 0;
  2255. trace_i915_gem_object_change_domain(obj,
  2256. obj->base.read_domains,
  2257. old_write_domain);
  2258. }
  2259. /** Flushes the CPU write domain for the object if it's dirty. */
  2260. static void
  2261. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2262. {
  2263. uint32_t old_write_domain;
  2264. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2265. return;
  2266. i915_gem_clflush_object(obj);
  2267. intel_gtt_chipset_flush();
  2268. old_write_domain = obj->base.write_domain;
  2269. obj->base.write_domain = 0;
  2270. trace_i915_gem_object_change_domain(obj,
  2271. obj->base.read_domains,
  2272. old_write_domain);
  2273. }
  2274. /**
  2275. * Moves a single object to the GTT read, and possibly write domain.
  2276. *
  2277. * This function returns when the move is complete, including waiting on
  2278. * flushes to occur.
  2279. */
  2280. int
  2281. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2282. {
  2283. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2284. uint32_t old_write_domain, old_read_domains;
  2285. int ret;
  2286. /* Not valid to be called on unbound objects. */
  2287. if (obj->gtt_space == NULL)
  2288. return -EINVAL;
  2289. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2290. return 0;
  2291. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2292. if (ret)
  2293. return ret;
  2294. if (obj->pending_gpu_write || write) {
  2295. ret = i915_gem_object_wait_rendering(obj);
  2296. if (ret)
  2297. return ret;
  2298. }
  2299. i915_gem_object_flush_cpu_write_domain(obj);
  2300. old_write_domain = obj->base.write_domain;
  2301. old_read_domains = obj->base.read_domains;
  2302. /* It should now be out of any other write domains, and we can update
  2303. * the domain values for our changes.
  2304. */
  2305. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2306. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2307. if (write) {
  2308. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2309. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2310. obj->dirty = 1;
  2311. }
  2312. trace_i915_gem_object_change_domain(obj,
  2313. old_read_domains,
  2314. old_write_domain);
  2315. /* And bump the LRU for this access */
  2316. if (i915_gem_object_is_inactive(obj))
  2317. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2318. return 0;
  2319. }
  2320. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2321. enum i915_cache_level cache_level)
  2322. {
  2323. struct drm_device *dev = obj->base.dev;
  2324. drm_i915_private_t *dev_priv = dev->dev_private;
  2325. int ret;
  2326. if (obj->cache_level == cache_level)
  2327. return 0;
  2328. if (obj->pin_count) {
  2329. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2330. return -EBUSY;
  2331. }
  2332. if (obj->gtt_space) {
  2333. ret = i915_gem_object_finish_gpu(obj);
  2334. if (ret)
  2335. return ret;
  2336. i915_gem_object_finish_gtt(obj);
  2337. /* Before SandyBridge, you could not use tiling or fence
  2338. * registers with snooped memory, so relinquish any fences
  2339. * currently pointing to our region in the aperture.
  2340. */
  2341. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2342. ret = i915_gem_object_put_fence(obj);
  2343. if (ret)
  2344. return ret;
  2345. }
  2346. if (obj->has_global_gtt_mapping)
  2347. i915_gem_gtt_bind_object(obj, cache_level);
  2348. if (obj->has_aliasing_ppgtt_mapping)
  2349. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2350. obj, cache_level);
  2351. }
  2352. if (cache_level == I915_CACHE_NONE) {
  2353. u32 old_read_domains, old_write_domain;
  2354. /* If we're coming from LLC cached, then we haven't
  2355. * actually been tracking whether the data is in the
  2356. * CPU cache or not, since we only allow one bit set
  2357. * in obj->write_domain and have been skipping the clflushes.
  2358. * Just set it to the CPU cache for now.
  2359. */
  2360. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2361. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2362. old_read_domains = obj->base.read_domains;
  2363. old_write_domain = obj->base.write_domain;
  2364. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2365. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2366. trace_i915_gem_object_change_domain(obj,
  2367. old_read_domains,
  2368. old_write_domain);
  2369. }
  2370. obj->cache_level = cache_level;
  2371. return 0;
  2372. }
  2373. /*
  2374. * Prepare buffer for display plane (scanout, cursors, etc).
  2375. * Can be called from an uninterruptible phase (modesetting) and allows
  2376. * any flushes to be pipelined (for pageflips).
  2377. */
  2378. int
  2379. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2380. u32 alignment,
  2381. struct intel_ring_buffer *pipelined)
  2382. {
  2383. u32 old_read_domains, old_write_domain;
  2384. int ret;
  2385. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2386. if (ret)
  2387. return ret;
  2388. if (pipelined != obj->ring) {
  2389. ret = i915_gem_object_sync(obj, pipelined);
  2390. if (ret)
  2391. return ret;
  2392. }
  2393. /* The display engine is not coherent with the LLC cache on gen6. As
  2394. * a result, we make sure that the pinning that is about to occur is
  2395. * done with uncached PTEs. This is lowest common denominator for all
  2396. * chipsets.
  2397. *
  2398. * However for gen6+, we could do better by using the GFDT bit instead
  2399. * of uncaching, which would allow us to flush all the LLC-cached data
  2400. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2401. */
  2402. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2403. if (ret)
  2404. return ret;
  2405. /* As the user may map the buffer once pinned in the display plane
  2406. * (e.g. libkms for the bootup splash), we have to ensure that we
  2407. * always use map_and_fenceable for all scanout buffers.
  2408. */
  2409. ret = i915_gem_object_pin(obj, alignment, true);
  2410. if (ret)
  2411. return ret;
  2412. i915_gem_object_flush_cpu_write_domain(obj);
  2413. old_write_domain = obj->base.write_domain;
  2414. old_read_domains = obj->base.read_domains;
  2415. /* It should now be out of any other write domains, and we can update
  2416. * the domain values for our changes.
  2417. */
  2418. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2419. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2420. trace_i915_gem_object_change_domain(obj,
  2421. old_read_domains,
  2422. old_write_domain);
  2423. return 0;
  2424. }
  2425. int
  2426. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2427. {
  2428. int ret;
  2429. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2430. return 0;
  2431. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2432. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2433. if (ret)
  2434. return ret;
  2435. }
  2436. ret = i915_gem_object_wait_rendering(obj);
  2437. if (ret)
  2438. return ret;
  2439. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2440. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2441. return 0;
  2442. }
  2443. /**
  2444. * Moves a single object to the CPU read, and possibly write domain.
  2445. *
  2446. * This function returns when the move is complete, including waiting on
  2447. * flushes to occur.
  2448. */
  2449. int
  2450. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2451. {
  2452. uint32_t old_write_domain, old_read_domains;
  2453. int ret;
  2454. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2455. return 0;
  2456. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2457. if (ret)
  2458. return ret;
  2459. if (write || obj->pending_gpu_write) {
  2460. ret = i915_gem_object_wait_rendering(obj);
  2461. if (ret)
  2462. return ret;
  2463. }
  2464. i915_gem_object_flush_gtt_write_domain(obj);
  2465. old_write_domain = obj->base.write_domain;
  2466. old_read_domains = obj->base.read_domains;
  2467. /* Flush the CPU cache if it's still invalid. */
  2468. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2469. i915_gem_clflush_object(obj);
  2470. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2471. }
  2472. /* It should now be out of any other write domains, and we can update
  2473. * the domain values for our changes.
  2474. */
  2475. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2476. /* If we're writing through the CPU, then the GPU read domains will
  2477. * need to be invalidated at next use.
  2478. */
  2479. if (write) {
  2480. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2481. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2482. }
  2483. trace_i915_gem_object_change_domain(obj,
  2484. old_read_domains,
  2485. old_write_domain);
  2486. return 0;
  2487. }
  2488. /* Throttle our rendering by waiting until the ring has completed our requests
  2489. * emitted over 20 msec ago.
  2490. *
  2491. * Note that if we were to use the current jiffies each time around the loop,
  2492. * we wouldn't escape the function with any frames outstanding if the time to
  2493. * render a frame was over 20ms.
  2494. *
  2495. * This should get us reasonable parallelism between CPU and GPU but also
  2496. * relatively low latency when blocking on a particular request to finish.
  2497. */
  2498. static int
  2499. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2500. {
  2501. struct drm_i915_private *dev_priv = dev->dev_private;
  2502. struct drm_i915_file_private *file_priv = file->driver_priv;
  2503. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2504. struct drm_i915_gem_request *request;
  2505. struct intel_ring_buffer *ring = NULL;
  2506. u32 seqno = 0;
  2507. int ret;
  2508. if (atomic_read(&dev_priv->mm.wedged))
  2509. return -EIO;
  2510. spin_lock(&file_priv->mm.lock);
  2511. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2512. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2513. break;
  2514. ring = request->ring;
  2515. seqno = request->seqno;
  2516. }
  2517. spin_unlock(&file_priv->mm.lock);
  2518. if (seqno == 0)
  2519. return 0;
  2520. ret = __wait_seqno(ring, seqno, true, NULL);
  2521. if (ret == 0)
  2522. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2523. return ret;
  2524. }
  2525. int
  2526. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2527. uint32_t alignment,
  2528. bool map_and_fenceable)
  2529. {
  2530. int ret;
  2531. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2532. if (obj->gtt_space != NULL) {
  2533. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2534. (map_and_fenceable && !obj->map_and_fenceable)) {
  2535. WARN(obj->pin_count,
  2536. "bo is already pinned with incorrect alignment:"
  2537. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2538. " obj->map_and_fenceable=%d\n",
  2539. obj->gtt_offset, alignment,
  2540. map_and_fenceable,
  2541. obj->map_and_fenceable);
  2542. ret = i915_gem_object_unbind(obj);
  2543. if (ret)
  2544. return ret;
  2545. }
  2546. }
  2547. if (obj->gtt_space == NULL) {
  2548. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2549. map_and_fenceable);
  2550. if (ret)
  2551. return ret;
  2552. }
  2553. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2554. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2555. obj->pin_count++;
  2556. obj->pin_mappable |= map_and_fenceable;
  2557. return 0;
  2558. }
  2559. void
  2560. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2561. {
  2562. BUG_ON(obj->pin_count == 0);
  2563. BUG_ON(obj->gtt_space == NULL);
  2564. if (--obj->pin_count == 0)
  2565. obj->pin_mappable = false;
  2566. }
  2567. int
  2568. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2569. struct drm_file *file)
  2570. {
  2571. struct drm_i915_gem_pin *args = data;
  2572. struct drm_i915_gem_object *obj;
  2573. int ret;
  2574. ret = i915_mutex_lock_interruptible(dev);
  2575. if (ret)
  2576. return ret;
  2577. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2578. if (&obj->base == NULL) {
  2579. ret = -ENOENT;
  2580. goto unlock;
  2581. }
  2582. if (obj->madv != I915_MADV_WILLNEED) {
  2583. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2584. ret = -EINVAL;
  2585. goto out;
  2586. }
  2587. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2588. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2589. args->handle);
  2590. ret = -EINVAL;
  2591. goto out;
  2592. }
  2593. obj->user_pin_count++;
  2594. obj->pin_filp = file;
  2595. if (obj->user_pin_count == 1) {
  2596. ret = i915_gem_object_pin(obj, args->alignment, true);
  2597. if (ret)
  2598. goto out;
  2599. }
  2600. /* XXX - flush the CPU caches for pinned objects
  2601. * as the X server doesn't manage domains yet
  2602. */
  2603. i915_gem_object_flush_cpu_write_domain(obj);
  2604. args->offset = obj->gtt_offset;
  2605. out:
  2606. drm_gem_object_unreference(&obj->base);
  2607. unlock:
  2608. mutex_unlock(&dev->struct_mutex);
  2609. return ret;
  2610. }
  2611. int
  2612. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2613. struct drm_file *file)
  2614. {
  2615. struct drm_i915_gem_pin *args = data;
  2616. struct drm_i915_gem_object *obj;
  2617. int ret;
  2618. ret = i915_mutex_lock_interruptible(dev);
  2619. if (ret)
  2620. return ret;
  2621. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2622. if (&obj->base == NULL) {
  2623. ret = -ENOENT;
  2624. goto unlock;
  2625. }
  2626. if (obj->pin_filp != file) {
  2627. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2628. args->handle);
  2629. ret = -EINVAL;
  2630. goto out;
  2631. }
  2632. obj->user_pin_count--;
  2633. if (obj->user_pin_count == 0) {
  2634. obj->pin_filp = NULL;
  2635. i915_gem_object_unpin(obj);
  2636. }
  2637. out:
  2638. drm_gem_object_unreference(&obj->base);
  2639. unlock:
  2640. mutex_unlock(&dev->struct_mutex);
  2641. return ret;
  2642. }
  2643. int
  2644. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2645. struct drm_file *file)
  2646. {
  2647. struct drm_i915_gem_busy *args = data;
  2648. struct drm_i915_gem_object *obj;
  2649. int ret;
  2650. ret = i915_mutex_lock_interruptible(dev);
  2651. if (ret)
  2652. return ret;
  2653. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2654. if (&obj->base == NULL) {
  2655. ret = -ENOENT;
  2656. goto unlock;
  2657. }
  2658. /* Count all active objects as busy, even if they are currently not used
  2659. * by the gpu. Users of this interface expect objects to eventually
  2660. * become non-busy without any further actions, therefore emit any
  2661. * necessary flushes here.
  2662. */
  2663. args->busy = obj->active;
  2664. if (args->busy) {
  2665. /* Unconditionally flush objects, even when the gpu still uses this
  2666. * object. Userspace calling this function indicates that it wants to
  2667. * use this buffer rather sooner than later, so issuing the required
  2668. * flush earlier is beneficial.
  2669. */
  2670. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2671. ret = i915_gem_flush_ring(obj->ring,
  2672. 0, obj->base.write_domain);
  2673. } else {
  2674. ret = i915_gem_check_olr(obj->ring,
  2675. obj->last_rendering_seqno);
  2676. }
  2677. /* Update the active list for the hardware's current position.
  2678. * Otherwise this only updates on a delayed timer or when irqs
  2679. * are actually unmasked, and our working set ends up being
  2680. * larger than required.
  2681. */
  2682. i915_gem_retire_requests_ring(obj->ring);
  2683. args->busy = obj->active;
  2684. }
  2685. drm_gem_object_unreference(&obj->base);
  2686. unlock:
  2687. mutex_unlock(&dev->struct_mutex);
  2688. return ret;
  2689. }
  2690. int
  2691. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2692. struct drm_file *file_priv)
  2693. {
  2694. return i915_gem_ring_throttle(dev, file_priv);
  2695. }
  2696. int
  2697. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2698. struct drm_file *file_priv)
  2699. {
  2700. struct drm_i915_gem_madvise *args = data;
  2701. struct drm_i915_gem_object *obj;
  2702. int ret;
  2703. switch (args->madv) {
  2704. case I915_MADV_DONTNEED:
  2705. case I915_MADV_WILLNEED:
  2706. break;
  2707. default:
  2708. return -EINVAL;
  2709. }
  2710. ret = i915_mutex_lock_interruptible(dev);
  2711. if (ret)
  2712. return ret;
  2713. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2714. if (&obj->base == NULL) {
  2715. ret = -ENOENT;
  2716. goto unlock;
  2717. }
  2718. if (obj->pin_count) {
  2719. ret = -EINVAL;
  2720. goto out;
  2721. }
  2722. if (obj->madv != __I915_MADV_PURGED)
  2723. obj->madv = args->madv;
  2724. /* if the object is no longer bound, discard its backing storage */
  2725. if (i915_gem_object_is_purgeable(obj) &&
  2726. obj->gtt_space == NULL)
  2727. i915_gem_object_truncate(obj);
  2728. args->retained = obj->madv != __I915_MADV_PURGED;
  2729. out:
  2730. drm_gem_object_unreference(&obj->base);
  2731. unlock:
  2732. mutex_unlock(&dev->struct_mutex);
  2733. return ret;
  2734. }
  2735. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2736. size_t size)
  2737. {
  2738. struct drm_i915_private *dev_priv = dev->dev_private;
  2739. struct drm_i915_gem_object *obj;
  2740. struct address_space *mapping;
  2741. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2742. if (obj == NULL)
  2743. return NULL;
  2744. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2745. kfree(obj);
  2746. return NULL;
  2747. }
  2748. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2749. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2750. i915_gem_info_add_obj(dev_priv, size);
  2751. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2752. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2753. if (HAS_LLC(dev)) {
  2754. /* On some devices, we can have the GPU use the LLC (the CPU
  2755. * cache) for about a 10% performance improvement
  2756. * compared to uncached. Graphics requests other than
  2757. * display scanout are coherent with the CPU in
  2758. * accessing this cache. This means in this mode we
  2759. * don't need to clflush on the CPU side, and on the
  2760. * GPU side we only need to flush internal caches to
  2761. * get data visible to the CPU.
  2762. *
  2763. * However, we maintain the display planes as UC, and so
  2764. * need to rebind when first used as such.
  2765. */
  2766. obj->cache_level = I915_CACHE_LLC;
  2767. } else
  2768. obj->cache_level = I915_CACHE_NONE;
  2769. obj->base.driver_private = NULL;
  2770. obj->fence_reg = I915_FENCE_REG_NONE;
  2771. INIT_LIST_HEAD(&obj->mm_list);
  2772. INIT_LIST_HEAD(&obj->gtt_list);
  2773. INIT_LIST_HEAD(&obj->ring_list);
  2774. INIT_LIST_HEAD(&obj->exec_list);
  2775. INIT_LIST_HEAD(&obj->gpu_write_list);
  2776. obj->madv = I915_MADV_WILLNEED;
  2777. /* Avoid an unnecessary call to unbind on the first bind. */
  2778. obj->map_and_fenceable = true;
  2779. return obj;
  2780. }
  2781. int i915_gem_init_object(struct drm_gem_object *obj)
  2782. {
  2783. BUG();
  2784. return 0;
  2785. }
  2786. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2787. {
  2788. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2789. struct drm_device *dev = obj->base.dev;
  2790. drm_i915_private_t *dev_priv = dev->dev_private;
  2791. trace_i915_gem_object_destroy(obj);
  2792. if (obj->phys_obj)
  2793. i915_gem_detach_phys_object(dev, obj);
  2794. obj->pin_count = 0;
  2795. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  2796. bool was_interruptible;
  2797. was_interruptible = dev_priv->mm.interruptible;
  2798. dev_priv->mm.interruptible = false;
  2799. WARN_ON(i915_gem_object_unbind(obj));
  2800. dev_priv->mm.interruptible = was_interruptible;
  2801. }
  2802. if (obj->base.map_list.map)
  2803. drm_gem_free_mmap_offset(&obj->base);
  2804. drm_gem_object_release(&obj->base);
  2805. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2806. kfree(obj->bit_17);
  2807. kfree(obj);
  2808. }
  2809. int
  2810. i915_gem_idle(struct drm_device *dev)
  2811. {
  2812. drm_i915_private_t *dev_priv = dev->dev_private;
  2813. int ret;
  2814. mutex_lock(&dev->struct_mutex);
  2815. if (dev_priv->mm.suspended) {
  2816. mutex_unlock(&dev->struct_mutex);
  2817. return 0;
  2818. }
  2819. ret = i915_gpu_idle(dev);
  2820. if (ret) {
  2821. mutex_unlock(&dev->struct_mutex);
  2822. return ret;
  2823. }
  2824. i915_gem_retire_requests(dev);
  2825. /* Under UMS, be paranoid and evict. */
  2826. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  2827. i915_gem_evict_everything(dev, false);
  2828. i915_gem_reset_fences(dev);
  2829. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2830. * We need to replace this with a semaphore, or something.
  2831. * And not confound mm.suspended!
  2832. */
  2833. dev_priv->mm.suspended = 1;
  2834. del_timer_sync(&dev_priv->hangcheck_timer);
  2835. i915_kernel_lost_context(dev);
  2836. i915_gem_cleanup_ringbuffer(dev);
  2837. mutex_unlock(&dev->struct_mutex);
  2838. /* Cancel the retire work handler, which should be idle now. */
  2839. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2840. return 0;
  2841. }
  2842. void i915_gem_init_swizzling(struct drm_device *dev)
  2843. {
  2844. drm_i915_private_t *dev_priv = dev->dev_private;
  2845. if (INTEL_INFO(dev)->gen < 5 ||
  2846. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2847. return;
  2848. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2849. DISP_TILE_SURFACE_SWIZZLING);
  2850. if (IS_GEN5(dev))
  2851. return;
  2852. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2853. if (IS_GEN6(dev))
  2854. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2855. else
  2856. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2857. }
  2858. void i915_gem_init_ppgtt(struct drm_device *dev)
  2859. {
  2860. drm_i915_private_t *dev_priv = dev->dev_private;
  2861. uint32_t pd_offset;
  2862. struct intel_ring_buffer *ring;
  2863. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  2864. uint32_t __iomem *pd_addr;
  2865. uint32_t pd_entry;
  2866. int i;
  2867. if (!dev_priv->mm.aliasing_ppgtt)
  2868. return;
  2869. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  2870. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  2871. dma_addr_t pt_addr;
  2872. if (dev_priv->mm.gtt->needs_dmar)
  2873. pt_addr = ppgtt->pt_dma_addr[i];
  2874. else
  2875. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  2876. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  2877. pd_entry |= GEN6_PDE_VALID;
  2878. writel(pd_entry, pd_addr + i);
  2879. }
  2880. readl(pd_addr);
  2881. pd_offset = ppgtt->pd_offset;
  2882. pd_offset /= 64; /* in cachelines, */
  2883. pd_offset <<= 16;
  2884. if (INTEL_INFO(dev)->gen == 6) {
  2885. uint32_t ecochk, gab_ctl, ecobits;
  2886. ecobits = I915_READ(GAC_ECO_BITS);
  2887. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  2888. gab_ctl = I915_READ(GAB_CTL);
  2889. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  2890. ecochk = I915_READ(GAM_ECOCHK);
  2891. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  2892. ECOCHK_PPGTT_CACHE64B);
  2893. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  2894. } else if (INTEL_INFO(dev)->gen >= 7) {
  2895. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  2896. /* GFX_MODE is per-ring on gen7+ */
  2897. }
  2898. for_each_ring(ring, dev_priv, i) {
  2899. if (INTEL_INFO(dev)->gen >= 7)
  2900. I915_WRITE(RING_MODE_GEN7(ring),
  2901. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  2902. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  2903. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  2904. }
  2905. }
  2906. int
  2907. i915_gem_init_hw(struct drm_device *dev)
  2908. {
  2909. drm_i915_private_t *dev_priv = dev->dev_private;
  2910. int ret;
  2911. i915_gem_init_swizzling(dev);
  2912. ret = intel_init_render_ring_buffer(dev);
  2913. if (ret)
  2914. return ret;
  2915. if (HAS_BSD(dev)) {
  2916. ret = intel_init_bsd_ring_buffer(dev);
  2917. if (ret)
  2918. goto cleanup_render_ring;
  2919. }
  2920. if (HAS_BLT(dev)) {
  2921. ret = intel_init_blt_ring_buffer(dev);
  2922. if (ret)
  2923. goto cleanup_bsd_ring;
  2924. }
  2925. dev_priv->next_seqno = 1;
  2926. i915_gem_init_ppgtt(dev);
  2927. return 0;
  2928. cleanup_bsd_ring:
  2929. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  2930. cleanup_render_ring:
  2931. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  2932. return ret;
  2933. }
  2934. static bool
  2935. intel_enable_ppgtt(struct drm_device *dev)
  2936. {
  2937. if (i915_enable_ppgtt >= 0)
  2938. return i915_enable_ppgtt;
  2939. #ifdef CONFIG_INTEL_IOMMU
  2940. /* Disable ppgtt on SNB if VT-d is on. */
  2941. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  2942. return false;
  2943. #endif
  2944. return true;
  2945. }
  2946. int i915_gem_init(struct drm_device *dev)
  2947. {
  2948. struct drm_i915_private *dev_priv = dev->dev_private;
  2949. unsigned long gtt_size, mappable_size;
  2950. int ret;
  2951. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  2952. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  2953. mutex_lock(&dev->struct_mutex);
  2954. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  2955. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  2956. * aperture accordingly when using aliasing ppgtt. */
  2957. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  2958. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  2959. ret = i915_gem_init_aliasing_ppgtt(dev);
  2960. if (ret) {
  2961. mutex_unlock(&dev->struct_mutex);
  2962. return ret;
  2963. }
  2964. } else {
  2965. /* Let GEM Manage all of the aperture.
  2966. *
  2967. * However, leave one page at the end still bound to the scratch
  2968. * page. There are a number of places where the hardware
  2969. * apparently prefetches past the end of the object, and we've
  2970. * seen multiple hangs with the GPU head pointer stuck in a
  2971. * batchbuffer bound at the last page of the aperture. One page
  2972. * should be enough to keep any prefetching inside of the
  2973. * aperture.
  2974. */
  2975. i915_gem_init_global_gtt(dev, 0, mappable_size,
  2976. gtt_size);
  2977. }
  2978. ret = i915_gem_init_hw(dev);
  2979. mutex_unlock(&dev->struct_mutex);
  2980. if (ret) {
  2981. i915_gem_cleanup_aliasing_ppgtt(dev);
  2982. return ret;
  2983. }
  2984. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  2985. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  2986. dev_priv->dri1.allow_batchbuffer = 1;
  2987. return 0;
  2988. }
  2989. void
  2990. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  2991. {
  2992. drm_i915_private_t *dev_priv = dev->dev_private;
  2993. struct intel_ring_buffer *ring;
  2994. int i;
  2995. for_each_ring(ring, dev_priv, i)
  2996. intel_cleanup_ring_buffer(ring);
  2997. }
  2998. int
  2999. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3000. struct drm_file *file_priv)
  3001. {
  3002. drm_i915_private_t *dev_priv = dev->dev_private;
  3003. int ret;
  3004. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3005. return 0;
  3006. if (atomic_read(&dev_priv->mm.wedged)) {
  3007. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3008. atomic_set(&dev_priv->mm.wedged, 0);
  3009. }
  3010. mutex_lock(&dev->struct_mutex);
  3011. dev_priv->mm.suspended = 0;
  3012. ret = i915_gem_init_hw(dev);
  3013. if (ret != 0) {
  3014. mutex_unlock(&dev->struct_mutex);
  3015. return ret;
  3016. }
  3017. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3018. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3019. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3020. mutex_unlock(&dev->struct_mutex);
  3021. ret = drm_irq_install(dev);
  3022. if (ret)
  3023. goto cleanup_ringbuffer;
  3024. return 0;
  3025. cleanup_ringbuffer:
  3026. mutex_lock(&dev->struct_mutex);
  3027. i915_gem_cleanup_ringbuffer(dev);
  3028. dev_priv->mm.suspended = 1;
  3029. mutex_unlock(&dev->struct_mutex);
  3030. return ret;
  3031. }
  3032. int
  3033. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3034. struct drm_file *file_priv)
  3035. {
  3036. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3037. return 0;
  3038. drm_irq_uninstall(dev);
  3039. return i915_gem_idle(dev);
  3040. }
  3041. void
  3042. i915_gem_lastclose(struct drm_device *dev)
  3043. {
  3044. int ret;
  3045. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3046. return;
  3047. ret = i915_gem_idle(dev);
  3048. if (ret)
  3049. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3050. }
  3051. static void
  3052. init_ring_lists(struct intel_ring_buffer *ring)
  3053. {
  3054. INIT_LIST_HEAD(&ring->active_list);
  3055. INIT_LIST_HEAD(&ring->request_list);
  3056. INIT_LIST_HEAD(&ring->gpu_write_list);
  3057. }
  3058. void
  3059. i915_gem_load(struct drm_device *dev)
  3060. {
  3061. int i;
  3062. drm_i915_private_t *dev_priv = dev->dev_private;
  3063. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3064. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3065. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3066. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3067. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3068. for (i = 0; i < I915_NUM_RINGS; i++)
  3069. init_ring_lists(&dev_priv->ring[i]);
  3070. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3071. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3072. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3073. i915_gem_retire_work_handler);
  3074. init_completion(&dev_priv->error_completion);
  3075. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3076. if (IS_GEN3(dev)) {
  3077. I915_WRITE(MI_ARB_STATE,
  3078. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3079. }
  3080. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3081. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3082. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3083. dev_priv->fence_reg_start = 3;
  3084. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3085. dev_priv->num_fence_regs = 16;
  3086. else
  3087. dev_priv->num_fence_regs = 8;
  3088. /* Initialize fence registers to zero */
  3089. i915_gem_reset_fences(dev);
  3090. i915_gem_detect_bit_6_swizzle(dev);
  3091. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3092. dev_priv->mm.interruptible = true;
  3093. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3094. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3095. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3096. }
  3097. /*
  3098. * Create a physically contiguous memory object for this object
  3099. * e.g. for cursor + overlay regs
  3100. */
  3101. static int i915_gem_init_phys_object(struct drm_device *dev,
  3102. int id, int size, int align)
  3103. {
  3104. drm_i915_private_t *dev_priv = dev->dev_private;
  3105. struct drm_i915_gem_phys_object *phys_obj;
  3106. int ret;
  3107. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3108. return 0;
  3109. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3110. if (!phys_obj)
  3111. return -ENOMEM;
  3112. phys_obj->id = id;
  3113. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3114. if (!phys_obj->handle) {
  3115. ret = -ENOMEM;
  3116. goto kfree_obj;
  3117. }
  3118. #ifdef CONFIG_X86
  3119. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3120. #endif
  3121. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3122. return 0;
  3123. kfree_obj:
  3124. kfree(phys_obj);
  3125. return ret;
  3126. }
  3127. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3128. {
  3129. drm_i915_private_t *dev_priv = dev->dev_private;
  3130. struct drm_i915_gem_phys_object *phys_obj;
  3131. if (!dev_priv->mm.phys_objs[id - 1])
  3132. return;
  3133. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3134. if (phys_obj->cur_obj) {
  3135. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3136. }
  3137. #ifdef CONFIG_X86
  3138. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3139. #endif
  3140. drm_pci_free(dev, phys_obj->handle);
  3141. kfree(phys_obj);
  3142. dev_priv->mm.phys_objs[id - 1] = NULL;
  3143. }
  3144. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3145. {
  3146. int i;
  3147. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3148. i915_gem_free_phys_object(dev, i);
  3149. }
  3150. void i915_gem_detach_phys_object(struct drm_device *dev,
  3151. struct drm_i915_gem_object *obj)
  3152. {
  3153. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3154. char *vaddr;
  3155. int i;
  3156. int page_count;
  3157. if (!obj->phys_obj)
  3158. return;
  3159. vaddr = obj->phys_obj->handle->vaddr;
  3160. page_count = obj->base.size / PAGE_SIZE;
  3161. for (i = 0; i < page_count; i++) {
  3162. struct page *page = shmem_read_mapping_page(mapping, i);
  3163. if (!IS_ERR(page)) {
  3164. char *dst = kmap_atomic(page);
  3165. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3166. kunmap_atomic(dst);
  3167. drm_clflush_pages(&page, 1);
  3168. set_page_dirty(page);
  3169. mark_page_accessed(page);
  3170. page_cache_release(page);
  3171. }
  3172. }
  3173. intel_gtt_chipset_flush();
  3174. obj->phys_obj->cur_obj = NULL;
  3175. obj->phys_obj = NULL;
  3176. }
  3177. int
  3178. i915_gem_attach_phys_object(struct drm_device *dev,
  3179. struct drm_i915_gem_object *obj,
  3180. int id,
  3181. int align)
  3182. {
  3183. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3184. drm_i915_private_t *dev_priv = dev->dev_private;
  3185. int ret = 0;
  3186. int page_count;
  3187. int i;
  3188. if (id > I915_MAX_PHYS_OBJECT)
  3189. return -EINVAL;
  3190. if (obj->phys_obj) {
  3191. if (obj->phys_obj->id == id)
  3192. return 0;
  3193. i915_gem_detach_phys_object(dev, obj);
  3194. }
  3195. /* create a new object */
  3196. if (!dev_priv->mm.phys_objs[id - 1]) {
  3197. ret = i915_gem_init_phys_object(dev, id,
  3198. obj->base.size, align);
  3199. if (ret) {
  3200. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3201. id, obj->base.size);
  3202. return ret;
  3203. }
  3204. }
  3205. /* bind to the object */
  3206. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3207. obj->phys_obj->cur_obj = obj;
  3208. page_count = obj->base.size / PAGE_SIZE;
  3209. for (i = 0; i < page_count; i++) {
  3210. struct page *page;
  3211. char *dst, *src;
  3212. page = shmem_read_mapping_page(mapping, i);
  3213. if (IS_ERR(page))
  3214. return PTR_ERR(page);
  3215. src = kmap_atomic(page);
  3216. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3217. memcpy(dst, src, PAGE_SIZE);
  3218. kunmap_atomic(src);
  3219. mark_page_accessed(page);
  3220. page_cache_release(page);
  3221. }
  3222. return 0;
  3223. }
  3224. static int
  3225. i915_gem_phys_pwrite(struct drm_device *dev,
  3226. struct drm_i915_gem_object *obj,
  3227. struct drm_i915_gem_pwrite *args,
  3228. struct drm_file *file_priv)
  3229. {
  3230. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3231. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3232. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3233. unsigned long unwritten;
  3234. /* The physical object once assigned is fixed for the lifetime
  3235. * of the obj, so we can safely drop the lock and continue
  3236. * to access vaddr.
  3237. */
  3238. mutex_unlock(&dev->struct_mutex);
  3239. unwritten = copy_from_user(vaddr, user_data, args->size);
  3240. mutex_lock(&dev->struct_mutex);
  3241. if (unwritten)
  3242. return -EFAULT;
  3243. }
  3244. intel_gtt_chipset_flush();
  3245. return 0;
  3246. }
  3247. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3248. {
  3249. struct drm_i915_file_private *file_priv = file->driver_priv;
  3250. /* Clean up our request list when the client is going away, so that
  3251. * later retire_requests won't dereference our soon-to-be-gone
  3252. * file_priv.
  3253. */
  3254. spin_lock(&file_priv->mm.lock);
  3255. while (!list_empty(&file_priv->mm.request_list)) {
  3256. struct drm_i915_gem_request *request;
  3257. request = list_first_entry(&file_priv->mm.request_list,
  3258. struct drm_i915_gem_request,
  3259. client_list);
  3260. list_del(&request->client_list);
  3261. request->file_priv = NULL;
  3262. }
  3263. spin_unlock(&file_priv->mm.lock);
  3264. }
  3265. static int
  3266. i915_gpu_is_active(struct drm_device *dev)
  3267. {
  3268. drm_i915_private_t *dev_priv = dev->dev_private;
  3269. int lists_empty;
  3270. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3271. list_empty(&dev_priv->mm.active_list);
  3272. return !lists_empty;
  3273. }
  3274. static int
  3275. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3276. {
  3277. struct drm_i915_private *dev_priv =
  3278. container_of(shrinker,
  3279. struct drm_i915_private,
  3280. mm.inactive_shrinker);
  3281. struct drm_device *dev = dev_priv->dev;
  3282. struct drm_i915_gem_object *obj, *next;
  3283. int nr_to_scan = sc->nr_to_scan;
  3284. int cnt;
  3285. if (!mutex_trylock(&dev->struct_mutex))
  3286. return 0;
  3287. /* "fast-path" to count number of available objects */
  3288. if (nr_to_scan == 0) {
  3289. cnt = 0;
  3290. list_for_each_entry(obj,
  3291. &dev_priv->mm.inactive_list,
  3292. mm_list)
  3293. cnt++;
  3294. mutex_unlock(&dev->struct_mutex);
  3295. return cnt / 100 * sysctl_vfs_cache_pressure;
  3296. }
  3297. rescan:
  3298. /* first scan for clean buffers */
  3299. i915_gem_retire_requests(dev);
  3300. list_for_each_entry_safe(obj, next,
  3301. &dev_priv->mm.inactive_list,
  3302. mm_list) {
  3303. if (i915_gem_object_is_purgeable(obj)) {
  3304. if (i915_gem_object_unbind(obj) == 0 &&
  3305. --nr_to_scan == 0)
  3306. break;
  3307. }
  3308. }
  3309. /* second pass, evict/count anything still on the inactive list */
  3310. cnt = 0;
  3311. list_for_each_entry_safe(obj, next,
  3312. &dev_priv->mm.inactive_list,
  3313. mm_list) {
  3314. if (nr_to_scan &&
  3315. i915_gem_object_unbind(obj) == 0)
  3316. nr_to_scan--;
  3317. else
  3318. cnt++;
  3319. }
  3320. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3321. /*
  3322. * We are desperate for pages, so as a last resort, wait
  3323. * for the GPU to finish and discard whatever we can.
  3324. * This has a dramatic impact to reduce the number of
  3325. * OOM-killer events whilst running the GPU aggressively.
  3326. */
  3327. if (i915_gpu_idle(dev) == 0)
  3328. goto rescan;
  3329. }
  3330. mutex_unlock(&dev->struct_mutex);
  3331. return cnt / 100 * sysctl_vfs_cache_pressure;
  3332. }