pci.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "core.h"
  30. #include "wifi.h"
  31. #include "pci.h"
  32. #include "base.h"
  33. #include "ps.h"
  34. static const u16 pcibridge_vendors[PCI_BRIDGE_VENDOR_MAX] = {
  35. INTEL_VENDOR_ID,
  36. ATI_VENDOR_ID,
  37. AMD_VENDOR_ID,
  38. SIS_VENDOR_ID
  39. };
  40. /* Update PCI dependent default settings*/
  41. static void _rtl_pci_update_default_setting(struct ieee80211_hw *hw)
  42. {
  43. struct rtl_priv *rtlpriv = rtl_priv(hw);
  44. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  45. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  46. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  47. u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
  48. ppsc->reg_rfps_level = 0;
  49. ppsc->b_support_aspm = 0;
  50. /*Update PCI ASPM setting */
  51. ppsc->const_amdpci_aspm = rtlpci->const_amdpci_aspm;
  52. switch (rtlpci->const_pci_aspm) {
  53. case 0:
  54. /*No ASPM */
  55. break;
  56. case 1:
  57. /*ASPM dynamically enabled/disable. */
  58. ppsc->reg_rfps_level |= RT_RF_LPS_LEVEL_ASPM;
  59. break;
  60. case 2:
  61. /*ASPM with Clock Req dynamically enabled/disable. */
  62. ppsc->reg_rfps_level |= (RT_RF_LPS_LEVEL_ASPM |
  63. RT_RF_OFF_LEVL_CLK_REQ);
  64. break;
  65. case 3:
  66. /*
  67. * Always enable ASPM and Clock Req
  68. * from initialization to halt.
  69. * */
  70. ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM);
  71. ppsc->reg_rfps_level |= (RT_RF_PS_LEVEL_ALWAYS_ASPM |
  72. RT_RF_OFF_LEVL_CLK_REQ);
  73. break;
  74. case 4:
  75. /*
  76. * Always enable ASPM without Clock Req
  77. * from initialization to halt.
  78. * */
  79. ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM |
  80. RT_RF_OFF_LEVL_CLK_REQ);
  81. ppsc->reg_rfps_level |= RT_RF_PS_LEVEL_ALWAYS_ASPM;
  82. break;
  83. }
  84. ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC;
  85. /*Update Radio OFF setting */
  86. switch (rtlpci->const_hwsw_rfoff_d3) {
  87. case 1:
  88. if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM)
  89. ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM;
  90. break;
  91. case 2:
  92. if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM)
  93. ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM;
  94. ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC;
  95. break;
  96. case 3:
  97. ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_PCI_D3;
  98. break;
  99. }
  100. /*Set HW definition to determine if it supports ASPM. */
  101. switch (rtlpci->const_support_pciaspm) {
  102. case 0:{
  103. /*Not support ASPM. */
  104. bool b_support_aspm = false;
  105. ppsc->b_support_aspm = b_support_aspm;
  106. break;
  107. }
  108. case 1:{
  109. /*Support ASPM. */
  110. bool b_support_aspm = true;
  111. bool b_support_backdoor = true;
  112. ppsc->b_support_aspm = b_support_aspm;
  113. /*if(priv->oem_id == RT_CID_TOSHIBA &&
  114. !priv->ndis_adapter.amd_l1_patch)
  115. b_support_backdoor = false; */
  116. ppsc->b_support_backdoor = b_support_backdoor;
  117. break;
  118. }
  119. case 2:
  120. /*ASPM value set by chipset. */
  121. if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL) {
  122. bool b_support_aspm = true;
  123. ppsc->b_support_aspm = b_support_aspm;
  124. }
  125. break;
  126. default:
  127. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  128. ("switch case not process\n"));
  129. break;
  130. }
  131. }
  132. static bool _rtl_pci_platform_switch_device_pci_aspm(
  133. struct ieee80211_hw *hw,
  134. u8 value)
  135. {
  136. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  137. bool bresult = false;
  138. value |= 0x40;
  139. pci_write_config_byte(rtlpci->pdev, 0x80, value);
  140. return bresult;
  141. }
  142. /*When we set 0x01 to enable clk request. Set 0x0 to disable clk req.*/
  143. static bool _rtl_pci_switch_clk_req(struct ieee80211_hw *hw, u8 value)
  144. {
  145. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  146. u8 buffer;
  147. bool bresult = false;
  148. buffer = value;
  149. pci_write_config_byte(rtlpci->pdev, 0x81, value);
  150. bresult = true;
  151. return bresult;
  152. }
  153. /*Disable RTL8192SE ASPM & Disable Pci Bridge ASPM*/
  154. static void rtl_pci_disable_aspm(struct ieee80211_hw *hw)
  155. {
  156. struct rtl_priv *rtlpriv = rtl_priv(hw);
  157. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  158. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  159. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  160. u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
  161. u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport;
  162. u8 num4bytes = pcipriv->ndis_adapter.num4bytes;
  163. /*Retrieve original configuration settings. */
  164. u8 linkctrl_reg = pcipriv->ndis_adapter.linkctrl_reg;
  165. u16 pcibridge_linkctrlreg = pcipriv->ndis_adapter.
  166. pcibridge_linkctrlreg;
  167. u16 aspmlevel = 0;
  168. if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) {
  169. RT_TRACE(rtlpriv, COMP_POWER, DBG_TRACE,
  170. ("PCI(Bridge) UNKNOWN.\n"));
  171. return;
  172. }
  173. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) {
  174. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ);
  175. _rtl_pci_switch_clk_req(hw, 0x0);
  176. }
  177. if (1) {
  178. /*for promising device will in L0 state after an I/O. */
  179. u8 tmp_u1b;
  180. pci_read_config_byte(rtlpci->pdev, 0x80, &tmp_u1b);
  181. }
  182. /*Set corresponding value. */
  183. aspmlevel |= BIT(0) | BIT(1);
  184. linkctrl_reg &= ~aspmlevel;
  185. pcibridge_linkctrlreg &= ~(BIT(0) | BIT(1));
  186. _rtl_pci_platform_switch_device_pci_aspm(hw, linkctrl_reg);
  187. udelay(50);
  188. /*4 Disable Pci Bridge ASPM */
  189. rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
  190. pcicfg_addrport + (num4bytes << 2));
  191. rtl_pci_raw_write_port_uchar(PCI_CONF_DATA, pcibridge_linkctrlreg);
  192. udelay(50);
  193. }
  194. /*
  195. *Enable RTL8192SE ASPM & Enable Pci Bridge ASPM for
  196. *power saving We should follow the sequence to enable
  197. *RTL8192SE first then enable Pci Bridge ASPM
  198. *or the system will show bluescreen.
  199. */
  200. static void rtl_pci_enable_aspm(struct ieee80211_hw *hw)
  201. {
  202. struct rtl_priv *rtlpriv = rtl_priv(hw);
  203. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  204. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  205. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  206. u8 pcibridge_busnum = pcipriv->ndis_adapter.pcibridge_busnum;
  207. u8 pcibridge_devnum = pcipriv->ndis_adapter.pcibridge_devnum;
  208. u8 pcibridge_funcnum = pcipriv->ndis_adapter.pcibridge_funcnum;
  209. u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
  210. u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport;
  211. u8 num4bytes = pcipriv->ndis_adapter.num4bytes;
  212. u16 aspmlevel;
  213. u8 u_pcibridge_aspmsetting;
  214. u8 u_device_aspmsetting;
  215. if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) {
  216. RT_TRACE(rtlpriv, COMP_POWER, DBG_TRACE,
  217. ("PCI(Bridge) UNKNOWN.\n"));
  218. return;
  219. }
  220. /*4 Enable Pci Bridge ASPM */
  221. rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
  222. pcicfg_addrport + (num4bytes << 2));
  223. u_pcibridge_aspmsetting =
  224. pcipriv->ndis_adapter.pcibridge_linkctrlreg |
  225. rtlpci->const_hostpci_aspm_setting;
  226. if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL)
  227. u_pcibridge_aspmsetting &= ~BIT(0);
  228. rtl_pci_raw_write_port_uchar(PCI_CONF_DATA, u_pcibridge_aspmsetting);
  229. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  230. ("PlatformEnableASPM():PciBridge busnumber[%x], "
  231. "DevNumbe[%x], funcnumber[%x], Write reg[%x] = %x\n",
  232. pcibridge_busnum, pcibridge_devnum, pcibridge_funcnum,
  233. (pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10),
  234. u_pcibridge_aspmsetting));
  235. udelay(50);
  236. /*Get ASPM level (with/without Clock Req) */
  237. aspmlevel = rtlpci->const_devicepci_aspm_setting;
  238. u_device_aspmsetting = pcipriv->ndis_adapter.linkctrl_reg;
  239. /*_rtl_pci_platform_switch_device_pci_aspm(dev,*/
  240. /*(priv->ndis_adapter.linkctrl_reg | ASPMLevel)); */
  241. u_device_aspmsetting |= aspmlevel;
  242. _rtl_pci_platform_switch_device_pci_aspm(hw, u_device_aspmsetting);
  243. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) {
  244. _rtl_pci_switch_clk_req(hw, (ppsc->reg_rfps_level &
  245. RT_RF_OFF_LEVL_CLK_REQ) ? 1 : 0);
  246. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ);
  247. }
  248. udelay(200);
  249. }
  250. static bool rtl_pci_get_amd_l1_patch(struct ieee80211_hw *hw)
  251. {
  252. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  253. u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport;
  254. bool status = false;
  255. u8 offset_e0;
  256. unsigned offset_e4;
  257. rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
  258. pcicfg_addrport + 0xE0);
  259. rtl_pci_raw_write_port_uchar(PCI_CONF_DATA, 0xA0);
  260. rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
  261. pcicfg_addrport + 0xE0);
  262. rtl_pci_raw_read_port_uchar(PCI_CONF_DATA, &offset_e0);
  263. if (offset_e0 == 0xA0) {
  264. rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
  265. pcicfg_addrport + 0xE4);
  266. rtl_pci_raw_read_port_ulong(PCI_CONF_DATA, &offset_e4);
  267. if (offset_e4 & BIT(23))
  268. status = true;
  269. }
  270. return status;
  271. }
  272. static void rtl_pci_get_linkcontrol_field(struct ieee80211_hw *hw)
  273. {
  274. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  275. u8 capabilityoffset = pcipriv->ndis_adapter.pcibridge_pciehdr_offset;
  276. u32 pcicfg_addrport = pcipriv->ndis_adapter.pcicfg_addrport;
  277. u8 linkctrl_reg;
  278. u8 num4bBytes;
  279. num4bBytes = (capabilityoffset + 0x10) / 4;
  280. /*Read Link Control Register */
  281. rtl_pci_raw_write_port_ulong(PCI_CONF_ADDRESS,
  282. pcicfg_addrport + (num4bBytes << 2));
  283. rtl_pci_raw_read_port_uchar(PCI_CONF_DATA, &linkctrl_reg);
  284. pcipriv->ndis_adapter.pcibridge_linkctrlreg = linkctrl_reg;
  285. }
  286. static void rtl_pci_parse_configuration(struct pci_dev *pdev,
  287. struct ieee80211_hw *hw)
  288. {
  289. struct rtl_priv *rtlpriv = rtl_priv(hw);
  290. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  291. u8 tmp;
  292. int pos;
  293. u8 linkctrl_reg;
  294. /*Link Control Register */
  295. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  296. pci_read_config_byte(pdev, pos + PCI_EXP_LNKCTL, &linkctrl_reg);
  297. pcipriv->ndis_adapter.linkctrl_reg = linkctrl_reg;
  298. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  299. ("Link Control Register =%x\n",
  300. pcipriv->ndis_adapter.linkctrl_reg));
  301. pci_read_config_byte(pdev, 0x98, &tmp);
  302. tmp |= BIT(4);
  303. pci_write_config_byte(pdev, 0x98, tmp);
  304. tmp = 0x17;
  305. pci_write_config_byte(pdev, 0x70f, tmp);
  306. }
  307. static void _rtl_pci_initialize_adapter_common(struct ieee80211_hw *hw)
  308. {
  309. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  310. _rtl_pci_update_default_setting(hw);
  311. if (ppsc->reg_rfps_level & RT_RF_PS_LEVEL_ALWAYS_ASPM) {
  312. /*Always enable ASPM & Clock Req. */
  313. rtl_pci_enable_aspm(hw);
  314. RT_SET_PS_LEVEL(ppsc, RT_RF_PS_LEVEL_ALWAYS_ASPM);
  315. }
  316. }
  317. static void rtl_pci_init_aspm(struct ieee80211_hw *hw)
  318. {
  319. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  320. /*close ASPM for AMD defaultly */
  321. rtlpci->const_amdpci_aspm = 0;
  322. /*
  323. * ASPM PS mode.
  324. * 0 - Disable ASPM,
  325. * 1 - Enable ASPM without Clock Req,
  326. * 2 - Enable ASPM with Clock Req,
  327. * 3 - Alwyas Enable ASPM with Clock Req,
  328. * 4 - Always Enable ASPM without Clock Req.
  329. * set defult to RTL8192CE:3 RTL8192E:2
  330. * */
  331. rtlpci->const_pci_aspm = 3;
  332. /*Setting for PCI-E device */
  333. rtlpci->const_devicepci_aspm_setting = 0x03;
  334. /*Setting for PCI-E bridge */
  335. rtlpci->const_hostpci_aspm_setting = 0x02;
  336. /*
  337. * In Hw/Sw Radio Off situation.
  338. * 0 - Default,
  339. * 1 - From ASPM setting without low Mac Pwr,
  340. * 2 - From ASPM setting with low Mac Pwr,
  341. * 3 - Bus D3
  342. * set default to RTL8192CE:0 RTL8192SE:2
  343. */
  344. rtlpci->const_hwsw_rfoff_d3 = 0;
  345. /*
  346. * This setting works for those device with
  347. * backdoor ASPM setting such as EPHY setting.
  348. * 0 - Not support ASPM,
  349. * 1 - Support ASPM,
  350. * 2 - According to chipset.
  351. */
  352. rtlpci->const_support_pciaspm = 1;
  353. _rtl_pci_initialize_adapter_common(hw);
  354. }
  355. static void _rtl_pci_io_handler_init(struct device *dev,
  356. struct ieee80211_hw *hw)
  357. {
  358. struct rtl_priv *rtlpriv = rtl_priv(hw);
  359. rtlpriv->io.dev = dev;
  360. rtlpriv->io.write8_async = pci_write8_async;
  361. rtlpriv->io.write16_async = pci_write16_async;
  362. rtlpriv->io.write32_async = pci_write32_async;
  363. rtlpriv->io.read8_sync = pci_read8_sync;
  364. rtlpriv->io.read16_sync = pci_read16_sync;
  365. rtlpriv->io.read32_sync = pci_read32_sync;
  366. }
  367. static void _rtl_pci_io_handler_release(struct ieee80211_hw *hw)
  368. {
  369. }
  370. static void _rtl_pci_tx_isr(struct ieee80211_hw *hw, int prio)
  371. {
  372. struct rtl_priv *rtlpriv = rtl_priv(hw);
  373. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  374. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio];
  375. while (skb_queue_len(&ring->queue)) {
  376. struct rtl_tx_desc *entry = &ring->desc[ring->idx];
  377. struct sk_buff *skb;
  378. struct ieee80211_tx_info *info;
  379. u8 own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) entry, true,
  380. HW_DESC_OWN);
  381. /*
  382. *beacon packet will only use the first
  383. *descriptor defautly,and the own may not
  384. *be cleared by the hardware
  385. */
  386. if (own)
  387. return;
  388. ring->idx = (ring->idx + 1) % ring->entries;
  389. skb = __skb_dequeue(&ring->queue);
  390. pci_unmap_single(rtlpci->pdev,
  391. le32_to_cpu(rtlpriv->cfg->ops->
  392. get_desc((u8 *) entry, true,
  393. HW_DESC_TXBUFF_ADDR)),
  394. skb->len, PCI_DMA_TODEVICE);
  395. RT_TRACE(rtlpriv, (COMP_INTR | COMP_SEND), DBG_TRACE,
  396. ("new ring->idx:%d, "
  397. "free: skb_queue_len:%d, free: seq:%x\n",
  398. ring->idx,
  399. skb_queue_len(&ring->queue),
  400. *(u16 *) (skb->data + 22)));
  401. info = IEEE80211_SKB_CB(skb);
  402. ieee80211_tx_info_clear_status(info);
  403. info->flags |= IEEE80211_TX_STAT_ACK;
  404. /*info->status.rates[0].count = 1; */
  405. ieee80211_tx_status_irqsafe(hw, skb);
  406. if ((ring->entries - skb_queue_len(&ring->queue))
  407. == 2) {
  408. RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
  409. ("more desc left, wake"
  410. "skb_queue@%d,ring->idx = %d,"
  411. "skb_queue_len = 0x%d\n",
  412. prio, ring->idx,
  413. skb_queue_len(&ring->queue)));
  414. ieee80211_wake_queue(hw,
  415. skb_get_queue_mapping
  416. (skb));
  417. }
  418. skb = NULL;
  419. }
  420. if (((rtlpriv->link_info.num_rx_inperiod +
  421. rtlpriv->link_info.num_tx_inperiod) > 8) ||
  422. (rtlpriv->link_info.num_rx_inperiod > 2)) {
  423. rtl_lps_leave(hw);
  424. }
  425. }
  426. static void _rtl_pci_rx_interrupt(struct ieee80211_hw *hw)
  427. {
  428. struct rtl_priv *rtlpriv = rtl_priv(hw);
  429. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  430. int rx_queue_idx = RTL_PCI_RX_MPDU_QUEUE;
  431. struct ieee80211_rx_status rx_status = { 0 };
  432. unsigned int count = rtlpci->rxringcount;
  433. u8 own;
  434. u8 tmp_one;
  435. u32 bufferaddress;
  436. bool unicast = false;
  437. struct rtl_stats stats = {
  438. .signal = 0,
  439. .noise = -98,
  440. .rate = 0,
  441. };
  442. /*RX NORMAL PKT */
  443. while (count--) {
  444. /*rx descriptor */
  445. struct rtl_rx_desc *pdesc = &rtlpci->rx_ring[rx_queue_idx].desc[
  446. rtlpci->rx_ring[rx_queue_idx].idx];
  447. /*rx pkt */
  448. struct sk_buff *skb = rtlpci->rx_ring[rx_queue_idx].rx_buf[
  449. rtlpci->rx_ring[rx_queue_idx].idx];
  450. own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) pdesc,
  451. false, HW_DESC_OWN);
  452. if (own) {
  453. /*wait data to be filled by hardware */
  454. return;
  455. } else {
  456. struct ieee80211_hdr *hdr;
  457. u16 fc;
  458. struct sk_buff *new_skb = NULL;
  459. rtlpriv->cfg->ops->query_rx_desc(hw, &stats,
  460. &rx_status,
  461. (u8 *) pdesc, skb);
  462. pci_unmap_single(rtlpci->pdev,
  463. *((dma_addr_t *) skb->cb),
  464. rtlpci->rxbuffersize,
  465. PCI_DMA_FROMDEVICE);
  466. skb_put(skb, rtlpriv->cfg->ops->get_desc((u8 *) pdesc,
  467. false,
  468. HW_DESC_RXPKT_LEN));
  469. skb_reserve(skb,
  470. stats.rx_drvinfo_size + stats.rx_bufshift);
  471. /*
  472. *NOTICE This can not be use for mac80211,
  473. *this is done in mac80211 code,
  474. *if you done here sec DHCP will fail
  475. *skb_trim(skb, skb->len - 4);
  476. */
  477. hdr = (struct ieee80211_hdr *)(skb->data);
  478. fc = le16_to_cpu(hdr->frame_control);
  479. if (!stats.b_crc) {
  480. memcpy(IEEE80211_SKB_RXCB(skb), &rx_status,
  481. sizeof(rx_status));
  482. if (is_broadcast_ether_addr(hdr->addr1))
  483. ;/*TODO*/
  484. else {
  485. if (is_multicast_ether_addr(hdr->addr1))
  486. ;/*TODO*/
  487. else {
  488. unicast = true;
  489. rtlpriv->stats.rxbytesunicast +=
  490. skb->len;
  491. }
  492. }
  493. rtl_is_special_data(hw, skb, false);
  494. if (ieee80211_is_data(fc)) {
  495. rtlpriv->cfg->ops->led_control(hw,
  496. LED_CTL_RX);
  497. if (unicast)
  498. rtlpriv->link_info.
  499. num_rx_inperiod++;
  500. }
  501. if (unlikely(!rtl_action_proc(hw, skb,
  502. false))) {
  503. dev_kfree_skb_any(skb);
  504. } else {
  505. struct sk_buff *uskb = NULL;
  506. u8 *pdata;
  507. uskb = dev_alloc_skb(skb->len + 128);
  508. memcpy(IEEE80211_SKB_RXCB(uskb),
  509. &rx_status,
  510. sizeof(rx_status));
  511. pdata = (u8 *)skb_put(uskb, skb->len);
  512. memcpy(pdata, skb->data, skb->len);
  513. dev_kfree_skb_any(skb);
  514. ieee80211_rx_irqsafe(hw, uskb);
  515. }
  516. } else {
  517. dev_kfree_skb_any(skb);
  518. }
  519. if (((rtlpriv->link_info.num_rx_inperiod +
  520. rtlpriv->link_info.num_tx_inperiod) > 8) ||
  521. (rtlpriv->link_info.num_rx_inperiod > 2)) {
  522. rtl_lps_leave(hw);
  523. }
  524. new_skb = dev_alloc_skb(rtlpci->rxbuffersize);
  525. if (unlikely(!new_skb)) {
  526. RT_TRACE(rtlpriv, (COMP_INTR | COMP_RECV),
  527. DBG_DMESG,
  528. ("can't alloc skb for rx\n"));
  529. goto done;
  530. }
  531. skb = new_skb;
  532. /*skb->dev = dev; */
  533. rtlpci->rx_ring[rx_queue_idx].rx_buf[rtlpci->
  534. rx_ring
  535. [rx_queue_idx].
  536. idx] = skb;
  537. *((dma_addr_t *) skb->cb) =
  538. pci_map_single(rtlpci->pdev, skb_tail_pointer(skb),
  539. rtlpci->rxbuffersize,
  540. PCI_DMA_FROMDEVICE);
  541. }
  542. done:
  543. bufferaddress = cpu_to_le32(*((dma_addr_t *) skb->cb));
  544. tmp_one = 1;
  545. rtlpriv->cfg->ops->set_desc((u8 *) pdesc, false,
  546. HW_DESC_RXBUFF_ADDR,
  547. (u8 *)&bufferaddress);
  548. rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false, HW_DESC_RXOWN,
  549. (u8 *)&tmp_one);
  550. rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false,
  551. HW_DESC_RXPKT_LEN,
  552. (u8 *)&rtlpci->rxbuffersize);
  553. if (rtlpci->rx_ring[rx_queue_idx].idx ==
  554. rtlpci->rxringcount - 1)
  555. rtlpriv->cfg->ops->set_desc((u8 *)pdesc, false,
  556. HW_DESC_RXERO,
  557. (u8 *)&tmp_one);
  558. rtlpci->rx_ring[rx_queue_idx].idx =
  559. (rtlpci->rx_ring[rx_queue_idx].idx + 1) %
  560. rtlpci->rxringcount;
  561. }
  562. }
  563. void _rtl_pci_tx_interrupt(struct ieee80211_hw *hw)
  564. {
  565. struct rtl_priv *rtlpriv = rtl_priv(hw);
  566. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  567. int prio;
  568. for (prio = 0; prio < RTL_PCI_MAX_TX_QUEUE_COUNT; prio++) {
  569. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio];
  570. while (skb_queue_len(&ring->queue)) {
  571. struct rtl_tx_desc *entry = &ring->desc[ring->idx];
  572. struct sk_buff *skb;
  573. struct ieee80211_tx_info *info;
  574. u8 own;
  575. /*
  576. *beacon packet will only use the first
  577. *descriptor defautly, and the own may not
  578. *be cleared by the hardware, and
  579. *beacon will free in prepare beacon
  580. */
  581. if (prio == BEACON_QUEUE || prio == TXCMD_QUEUE ||
  582. prio == HCCA_QUEUE)
  583. break;
  584. own = (u8)rtlpriv->cfg->ops->get_desc((u8 *)entry,
  585. true,
  586. HW_DESC_OWN);
  587. if (own)
  588. break;
  589. skb = __skb_dequeue(&ring->queue);
  590. pci_unmap_single(rtlpci->pdev,
  591. le32_to_cpu(rtlpriv->cfg->ops->
  592. get_desc((u8 *) entry,
  593. true,
  594. HW_DESC_TXBUFF_ADDR)),
  595. skb->len, PCI_DMA_TODEVICE);
  596. ring->idx = (ring->idx + 1) % ring->entries;
  597. info = IEEE80211_SKB_CB(skb);
  598. ieee80211_tx_info_clear_status(info);
  599. info->flags |= IEEE80211_TX_STAT_ACK;
  600. /*info->status.rates[0].count = 1; */
  601. ieee80211_tx_status_irqsafe(hw, skb);
  602. if ((ring->entries - skb_queue_len(&ring->queue))
  603. == 2 && prio != BEACON_QUEUE) {
  604. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  605. ("more desc left, wake "
  606. "skb_queue@%d,ring->idx = %d,"
  607. "skb_queue_len = 0x%d\n",
  608. prio, ring->idx,
  609. skb_queue_len(&ring->queue)));
  610. ieee80211_wake_queue(hw,
  611. skb_get_queue_mapping
  612. (skb));
  613. }
  614. skb = NULL;
  615. }
  616. }
  617. }
  618. static irqreturn_t _rtl_pci_interrupt(int irq, void *dev_id)
  619. {
  620. struct ieee80211_hw *hw = dev_id;
  621. struct rtl_priv *rtlpriv = rtl_priv(hw);
  622. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  623. unsigned long flags;
  624. u32 inta = 0;
  625. u32 intb = 0;
  626. if (rtlpci->irq_enabled == 0)
  627. return IRQ_HANDLED;
  628. spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
  629. /*read ISR: 4/8bytes */
  630. rtlpriv->cfg->ops->interrupt_recognized(hw, &inta, &intb);
  631. /*Shared IRQ or HW disappared */
  632. if (!inta || inta == 0xffff)
  633. goto done;
  634. /*<1> beacon related */
  635. if (inta & rtlpriv->cfg->maps[RTL_IMR_TBDOK]) {
  636. RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
  637. ("beacon ok interrupt!\n"));
  638. }
  639. if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_TBDER])) {
  640. RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
  641. ("beacon err interrupt!\n"));
  642. }
  643. if (inta & rtlpriv->cfg->maps[RTL_IMR_BDOK]) {
  644. RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
  645. ("beacon interrupt!\n"));
  646. }
  647. if (inta & rtlpriv->cfg->maps[RTL_IMR_BcnInt]) {
  648. RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
  649. ("prepare beacon for interrupt!\n"));
  650. tasklet_schedule(&rtlpriv->works.irq_prepare_bcn_tasklet);
  651. }
  652. /*<3> Tx related */
  653. if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_TXFOVW]))
  654. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("IMR_TXFOVW!\n"));
  655. if (inta & rtlpriv->cfg->maps[RTL_IMR_MGNTDOK]) {
  656. RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
  657. ("Manage ok interrupt!\n"));
  658. _rtl_pci_tx_isr(hw, MGNT_QUEUE);
  659. }
  660. if (inta & rtlpriv->cfg->maps[RTL_IMR_HIGHDOK]) {
  661. RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
  662. ("HIGH_QUEUE ok interrupt!\n"));
  663. _rtl_pci_tx_isr(hw, HIGH_QUEUE);
  664. }
  665. if (inta & rtlpriv->cfg->maps[RTL_IMR_BKDOK]) {
  666. rtlpriv->link_info.num_tx_inperiod++;
  667. RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
  668. ("BK Tx OK interrupt!\n"));
  669. _rtl_pci_tx_isr(hw, BK_QUEUE);
  670. }
  671. if (inta & rtlpriv->cfg->maps[RTL_IMR_BEDOK]) {
  672. rtlpriv->link_info.num_tx_inperiod++;
  673. RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
  674. ("BE TX OK interrupt!\n"));
  675. _rtl_pci_tx_isr(hw, BE_QUEUE);
  676. }
  677. if (inta & rtlpriv->cfg->maps[RTL_IMR_VIDOK]) {
  678. rtlpriv->link_info.num_tx_inperiod++;
  679. RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
  680. ("VI TX OK interrupt!\n"));
  681. _rtl_pci_tx_isr(hw, VI_QUEUE);
  682. }
  683. if (inta & rtlpriv->cfg->maps[RTL_IMR_VODOK]) {
  684. rtlpriv->link_info.num_tx_inperiod++;
  685. RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE,
  686. ("Vo TX OK interrupt!\n"));
  687. _rtl_pci_tx_isr(hw, VO_QUEUE);
  688. }
  689. /*<2> Rx related */
  690. if (inta & rtlpriv->cfg->maps[RTL_IMR_ROK]) {
  691. RT_TRACE(rtlpriv, COMP_INTR, DBG_TRACE, ("Rx ok interrupt!\n"));
  692. tasklet_schedule(&rtlpriv->works.irq_tasklet);
  693. }
  694. if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_RDU])) {
  695. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  696. ("rx descriptor unavailable!\n"));
  697. tasklet_schedule(&rtlpriv->works.irq_tasklet);
  698. }
  699. if (unlikely(inta & rtlpriv->cfg->maps[RTL_IMR_RXFOVW])) {
  700. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("rx overflow !\n"));
  701. tasklet_schedule(&rtlpriv->works.irq_tasklet);
  702. }
  703. spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
  704. return IRQ_HANDLED;
  705. done:
  706. spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
  707. return IRQ_HANDLED;
  708. }
  709. static void _rtl_pci_irq_tasklet(struct ieee80211_hw *hw)
  710. {
  711. _rtl_pci_rx_interrupt(hw);
  712. }
  713. static void _rtl_pci_prepare_bcn_tasklet(struct ieee80211_hw *hw)
  714. {
  715. struct rtl_priv *rtlpriv = rtl_priv(hw);
  716. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  717. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  718. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE];
  719. struct ieee80211_hdr *hdr = NULL;
  720. struct ieee80211_tx_info *info = NULL;
  721. struct sk_buff *pskb = NULL;
  722. struct rtl_tx_desc *pdesc = NULL;
  723. unsigned int queue_index;
  724. u8 temp_one = 1;
  725. ring = &rtlpci->tx_ring[BEACON_QUEUE];
  726. pskb = __skb_dequeue(&ring->queue);
  727. if (pskb)
  728. kfree_skb(pskb);
  729. /*NB: the beacon data buffer must be 32-bit aligned. */
  730. pskb = ieee80211_beacon_get(hw, mac->vif);
  731. if (pskb == NULL)
  732. return;
  733. hdr = (struct ieee80211_hdr *)(pskb->data);
  734. info = IEEE80211_SKB_CB(pskb);
  735. queue_index = BEACON_QUEUE;
  736. pdesc = &ring->desc[0];
  737. rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *) pdesc,
  738. info, pskb, queue_index);
  739. __skb_queue_tail(&ring->queue, pskb);
  740. rtlpriv->cfg->ops->set_desc((u8 *) pdesc, true, HW_DESC_OWN,
  741. (u8 *)&temp_one);
  742. return;
  743. }
  744. static void _rtl_pci_init_trx_var(struct ieee80211_hw *hw)
  745. {
  746. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  747. u8 i;
  748. for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
  749. rtlpci->txringcount[i] = RT_TXDESC_NUM;
  750. /*
  751. *we just alloc 2 desc for beacon queue,
  752. *because we just need first desc in hw beacon.
  753. */
  754. rtlpci->txringcount[BEACON_QUEUE] = 2;
  755. /*
  756. *BE queue need more descriptor for performance
  757. *consideration or, No more tx desc will happen,
  758. *and may cause mac80211 mem leakage.
  759. */
  760. rtlpci->txringcount[BE_QUEUE] = RT_TXDESC_NUM_BE_QUEUE;
  761. rtlpci->rxbuffersize = 9100; /*2048/1024; */
  762. rtlpci->rxringcount = RTL_PCI_MAX_RX_COUNT; /*64; */
  763. }
  764. static void _rtl_pci_init_struct(struct ieee80211_hw *hw,
  765. struct pci_dev *pdev)
  766. {
  767. struct rtl_priv *rtlpriv = rtl_priv(hw);
  768. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  769. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  770. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  771. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  772. rtlpci->up_first_time = true;
  773. rtlpci->being_init_adapter = false;
  774. rtlhal->hw = hw;
  775. rtlpci->pdev = pdev;
  776. ppsc->b_inactiveps = false;
  777. ppsc->b_leisure_ps = true;
  778. ppsc->b_fwctrl_lps = true;
  779. ppsc->b_reg_fwctrl_lps = 3;
  780. ppsc->reg_max_lps_awakeintvl = 5;
  781. if (ppsc->b_reg_fwctrl_lps == 1)
  782. ppsc->fwctrl_psmode = FW_PS_MIN_MODE;
  783. else if (ppsc->b_reg_fwctrl_lps == 2)
  784. ppsc->fwctrl_psmode = FW_PS_MAX_MODE;
  785. else if (ppsc->b_reg_fwctrl_lps == 3)
  786. ppsc->fwctrl_psmode = FW_PS_DTIM_MODE;
  787. /*Tx/Rx related var */
  788. _rtl_pci_init_trx_var(hw);
  789. /*IBSS*/ mac->beacon_interval = 100;
  790. /*AMPDU*/ mac->min_space_cfg = 0;
  791. mac->max_mss_density = 0;
  792. /*set sane AMPDU defaults */
  793. mac->current_ampdu_density = 7;
  794. mac->current_ampdu_factor = 3;
  795. /*QOS*/ rtlpci->acm_method = eAcmWay2_SW;
  796. /*task */
  797. tasklet_init(&rtlpriv->works.irq_tasklet,
  798. (void (*)(unsigned long))_rtl_pci_irq_tasklet,
  799. (unsigned long)hw);
  800. tasklet_init(&rtlpriv->works.irq_prepare_bcn_tasklet,
  801. (void (*)(unsigned long))_rtl_pci_prepare_bcn_tasklet,
  802. (unsigned long)hw);
  803. }
  804. static int _rtl_pci_init_tx_ring(struct ieee80211_hw *hw,
  805. unsigned int prio, unsigned int entries)
  806. {
  807. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  808. struct rtl_priv *rtlpriv = rtl_priv(hw);
  809. struct rtl_tx_desc *ring;
  810. dma_addr_t dma;
  811. u32 nextdescaddress;
  812. int i;
  813. ring = pci_alloc_consistent(rtlpci->pdev,
  814. sizeof(*ring) * entries, &dma);
  815. if (!ring || (unsigned long)ring & 0xFF) {
  816. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  817. ("Cannot allocate TX ring (prio = %d)\n", prio));
  818. return -ENOMEM;
  819. }
  820. memset(ring, 0, sizeof(*ring) * entries);
  821. rtlpci->tx_ring[prio].desc = ring;
  822. rtlpci->tx_ring[prio].dma = dma;
  823. rtlpci->tx_ring[prio].idx = 0;
  824. rtlpci->tx_ring[prio].entries = entries;
  825. skb_queue_head_init(&rtlpci->tx_ring[prio].queue);
  826. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  827. ("queue:%d, ring_addr:%p\n", prio, ring));
  828. for (i = 0; i < entries; i++) {
  829. nextdescaddress = cpu_to_le32((u32) dma +
  830. ((i + 1) % entries) *
  831. sizeof(*ring));
  832. rtlpriv->cfg->ops->set_desc((u8 *)&(ring[i]),
  833. true, HW_DESC_TX_NEXTDESC_ADDR,
  834. (u8 *)&nextdescaddress);
  835. }
  836. return 0;
  837. }
  838. static int _rtl_pci_init_rx_ring(struct ieee80211_hw *hw)
  839. {
  840. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  841. struct rtl_priv *rtlpriv = rtl_priv(hw);
  842. struct rtl_rx_desc *entry = NULL;
  843. int i, rx_queue_idx;
  844. u8 tmp_one = 1;
  845. /*
  846. *rx_queue_idx 0:RX_MPDU_QUEUE
  847. *rx_queue_idx 1:RX_CMD_QUEUE
  848. */
  849. for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE;
  850. rx_queue_idx++) {
  851. rtlpci->rx_ring[rx_queue_idx].desc =
  852. pci_alloc_consistent(rtlpci->pdev,
  853. sizeof(*rtlpci->rx_ring[rx_queue_idx].
  854. desc) * rtlpci->rxringcount,
  855. &rtlpci->rx_ring[rx_queue_idx].dma);
  856. if (!rtlpci->rx_ring[rx_queue_idx].desc ||
  857. (unsigned long)rtlpci->rx_ring[rx_queue_idx].desc & 0xFF) {
  858. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  859. ("Cannot allocate RX ring\n"));
  860. return -ENOMEM;
  861. }
  862. memset(rtlpci->rx_ring[rx_queue_idx].desc, 0,
  863. sizeof(*rtlpci->rx_ring[rx_queue_idx].desc) *
  864. rtlpci->rxringcount);
  865. rtlpci->rx_ring[rx_queue_idx].idx = 0;
  866. for (i = 0; i < rtlpci->rxringcount; i++) {
  867. struct sk_buff *skb =
  868. dev_alloc_skb(rtlpci->rxbuffersize);
  869. u32 bufferaddress;
  870. entry = &rtlpci->rx_ring[rx_queue_idx].desc[i];
  871. if (!skb)
  872. return 0;
  873. /*skb->dev = dev; */
  874. rtlpci->rx_ring[rx_queue_idx].rx_buf[i] = skb;
  875. /*
  876. *just set skb->cb to mapping addr
  877. *for pci_unmap_single use
  878. */
  879. *((dma_addr_t *) skb->cb) =
  880. pci_map_single(rtlpci->pdev, skb_tail_pointer(skb),
  881. rtlpci->rxbuffersize,
  882. PCI_DMA_FROMDEVICE);
  883. bufferaddress = cpu_to_le32(*((dma_addr_t *)skb->cb));
  884. rtlpriv->cfg->ops->set_desc((u8 *)entry, false,
  885. HW_DESC_RXBUFF_ADDR,
  886. (u8 *)&bufferaddress);
  887. rtlpriv->cfg->ops->set_desc((u8 *)entry, false,
  888. HW_DESC_RXPKT_LEN,
  889. (u8 *)&rtlpci->
  890. rxbuffersize);
  891. rtlpriv->cfg->ops->set_desc((u8 *) entry, false,
  892. HW_DESC_RXOWN,
  893. (u8 *)&tmp_one);
  894. }
  895. rtlpriv->cfg->ops->set_desc((u8 *) entry, false,
  896. HW_DESC_RXERO, (u8 *)&tmp_one);
  897. }
  898. return 0;
  899. }
  900. static void _rtl_pci_free_tx_ring(struct ieee80211_hw *hw,
  901. unsigned int prio)
  902. {
  903. struct rtl_priv *rtlpriv = rtl_priv(hw);
  904. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  905. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio];
  906. while (skb_queue_len(&ring->queue)) {
  907. struct rtl_tx_desc *entry = &ring->desc[ring->idx];
  908. struct sk_buff *skb = __skb_dequeue(&ring->queue);
  909. pci_unmap_single(rtlpci->pdev,
  910. le32_to_cpu(rtlpriv->cfg->
  911. ops->get_desc((u8 *) entry, true,
  912. HW_DESC_TXBUFF_ADDR)),
  913. skb->len, PCI_DMA_TODEVICE);
  914. kfree_skb(skb);
  915. ring->idx = (ring->idx + 1) % ring->entries;
  916. }
  917. pci_free_consistent(rtlpci->pdev,
  918. sizeof(*ring->desc) * ring->entries,
  919. ring->desc, ring->dma);
  920. ring->desc = NULL;
  921. }
  922. static void _rtl_pci_free_rx_ring(struct rtl_pci *rtlpci)
  923. {
  924. int i, rx_queue_idx;
  925. /*rx_queue_idx 0:RX_MPDU_QUEUE */
  926. /*rx_queue_idx 1:RX_CMD_QUEUE */
  927. for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE;
  928. rx_queue_idx++) {
  929. for (i = 0; i < rtlpci->rxringcount; i++) {
  930. struct sk_buff *skb =
  931. rtlpci->rx_ring[rx_queue_idx].rx_buf[i];
  932. if (!skb)
  933. continue;
  934. pci_unmap_single(rtlpci->pdev,
  935. *((dma_addr_t *) skb->cb),
  936. rtlpci->rxbuffersize,
  937. PCI_DMA_FROMDEVICE);
  938. kfree_skb(skb);
  939. }
  940. pci_free_consistent(rtlpci->pdev,
  941. sizeof(*rtlpci->rx_ring[rx_queue_idx].
  942. desc) * rtlpci->rxringcount,
  943. rtlpci->rx_ring[rx_queue_idx].desc,
  944. rtlpci->rx_ring[rx_queue_idx].dma);
  945. rtlpci->rx_ring[rx_queue_idx].desc = NULL;
  946. }
  947. }
  948. static int _rtl_pci_init_trx_ring(struct ieee80211_hw *hw)
  949. {
  950. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  951. int ret;
  952. int i;
  953. ret = _rtl_pci_init_rx_ring(hw);
  954. if (ret)
  955. return ret;
  956. for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) {
  957. ret = _rtl_pci_init_tx_ring(hw, i,
  958. rtlpci->txringcount[i]);
  959. if (ret)
  960. goto err_free_rings;
  961. }
  962. return 0;
  963. err_free_rings:
  964. _rtl_pci_free_rx_ring(rtlpci);
  965. for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
  966. if (rtlpci->tx_ring[i].desc)
  967. _rtl_pci_free_tx_ring(hw, i);
  968. return 1;
  969. }
  970. static int _rtl_pci_deinit_trx_ring(struct ieee80211_hw *hw)
  971. {
  972. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  973. u32 i;
  974. /*free rx rings */
  975. _rtl_pci_free_rx_ring(rtlpci);
  976. /*free tx rings */
  977. for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
  978. _rtl_pci_free_tx_ring(hw, i);
  979. return 0;
  980. }
  981. int rtl_pci_reset_trx_ring(struct ieee80211_hw *hw)
  982. {
  983. struct rtl_priv *rtlpriv = rtl_priv(hw);
  984. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  985. int i, rx_queue_idx;
  986. unsigned long flags;
  987. u8 tmp_one = 1;
  988. /*rx_queue_idx 0:RX_MPDU_QUEUE */
  989. /*rx_queue_idx 1:RX_CMD_QUEUE */
  990. for (rx_queue_idx = 0; rx_queue_idx < RTL_PCI_MAX_RX_QUEUE;
  991. rx_queue_idx++) {
  992. /*
  993. *force the rx_ring[RX_MPDU_QUEUE/
  994. *RX_CMD_QUEUE].idx to the first one
  995. */
  996. if (rtlpci->rx_ring[rx_queue_idx].desc) {
  997. struct rtl_rx_desc *entry = NULL;
  998. for (i = 0; i < rtlpci->rxringcount; i++) {
  999. entry = &rtlpci->rx_ring[rx_queue_idx].desc[i];
  1000. rtlpriv->cfg->ops->set_desc((u8 *) entry,
  1001. false,
  1002. HW_DESC_RXOWN,
  1003. (u8 *)&tmp_one);
  1004. }
  1005. rtlpci->rx_ring[rx_queue_idx].idx = 0;
  1006. }
  1007. }
  1008. /*
  1009. *after reset, release previous pending packet,
  1010. *and force the tx idx to the first one
  1011. */
  1012. spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
  1013. for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) {
  1014. if (rtlpci->tx_ring[i].desc) {
  1015. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[i];
  1016. while (skb_queue_len(&ring->queue)) {
  1017. struct rtl_tx_desc *entry =
  1018. &ring->desc[ring->idx];
  1019. struct sk_buff *skb =
  1020. __skb_dequeue(&ring->queue);
  1021. pci_unmap_single(rtlpci->pdev,
  1022. le32_to_cpu(rtlpriv->cfg->ops->
  1023. get_desc((u8 *)
  1024. entry,
  1025. true,
  1026. HW_DESC_TXBUFF_ADDR)),
  1027. skb->len, PCI_DMA_TODEVICE);
  1028. kfree_skb(skb);
  1029. ring->idx = (ring->idx + 1) % ring->entries;
  1030. }
  1031. ring->idx = 0;
  1032. }
  1033. }
  1034. spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
  1035. return 0;
  1036. }
  1037. unsigned int _rtl_mac_to_hwqueue(u16 fc,
  1038. unsigned int mac80211_queue_index)
  1039. {
  1040. unsigned int hw_queue_index;
  1041. if (unlikely(ieee80211_is_beacon(fc))) {
  1042. hw_queue_index = BEACON_QUEUE;
  1043. goto out;
  1044. }
  1045. if (ieee80211_is_mgmt(fc)) {
  1046. hw_queue_index = MGNT_QUEUE;
  1047. goto out;
  1048. }
  1049. switch (mac80211_queue_index) {
  1050. case 0:
  1051. hw_queue_index = VO_QUEUE;
  1052. break;
  1053. case 1:
  1054. hw_queue_index = VI_QUEUE;
  1055. break;
  1056. case 2:
  1057. hw_queue_index = BE_QUEUE;;
  1058. break;
  1059. case 3:
  1060. hw_queue_index = BK_QUEUE;
  1061. break;
  1062. default:
  1063. hw_queue_index = BE_QUEUE;
  1064. RT_ASSERT(false, ("QSLT_BE queue, skb_queue:%d\n",
  1065. mac80211_queue_index));
  1066. break;
  1067. }
  1068. out:
  1069. return hw_queue_index;
  1070. }
  1071. int rtl_pci_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
  1072. {
  1073. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1074. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1075. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1076. struct rtl8192_tx_ring *ring;
  1077. struct rtl_tx_desc *pdesc;
  1078. u8 idx;
  1079. unsigned int queue_index, hw_queue;
  1080. unsigned long flags;
  1081. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)(skb->data);
  1082. u16 fc = le16_to_cpu(hdr->frame_control);
  1083. u8 *pda_addr = hdr->addr1;
  1084. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1085. /*ssn */
  1086. u8 *qc = NULL;
  1087. u8 tid = 0;
  1088. u16 seq_number = 0;
  1089. u8 own;
  1090. u8 temp_one = 1;
  1091. if (ieee80211_is_mgmt(fc))
  1092. rtl_tx_mgmt_proc(hw, skb);
  1093. rtl_action_proc(hw, skb, true);
  1094. queue_index = skb_get_queue_mapping(skb);
  1095. hw_queue = _rtl_mac_to_hwqueue(fc, queue_index);
  1096. if (is_multicast_ether_addr(pda_addr))
  1097. rtlpriv->stats.txbytesmulticast += skb->len;
  1098. else if (is_broadcast_ether_addr(pda_addr))
  1099. rtlpriv->stats.txbytesbroadcast += skb->len;
  1100. else
  1101. rtlpriv->stats.txbytesunicast += skb->len;
  1102. spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
  1103. ring = &rtlpci->tx_ring[hw_queue];
  1104. if (hw_queue != BEACON_QUEUE)
  1105. idx = (ring->idx + skb_queue_len(&ring->queue)) %
  1106. ring->entries;
  1107. else
  1108. idx = 0;
  1109. pdesc = &ring->desc[idx];
  1110. own = (u8) rtlpriv->cfg->ops->get_desc((u8 *) pdesc,
  1111. true, HW_DESC_OWN);
  1112. if ((own == 1) && (hw_queue != BEACON_QUEUE)) {
  1113. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1114. ("No more TX desc@%d, ring->idx = %d,"
  1115. "idx = %d, skb_queue_len = 0x%d\n",
  1116. hw_queue, ring->idx, idx,
  1117. skb_queue_len(&ring->queue)));
  1118. spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
  1119. return skb->len;
  1120. }
  1121. /*
  1122. *if(ieee80211_is_nullfunc(fc)) {
  1123. * spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
  1124. * return 1;
  1125. *}
  1126. */
  1127. if (ieee80211_is_data_qos(fc)) {
  1128. qc = ieee80211_get_qos_ctl(hdr);
  1129. tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK;
  1130. seq_number = mac->tids[tid].seq_number;
  1131. seq_number &= IEEE80211_SCTL_SEQ;
  1132. /*
  1133. *hdr->seq_ctrl = hdr->seq_ctrl &
  1134. *cpu_to_le16(IEEE80211_SCTL_FRAG);
  1135. *hdr->seq_ctrl |= cpu_to_le16(seq_number);
  1136. */
  1137. seq_number += 1;
  1138. }
  1139. if (ieee80211_is_data(fc))
  1140. rtlpriv->cfg->ops->led_control(hw, LED_CTL_TX);
  1141. rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *) pdesc,
  1142. info, skb, hw_queue);
  1143. __skb_queue_tail(&ring->queue, skb);
  1144. rtlpriv->cfg->ops->set_desc((u8 *) pdesc, true,
  1145. HW_DESC_OWN, (u8 *)&temp_one);
  1146. if (!ieee80211_has_morefrags(hdr->frame_control)) {
  1147. if (qc)
  1148. mac->tids[tid].seq_number = seq_number;
  1149. }
  1150. if ((ring->entries - skb_queue_len(&ring->queue)) < 2 &&
  1151. hw_queue != BEACON_QUEUE) {
  1152. RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD,
  1153. ("less desc left, stop skb_queue@%d, "
  1154. "ring->idx = %d,"
  1155. "idx = %d, skb_queue_len = 0x%d\n",
  1156. hw_queue, ring->idx, idx,
  1157. skb_queue_len(&ring->queue)));
  1158. ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
  1159. }
  1160. spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
  1161. rtlpriv->cfg->ops->tx_polling(hw, hw_queue);
  1162. return 0;
  1163. }
  1164. void rtl_pci_deinit(struct ieee80211_hw *hw)
  1165. {
  1166. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1167. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1168. _rtl_pci_deinit_trx_ring(hw);
  1169. synchronize_irq(rtlpci->pdev->irq);
  1170. tasklet_kill(&rtlpriv->works.irq_tasklet);
  1171. flush_workqueue(rtlpriv->works.rtl_wq);
  1172. destroy_workqueue(rtlpriv->works.rtl_wq);
  1173. }
  1174. int rtl_pci_init(struct ieee80211_hw *hw, struct pci_dev *pdev)
  1175. {
  1176. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1177. int err;
  1178. _rtl_pci_init_struct(hw, pdev);
  1179. err = _rtl_pci_init_trx_ring(hw);
  1180. if (err) {
  1181. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1182. ("tx ring initialization failed"));
  1183. return err;
  1184. }
  1185. return 1;
  1186. }
  1187. int rtl_pci_start(struct ieee80211_hw *hw)
  1188. {
  1189. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1190. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1191. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1192. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1193. int err;
  1194. rtl_pci_reset_trx_ring(hw);
  1195. rtlpci->driver_is_goingto_unload = false;
  1196. err = rtlpriv->cfg->ops->hw_init(hw);
  1197. if (err) {
  1198. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1199. ("Failed to config hardware!\n"));
  1200. return err;
  1201. }
  1202. rtlpriv->cfg->ops->enable_interrupt(hw);
  1203. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("enable_interrupt OK\n"));
  1204. rtl_init_rx_config(hw);
  1205. /*should after adapter start and interrupt enable. */
  1206. set_hal_start(rtlhal);
  1207. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1208. rtlpci->up_first_time = false;
  1209. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("OK\n"));
  1210. return 0;
  1211. }
  1212. void rtl_pci_stop(struct ieee80211_hw *hw)
  1213. {
  1214. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1215. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1216. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1217. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1218. unsigned long flags;
  1219. u8 RFInProgressTimeOut = 0;
  1220. /*
  1221. *should before disable interrrupt&adapter
  1222. *and will do it immediately.
  1223. */
  1224. set_hal_stop(rtlhal);
  1225. rtlpriv->cfg->ops->disable_interrupt(hw);
  1226. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
  1227. while (ppsc->rfchange_inprogress) {
  1228. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
  1229. if (RFInProgressTimeOut > 100) {
  1230. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
  1231. break;
  1232. }
  1233. mdelay(1);
  1234. RFInProgressTimeOut++;
  1235. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
  1236. }
  1237. ppsc->rfchange_inprogress = true;
  1238. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
  1239. rtlpci->driver_is_goingto_unload = true;
  1240. rtlpriv->cfg->ops->hw_disable(hw);
  1241. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1242. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
  1243. ppsc->rfchange_inprogress = false;
  1244. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
  1245. rtl_pci_enable_aspm(hw);
  1246. }
  1247. static bool _rtl_pci_find_adapter(struct pci_dev *pdev,
  1248. struct ieee80211_hw *hw)
  1249. {
  1250. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1251. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1252. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1253. struct pci_dev *bridge_pdev = pdev->bus->self;
  1254. u16 venderid;
  1255. u16 deviceid;
  1256. u8 revisionid;
  1257. u16 irqline;
  1258. u8 tmp;
  1259. venderid = pdev->vendor;
  1260. deviceid = pdev->device;
  1261. pci_read_config_byte(pdev, 0x8, &revisionid);
  1262. pci_read_config_word(pdev, 0x3C, &irqline);
  1263. if (deviceid == RTL_PCI_8192_DID ||
  1264. deviceid == RTL_PCI_0044_DID ||
  1265. deviceid == RTL_PCI_0047_DID ||
  1266. deviceid == RTL_PCI_8192SE_DID ||
  1267. deviceid == RTL_PCI_8174_DID ||
  1268. deviceid == RTL_PCI_8173_DID ||
  1269. deviceid == RTL_PCI_8172_DID ||
  1270. deviceid == RTL_PCI_8171_DID) {
  1271. switch (revisionid) {
  1272. case RTL_PCI_REVISION_ID_8192PCIE:
  1273. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1274. ("8192 PCI-E is found - "
  1275. "vid/did=%x/%x\n", venderid, deviceid));
  1276. rtlhal->hw_type = HARDWARE_TYPE_RTL8192E;
  1277. break;
  1278. case RTL_PCI_REVISION_ID_8192SE:
  1279. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1280. ("8192SE is found - "
  1281. "vid/did=%x/%x\n", venderid, deviceid));
  1282. rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE;
  1283. break;
  1284. default:
  1285. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1286. ("Err: Unknown device - "
  1287. "vid/did=%x/%x\n", venderid, deviceid));
  1288. rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE;
  1289. break;
  1290. }
  1291. } else if (deviceid == RTL_PCI_8192CET_DID ||
  1292. deviceid == RTL_PCI_8192CE_DID ||
  1293. deviceid == RTL_PCI_8191CE_DID ||
  1294. deviceid == RTL_PCI_8188CE_DID) {
  1295. rtlhal->hw_type = HARDWARE_TYPE_RTL8192CE;
  1296. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1297. ("8192C PCI-E is found - "
  1298. "vid/did=%x/%x\n", venderid, deviceid));
  1299. } else {
  1300. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1301. ("Err: Unknown device -"
  1302. " vid/did=%x/%x\n", venderid, deviceid));
  1303. rtlhal->hw_type = RTL_DEFAULT_HARDWARE_TYPE;
  1304. }
  1305. /*find bus info */
  1306. pcipriv->ndis_adapter.busnumber = pdev->bus->number;
  1307. pcipriv->ndis_adapter.devnumber = PCI_SLOT(pdev->devfn);
  1308. pcipriv->ndis_adapter.funcnumber = PCI_FUNC(pdev->devfn);
  1309. /*find bridge info */
  1310. pcipriv->ndis_adapter.pcibridge_vendorid = bridge_pdev->vendor;
  1311. for (tmp = 0; tmp < PCI_BRIDGE_VENDOR_MAX; tmp++) {
  1312. if (bridge_pdev->vendor == pcibridge_vendors[tmp]) {
  1313. pcipriv->ndis_adapter.pcibridge_vendor = tmp;
  1314. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1315. ("Pci Bridge Vendor is found index: %d\n",
  1316. tmp));
  1317. break;
  1318. }
  1319. }
  1320. if (pcipriv->ndis_adapter.pcibridge_vendor !=
  1321. PCI_BRIDGE_VENDOR_UNKNOWN) {
  1322. pcipriv->ndis_adapter.pcibridge_busnum =
  1323. bridge_pdev->bus->number;
  1324. pcipriv->ndis_adapter.pcibridge_devnum =
  1325. PCI_SLOT(bridge_pdev->devfn);
  1326. pcipriv->ndis_adapter.pcibridge_funcnum =
  1327. PCI_FUNC(bridge_pdev->devfn);
  1328. pcipriv->ndis_adapter.pcibridge_pciehdr_offset =
  1329. pci_pcie_cap(bridge_pdev);
  1330. pcipriv->ndis_adapter.pcicfg_addrport =
  1331. (pcipriv->ndis_adapter.pcibridge_busnum << 16) |
  1332. (pcipriv->ndis_adapter.pcibridge_devnum << 11) |
  1333. (pcipriv->ndis_adapter.pcibridge_funcnum << 8) | (1 << 31);
  1334. pcipriv->ndis_adapter.num4bytes =
  1335. (pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10) / 4;
  1336. rtl_pci_get_linkcontrol_field(hw);
  1337. if (pcipriv->ndis_adapter.pcibridge_vendor ==
  1338. PCI_BRIDGE_VENDOR_AMD) {
  1339. pcipriv->ndis_adapter.amd_l1_patch =
  1340. rtl_pci_get_amd_l1_patch(hw);
  1341. }
  1342. }
  1343. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1344. ("pcidev busnumber:devnumber:funcnumber:"
  1345. "vendor:link_ctl %d:%d:%d:%x:%x\n",
  1346. pcipriv->ndis_adapter.busnumber,
  1347. pcipriv->ndis_adapter.devnumber,
  1348. pcipriv->ndis_adapter.funcnumber,
  1349. pdev->vendor, pcipriv->ndis_adapter.linkctrl_reg));
  1350. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1351. ("pci_bridge busnumber:devnumber:funcnumber:vendor:"
  1352. "pcie_cap:link_ctl_reg:amd %d:%d:%d:%x:%x:%x:%x\n",
  1353. pcipriv->ndis_adapter.pcibridge_busnum,
  1354. pcipriv->ndis_adapter.pcibridge_devnum,
  1355. pcipriv->ndis_adapter.pcibridge_funcnum,
  1356. pcibridge_vendors[pcipriv->ndis_adapter.pcibridge_vendor],
  1357. pcipriv->ndis_adapter.pcibridge_pciehdr_offset,
  1358. pcipriv->ndis_adapter.pcibridge_linkctrlreg,
  1359. pcipriv->ndis_adapter.amd_l1_patch));
  1360. rtl_pci_parse_configuration(pdev, hw);
  1361. return true;
  1362. }
  1363. int __devinit rtl_pci_probe(struct pci_dev *pdev,
  1364. const struct pci_device_id *id)
  1365. {
  1366. struct ieee80211_hw *hw = NULL;
  1367. struct rtl_priv *rtlpriv = NULL;
  1368. struct rtl_pci_priv *pcipriv = NULL;
  1369. struct rtl_pci *rtlpci;
  1370. unsigned long pmem_start, pmem_len, pmem_flags;
  1371. int err;
  1372. err = pci_enable_device(pdev);
  1373. if (err) {
  1374. RT_ASSERT(false,
  1375. ("%s : Cannot enable new PCI device\n",
  1376. pci_name(pdev)));
  1377. return err;
  1378. }
  1379. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
  1380. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
  1381. RT_ASSERT(false, ("Unable to obtain 32bit DMA "
  1382. "for consistent allocations\n"));
  1383. pci_disable_device(pdev);
  1384. return -ENOMEM;
  1385. }
  1386. }
  1387. pci_set_master(pdev);
  1388. hw = ieee80211_alloc_hw(sizeof(struct rtl_pci_priv) +
  1389. sizeof(struct rtl_priv), &rtl_ops);
  1390. if (!hw) {
  1391. RT_ASSERT(false,
  1392. ("%s : ieee80211 alloc failed\n", pci_name(pdev)));
  1393. err = -ENOMEM;
  1394. goto fail1;
  1395. }
  1396. SET_IEEE80211_DEV(hw, &pdev->dev);
  1397. pci_set_drvdata(pdev, hw);
  1398. rtlpriv = hw->priv;
  1399. pcipriv = (void *)rtlpriv->priv;
  1400. pcipriv->dev.pdev = pdev;
  1401. /*
  1402. *init dbgp flags before all
  1403. *other functions, because we will
  1404. *use it in other funtions like
  1405. *RT_TRACE/RT_PRINT/RTL_PRINT_DATA
  1406. *you can not use these macro
  1407. *before this
  1408. */
  1409. rtl_dbgp_flag_init(hw);
  1410. /* MEM map */
  1411. err = pci_request_regions(pdev, KBUILD_MODNAME);
  1412. if (err) {
  1413. RT_ASSERT(false, ("Can't obtain PCI resources\n"));
  1414. return err;
  1415. }
  1416. pmem_start = pci_resource_start(pdev, 2);
  1417. pmem_len = pci_resource_len(pdev, 2);
  1418. pmem_flags = pci_resource_flags(pdev, 2);
  1419. /*shared mem start */
  1420. rtlpriv->io.pci_mem_start =
  1421. (unsigned long)pci_iomap(pdev, 2, pmem_len);
  1422. if (rtlpriv->io.pci_mem_start == 0) {
  1423. RT_ASSERT(false, ("Can't map PCI mem\n"));
  1424. goto fail2;
  1425. }
  1426. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1427. ("mem mapped space: start: 0x%08lx len:%08lx "
  1428. "flags:%08lx, after map:0x%08lx\n",
  1429. pmem_start, pmem_len, pmem_flags,
  1430. rtlpriv->io.pci_mem_start));
  1431. /* Disable Clk Request */
  1432. pci_write_config_byte(pdev, 0x81, 0);
  1433. /* leave D3 mode */
  1434. pci_write_config_byte(pdev, 0x44, 0);
  1435. pci_write_config_byte(pdev, 0x04, 0x06);
  1436. pci_write_config_byte(pdev, 0x04, 0x07);
  1437. /* init cfg & intf_ops */
  1438. rtlpriv->rtlhal.interface = INTF_PCI;
  1439. rtlpriv->cfg = (struct rtl_hal_cfg *)(id->driver_data);
  1440. rtlpriv->intf_ops = &rtl_pci_ops;
  1441. /* find adapter */
  1442. _rtl_pci_find_adapter(pdev, hw);
  1443. /* Init IO handler */
  1444. _rtl_pci_io_handler_init(&pdev->dev, hw);
  1445. /*like read eeprom and so on */
  1446. rtlpriv->cfg->ops->read_eeprom_info(hw);
  1447. if (rtlpriv->cfg->ops->init_sw_vars(hw)) {
  1448. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1449. ("Can't init_sw_vars.\n"));
  1450. goto fail3;
  1451. }
  1452. rtlpriv->cfg->ops->init_sw_leds(hw);
  1453. /*aspm */
  1454. rtl_pci_init_aspm(hw);
  1455. /* Init mac80211 sw */
  1456. err = rtl_init_core(hw);
  1457. if (err) {
  1458. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1459. ("Can't allocate sw for mac80211.\n"));
  1460. goto fail3;
  1461. }
  1462. /* Init PCI sw */
  1463. err = !rtl_pci_init(hw, pdev);
  1464. if (err) {
  1465. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1466. ("Failed to init PCI.\n"));
  1467. goto fail3;
  1468. }
  1469. err = ieee80211_register_hw(hw);
  1470. if (err) {
  1471. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1472. ("Can't register mac80211 hw.\n"));
  1473. goto fail3;
  1474. } else {
  1475. rtlpriv->mac80211.mac80211_registered = 1;
  1476. }
  1477. err = sysfs_create_group(&pdev->dev.kobj, &rtl_attribute_group);
  1478. if (err) {
  1479. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1480. ("failed to create sysfs device attributes\n"));
  1481. goto fail3;
  1482. }
  1483. /*init rfkill */
  1484. rtl_init_rfkill(hw);
  1485. rtlpci = rtl_pcidev(pcipriv);
  1486. err = request_irq(rtlpci->pdev->irq, &_rtl_pci_interrupt,
  1487. IRQF_SHARED, KBUILD_MODNAME, hw);
  1488. if (err) {
  1489. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1490. ("%s: failed to register IRQ handler\n",
  1491. wiphy_name(hw->wiphy)));
  1492. goto fail3;
  1493. } else {
  1494. rtlpci->irq_alloc = 1;
  1495. }
  1496. set_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status);
  1497. return 0;
  1498. fail3:
  1499. pci_set_drvdata(pdev, NULL);
  1500. rtl_deinit_core(hw);
  1501. _rtl_pci_io_handler_release(hw);
  1502. ieee80211_free_hw(hw);
  1503. if (rtlpriv->io.pci_mem_start != 0)
  1504. pci_iounmap(pdev, (void *)rtlpriv->io.pci_mem_start);
  1505. fail2:
  1506. pci_release_regions(pdev);
  1507. fail1:
  1508. pci_disable_device(pdev);
  1509. return -ENODEV;
  1510. }
  1511. EXPORT_SYMBOL(rtl_pci_probe);
  1512. void rtl_pci_disconnect(struct pci_dev *pdev)
  1513. {
  1514. struct ieee80211_hw *hw = pci_get_drvdata(pdev);
  1515. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1516. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1517. struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
  1518. struct rtl_mac *rtlmac = rtl_mac(rtlpriv);
  1519. clear_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status);
  1520. sysfs_remove_group(&pdev->dev.kobj, &rtl_attribute_group);
  1521. /*ieee80211_unregister_hw will call ops_stop */
  1522. if (rtlmac->mac80211_registered == 1) {
  1523. ieee80211_unregister_hw(hw);
  1524. rtlmac->mac80211_registered = 0;
  1525. } else {
  1526. rtl_deinit_deferred_work(hw);
  1527. rtlpriv->intf_ops->adapter_stop(hw);
  1528. }
  1529. /*deinit rfkill */
  1530. rtl_deinit_rfkill(hw);
  1531. rtl_pci_deinit(hw);
  1532. rtl_deinit_core(hw);
  1533. rtlpriv->cfg->ops->deinit_sw_leds(hw);
  1534. _rtl_pci_io_handler_release(hw);
  1535. rtlpriv->cfg->ops->deinit_sw_vars(hw);
  1536. if (rtlpci->irq_alloc) {
  1537. free_irq(rtlpci->pdev->irq, hw);
  1538. rtlpci->irq_alloc = 0;
  1539. }
  1540. if (rtlpriv->io.pci_mem_start != 0) {
  1541. pci_iounmap(pdev, (void *)rtlpriv->io.pci_mem_start);
  1542. pci_release_regions(pdev);
  1543. }
  1544. pci_disable_device(pdev);
  1545. pci_set_drvdata(pdev, NULL);
  1546. ieee80211_free_hw(hw);
  1547. }
  1548. EXPORT_SYMBOL(rtl_pci_disconnect);
  1549. /***************************************
  1550. kernel pci power state define:
  1551. PCI_D0 ((pci_power_t __force) 0)
  1552. PCI_D1 ((pci_power_t __force) 1)
  1553. PCI_D2 ((pci_power_t __force) 2)
  1554. PCI_D3hot ((pci_power_t __force) 3)
  1555. PCI_D3cold ((pci_power_t __force) 4)
  1556. PCI_UNKNOWN ((pci_power_t __force) 5)
  1557. This function is called when system
  1558. goes into suspend state mac80211 will
  1559. call rtl_mac_stop() from the mac80211
  1560. suspend function first, So there is
  1561. no need to call hw_disable here.
  1562. ****************************************/
  1563. int rtl_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  1564. {
  1565. pci_save_state(pdev);
  1566. pci_disable_device(pdev);
  1567. pci_set_power_state(pdev, PCI_D3hot);
  1568. return 0;
  1569. }
  1570. EXPORT_SYMBOL(rtl_pci_suspend);
  1571. int rtl_pci_resume(struct pci_dev *pdev)
  1572. {
  1573. int ret;
  1574. pci_set_power_state(pdev, PCI_D0);
  1575. ret = pci_enable_device(pdev);
  1576. if (ret) {
  1577. RT_ASSERT(false, ("ERR: <======\n"));
  1578. return ret;
  1579. }
  1580. pci_restore_state(pdev);
  1581. return 0;
  1582. }
  1583. EXPORT_SYMBOL(rtl_pci_resume);
  1584. struct rtl_intf_ops rtl_pci_ops = {
  1585. .adapter_start = rtl_pci_start,
  1586. .adapter_stop = rtl_pci_stop,
  1587. .adapter_tx = rtl_pci_tx,
  1588. .reset_trx_ring = rtl_pci_reset_trx_ring,
  1589. .disable_aspm = rtl_pci_disable_aspm,
  1590. .enable_aspm = rtl_pci_enable_aspm,
  1591. };