ll_rw_blk.c 92 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/config.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/backing-dev.h>
  16. #include <linux/bio.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/highmem.h>
  19. #include <linux/mm.h>
  20. #include <linux/kernel_stat.h>
  21. #include <linux/string.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  24. #include <linux/completion.h>
  25. #include <linux/slab.h>
  26. #include <linux/swap.h>
  27. #include <linux/writeback.h>
  28. #include <linux/blkdev.h>
  29. /*
  30. * for max sense size
  31. */
  32. #include <scsi/scsi_cmnd.h>
  33. static void blk_unplug_work(void *data);
  34. static void blk_unplug_timeout(unsigned long data);
  35. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  36. /*
  37. * For the allocated request tables
  38. */
  39. static kmem_cache_t *request_cachep;
  40. /*
  41. * For queue allocation
  42. */
  43. static kmem_cache_t *requestq_cachep;
  44. /*
  45. * For io context allocations
  46. */
  47. static kmem_cache_t *iocontext_cachep;
  48. static wait_queue_head_t congestion_wqh[2] = {
  49. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  50. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  51. };
  52. /*
  53. * Controlling structure to kblockd
  54. */
  55. static struct workqueue_struct *kblockd_workqueue;
  56. unsigned long blk_max_low_pfn, blk_max_pfn;
  57. EXPORT_SYMBOL(blk_max_low_pfn);
  58. EXPORT_SYMBOL(blk_max_pfn);
  59. /* Amount of time in which a process may batch requests */
  60. #define BLK_BATCH_TIME (HZ/50UL)
  61. /* Number of requests a "batching" process may submit */
  62. #define BLK_BATCH_REQ 32
  63. /*
  64. * Return the threshold (number of used requests) at which the queue is
  65. * considered to be congested. It include a little hysteresis to keep the
  66. * context switch rate down.
  67. */
  68. static inline int queue_congestion_on_threshold(struct request_queue *q)
  69. {
  70. return q->nr_congestion_on;
  71. }
  72. /*
  73. * The threshold at which a queue is considered to be uncongested
  74. */
  75. static inline int queue_congestion_off_threshold(struct request_queue *q)
  76. {
  77. return q->nr_congestion_off;
  78. }
  79. static void blk_queue_congestion_threshold(struct request_queue *q)
  80. {
  81. int nr;
  82. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  83. if (nr > q->nr_requests)
  84. nr = q->nr_requests;
  85. q->nr_congestion_on = nr;
  86. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  87. if (nr < 1)
  88. nr = 1;
  89. q->nr_congestion_off = nr;
  90. }
  91. /*
  92. * A queue has just exitted congestion. Note this in the global counter of
  93. * congested queues, and wake up anyone who was waiting for requests to be
  94. * put back.
  95. */
  96. static void clear_queue_congested(request_queue_t *q, int rw)
  97. {
  98. enum bdi_state bit;
  99. wait_queue_head_t *wqh = &congestion_wqh[rw];
  100. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  101. clear_bit(bit, &q->backing_dev_info.state);
  102. smp_mb__after_clear_bit();
  103. if (waitqueue_active(wqh))
  104. wake_up(wqh);
  105. }
  106. /*
  107. * A queue has just entered congestion. Flag that in the queue's VM-visible
  108. * state flags and increment the global gounter of congested queues.
  109. */
  110. static void set_queue_congested(request_queue_t *q, int rw)
  111. {
  112. enum bdi_state bit;
  113. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  114. set_bit(bit, &q->backing_dev_info.state);
  115. }
  116. /**
  117. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  118. * @bdev: device
  119. *
  120. * Locates the passed device's request queue and returns the address of its
  121. * backing_dev_info
  122. *
  123. * Will return NULL if the request queue cannot be located.
  124. */
  125. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  126. {
  127. struct backing_dev_info *ret = NULL;
  128. request_queue_t *q = bdev_get_queue(bdev);
  129. if (q)
  130. ret = &q->backing_dev_info;
  131. return ret;
  132. }
  133. EXPORT_SYMBOL(blk_get_backing_dev_info);
  134. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  135. {
  136. q->activity_fn = fn;
  137. q->activity_data = data;
  138. }
  139. EXPORT_SYMBOL(blk_queue_activity_fn);
  140. /**
  141. * blk_queue_prep_rq - set a prepare_request function for queue
  142. * @q: queue
  143. * @pfn: prepare_request function
  144. *
  145. * It's possible for a queue to register a prepare_request callback which
  146. * is invoked before the request is handed to the request_fn. The goal of
  147. * the function is to prepare a request for I/O, it can be used to build a
  148. * cdb from the request data for instance.
  149. *
  150. */
  151. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  152. {
  153. q->prep_rq_fn = pfn;
  154. }
  155. EXPORT_SYMBOL(blk_queue_prep_rq);
  156. /**
  157. * blk_queue_merge_bvec - set a merge_bvec function for queue
  158. * @q: queue
  159. * @mbfn: merge_bvec_fn
  160. *
  161. * Usually queues have static limitations on the max sectors or segments that
  162. * we can put in a request. Stacking drivers may have some settings that
  163. * are dynamic, and thus we have to query the queue whether it is ok to
  164. * add a new bio_vec to a bio at a given offset or not. If the block device
  165. * has such limitations, it needs to register a merge_bvec_fn to control
  166. * the size of bio's sent to it. Note that a block device *must* allow a
  167. * single page to be added to an empty bio. The block device driver may want
  168. * to use the bio_split() function to deal with these bio's. By default
  169. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  170. * honored.
  171. */
  172. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  173. {
  174. q->merge_bvec_fn = mbfn;
  175. }
  176. EXPORT_SYMBOL(blk_queue_merge_bvec);
  177. /**
  178. * blk_queue_make_request - define an alternate make_request function for a device
  179. * @q: the request queue for the device to be affected
  180. * @mfn: the alternate make_request function
  181. *
  182. * Description:
  183. * The normal way for &struct bios to be passed to a device
  184. * driver is for them to be collected into requests on a request
  185. * queue, and then to allow the device driver to select requests
  186. * off that queue when it is ready. This works well for many block
  187. * devices. However some block devices (typically virtual devices
  188. * such as md or lvm) do not benefit from the processing on the
  189. * request queue, and are served best by having the requests passed
  190. * directly to them. This can be achieved by providing a function
  191. * to blk_queue_make_request().
  192. *
  193. * Caveat:
  194. * The driver that does this *must* be able to deal appropriately
  195. * with buffers in "highmemory". This can be accomplished by either calling
  196. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  197. * blk_queue_bounce() to create a buffer in normal memory.
  198. **/
  199. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  200. {
  201. /*
  202. * set defaults
  203. */
  204. q->nr_requests = BLKDEV_MAX_RQ;
  205. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  206. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  207. q->make_request_fn = mfn;
  208. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  209. q->backing_dev_info.state = 0;
  210. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  211. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  212. blk_queue_hardsect_size(q, 512);
  213. blk_queue_dma_alignment(q, 511);
  214. blk_queue_congestion_threshold(q);
  215. q->nr_batching = BLK_BATCH_REQ;
  216. q->unplug_thresh = 4; /* hmm */
  217. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  218. if (q->unplug_delay == 0)
  219. q->unplug_delay = 1;
  220. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  221. q->unplug_timer.function = blk_unplug_timeout;
  222. q->unplug_timer.data = (unsigned long)q;
  223. /*
  224. * by default assume old behaviour and bounce for any highmem page
  225. */
  226. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  227. blk_queue_activity_fn(q, NULL, NULL);
  228. }
  229. EXPORT_SYMBOL(blk_queue_make_request);
  230. static inline void rq_init(request_queue_t *q, struct request *rq)
  231. {
  232. INIT_LIST_HEAD(&rq->queuelist);
  233. rq->errors = 0;
  234. rq->rq_status = RQ_ACTIVE;
  235. rq->bio = rq->biotail = NULL;
  236. rq->ioprio = 0;
  237. rq->buffer = NULL;
  238. rq->ref_count = 1;
  239. rq->q = q;
  240. rq->waiting = NULL;
  241. rq->special = NULL;
  242. rq->data_len = 0;
  243. rq->data = NULL;
  244. rq->nr_phys_segments = 0;
  245. rq->sense = NULL;
  246. rq->end_io = NULL;
  247. rq->end_io_data = NULL;
  248. }
  249. /**
  250. * blk_queue_ordered - does this queue support ordered writes
  251. * @q: the request queue
  252. * @flag: see below
  253. *
  254. * Description:
  255. * For journalled file systems, doing ordered writes on a commit
  256. * block instead of explicitly doing wait_on_buffer (which is bad
  257. * for performance) can be a big win. Block drivers supporting this
  258. * feature should call this function and indicate so.
  259. *
  260. **/
  261. void blk_queue_ordered(request_queue_t *q, int flag)
  262. {
  263. switch (flag) {
  264. case QUEUE_ORDERED_NONE:
  265. if (q->flush_rq)
  266. kmem_cache_free(request_cachep, q->flush_rq);
  267. q->flush_rq = NULL;
  268. q->ordered = flag;
  269. break;
  270. case QUEUE_ORDERED_TAG:
  271. q->ordered = flag;
  272. break;
  273. case QUEUE_ORDERED_FLUSH:
  274. q->ordered = flag;
  275. if (!q->flush_rq)
  276. q->flush_rq = kmem_cache_alloc(request_cachep,
  277. GFP_KERNEL);
  278. break;
  279. default:
  280. printk("blk_queue_ordered: bad value %d\n", flag);
  281. break;
  282. }
  283. }
  284. EXPORT_SYMBOL(blk_queue_ordered);
  285. /**
  286. * blk_queue_issue_flush_fn - set function for issuing a flush
  287. * @q: the request queue
  288. * @iff: the function to be called issuing the flush
  289. *
  290. * Description:
  291. * If a driver supports issuing a flush command, the support is notified
  292. * to the block layer by defining it through this call.
  293. *
  294. **/
  295. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  296. {
  297. q->issue_flush_fn = iff;
  298. }
  299. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  300. /*
  301. * Cache flushing for ordered writes handling
  302. */
  303. static void blk_pre_flush_end_io(struct request *flush_rq)
  304. {
  305. struct request *rq = flush_rq->end_io_data;
  306. request_queue_t *q = rq->q;
  307. elv_completed_request(q, flush_rq);
  308. rq->flags |= REQ_BAR_PREFLUSH;
  309. if (!flush_rq->errors)
  310. elv_requeue_request(q, rq);
  311. else {
  312. q->end_flush_fn(q, flush_rq);
  313. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  314. q->request_fn(q);
  315. }
  316. }
  317. static void blk_post_flush_end_io(struct request *flush_rq)
  318. {
  319. struct request *rq = flush_rq->end_io_data;
  320. request_queue_t *q = rq->q;
  321. elv_completed_request(q, flush_rq);
  322. rq->flags |= REQ_BAR_POSTFLUSH;
  323. q->end_flush_fn(q, flush_rq);
  324. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  325. q->request_fn(q);
  326. }
  327. struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
  328. {
  329. struct request *flush_rq = q->flush_rq;
  330. BUG_ON(!blk_barrier_rq(rq));
  331. if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
  332. return NULL;
  333. rq_init(q, flush_rq);
  334. flush_rq->elevator_private = NULL;
  335. flush_rq->flags = REQ_BAR_FLUSH;
  336. flush_rq->rq_disk = rq->rq_disk;
  337. flush_rq->rl = NULL;
  338. /*
  339. * prepare_flush returns 0 if no flush is needed, just mark both
  340. * pre and post flush as done in that case
  341. */
  342. if (!q->prepare_flush_fn(q, flush_rq)) {
  343. rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
  344. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  345. return rq;
  346. }
  347. /*
  348. * some drivers dequeue requests right away, some only after io
  349. * completion. make sure the request is dequeued.
  350. */
  351. if (!list_empty(&rq->queuelist))
  352. blkdev_dequeue_request(rq);
  353. flush_rq->end_io_data = rq;
  354. flush_rq->end_io = blk_pre_flush_end_io;
  355. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  356. return flush_rq;
  357. }
  358. static void blk_start_post_flush(request_queue_t *q, struct request *rq)
  359. {
  360. struct request *flush_rq = q->flush_rq;
  361. BUG_ON(!blk_barrier_rq(rq));
  362. rq_init(q, flush_rq);
  363. flush_rq->elevator_private = NULL;
  364. flush_rq->flags = REQ_BAR_FLUSH;
  365. flush_rq->rq_disk = rq->rq_disk;
  366. flush_rq->rl = NULL;
  367. if (q->prepare_flush_fn(q, flush_rq)) {
  368. flush_rq->end_io_data = rq;
  369. flush_rq->end_io = blk_post_flush_end_io;
  370. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  371. q->request_fn(q);
  372. }
  373. }
  374. static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
  375. int sectors)
  376. {
  377. if (sectors > rq->nr_sectors)
  378. sectors = rq->nr_sectors;
  379. rq->nr_sectors -= sectors;
  380. return rq->nr_sectors;
  381. }
  382. static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
  383. int sectors, int queue_locked)
  384. {
  385. if (q->ordered != QUEUE_ORDERED_FLUSH)
  386. return 0;
  387. if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
  388. return 0;
  389. if (blk_barrier_postflush(rq))
  390. return 0;
  391. if (!blk_check_end_barrier(q, rq, sectors)) {
  392. unsigned long flags = 0;
  393. if (!queue_locked)
  394. spin_lock_irqsave(q->queue_lock, flags);
  395. blk_start_post_flush(q, rq);
  396. if (!queue_locked)
  397. spin_unlock_irqrestore(q->queue_lock, flags);
  398. }
  399. return 1;
  400. }
  401. /**
  402. * blk_complete_barrier_rq - complete possible barrier request
  403. * @q: the request queue for the device
  404. * @rq: the request
  405. * @sectors: number of sectors to complete
  406. *
  407. * Description:
  408. * Used in driver end_io handling to determine whether to postpone
  409. * completion of a barrier request until a post flush has been done. This
  410. * is the unlocked variant, used if the caller doesn't already hold the
  411. * queue lock.
  412. **/
  413. int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
  414. {
  415. return __blk_complete_barrier_rq(q, rq, sectors, 0);
  416. }
  417. EXPORT_SYMBOL(blk_complete_barrier_rq);
  418. /**
  419. * blk_complete_barrier_rq_locked - complete possible barrier request
  420. * @q: the request queue for the device
  421. * @rq: the request
  422. * @sectors: number of sectors to complete
  423. *
  424. * Description:
  425. * See blk_complete_barrier_rq(). This variant must be used if the caller
  426. * holds the queue lock.
  427. **/
  428. int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
  429. int sectors)
  430. {
  431. return __blk_complete_barrier_rq(q, rq, sectors, 1);
  432. }
  433. EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
  434. /**
  435. * blk_queue_bounce_limit - set bounce buffer limit for queue
  436. * @q: the request queue for the device
  437. * @dma_addr: bus address limit
  438. *
  439. * Description:
  440. * Different hardware can have different requirements as to what pages
  441. * it can do I/O directly to. A low level driver can call
  442. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  443. * buffers for doing I/O to pages residing above @page. By default
  444. * the block layer sets this to the highest numbered "low" memory page.
  445. **/
  446. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  447. {
  448. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  449. /*
  450. * set appropriate bounce gfp mask -- unfortunately we don't have a
  451. * full 4GB zone, so we have to resort to low memory for any bounces.
  452. * ISA has its own < 16MB zone.
  453. */
  454. if (bounce_pfn < blk_max_low_pfn) {
  455. BUG_ON(dma_addr < BLK_BOUNCE_ISA);
  456. init_emergency_isa_pool();
  457. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  458. } else
  459. q->bounce_gfp = GFP_NOIO;
  460. q->bounce_pfn = bounce_pfn;
  461. }
  462. EXPORT_SYMBOL(blk_queue_bounce_limit);
  463. /**
  464. * blk_queue_max_sectors - set max sectors for a request for this queue
  465. * @q: the request queue for the device
  466. * @max_sectors: max sectors in the usual 512b unit
  467. *
  468. * Description:
  469. * Enables a low level driver to set an upper limit on the size of
  470. * received requests.
  471. **/
  472. void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
  473. {
  474. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  475. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  476. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  477. }
  478. if (BLK_DEF_MAX_SECTORS > max_sectors)
  479. q->max_hw_sectors = q->max_sectors = max_sectors;
  480. else {
  481. q->max_sectors = BLK_DEF_MAX_SECTORS;
  482. q->max_hw_sectors = max_sectors;
  483. }
  484. }
  485. EXPORT_SYMBOL(blk_queue_max_sectors);
  486. /**
  487. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  488. * @q: the request queue for the device
  489. * @max_segments: max number of segments
  490. *
  491. * Description:
  492. * Enables a low level driver to set an upper limit on the number of
  493. * physical data segments in a request. This would be the largest sized
  494. * scatter list the driver could handle.
  495. **/
  496. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  497. {
  498. if (!max_segments) {
  499. max_segments = 1;
  500. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  501. }
  502. q->max_phys_segments = max_segments;
  503. }
  504. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  505. /**
  506. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  507. * @q: the request queue for the device
  508. * @max_segments: max number of segments
  509. *
  510. * Description:
  511. * Enables a low level driver to set an upper limit on the number of
  512. * hw data segments in a request. This would be the largest number of
  513. * address/length pairs the host adapter can actually give as once
  514. * to the device.
  515. **/
  516. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  517. {
  518. if (!max_segments) {
  519. max_segments = 1;
  520. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  521. }
  522. q->max_hw_segments = max_segments;
  523. }
  524. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  525. /**
  526. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  527. * @q: the request queue for the device
  528. * @max_size: max size of segment in bytes
  529. *
  530. * Description:
  531. * Enables a low level driver to set an upper limit on the size of a
  532. * coalesced segment
  533. **/
  534. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  535. {
  536. if (max_size < PAGE_CACHE_SIZE) {
  537. max_size = PAGE_CACHE_SIZE;
  538. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  539. }
  540. q->max_segment_size = max_size;
  541. }
  542. EXPORT_SYMBOL(blk_queue_max_segment_size);
  543. /**
  544. * blk_queue_hardsect_size - set hardware sector size for the queue
  545. * @q: the request queue for the device
  546. * @size: the hardware sector size, in bytes
  547. *
  548. * Description:
  549. * This should typically be set to the lowest possible sector size
  550. * that the hardware can operate on (possible without reverting to
  551. * even internal read-modify-write operations). Usually the default
  552. * of 512 covers most hardware.
  553. **/
  554. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  555. {
  556. q->hardsect_size = size;
  557. }
  558. EXPORT_SYMBOL(blk_queue_hardsect_size);
  559. /*
  560. * Returns the minimum that is _not_ zero, unless both are zero.
  561. */
  562. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  563. /**
  564. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  565. * @t: the stacking driver (top)
  566. * @b: the underlying device (bottom)
  567. **/
  568. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  569. {
  570. /* zero is "infinity" */
  571. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  572. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  573. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  574. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  575. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  576. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  577. }
  578. EXPORT_SYMBOL(blk_queue_stack_limits);
  579. /**
  580. * blk_queue_segment_boundary - set boundary rules for segment merging
  581. * @q: the request queue for the device
  582. * @mask: the memory boundary mask
  583. **/
  584. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  585. {
  586. if (mask < PAGE_CACHE_SIZE - 1) {
  587. mask = PAGE_CACHE_SIZE - 1;
  588. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  589. }
  590. q->seg_boundary_mask = mask;
  591. }
  592. EXPORT_SYMBOL(blk_queue_segment_boundary);
  593. /**
  594. * blk_queue_dma_alignment - set dma length and memory alignment
  595. * @q: the request queue for the device
  596. * @mask: alignment mask
  597. *
  598. * description:
  599. * set required memory and length aligment for direct dma transactions.
  600. * this is used when buiding direct io requests for the queue.
  601. *
  602. **/
  603. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  604. {
  605. q->dma_alignment = mask;
  606. }
  607. EXPORT_SYMBOL(blk_queue_dma_alignment);
  608. /**
  609. * blk_queue_find_tag - find a request by its tag and queue
  610. * @q: The request queue for the device
  611. * @tag: The tag of the request
  612. *
  613. * Notes:
  614. * Should be used when a device returns a tag and you want to match
  615. * it with a request.
  616. *
  617. * no locks need be held.
  618. **/
  619. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  620. {
  621. struct blk_queue_tag *bqt = q->queue_tags;
  622. if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
  623. return NULL;
  624. return bqt->tag_index[tag];
  625. }
  626. EXPORT_SYMBOL(blk_queue_find_tag);
  627. /**
  628. * __blk_queue_free_tags - release tag maintenance info
  629. * @q: the request queue for the device
  630. *
  631. * Notes:
  632. * blk_cleanup_queue() will take care of calling this function, if tagging
  633. * has been used. So there's no need to call this directly.
  634. **/
  635. static void __blk_queue_free_tags(request_queue_t *q)
  636. {
  637. struct blk_queue_tag *bqt = q->queue_tags;
  638. if (!bqt)
  639. return;
  640. if (atomic_dec_and_test(&bqt->refcnt)) {
  641. BUG_ON(bqt->busy);
  642. BUG_ON(!list_empty(&bqt->busy_list));
  643. kfree(bqt->tag_index);
  644. bqt->tag_index = NULL;
  645. kfree(bqt->tag_map);
  646. bqt->tag_map = NULL;
  647. kfree(bqt);
  648. }
  649. q->queue_tags = NULL;
  650. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  651. }
  652. /**
  653. * blk_queue_free_tags - release tag maintenance info
  654. * @q: the request queue for the device
  655. *
  656. * Notes:
  657. * This is used to disabled tagged queuing to a device, yet leave
  658. * queue in function.
  659. **/
  660. void blk_queue_free_tags(request_queue_t *q)
  661. {
  662. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  663. }
  664. EXPORT_SYMBOL(blk_queue_free_tags);
  665. static int
  666. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  667. {
  668. struct request **tag_index;
  669. unsigned long *tag_map;
  670. int nr_ulongs;
  671. if (depth > q->nr_requests * 2) {
  672. depth = q->nr_requests * 2;
  673. printk(KERN_ERR "%s: adjusted depth to %d\n",
  674. __FUNCTION__, depth);
  675. }
  676. tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  677. if (!tag_index)
  678. goto fail;
  679. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  680. tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  681. if (!tag_map)
  682. goto fail;
  683. memset(tag_index, 0, depth * sizeof(struct request *));
  684. memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
  685. tags->real_max_depth = depth;
  686. tags->max_depth = depth;
  687. tags->tag_index = tag_index;
  688. tags->tag_map = tag_map;
  689. return 0;
  690. fail:
  691. kfree(tag_index);
  692. return -ENOMEM;
  693. }
  694. /**
  695. * blk_queue_init_tags - initialize the queue tag info
  696. * @q: the request queue for the device
  697. * @depth: the maximum queue depth supported
  698. * @tags: the tag to use
  699. **/
  700. int blk_queue_init_tags(request_queue_t *q, int depth,
  701. struct blk_queue_tag *tags)
  702. {
  703. int rc;
  704. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  705. if (!tags && !q->queue_tags) {
  706. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  707. if (!tags)
  708. goto fail;
  709. if (init_tag_map(q, tags, depth))
  710. goto fail;
  711. INIT_LIST_HEAD(&tags->busy_list);
  712. tags->busy = 0;
  713. atomic_set(&tags->refcnt, 1);
  714. } else if (q->queue_tags) {
  715. if ((rc = blk_queue_resize_tags(q, depth)))
  716. return rc;
  717. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  718. return 0;
  719. } else
  720. atomic_inc(&tags->refcnt);
  721. /*
  722. * assign it, all done
  723. */
  724. q->queue_tags = tags;
  725. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  726. return 0;
  727. fail:
  728. kfree(tags);
  729. return -ENOMEM;
  730. }
  731. EXPORT_SYMBOL(blk_queue_init_tags);
  732. /**
  733. * blk_queue_resize_tags - change the queueing depth
  734. * @q: the request queue for the device
  735. * @new_depth: the new max command queueing depth
  736. *
  737. * Notes:
  738. * Must be called with the queue lock held.
  739. **/
  740. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  741. {
  742. struct blk_queue_tag *bqt = q->queue_tags;
  743. struct request **tag_index;
  744. unsigned long *tag_map;
  745. int max_depth, nr_ulongs;
  746. if (!bqt)
  747. return -ENXIO;
  748. /*
  749. * if we already have large enough real_max_depth. just
  750. * adjust max_depth. *NOTE* as requests with tag value
  751. * between new_depth and real_max_depth can be in-flight, tag
  752. * map can not be shrunk blindly here.
  753. */
  754. if (new_depth <= bqt->real_max_depth) {
  755. bqt->max_depth = new_depth;
  756. return 0;
  757. }
  758. /*
  759. * save the old state info, so we can copy it back
  760. */
  761. tag_index = bqt->tag_index;
  762. tag_map = bqt->tag_map;
  763. max_depth = bqt->real_max_depth;
  764. if (init_tag_map(q, bqt, new_depth))
  765. return -ENOMEM;
  766. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  767. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  768. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  769. kfree(tag_index);
  770. kfree(tag_map);
  771. return 0;
  772. }
  773. EXPORT_SYMBOL(blk_queue_resize_tags);
  774. /**
  775. * blk_queue_end_tag - end tag operations for a request
  776. * @q: the request queue for the device
  777. * @rq: the request that has completed
  778. *
  779. * Description:
  780. * Typically called when end_that_request_first() returns 0, meaning
  781. * all transfers have been done for a request. It's important to call
  782. * this function before end_that_request_last(), as that will put the
  783. * request back on the free list thus corrupting the internal tag list.
  784. *
  785. * Notes:
  786. * queue lock must be held.
  787. **/
  788. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  789. {
  790. struct blk_queue_tag *bqt = q->queue_tags;
  791. int tag = rq->tag;
  792. BUG_ON(tag == -1);
  793. if (unlikely(tag >= bqt->real_max_depth))
  794. /*
  795. * This can happen after tag depth has been reduced.
  796. * FIXME: how about a warning or info message here?
  797. */
  798. return;
  799. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  800. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  801. __FUNCTION__, tag);
  802. return;
  803. }
  804. list_del_init(&rq->queuelist);
  805. rq->flags &= ~REQ_QUEUED;
  806. rq->tag = -1;
  807. if (unlikely(bqt->tag_index[tag] == NULL))
  808. printk(KERN_ERR "%s: tag %d is missing\n",
  809. __FUNCTION__, tag);
  810. bqt->tag_index[tag] = NULL;
  811. bqt->busy--;
  812. }
  813. EXPORT_SYMBOL(blk_queue_end_tag);
  814. /**
  815. * blk_queue_start_tag - find a free tag and assign it
  816. * @q: the request queue for the device
  817. * @rq: the block request that needs tagging
  818. *
  819. * Description:
  820. * This can either be used as a stand-alone helper, or possibly be
  821. * assigned as the queue &prep_rq_fn (in which case &struct request
  822. * automagically gets a tag assigned). Note that this function
  823. * assumes that any type of request can be queued! if this is not
  824. * true for your device, you must check the request type before
  825. * calling this function. The request will also be removed from
  826. * the request queue, so it's the drivers responsibility to readd
  827. * it if it should need to be restarted for some reason.
  828. *
  829. * Notes:
  830. * queue lock must be held.
  831. **/
  832. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  833. {
  834. struct blk_queue_tag *bqt = q->queue_tags;
  835. int tag;
  836. if (unlikely((rq->flags & REQ_QUEUED))) {
  837. printk(KERN_ERR
  838. "%s: request %p for device [%s] already tagged %d",
  839. __FUNCTION__, rq,
  840. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  841. BUG();
  842. }
  843. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  844. if (tag >= bqt->max_depth)
  845. return 1;
  846. __set_bit(tag, bqt->tag_map);
  847. rq->flags |= REQ_QUEUED;
  848. rq->tag = tag;
  849. bqt->tag_index[tag] = rq;
  850. blkdev_dequeue_request(rq);
  851. list_add(&rq->queuelist, &bqt->busy_list);
  852. bqt->busy++;
  853. return 0;
  854. }
  855. EXPORT_SYMBOL(blk_queue_start_tag);
  856. /**
  857. * blk_queue_invalidate_tags - invalidate all pending tags
  858. * @q: the request queue for the device
  859. *
  860. * Description:
  861. * Hardware conditions may dictate a need to stop all pending requests.
  862. * In this case, we will safely clear the block side of the tag queue and
  863. * readd all requests to the request queue in the right order.
  864. *
  865. * Notes:
  866. * queue lock must be held.
  867. **/
  868. void blk_queue_invalidate_tags(request_queue_t *q)
  869. {
  870. struct blk_queue_tag *bqt = q->queue_tags;
  871. struct list_head *tmp, *n;
  872. struct request *rq;
  873. list_for_each_safe(tmp, n, &bqt->busy_list) {
  874. rq = list_entry_rq(tmp);
  875. if (rq->tag == -1) {
  876. printk(KERN_ERR
  877. "%s: bad tag found on list\n", __FUNCTION__);
  878. list_del_init(&rq->queuelist);
  879. rq->flags &= ~REQ_QUEUED;
  880. } else
  881. blk_queue_end_tag(q, rq);
  882. rq->flags &= ~REQ_STARTED;
  883. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  884. }
  885. }
  886. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  887. static char *rq_flags[] = {
  888. "REQ_RW",
  889. "REQ_FAILFAST",
  890. "REQ_SORTED",
  891. "REQ_SOFTBARRIER",
  892. "REQ_HARDBARRIER",
  893. "REQ_CMD",
  894. "REQ_NOMERGE",
  895. "REQ_STARTED",
  896. "REQ_DONTPREP",
  897. "REQ_QUEUED",
  898. "REQ_ELVPRIV",
  899. "REQ_PC",
  900. "REQ_BLOCK_PC",
  901. "REQ_SENSE",
  902. "REQ_FAILED",
  903. "REQ_QUIET",
  904. "REQ_SPECIAL",
  905. "REQ_DRIVE_CMD",
  906. "REQ_DRIVE_TASK",
  907. "REQ_DRIVE_TASKFILE",
  908. "REQ_PREEMPT",
  909. "REQ_PM_SUSPEND",
  910. "REQ_PM_RESUME",
  911. "REQ_PM_SHUTDOWN",
  912. };
  913. void blk_dump_rq_flags(struct request *rq, char *msg)
  914. {
  915. int bit;
  916. printk("%s: dev %s: flags = ", msg,
  917. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  918. bit = 0;
  919. do {
  920. if (rq->flags & (1 << bit))
  921. printk("%s ", rq_flags[bit]);
  922. bit++;
  923. } while (bit < __REQ_NR_BITS);
  924. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  925. rq->nr_sectors,
  926. rq->current_nr_sectors);
  927. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  928. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  929. printk("cdb: ");
  930. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  931. printk("%02x ", rq->cmd[bit]);
  932. printk("\n");
  933. }
  934. }
  935. EXPORT_SYMBOL(blk_dump_rq_flags);
  936. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  937. {
  938. struct bio_vec *bv, *bvprv = NULL;
  939. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  940. int high, highprv = 1;
  941. if (unlikely(!bio->bi_io_vec))
  942. return;
  943. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  944. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  945. bio_for_each_segment(bv, bio, i) {
  946. /*
  947. * the trick here is making sure that a high page is never
  948. * considered part of another segment, since that might
  949. * change with the bounce page.
  950. */
  951. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  952. if (high || highprv)
  953. goto new_hw_segment;
  954. if (cluster) {
  955. if (seg_size + bv->bv_len > q->max_segment_size)
  956. goto new_segment;
  957. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  958. goto new_segment;
  959. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  960. goto new_segment;
  961. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  962. goto new_hw_segment;
  963. seg_size += bv->bv_len;
  964. hw_seg_size += bv->bv_len;
  965. bvprv = bv;
  966. continue;
  967. }
  968. new_segment:
  969. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  970. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  971. hw_seg_size += bv->bv_len;
  972. } else {
  973. new_hw_segment:
  974. if (hw_seg_size > bio->bi_hw_front_size)
  975. bio->bi_hw_front_size = hw_seg_size;
  976. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  977. nr_hw_segs++;
  978. }
  979. nr_phys_segs++;
  980. bvprv = bv;
  981. seg_size = bv->bv_len;
  982. highprv = high;
  983. }
  984. if (hw_seg_size > bio->bi_hw_back_size)
  985. bio->bi_hw_back_size = hw_seg_size;
  986. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  987. bio->bi_hw_front_size = hw_seg_size;
  988. bio->bi_phys_segments = nr_phys_segs;
  989. bio->bi_hw_segments = nr_hw_segs;
  990. bio->bi_flags |= (1 << BIO_SEG_VALID);
  991. }
  992. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  993. struct bio *nxt)
  994. {
  995. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  996. return 0;
  997. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  998. return 0;
  999. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1000. return 0;
  1001. /*
  1002. * bio and nxt are contigous in memory, check if the queue allows
  1003. * these two to be merged into one
  1004. */
  1005. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1006. return 1;
  1007. return 0;
  1008. }
  1009. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1010. struct bio *nxt)
  1011. {
  1012. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1013. blk_recount_segments(q, bio);
  1014. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1015. blk_recount_segments(q, nxt);
  1016. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1017. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1018. return 0;
  1019. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1020. return 0;
  1021. return 1;
  1022. }
  1023. /*
  1024. * map a request to scatterlist, return number of sg entries setup. Caller
  1025. * must make sure sg can hold rq->nr_phys_segments entries
  1026. */
  1027. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1028. {
  1029. struct bio_vec *bvec, *bvprv;
  1030. struct bio *bio;
  1031. int nsegs, i, cluster;
  1032. nsegs = 0;
  1033. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1034. /*
  1035. * for each bio in rq
  1036. */
  1037. bvprv = NULL;
  1038. rq_for_each_bio(bio, rq) {
  1039. /*
  1040. * for each segment in bio
  1041. */
  1042. bio_for_each_segment(bvec, bio, i) {
  1043. int nbytes = bvec->bv_len;
  1044. if (bvprv && cluster) {
  1045. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1046. goto new_segment;
  1047. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1048. goto new_segment;
  1049. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1050. goto new_segment;
  1051. sg[nsegs - 1].length += nbytes;
  1052. } else {
  1053. new_segment:
  1054. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1055. sg[nsegs].page = bvec->bv_page;
  1056. sg[nsegs].length = nbytes;
  1057. sg[nsegs].offset = bvec->bv_offset;
  1058. nsegs++;
  1059. }
  1060. bvprv = bvec;
  1061. } /* segments in bio */
  1062. } /* bios in rq */
  1063. return nsegs;
  1064. }
  1065. EXPORT_SYMBOL(blk_rq_map_sg);
  1066. /*
  1067. * the standard queue merge functions, can be overridden with device
  1068. * specific ones if so desired
  1069. */
  1070. static inline int ll_new_mergeable(request_queue_t *q,
  1071. struct request *req,
  1072. struct bio *bio)
  1073. {
  1074. int nr_phys_segs = bio_phys_segments(q, bio);
  1075. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1076. req->flags |= REQ_NOMERGE;
  1077. if (req == q->last_merge)
  1078. q->last_merge = NULL;
  1079. return 0;
  1080. }
  1081. /*
  1082. * A hw segment is just getting larger, bump just the phys
  1083. * counter.
  1084. */
  1085. req->nr_phys_segments += nr_phys_segs;
  1086. return 1;
  1087. }
  1088. static inline int ll_new_hw_segment(request_queue_t *q,
  1089. struct request *req,
  1090. struct bio *bio)
  1091. {
  1092. int nr_hw_segs = bio_hw_segments(q, bio);
  1093. int nr_phys_segs = bio_phys_segments(q, bio);
  1094. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1095. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1096. req->flags |= REQ_NOMERGE;
  1097. if (req == q->last_merge)
  1098. q->last_merge = NULL;
  1099. return 0;
  1100. }
  1101. /*
  1102. * This will form the start of a new hw segment. Bump both
  1103. * counters.
  1104. */
  1105. req->nr_hw_segments += nr_hw_segs;
  1106. req->nr_phys_segments += nr_phys_segs;
  1107. return 1;
  1108. }
  1109. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1110. struct bio *bio)
  1111. {
  1112. unsigned short max_sectors;
  1113. int len;
  1114. if (unlikely(blk_pc_request(req)))
  1115. max_sectors = q->max_hw_sectors;
  1116. else
  1117. max_sectors = q->max_sectors;
  1118. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1119. req->flags |= REQ_NOMERGE;
  1120. if (req == q->last_merge)
  1121. q->last_merge = NULL;
  1122. return 0;
  1123. }
  1124. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1125. blk_recount_segments(q, req->biotail);
  1126. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1127. blk_recount_segments(q, bio);
  1128. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1129. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1130. !BIOVEC_VIRT_OVERSIZE(len)) {
  1131. int mergeable = ll_new_mergeable(q, req, bio);
  1132. if (mergeable) {
  1133. if (req->nr_hw_segments == 1)
  1134. req->bio->bi_hw_front_size = len;
  1135. if (bio->bi_hw_segments == 1)
  1136. bio->bi_hw_back_size = len;
  1137. }
  1138. return mergeable;
  1139. }
  1140. return ll_new_hw_segment(q, req, bio);
  1141. }
  1142. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1143. struct bio *bio)
  1144. {
  1145. unsigned short max_sectors;
  1146. int len;
  1147. if (unlikely(blk_pc_request(req)))
  1148. max_sectors = q->max_hw_sectors;
  1149. else
  1150. max_sectors = q->max_sectors;
  1151. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1152. req->flags |= REQ_NOMERGE;
  1153. if (req == q->last_merge)
  1154. q->last_merge = NULL;
  1155. return 0;
  1156. }
  1157. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1158. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1159. blk_recount_segments(q, bio);
  1160. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1161. blk_recount_segments(q, req->bio);
  1162. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1163. !BIOVEC_VIRT_OVERSIZE(len)) {
  1164. int mergeable = ll_new_mergeable(q, req, bio);
  1165. if (mergeable) {
  1166. if (bio->bi_hw_segments == 1)
  1167. bio->bi_hw_front_size = len;
  1168. if (req->nr_hw_segments == 1)
  1169. req->biotail->bi_hw_back_size = len;
  1170. }
  1171. return mergeable;
  1172. }
  1173. return ll_new_hw_segment(q, req, bio);
  1174. }
  1175. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1176. struct request *next)
  1177. {
  1178. int total_phys_segments;
  1179. int total_hw_segments;
  1180. /*
  1181. * First check if the either of the requests are re-queued
  1182. * requests. Can't merge them if they are.
  1183. */
  1184. if (req->special || next->special)
  1185. return 0;
  1186. /*
  1187. * Will it become too large?
  1188. */
  1189. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1190. return 0;
  1191. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1192. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1193. total_phys_segments--;
  1194. if (total_phys_segments > q->max_phys_segments)
  1195. return 0;
  1196. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1197. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1198. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1199. /*
  1200. * propagate the combined length to the end of the requests
  1201. */
  1202. if (req->nr_hw_segments == 1)
  1203. req->bio->bi_hw_front_size = len;
  1204. if (next->nr_hw_segments == 1)
  1205. next->biotail->bi_hw_back_size = len;
  1206. total_hw_segments--;
  1207. }
  1208. if (total_hw_segments > q->max_hw_segments)
  1209. return 0;
  1210. /* Merge is OK... */
  1211. req->nr_phys_segments = total_phys_segments;
  1212. req->nr_hw_segments = total_hw_segments;
  1213. return 1;
  1214. }
  1215. /*
  1216. * "plug" the device if there are no outstanding requests: this will
  1217. * force the transfer to start only after we have put all the requests
  1218. * on the list.
  1219. *
  1220. * This is called with interrupts off and no requests on the queue and
  1221. * with the queue lock held.
  1222. */
  1223. void blk_plug_device(request_queue_t *q)
  1224. {
  1225. WARN_ON(!irqs_disabled());
  1226. /*
  1227. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1228. * which will restart the queueing
  1229. */
  1230. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1231. return;
  1232. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1233. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1234. }
  1235. EXPORT_SYMBOL(blk_plug_device);
  1236. /*
  1237. * remove the queue from the plugged list, if present. called with
  1238. * queue lock held and interrupts disabled.
  1239. */
  1240. int blk_remove_plug(request_queue_t *q)
  1241. {
  1242. WARN_ON(!irqs_disabled());
  1243. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1244. return 0;
  1245. del_timer(&q->unplug_timer);
  1246. return 1;
  1247. }
  1248. EXPORT_SYMBOL(blk_remove_plug);
  1249. /*
  1250. * remove the plug and let it rip..
  1251. */
  1252. void __generic_unplug_device(request_queue_t *q)
  1253. {
  1254. if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
  1255. return;
  1256. if (!blk_remove_plug(q))
  1257. return;
  1258. q->request_fn(q);
  1259. }
  1260. EXPORT_SYMBOL(__generic_unplug_device);
  1261. /**
  1262. * generic_unplug_device - fire a request queue
  1263. * @q: The &request_queue_t in question
  1264. *
  1265. * Description:
  1266. * Linux uses plugging to build bigger requests queues before letting
  1267. * the device have at them. If a queue is plugged, the I/O scheduler
  1268. * is still adding and merging requests on the queue. Once the queue
  1269. * gets unplugged, the request_fn defined for the queue is invoked and
  1270. * transfers started.
  1271. **/
  1272. void generic_unplug_device(request_queue_t *q)
  1273. {
  1274. spin_lock_irq(q->queue_lock);
  1275. __generic_unplug_device(q);
  1276. spin_unlock_irq(q->queue_lock);
  1277. }
  1278. EXPORT_SYMBOL(generic_unplug_device);
  1279. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1280. struct page *page)
  1281. {
  1282. request_queue_t *q = bdi->unplug_io_data;
  1283. /*
  1284. * devices don't necessarily have an ->unplug_fn defined
  1285. */
  1286. if (q->unplug_fn)
  1287. q->unplug_fn(q);
  1288. }
  1289. static void blk_unplug_work(void *data)
  1290. {
  1291. request_queue_t *q = data;
  1292. q->unplug_fn(q);
  1293. }
  1294. static void blk_unplug_timeout(unsigned long data)
  1295. {
  1296. request_queue_t *q = (request_queue_t *)data;
  1297. kblockd_schedule_work(&q->unplug_work);
  1298. }
  1299. /**
  1300. * blk_start_queue - restart a previously stopped queue
  1301. * @q: The &request_queue_t in question
  1302. *
  1303. * Description:
  1304. * blk_start_queue() will clear the stop flag on the queue, and call
  1305. * the request_fn for the queue if it was in a stopped state when
  1306. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1307. **/
  1308. void blk_start_queue(request_queue_t *q)
  1309. {
  1310. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1311. /*
  1312. * one level of recursion is ok and is much faster than kicking
  1313. * the unplug handling
  1314. */
  1315. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1316. q->request_fn(q);
  1317. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1318. } else {
  1319. blk_plug_device(q);
  1320. kblockd_schedule_work(&q->unplug_work);
  1321. }
  1322. }
  1323. EXPORT_SYMBOL(blk_start_queue);
  1324. /**
  1325. * blk_stop_queue - stop a queue
  1326. * @q: The &request_queue_t in question
  1327. *
  1328. * Description:
  1329. * The Linux block layer assumes that a block driver will consume all
  1330. * entries on the request queue when the request_fn strategy is called.
  1331. * Often this will not happen, because of hardware limitations (queue
  1332. * depth settings). If a device driver gets a 'queue full' response,
  1333. * or if it simply chooses not to queue more I/O at one point, it can
  1334. * call this function to prevent the request_fn from being called until
  1335. * the driver has signalled it's ready to go again. This happens by calling
  1336. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1337. **/
  1338. void blk_stop_queue(request_queue_t *q)
  1339. {
  1340. blk_remove_plug(q);
  1341. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1342. }
  1343. EXPORT_SYMBOL(blk_stop_queue);
  1344. /**
  1345. * blk_sync_queue - cancel any pending callbacks on a queue
  1346. * @q: the queue
  1347. *
  1348. * Description:
  1349. * The block layer may perform asynchronous callback activity
  1350. * on a queue, such as calling the unplug function after a timeout.
  1351. * A block device may call blk_sync_queue to ensure that any
  1352. * such activity is cancelled, thus allowing it to release resources
  1353. * the the callbacks might use. The caller must already have made sure
  1354. * that its ->make_request_fn will not re-add plugging prior to calling
  1355. * this function.
  1356. *
  1357. */
  1358. void blk_sync_queue(struct request_queue *q)
  1359. {
  1360. del_timer_sync(&q->unplug_timer);
  1361. kblockd_flush();
  1362. }
  1363. EXPORT_SYMBOL(blk_sync_queue);
  1364. /**
  1365. * blk_run_queue - run a single device queue
  1366. * @q: The queue to run
  1367. */
  1368. void blk_run_queue(struct request_queue *q)
  1369. {
  1370. unsigned long flags;
  1371. spin_lock_irqsave(q->queue_lock, flags);
  1372. blk_remove_plug(q);
  1373. if (!elv_queue_empty(q))
  1374. q->request_fn(q);
  1375. spin_unlock_irqrestore(q->queue_lock, flags);
  1376. }
  1377. EXPORT_SYMBOL(blk_run_queue);
  1378. /**
  1379. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1380. * @q: the request queue to be released
  1381. *
  1382. * Description:
  1383. * blk_cleanup_queue is the pair to blk_init_queue() or
  1384. * blk_queue_make_request(). It should be called when a request queue is
  1385. * being released; typically when a block device is being de-registered.
  1386. * Currently, its primary task it to free all the &struct request
  1387. * structures that were allocated to the queue and the queue itself.
  1388. *
  1389. * Caveat:
  1390. * Hopefully the low level driver will have finished any
  1391. * outstanding requests first...
  1392. **/
  1393. void blk_cleanup_queue(request_queue_t * q)
  1394. {
  1395. struct request_list *rl = &q->rq;
  1396. if (!atomic_dec_and_test(&q->refcnt))
  1397. return;
  1398. if (q->elevator)
  1399. elevator_exit(q->elevator);
  1400. blk_sync_queue(q);
  1401. if (rl->rq_pool)
  1402. mempool_destroy(rl->rq_pool);
  1403. if (q->queue_tags)
  1404. __blk_queue_free_tags(q);
  1405. blk_queue_ordered(q, QUEUE_ORDERED_NONE);
  1406. kmem_cache_free(requestq_cachep, q);
  1407. }
  1408. EXPORT_SYMBOL(blk_cleanup_queue);
  1409. static int blk_init_free_list(request_queue_t *q)
  1410. {
  1411. struct request_list *rl = &q->rq;
  1412. rl->count[READ] = rl->count[WRITE] = 0;
  1413. rl->starved[READ] = rl->starved[WRITE] = 0;
  1414. rl->elvpriv = 0;
  1415. init_waitqueue_head(&rl->wait[READ]);
  1416. init_waitqueue_head(&rl->wait[WRITE]);
  1417. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1418. mempool_free_slab, request_cachep, q->node);
  1419. if (!rl->rq_pool)
  1420. return -ENOMEM;
  1421. return 0;
  1422. }
  1423. static int __make_request(request_queue_t *, struct bio *);
  1424. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1425. {
  1426. return blk_alloc_queue_node(gfp_mask, -1);
  1427. }
  1428. EXPORT_SYMBOL(blk_alloc_queue);
  1429. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1430. {
  1431. request_queue_t *q;
  1432. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1433. if (!q)
  1434. return NULL;
  1435. memset(q, 0, sizeof(*q));
  1436. init_timer(&q->unplug_timer);
  1437. atomic_set(&q->refcnt, 1);
  1438. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1439. q->backing_dev_info.unplug_io_data = q;
  1440. return q;
  1441. }
  1442. EXPORT_SYMBOL(blk_alloc_queue_node);
  1443. /**
  1444. * blk_init_queue - prepare a request queue for use with a block device
  1445. * @rfn: The function to be called to process requests that have been
  1446. * placed on the queue.
  1447. * @lock: Request queue spin lock
  1448. *
  1449. * Description:
  1450. * If a block device wishes to use the standard request handling procedures,
  1451. * which sorts requests and coalesces adjacent requests, then it must
  1452. * call blk_init_queue(). The function @rfn will be called when there
  1453. * are requests on the queue that need to be processed. If the device
  1454. * supports plugging, then @rfn may not be called immediately when requests
  1455. * are available on the queue, but may be called at some time later instead.
  1456. * Plugged queues are generally unplugged when a buffer belonging to one
  1457. * of the requests on the queue is needed, or due to memory pressure.
  1458. *
  1459. * @rfn is not required, or even expected, to remove all requests off the
  1460. * queue, but only as many as it can handle at a time. If it does leave
  1461. * requests on the queue, it is responsible for arranging that the requests
  1462. * get dealt with eventually.
  1463. *
  1464. * The queue spin lock must be held while manipulating the requests on the
  1465. * request queue.
  1466. *
  1467. * Function returns a pointer to the initialized request queue, or NULL if
  1468. * it didn't succeed.
  1469. *
  1470. * Note:
  1471. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1472. * when the block device is deactivated (such as at module unload).
  1473. **/
  1474. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1475. {
  1476. return blk_init_queue_node(rfn, lock, -1);
  1477. }
  1478. EXPORT_SYMBOL(blk_init_queue);
  1479. request_queue_t *
  1480. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1481. {
  1482. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1483. if (!q)
  1484. return NULL;
  1485. q->node = node_id;
  1486. if (blk_init_free_list(q))
  1487. goto out_init;
  1488. /*
  1489. * if caller didn't supply a lock, they get per-queue locking with
  1490. * our embedded lock
  1491. */
  1492. if (!lock) {
  1493. spin_lock_init(&q->__queue_lock);
  1494. lock = &q->__queue_lock;
  1495. }
  1496. q->request_fn = rfn;
  1497. q->back_merge_fn = ll_back_merge_fn;
  1498. q->front_merge_fn = ll_front_merge_fn;
  1499. q->merge_requests_fn = ll_merge_requests_fn;
  1500. q->prep_rq_fn = NULL;
  1501. q->unplug_fn = generic_unplug_device;
  1502. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1503. q->queue_lock = lock;
  1504. blk_queue_segment_boundary(q, 0xffffffff);
  1505. blk_queue_make_request(q, __make_request);
  1506. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1507. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1508. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1509. /*
  1510. * all done
  1511. */
  1512. if (!elevator_init(q, NULL)) {
  1513. blk_queue_congestion_threshold(q);
  1514. return q;
  1515. }
  1516. blk_cleanup_queue(q);
  1517. out_init:
  1518. kmem_cache_free(requestq_cachep, q);
  1519. return NULL;
  1520. }
  1521. EXPORT_SYMBOL(blk_init_queue_node);
  1522. int blk_get_queue(request_queue_t *q)
  1523. {
  1524. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1525. atomic_inc(&q->refcnt);
  1526. return 0;
  1527. }
  1528. return 1;
  1529. }
  1530. EXPORT_SYMBOL(blk_get_queue);
  1531. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1532. {
  1533. if (rq->flags & REQ_ELVPRIV)
  1534. elv_put_request(q, rq);
  1535. mempool_free(rq, q->rq.rq_pool);
  1536. }
  1537. static inline struct request *
  1538. blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
  1539. int priv, gfp_t gfp_mask)
  1540. {
  1541. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1542. if (!rq)
  1543. return NULL;
  1544. /*
  1545. * first three bits are identical in rq->flags and bio->bi_rw,
  1546. * see bio.h and blkdev.h
  1547. */
  1548. rq->flags = rw;
  1549. if (priv) {
  1550. if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
  1551. mempool_free(rq, q->rq.rq_pool);
  1552. return NULL;
  1553. }
  1554. rq->flags |= REQ_ELVPRIV;
  1555. }
  1556. return rq;
  1557. }
  1558. /*
  1559. * ioc_batching returns true if the ioc is a valid batching request and
  1560. * should be given priority access to a request.
  1561. */
  1562. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1563. {
  1564. if (!ioc)
  1565. return 0;
  1566. /*
  1567. * Make sure the process is able to allocate at least 1 request
  1568. * even if the batch times out, otherwise we could theoretically
  1569. * lose wakeups.
  1570. */
  1571. return ioc->nr_batch_requests == q->nr_batching ||
  1572. (ioc->nr_batch_requests > 0
  1573. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1574. }
  1575. /*
  1576. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1577. * will cause the process to be a "batcher" on all queues in the system. This
  1578. * is the behaviour we want though - once it gets a wakeup it should be given
  1579. * a nice run.
  1580. */
  1581. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1582. {
  1583. if (!ioc || ioc_batching(q, ioc))
  1584. return;
  1585. ioc->nr_batch_requests = q->nr_batching;
  1586. ioc->last_waited = jiffies;
  1587. }
  1588. static void __freed_request(request_queue_t *q, int rw)
  1589. {
  1590. struct request_list *rl = &q->rq;
  1591. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1592. clear_queue_congested(q, rw);
  1593. if (rl->count[rw] + 1 <= q->nr_requests) {
  1594. if (waitqueue_active(&rl->wait[rw]))
  1595. wake_up(&rl->wait[rw]);
  1596. blk_clear_queue_full(q, rw);
  1597. }
  1598. }
  1599. /*
  1600. * A request has just been released. Account for it, update the full and
  1601. * congestion status, wake up any waiters. Called under q->queue_lock.
  1602. */
  1603. static void freed_request(request_queue_t *q, int rw, int priv)
  1604. {
  1605. struct request_list *rl = &q->rq;
  1606. rl->count[rw]--;
  1607. if (priv)
  1608. rl->elvpriv--;
  1609. __freed_request(q, rw);
  1610. if (unlikely(rl->starved[rw ^ 1]))
  1611. __freed_request(q, rw ^ 1);
  1612. }
  1613. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1614. /*
  1615. * Get a free request, queue_lock must be held.
  1616. * Returns NULL on failure, with queue_lock held.
  1617. * Returns !NULL on success, with queue_lock *not held*.
  1618. */
  1619. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1620. gfp_t gfp_mask)
  1621. {
  1622. struct request *rq = NULL;
  1623. struct request_list *rl = &q->rq;
  1624. struct io_context *ioc = current_io_context(GFP_ATOMIC);
  1625. int priv;
  1626. if (rl->count[rw]+1 >= q->nr_requests) {
  1627. /*
  1628. * The queue will fill after this allocation, so set it as
  1629. * full, and mark this process as "batching". This process
  1630. * will be allowed to complete a batch of requests, others
  1631. * will be blocked.
  1632. */
  1633. if (!blk_queue_full(q, rw)) {
  1634. ioc_set_batching(q, ioc);
  1635. blk_set_queue_full(q, rw);
  1636. }
  1637. }
  1638. switch (elv_may_queue(q, rw, bio)) {
  1639. case ELV_MQUEUE_NO:
  1640. goto rq_starved;
  1641. case ELV_MQUEUE_MAY:
  1642. break;
  1643. case ELV_MQUEUE_MUST:
  1644. goto get_rq;
  1645. }
  1646. if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
  1647. /*
  1648. * The queue is full and the allocating process is not a
  1649. * "batcher", and not exempted by the IO scheduler
  1650. */
  1651. goto out;
  1652. }
  1653. get_rq:
  1654. /*
  1655. * Only allow batching queuers to allocate up to 50% over the defined
  1656. * limit of requests, otherwise we could have thousands of requests
  1657. * allocated with any setting of ->nr_requests
  1658. */
  1659. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1660. goto out;
  1661. rl->count[rw]++;
  1662. rl->starved[rw] = 0;
  1663. if (rl->count[rw] >= queue_congestion_on_threshold(q))
  1664. set_queue_congested(q, rw);
  1665. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1666. if (priv)
  1667. rl->elvpriv++;
  1668. spin_unlock_irq(q->queue_lock);
  1669. rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
  1670. if (!rq) {
  1671. /*
  1672. * Allocation failed presumably due to memory. Undo anything
  1673. * we might have messed up.
  1674. *
  1675. * Allocating task should really be put onto the front of the
  1676. * wait queue, but this is pretty rare.
  1677. */
  1678. spin_lock_irq(q->queue_lock);
  1679. freed_request(q, rw, priv);
  1680. /*
  1681. * in the very unlikely event that allocation failed and no
  1682. * requests for this direction was pending, mark us starved
  1683. * so that freeing of a request in the other direction will
  1684. * notice us. another possible fix would be to split the
  1685. * rq mempool into READ and WRITE
  1686. */
  1687. rq_starved:
  1688. if (unlikely(rl->count[rw] == 0))
  1689. rl->starved[rw] = 1;
  1690. goto out;
  1691. }
  1692. if (ioc_batching(q, ioc))
  1693. ioc->nr_batch_requests--;
  1694. rq_init(q, rq);
  1695. rq->rl = rl;
  1696. out:
  1697. return rq;
  1698. }
  1699. /*
  1700. * No available requests for this queue, unplug the device and wait for some
  1701. * requests to become available.
  1702. *
  1703. * Called with q->queue_lock held, and returns with it unlocked.
  1704. */
  1705. static struct request *get_request_wait(request_queue_t *q, int rw,
  1706. struct bio *bio)
  1707. {
  1708. struct request *rq;
  1709. rq = get_request(q, rw, bio, GFP_NOIO);
  1710. while (!rq) {
  1711. DEFINE_WAIT(wait);
  1712. struct request_list *rl = &q->rq;
  1713. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1714. TASK_UNINTERRUPTIBLE);
  1715. rq = get_request(q, rw, bio, GFP_NOIO);
  1716. if (!rq) {
  1717. struct io_context *ioc;
  1718. __generic_unplug_device(q);
  1719. spin_unlock_irq(q->queue_lock);
  1720. io_schedule();
  1721. /*
  1722. * After sleeping, we become a "batching" process and
  1723. * will be able to allocate at least one request, and
  1724. * up to a big batch of them for a small period time.
  1725. * See ioc_batching, ioc_set_batching
  1726. */
  1727. ioc = current_io_context(GFP_NOIO);
  1728. ioc_set_batching(q, ioc);
  1729. spin_lock_irq(q->queue_lock);
  1730. }
  1731. finish_wait(&rl->wait[rw], &wait);
  1732. }
  1733. return rq;
  1734. }
  1735. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1736. {
  1737. struct request *rq;
  1738. BUG_ON(rw != READ && rw != WRITE);
  1739. spin_lock_irq(q->queue_lock);
  1740. if (gfp_mask & __GFP_WAIT) {
  1741. rq = get_request_wait(q, rw, NULL);
  1742. } else {
  1743. rq = get_request(q, rw, NULL, gfp_mask);
  1744. if (!rq)
  1745. spin_unlock_irq(q->queue_lock);
  1746. }
  1747. /* q->queue_lock is unlocked at this point */
  1748. return rq;
  1749. }
  1750. EXPORT_SYMBOL(blk_get_request);
  1751. /**
  1752. * blk_requeue_request - put a request back on queue
  1753. * @q: request queue where request should be inserted
  1754. * @rq: request to be inserted
  1755. *
  1756. * Description:
  1757. * Drivers often keep queueing requests until the hardware cannot accept
  1758. * more, when that condition happens we need to put the request back
  1759. * on the queue. Must be called with queue lock held.
  1760. */
  1761. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1762. {
  1763. if (blk_rq_tagged(rq))
  1764. blk_queue_end_tag(q, rq);
  1765. elv_requeue_request(q, rq);
  1766. }
  1767. EXPORT_SYMBOL(blk_requeue_request);
  1768. /**
  1769. * blk_insert_request - insert a special request in to a request queue
  1770. * @q: request queue where request should be inserted
  1771. * @rq: request to be inserted
  1772. * @at_head: insert request at head or tail of queue
  1773. * @data: private data
  1774. *
  1775. * Description:
  1776. * Many block devices need to execute commands asynchronously, so they don't
  1777. * block the whole kernel from preemption during request execution. This is
  1778. * accomplished normally by inserting aritficial requests tagged as
  1779. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1780. * scheduled for actual execution by the request queue.
  1781. *
  1782. * We have the option of inserting the head or the tail of the queue.
  1783. * Typically we use the tail for new ioctls and so forth. We use the head
  1784. * of the queue for things like a QUEUE_FULL message from a device, or a
  1785. * host that is unable to accept a particular command.
  1786. */
  1787. void blk_insert_request(request_queue_t *q, struct request *rq,
  1788. int at_head, void *data)
  1789. {
  1790. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1791. unsigned long flags;
  1792. /*
  1793. * tell I/O scheduler that this isn't a regular read/write (ie it
  1794. * must not attempt merges on this) and that it acts as a soft
  1795. * barrier
  1796. */
  1797. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1798. rq->special = data;
  1799. spin_lock_irqsave(q->queue_lock, flags);
  1800. /*
  1801. * If command is tagged, release the tag
  1802. */
  1803. if (blk_rq_tagged(rq))
  1804. blk_queue_end_tag(q, rq);
  1805. drive_stat_acct(rq, rq->nr_sectors, 1);
  1806. __elv_add_request(q, rq, where, 0);
  1807. if (blk_queue_plugged(q))
  1808. __generic_unplug_device(q);
  1809. else
  1810. q->request_fn(q);
  1811. spin_unlock_irqrestore(q->queue_lock, flags);
  1812. }
  1813. EXPORT_SYMBOL(blk_insert_request);
  1814. /**
  1815. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1816. * @q: request queue where request should be inserted
  1817. * @rq: request structure to fill
  1818. * @ubuf: the user buffer
  1819. * @len: length of user data
  1820. *
  1821. * Description:
  1822. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1823. * a kernel bounce buffer is used.
  1824. *
  1825. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1826. * still in process context.
  1827. *
  1828. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1829. * before being submitted to the device, as pages mapped may be out of
  1830. * reach. It's the callers responsibility to make sure this happens. The
  1831. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1832. * unmapping.
  1833. */
  1834. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  1835. unsigned int len)
  1836. {
  1837. unsigned long uaddr;
  1838. struct bio *bio;
  1839. int reading;
  1840. if (len > (q->max_hw_sectors << 9))
  1841. return -EINVAL;
  1842. if (!len || !ubuf)
  1843. return -EINVAL;
  1844. reading = rq_data_dir(rq) == READ;
  1845. /*
  1846. * if alignment requirement is satisfied, map in user pages for
  1847. * direct dma. else, set up kernel bounce buffers
  1848. */
  1849. uaddr = (unsigned long) ubuf;
  1850. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1851. bio = bio_map_user(q, NULL, uaddr, len, reading);
  1852. else
  1853. bio = bio_copy_user(q, uaddr, len, reading);
  1854. if (!IS_ERR(bio)) {
  1855. rq->bio = rq->biotail = bio;
  1856. blk_rq_bio_prep(q, rq, bio);
  1857. rq->buffer = rq->data = NULL;
  1858. rq->data_len = len;
  1859. return 0;
  1860. }
  1861. /*
  1862. * bio is the err-ptr
  1863. */
  1864. return PTR_ERR(bio);
  1865. }
  1866. EXPORT_SYMBOL(blk_rq_map_user);
  1867. /**
  1868. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  1869. * @q: request queue where request should be inserted
  1870. * @rq: request to map data to
  1871. * @iov: pointer to the iovec
  1872. * @iov_count: number of elements in the iovec
  1873. *
  1874. * Description:
  1875. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1876. * a kernel bounce buffer is used.
  1877. *
  1878. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1879. * still in process context.
  1880. *
  1881. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1882. * before being submitted to the device, as pages mapped may be out of
  1883. * reach. It's the callers responsibility to make sure this happens. The
  1884. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1885. * unmapping.
  1886. */
  1887. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  1888. struct sg_iovec *iov, int iov_count)
  1889. {
  1890. struct bio *bio;
  1891. if (!iov || iov_count <= 0)
  1892. return -EINVAL;
  1893. /* we don't allow misaligned data like bio_map_user() does. If the
  1894. * user is using sg, they're expected to know the alignment constraints
  1895. * and respect them accordingly */
  1896. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  1897. if (IS_ERR(bio))
  1898. return PTR_ERR(bio);
  1899. rq->bio = rq->biotail = bio;
  1900. blk_rq_bio_prep(q, rq, bio);
  1901. rq->buffer = rq->data = NULL;
  1902. rq->data_len = bio->bi_size;
  1903. return 0;
  1904. }
  1905. EXPORT_SYMBOL(blk_rq_map_user_iov);
  1906. /**
  1907. * blk_rq_unmap_user - unmap a request with user data
  1908. * @bio: bio to be unmapped
  1909. * @ulen: length of user buffer
  1910. *
  1911. * Description:
  1912. * Unmap a bio previously mapped by blk_rq_map_user().
  1913. */
  1914. int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
  1915. {
  1916. int ret = 0;
  1917. if (bio) {
  1918. if (bio_flagged(bio, BIO_USER_MAPPED))
  1919. bio_unmap_user(bio);
  1920. else
  1921. ret = bio_uncopy_user(bio);
  1922. }
  1923. return 0;
  1924. }
  1925. EXPORT_SYMBOL(blk_rq_unmap_user);
  1926. /**
  1927. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  1928. * @q: request queue where request should be inserted
  1929. * @rq: request to fill
  1930. * @kbuf: the kernel buffer
  1931. * @len: length of user data
  1932. * @gfp_mask: memory allocation flags
  1933. */
  1934. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  1935. unsigned int len, gfp_t gfp_mask)
  1936. {
  1937. struct bio *bio;
  1938. if (len > (q->max_hw_sectors << 9))
  1939. return -EINVAL;
  1940. if (!len || !kbuf)
  1941. return -EINVAL;
  1942. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  1943. if (IS_ERR(bio))
  1944. return PTR_ERR(bio);
  1945. if (rq_data_dir(rq) == WRITE)
  1946. bio->bi_rw |= (1 << BIO_RW);
  1947. rq->bio = rq->biotail = bio;
  1948. blk_rq_bio_prep(q, rq, bio);
  1949. rq->buffer = rq->data = NULL;
  1950. rq->data_len = len;
  1951. return 0;
  1952. }
  1953. EXPORT_SYMBOL(blk_rq_map_kern);
  1954. /**
  1955. * blk_execute_rq_nowait - insert a request into queue for execution
  1956. * @q: queue to insert the request in
  1957. * @bd_disk: matching gendisk
  1958. * @rq: request to insert
  1959. * @at_head: insert request at head or tail of queue
  1960. * @done: I/O completion handler
  1961. *
  1962. * Description:
  1963. * Insert a fully prepared request at the back of the io scheduler queue
  1964. * for execution. Don't wait for completion.
  1965. */
  1966. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  1967. struct request *rq, int at_head,
  1968. void (*done)(struct request *))
  1969. {
  1970. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1971. rq->rq_disk = bd_disk;
  1972. rq->flags |= REQ_NOMERGE;
  1973. rq->end_io = done;
  1974. elv_add_request(q, rq, where, 1);
  1975. generic_unplug_device(q);
  1976. }
  1977. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  1978. /**
  1979. * blk_execute_rq - insert a request into queue for execution
  1980. * @q: queue to insert the request in
  1981. * @bd_disk: matching gendisk
  1982. * @rq: request to insert
  1983. * @at_head: insert request at head or tail of queue
  1984. *
  1985. * Description:
  1986. * Insert a fully prepared request at the back of the io scheduler queue
  1987. * for execution and wait for completion.
  1988. */
  1989. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  1990. struct request *rq, int at_head)
  1991. {
  1992. DECLARE_COMPLETION(wait);
  1993. char sense[SCSI_SENSE_BUFFERSIZE];
  1994. int err = 0;
  1995. /*
  1996. * we need an extra reference to the request, so we can look at
  1997. * it after io completion
  1998. */
  1999. rq->ref_count++;
  2000. if (!rq->sense) {
  2001. memset(sense, 0, sizeof(sense));
  2002. rq->sense = sense;
  2003. rq->sense_len = 0;
  2004. }
  2005. rq->waiting = &wait;
  2006. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2007. wait_for_completion(&wait);
  2008. rq->waiting = NULL;
  2009. if (rq->errors)
  2010. err = -EIO;
  2011. return err;
  2012. }
  2013. EXPORT_SYMBOL(blk_execute_rq);
  2014. /**
  2015. * blkdev_issue_flush - queue a flush
  2016. * @bdev: blockdev to issue flush for
  2017. * @error_sector: error sector
  2018. *
  2019. * Description:
  2020. * Issue a flush for the block device in question. Caller can supply
  2021. * room for storing the error offset in case of a flush error, if they
  2022. * wish to. Caller must run wait_for_completion() on its own.
  2023. */
  2024. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2025. {
  2026. request_queue_t *q;
  2027. if (bdev->bd_disk == NULL)
  2028. return -ENXIO;
  2029. q = bdev_get_queue(bdev);
  2030. if (!q)
  2031. return -ENXIO;
  2032. if (!q->issue_flush_fn)
  2033. return -EOPNOTSUPP;
  2034. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2035. }
  2036. EXPORT_SYMBOL(blkdev_issue_flush);
  2037. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2038. {
  2039. int rw = rq_data_dir(rq);
  2040. if (!blk_fs_request(rq) || !rq->rq_disk)
  2041. return;
  2042. if (!new_io) {
  2043. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2044. } else {
  2045. disk_round_stats(rq->rq_disk);
  2046. rq->rq_disk->in_flight++;
  2047. }
  2048. }
  2049. /*
  2050. * add-request adds a request to the linked list.
  2051. * queue lock is held and interrupts disabled, as we muck with the
  2052. * request queue list.
  2053. */
  2054. static inline void add_request(request_queue_t * q, struct request * req)
  2055. {
  2056. drive_stat_acct(req, req->nr_sectors, 1);
  2057. if (q->activity_fn)
  2058. q->activity_fn(q->activity_data, rq_data_dir(req));
  2059. /*
  2060. * elevator indicated where it wants this request to be
  2061. * inserted at elevator_merge time
  2062. */
  2063. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2064. }
  2065. /*
  2066. * disk_round_stats() - Round off the performance stats on a struct
  2067. * disk_stats.
  2068. *
  2069. * The average IO queue length and utilisation statistics are maintained
  2070. * by observing the current state of the queue length and the amount of
  2071. * time it has been in this state for.
  2072. *
  2073. * Normally, that accounting is done on IO completion, but that can result
  2074. * in more than a second's worth of IO being accounted for within any one
  2075. * second, leading to >100% utilisation. To deal with that, we call this
  2076. * function to do a round-off before returning the results when reading
  2077. * /proc/diskstats. This accounts immediately for all queue usage up to
  2078. * the current jiffies and restarts the counters again.
  2079. */
  2080. void disk_round_stats(struct gendisk *disk)
  2081. {
  2082. unsigned long now = jiffies;
  2083. if (now == disk->stamp)
  2084. return;
  2085. if (disk->in_flight) {
  2086. __disk_stat_add(disk, time_in_queue,
  2087. disk->in_flight * (now - disk->stamp));
  2088. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2089. }
  2090. disk->stamp = now;
  2091. }
  2092. /*
  2093. * queue lock must be held
  2094. */
  2095. void __blk_put_request(request_queue_t *q, struct request *req)
  2096. {
  2097. struct request_list *rl = req->rl;
  2098. if (unlikely(!q))
  2099. return;
  2100. if (unlikely(--req->ref_count))
  2101. return;
  2102. elv_completed_request(q, req);
  2103. req->rq_status = RQ_INACTIVE;
  2104. req->rl = NULL;
  2105. /*
  2106. * Request may not have originated from ll_rw_blk. if not,
  2107. * it didn't come out of our reserved rq pools
  2108. */
  2109. if (rl) {
  2110. int rw = rq_data_dir(req);
  2111. int priv = req->flags & REQ_ELVPRIV;
  2112. BUG_ON(!list_empty(&req->queuelist));
  2113. blk_free_request(q, req);
  2114. freed_request(q, rw, priv);
  2115. }
  2116. }
  2117. EXPORT_SYMBOL_GPL(__blk_put_request);
  2118. void blk_put_request(struct request *req)
  2119. {
  2120. unsigned long flags;
  2121. request_queue_t *q = req->q;
  2122. /*
  2123. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2124. * following if (q) test.
  2125. */
  2126. if (q) {
  2127. spin_lock_irqsave(q->queue_lock, flags);
  2128. __blk_put_request(q, req);
  2129. spin_unlock_irqrestore(q->queue_lock, flags);
  2130. }
  2131. }
  2132. EXPORT_SYMBOL(blk_put_request);
  2133. /**
  2134. * blk_end_sync_rq - executes a completion event on a request
  2135. * @rq: request to complete
  2136. */
  2137. void blk_end_sync_rq(struct request *rq)
  2138. {
  2139. struct completion *waiting = rq->waiting;
  2140. rq->waiting = NULL;
  2141. __blk_put_request(rq->q, rq);
  2142. /*
  2143. * complete last, if this is a stack request the process (and thus
  2144. * the rq pointer) could be invalid right after this complete()
  2145. */
  2146. complete(waiting);
  2147. }
  2148. EXPORT_SYMBOL(blk_end_sync_rq);
  2149. /**
  2150. * blk_congestion_wait - wait for a queue to become uncongested
  2151. * @rw: READ or WRITE
  2152. * @timeout: timeout in jiffies
  2153. *
  2154. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2155. * If no queues are congested then just wait for the next request to be
  2156. * returned.
  2157. */
  2158. long blk_congestion_wait(int rw, long timeout)
  2159. {
  2160. long ret;
  2161. DEFINE_WAIT(wait);
  2162. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2163. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2164. ret = io_schedule_timeout(timeout);
  2165. finish_wait(wqh, &wait);
  2166. return ret;
  2167. }
  2168. EXPORT_SYMBOL(blk_congestion_wait);
  2169. /*
  2170. * Has to be called with the request spinlock acquired
  2171. */
  2172. static int attempt_merge(request_queue_t *q, struct request *req,
  2173. struct request *next)
  2174. {
  2175. if (!rq_mergeable(req) || !rq_mergeable(next))
  2176. return 0;
  2177. /*
  2178. * not contigious
  2179. */
  2180. if (req->sector + req->nr_sectors != next->sector)
  2181. return 0;
  2182. if (rq_data_dir(req) != rq_data_dir(next)
  2183. || req->rq_disk != next->rq_disk
  2184. || next->waiting || next->special)
  2185. return 0;
  2186. /*
  2187. * If we are allowed to merge, then append bio list
  2188. * from next to rq and release next. merge_requests_fn
  2189. * will have updated segment counts, update sector
  2190. * counts here.
  2191. */
  2192. if (!q->merge_requests_fn(q, req, next))
  2193. return 0;
  2194. /*
  2195. * At this point we have either done a back merge
  2196. * or front merge. We need the smaller start_time of
  2197. * the merged requests to be the current request
  2198. * for accounting purposes.
  2199. */
  2200. if (time_after(req->start_time, next->start_time))
  2201. req->start_time = next->start_time;
  2202. req->biotail->bi_next = next->bio;
  2203. req->biotail = next->biotail;
  2204. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2205. elv_merge_requests(q, req, next);
  2206. if (req->rq_disk) {
  2207. disk_round_stats(req->rq_disk);
  2208. req->rq_disk->in_flight--;
  2209. }
  2210. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2211. __blk_put_request(q, next);
  2212. return 1;
  2213. }
  2214. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2215. {
  2216. struct request *next = elv_latter_request(q, rq);
  2217. if (next)
  2218. return attempt_merge(q, rq, next);
  2219. return 0;
  2220. }
  2221. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2222. {
  2223. struct request *prev = elv_former_request(q, rq);
  2224. if (prev)
  2225. return attempt_merge(q, prev, rq);
  2226. return 0;
  2227. }
  2228. /**
  2229. * blk_attempt_remerge - attempt to remerge active head with next request
  2230. * @q: The &request_queue_t belonging to the device
  2231. * @rq: The head request (usually)
  2232. *
  2233. * Description:
  2234. * For head-active devices, the queue can easily be unplugged so quickly
  2235. * that proper merging is not done on the front request. This may hurt
  2236. * performance greatly for some devices. The block layer cannot safely
  2237. * do merging on that first request for these queues, but the driver can
  2238. * call this function and make it happen any way. Only the driver knows
  2239. * when it is safe to do so.
  2240. **/
  2241. void blk_attempt_remerge(request_queue_t *q, struct request *rq)
  2242. {
  2243. unsigned long flags;
  2244. spin_lock_irqsave(q->queue_lock, flags);
  2245. attempt_back_merge(q, rq);
  2246. spin_unlock_irqrestore(q->queue_lock, flags);
  2247. }
  2248. EXPORT_SYMBOL(blk_attempt_remerge);
  2249. static int __make_request(request_queue_t *q, struct bio *bio)
  2250. {
  2251. struct request *req;
  2252. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2253. unsigned short prio;
  2254. sector_t sector;
  2255. sector = bio->bi_sector;
  2256. nr_sectors = bio_sectors(bio);
  2257. cur_nr_sectors = bio_cur_sectors(bio);
  2258. prio = bio_prio(bio);
  2259. rw = bio_data_dir(bio);
  2260. sync = bio_sync(bio);
  2261. /*
  2262. * low level driver can indicate that it wants pages above a
  2263. * certain limit bounced to low memory (ie for highmem, or even
  2264. * ISA dma in theory)
  2265. */
  2266. blk_queue_bounce(q, &bio);
  2267. spin_lock_prefetch(q->queue_lock);
  2268. barrier = bio_barrier(bio);
  2269. if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
  2270. err = -EOPNOTSUPP;
  2271. goto end_io;
  2272. }
  2273. spin_lock_irq(q->queue_lock);
  2274. if (unlikely(barrier) || elv_queue_empty(q))
  2275. goto get_rq;
  2276. el_ret = elv_merge(q, &req, bio);
  2277. switch (el_ret) {
  2278. case ELEVATOR_BACK_MERGE:
  2279. BUG_ON(!rq_mergeable(req));
  2280. if (!q->back_merge_fn(q, req, bio))
  2281. break;
  2282. req->biotail->bi_next = bio;
  2283. req->biotail = bio;
  2284. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2285. req->ioprio = ioprio_best(req->ioprio, prio);
  2286. drive_stat_acct(req, nr_sectors, 0);
  2287. if (!attempt_back_merge(q, req))
  2288. elv_merged_request(q, req);
  2289. goto out;
  2290. case ELEVATOR_FRONT_MERGE:
  2291. BUG_ON(!rq_mergeable(req));
  2292. if (!q->front_merge_fn(q, req, bio))
  2293. break;
  2294. bio->bi_next = req->bio;
  2295. req->bio = bio;
  2296. /*
  2297. * may not be valid. if the low level driver said
  2298. * it didn't need a bounce buffer then it better
  2299. * not touch req->buffer either...
  2300. */
  2301. req->buffer = bio_data(bio);
  2302. req->current_nr_sectors = cur_nr_sectors;
  2303. req->hard_cur_sectors = cur_nr_sectors;
  2304. req->sector = req->hard_sector = sector;
  2305. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2306. req->ioprio = ioprio_best(req->ioprio, prio);
  2307. drive_stat_acct(req, nr_sectors, 0);
  2308. if (!attempt_front_merge(q, req))
  2309. elv_merged_request(q, req);
  2310. goto out;
  2311. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2312. default:
  2313. ;
  2314. }
  2315. get_rq:
  2316. /*
  2317. * Grab a free request. This is might sleep but can not fail.
  2318. * Returns with the queue unlocked.
  2319. */
  2320. req = get_request_wait(q, rw, bio);
  2321. /*
  2322. * After dropping the lock and possibly sleeping here, our request
  2323. * may now be mergeable after it had proven unmergeable (above).
  2324. * We don't worry about that case for efficiency. It won't happen
  2325. * often, and the elevators are able to handle it.
  2326. */
  2327. req->flags |= REQ_CMD;
  2328. /*
  2329. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2330. */
  2331. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2332. req->flags |= REQ_FAILFAST;
  2333. /*
  2334. * REQ_BARRIER implies no merging, but lets make it explicit
  2335. */
  2336. if (unlikely(barrier))
  2337. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2338. req->errors = 0;
  2339. req->hard_sector = req->sector = sector;
  2340. req->hard_nr_sectors = req->nr_sectors = nr_sectors;
  2341. req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
  2342. req->nr_phys_segments = bio_phys_segments(q, bio);
  2343. req->nr_hw_segments = bio_hw_segments(q, bio);
  2344. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2345. req->waiting = NULL;
  2346. req->bio = req->biotail = bio;
  2347. req->ioprio = prio;
  2348. req->rq_disk = bio->bi_bdev->bd_disk;
  2349. req->start_time = jiffies;
  2350. spin_lock_irq(q->queue_lock);
  2351. if (elv_queue_empty(q))
  2352. blk_plug_device(q);
  2353. add_request(q, req);
  2354. out:
  2355. if (sync)
  2356. __generic_unplug_device(q);
  2357. spin_unlock_irq(q->queue_lock);
  2358. return 0;
  2359. end_io:
  2360. bio_endio(bio, nr_sectors << 9, err);
  2361. return 0;
  2362. }
  2363. /*
  2364. * If bio->bi_dev is a partition, remap the location
  2365. */
  2366. static inline void blk_partition_remap(struct bio *bio)
  2367. {
  2368. struct block_device *bdev = bio->bi_bdev;
  2369. if (bdev != bdev->bd_contains) {
  2370. struct hd_struct *p = bdev->bd_part;
  2371. const int rw = bio_data_dir(bio);
  2372. p->sectors[rw] += bio_sectors(bio);
  2373. p->ios[rw]++;
  2374. bio->bi_sector += p->start_sect;
  2375. bio->bi_bdev = bdev->bd_contains;
  2376. }
  2377. }
  2378. static void handle_bad_sector(struct bio *bio)
  2379. {
  2380. char b[BDEVNAME_SIZE];
  2381. printk(KERN_INFO "attempt to access beyond end of device\n");
  2382. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2383. bdevname(bio->bi_bdev, b),
  2384. bio->bi_rw,
  2385. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2386. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2387. set_bit(BIO_EOF, &bio->bi_flags);
  2388. }
  2389. /**
  2390. * generic_make_request: hand a buffer to its device driver for I/O
  2391. * @bio: The bio describing the location in memory and on the device.
  2392. *
  2393. * generic_make_request() is used to make I/O requests of block
  2394. * devices. It is passed a &struct bio, which describes the I/O that needs
  2395. * to be done.
  2396. *
  2397. * generic_make_request() does not return any status. The
  2398. * success/failure status of the request, along with notification of
  2399. * completion, is delivered asynchronously through the bio->bi_end_io
  2400. * function described (one day) else where.
  2401. *
  2402. * The caller of generic_make_request must make sure that bi_io_vec
  2403. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2404. * set to describe the device address, and the
  2405. * bi_end_io and optionally bi_private are set to describe how
  2406. * completion notification should be signaled.
  2407. *
  2408. * generic_make_request and the drivers it calls may use bi_next if this
  2409. * bio happens to be merged with someone else, and may change bi_dev and
  2410. * bi_sector for remaps as it sees fit. So the values of these fields
  2411. * should NOT be depended on after the call to generic_make_request.
  2412. */
  2413. void generic_make_request(struct bio *bio)
  2414. {
  2415. request_queue_t *q;
  2416. sector_t maxsector;
  2417. int ret, nr_sectors = bio_sectors(bio);
  2418. might_sleep();
  2419. /* Test device or partition size, when known. */
  2420. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2421. if (maxsector) {
  2422. sector_t sector = bio->bi_sector;
  2423. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2424. /*
  2425. * This may well happen - the kernel calls bread()
  2426. * without checking the size of the device, e.g., when
  2427. * mounting a device.
  2428. */
  2429. handle_bad_sector(bio);
  2430. goto end_io;
  2431. }
  2432. }
  2433. /*
  2434. * Resolve the mapping until finished. (drivers are
  2435. * still free to implement/resolve their own stacking
  2436. * by explicitly returning 0)
  2437. *
  2438. * NOTE: we don't repeat the blk_size check for each new device.
  2439. * Stacking drivers are expected to know what they are doing.
  2440. */
  2441. do {
  2442. char b[BDEVNAME_SIZE];
  2443. q = bdev_get_queue(bio->bi_bdev);
  2444. if (!q) {
  2445. printk(KERN_ERR
  2446. "generic_make_request: Trying to access "
  2447. "nonexistent block-device %s (%Lu)\n",
  2448. bdevname(bio->bi_bdev, b),
  2449. (long long) bio->bi_sector);
  2450. end_io:
  2451. bio_endio(bio, bio->bi_size, -EIO);
  2452. break;
  2453. }
  2454. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2455. printk("bio too big device %s (%u > %u)\n",
  2456. bdevname(bio->bi_bdev, b),
  2457. bio_sectors(bio),
  2458. q->max_hw_sectors);
  2459. goto end_io;
  2460. }
  2461. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2462. goto end_io;
  2463. /*
  2464. * If this device has partitions, remap block n
  2465. * of partition p to block n+start(p) of the disk.
  2466. */
  2467. blk_partition_remap(bio);
  2468. ret = q->make_request_fn(q, bio);
  2469. } while (ret);
  2470. }
  2471. EXPORT_SYMBOL(generic_make_request);
  2472. /**
  2473. * submit_bio: submit a bio to the block device layer for I/O
  2474. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2475. * @bio: The &struct bio which describes the I/O
  2476. *
  2477. * submit_bio() is very similar in purpose to generic_make_request(), and
  2478. * uses that function to do most of the work. Both are fairly rough
  2479. * interfaces, @bio must be presetup and ready for I/O.
  2480. *
  2481. */
  2482. void submit_bio(int rw, struct bio *bio)
  2483. {
  2484. int count = bio_sectors(bio);
  2485. BIO_BUG_ON(!bio->bi_size);
  2486. BIO_BUG_ON(!bio->bi_io_vec);
  2487. bio->bi_rw |= rw;
  2488. if (rw & WRITE)
  2489. mod_page_state(pgpgout, count);
  2490. else
  2491. mod_page_state(pgpgin, count);
  2492. if (unlikely(block_dump)) {
  2493. char b[BDEVNAME_SIZE];
  2494. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2495. current->comm, current->pid,
  2496. (rw & WRITE) ? "WRITE" : "READ",
  2497. (unsigned long long)bio->bi_sector,
  2498. bdevname(bio->bi_bdev,b));
  2499. }
  2500. generic_make_request(bio);
  2501. }
  2502. EXPORT_SYMBOL(submit_bio);
  2503. static void blk_recalc_rq_segments(struct request *rq)
  2504. {
  2505. struct bio *bio, *prevbio = NULL;
  2506. int nr_phys_segs, nr_hw_segs;
  2507. unsigned int phys_size, hw_size;
  2508. request_queue_t *q = rq->q;
  2509. if (!rq->bio)
  2510. return;
  2511. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2512. rq_for_each_bio(bio, rq) {
  2513. /* Force bio hw/phys segs to be recalculated. */
  2514. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2515. nr_phys_segs += bio_phys_segments(q, bio);
  2516. nr_hw_segs += bio_hw_segments(q, bio);
  2517. if (prevbio) {
  2518. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2519. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2520. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2521. pseg <= q->max_segment_size) {
  2522. nr_phys_segs--;
  2523. phys_size += prevbio->bi_size + bio->bi_size;
  2524. } else
  2525. phys_size = 0;
  2526. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2527. hseg <= q->max_segment_size) {
  2528. nr_hw_segs--;
  2529. hw_size += prevbio->bi_size + bio->bi_size;
  2530. } else
  2531. hw_size = 0;
  2532. }
  2533. prevbio = bio;
  2534. }
  2535. rq->nr_phys_segments = nr_phys_segs;
  2536. rq->nr_hw_segments = nr_hw_segs;
  2537. }
  2538. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2539. {
  2540. if (blk_fs_request(rq)) {
  2541. rq->hard_sector += nsect;
  2542. rq->hard_nr_sectors -= nsect;
  2543. /*
  2544. * Move the I/O submission pointers ahead if required.
  2545. */
  2546. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2547. (rq->sector <= rq->hard_sector)) {
  2548. rq->sector = rq->hard_sector;
  2549. rq->nr_sectors = rq->hard_nr_sectors;
  2550. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2551. rq->current_nr_sectors = rq->hard_cur_sectors;
  2552. rq->buffer = bio_data(rq->bio);
  2553. }
  2554. /*
  2555. * if total number of sectors is less than the first segment
  2556. * size, something has gone terribly wrong
  2557. */
  2558. if (rq->nr_sectors < rq->current_nr_sectors) {
  2559. printk("blk: request botched\n");
  2560. rq->nr_sectors = rq->current_nr_sectors;
  2561. }
  2562. }
  2563. }
  2564. static int __end_that_request_first(struct request *req, int uptodate,
  2565. int nr_bytes)
  2566. {
  2567. int total_bytes, bio_nbytes, error, next_idx = 0;
  2568. struct bio *bio;
  2569. /*
  2570. * extend uptodate bool to allow < 0 value to be direct io error
  2571. */
  2572. error = 0;
  2573. if (end_io_error(uptodate))
  2574. error = !uptodate ? -EIO : uptodate;
  2575. /*
  2576. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2577. * sense key with us all the way through
  2578. */
  2579. if (!blk_pc_request(req))
  2580. req->errors = 0;
  2581. if (!uptodate) {
  2582. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2583. printk("end_request: I/O error, dev %s, sector %llu\n",
  2584. req->rq_disk ? req->rq_disk->disk_name : "?",
  2585. (unsigned long long)req->sector);
  2586. }
  2587. if (blk_fs_request(req) && req->rq_disk) {
  2588. const int rw = rq_data_dir(req);
  2589. __disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2590. }
  2591. total_bytes = bio_nbytes = 0;
  2592. while ((bio = req->bio) != NULL) {
  2593. int nbytes;
  2594. if (nr_bytes >= bio->bi_size) {
  2595. req->bio = bio->bi_next;
  2596. nbytes = bio->bi_size;
  2597. bio_endio(bio, nbytes, error);
  2598. next_idx = 0;
  2599. bio_nbytes = 0;
  2600. } else {
  2601. int idx = bio->bi_idx + next_idx;
  2602. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2603. blk_dump_rq_flags(req, "__end_that");
  2604. printk("%s: bio idx %d >= vcnt %d\n",
  2605. __FUNCTION__,
  2606. bio->bi_idx, bio->bi_vcnt);
  2607. break;
  2608. }
  2609. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2610. BIO_BUG_ON(nbytes > bio->bi_size);
  2611. /*
  2612. * not a complete bvec done
  2613. */
  2614. if (unlikely(nbytes > nr_bytes)) {
  2615. bio_nbytes += nr_bytes;
  2616. total_bytes += nr_bytes;
  2617. break;
  2618. }
  2619. /*
  2620. * advance to the next vector
  2621. */
  2622. next_idx++;
  2623. bio_nbytes += nbytes;
  2624. }
  2625. total_bytes += nbytes;
  2626. nr_bytes -= nbytes;
  2627. if ((bio = req->bio)) {
  2628. /*
  2629. * end more in this run, or just return 'not-done'
  2630. */
  2631. if (unlikely(nr_bytes <= 0))
  2632. break;
  2633. }
  2634. }
  2635. /*
  2636. * completely done
  2637. */
  2638. if (!req->bio)
  2639. return 0;
  2640. /*
  2641. * if the request wasn't completed, update state
  2642. */
  2643. if (bio_nbytes) {
  2644. bio_endio(bio, bio_nbytes, error);
  2645. bio->bi_idx += next_idx;
  2646. bio_iovec(bio)->bv_offset += nr_bytes;
  2647. bio_iovec(bio)->bv_len -= nr_bytes;
  2648. }
  2649. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2650. blk_recalc_rq_segments(req);
  2651. return 1;
  2652. }
  2653. /**
  2654. * end_that_request_first - end I/O on a request
  2655. * @req: the request being processed
  2656. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2657. * @nr_sectors: number of sectors to end I/O on
  2658. *
  2659. * Description:
  2660. * Ends I/O on a number of sectors attached to @req, and sets it up
  2661. * for the next range of segments (if any) in the cluster.
  2662. *
  2663. * Return:
  2664. * 0 - we are done with this request, call end_that_request_last()
  2665. * 1 - still buffers pending for this request
  2666. **/
  2667. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2668. {
  2669. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2670. }
  2671. EXPORT_SYMBOL(end_that_request_first);
  2672. /**
  2673. * end_that_request_chunk - end I/O on a request
  2674. * @req: the request being processed
  2675. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2676. * @nr_bytes: number of bytes to complete
  2677. *
  2678. * Description:
  2679. * Ends I/O on a number of bytes attached to @req, and sets it up
  2680. * for the next range of segments (if any). Like end_that_request_first(),
  2681. * but deals with bytes instead of sectors.
  2682. *
  2683. * Return:
  2684. * 0 - we are done with this request, call end_that_request_last()
  2685. * 1 - still buffers pending for this request
  2686. **/
  2687. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2688. {
  2689. return __end_that_request_first(req, uptodate, nr_bytes);
  2690. }
  2691. EXPORT_SYMBOL(end_that_request_chunk);
  2692. /*
  2693. * queue lock must be held
  2694. */
  2695. void end_that_request_last(struct request *req)
  2696. {
  2697. struct gendisk *disk = req->rq_disk;
  2698. if (unlikely(laptop_mode) && blk_fs_request(req))
  2699. laptop_io_completion();
  2700. if (disk && blk_fs_request(req)) {
  2701. unsigned long duration = jiffies - req->start_time;
  2702. const int rw = rq_data_dir(req);
  2703. __disk_stat_inc(disk, ios[rw]);
  2704. __disk_stat_add(disk, ticks[rw], duration);
  2705. disk_round_stats(disk);
  2706. disk->in_flight--;
  2707. }
  2708. if (req->end_io)
  2709. req->end_io(req);
  2710. else
  2711. __blk_put_request(req->q, req);
  2712. }
  2713. EXPORT_SYMBOL(end_that_request_last);
  2714. void end_request(struct request *req, int uptodate)
  2715. {
  2716. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2717. add_disk_randomness(req->rq_disk);
  2718. blkdev_dequeue_request(req);
  2719. end_that_request_last(req);
  2720. }
  2721. }
  2722. EXPORT_SYMBOL(end_request);
  2723. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2724. {
  2725. /* first three bits are identical in rq->flags and bio->bi_rw */
  2726. rq->flags |= (bio->bi_rw & 7);
  2727. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2728. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2729. rq->current_nr_sectors = bio_cur_sectors(bio);
  2730. rq->hard_cur_sectors = rq->current_nr_sectors;
  2731. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2732. rq->buffer = bio_data(bio);
  2733. rq->bio = rq->biotail = bio;
  2734. }
  2735. EXPORT_SYMBOL(blk_rq_bio_prep);
  2736. int kblockd_schedule_work(struct work_struct *work)
  2737. {
  2738. return queue_work(kblockd_workqueue, work);
  2739. }
  2740. EXPORT_SYMBOL(kblockd_schedule_work);
  2741. void kblockd_flush(void)
  2742. {
  2743. flush_workqueue(kblockd_workqueue);
  2744. }
  2745. EXPORT_SYMBOL(kblockd_flush);
  2746. int __init blk_dev_init(void)
  2747. {
  2748. kblockd_workqueue = create_workqueue("kblockd");
  2749. if (!kblockd_workqueue)
  2750. panic("Failed to create kblockd\n");
  2751. request_cachep = kmem_cache_create("blkdev_requests",
  2752. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2753. requestq_cachep = kmem_cache_create("blkdev_queue",
  2754. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2755. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2756. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2757. blk_max_low_pfn = max_low_pfn;
  2758. blk_max_pfn = max_pfn;
  2759. return 0;
  2760. }
  2761. /*
  2762. * IO Context helper functions
  2763. */
  2764. void put_io_context(struct io_context *ioc)
  2765. {
  2766. if (ioc == NULL)
  2767. return;
  2768. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2769. if (atomic_dec_and_test(&ioc->refcount)) {
  2770. if (ioc->aic && ioc->aic->dtor)
  2771. ioc->aic->dtor(ioc->aic);
  2772. if (ioc->cic && ioc->cic->dtor)
  2773. ioc->cic->dtor(ioc->cic);
  2774. kmem_cache_free(iocontext_cachep, ioc);
  2775. }
  2776. }
  2777. EXPORT_SYMBOL(put_io_context);
  2778. /* Called by the exitting task */
  2779. void exit_io_context(void)
  2780. {
  2781. unsigned long flags;
  2782. struct io_context *ioc;
  2783. local_irq_save(flags);
  2784. task_lock(current);
  2785. ioc = current->io_context;
  2786. current->io_context = NULL;
  2787. ioc->task = NULL;
  2788. task_unlock(current);
  2789. local_irq_restore(flags);
  2790. if (ioc->aic && ioc->aic->exit)
  2791. ioc->aic->exit(ioc->aic);
  2792. if (ioc->cic && ioc->cic->exit)
  2793. ioc->cic->exit(ioc->cic);
  2794. put_io_context(ioc);
  2795. }
  2796. /*
  2797. * If the current task has no IO context then create one and initialise it.
  2798. * Otherwise, return its existing IO context.
  2799. *
  2800. * This returned IO context doesn't have a specifically elevated refcount,
  2801. * but since the current task itself holds a reference, the context can be
  2802. * used in general code, so long as it stays within `current` context.
  2803. */
  2804. struct io_context *current_io_context(gfp_t gfp_flags)
  2805. {
  2806. struct task_struct *tsk = current;
  2807. struct io_context *ret;
  2808. ret = tsk->io_context;
  2809. if (likely(ret))
  2810. return ret;
  2811. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  2812. if (ret) {
  2813. atomic_set(&ret->refcount, 1);
  2814. ret->task = current;
  2815. ret->set_ioprio = NULL;
  2816. ret->last_waited = jiffies; /* doesn't matter... */
  2817. ret->nr_batch_requests = 0; /* because this is 0 */
  2818. ret->aic = NULL;
  2819. ret->cic = NULL;
  2820. tsk->io_context = ret;
  2821. }
  2822. return ret;
  2823. }
  2824. EXPORT_SYMBOL(current_io_context);
  2825. /*
  2826. * If the current task has no IO context then create one and initialise it.
  2827. * If it does have a context, take a ref on it.
  2828. *
  2829. * This is always called in the context of the task which submitted the I/O.
  2830. */
  2831. struct io_context *get_io_context(gfp_t gfp_flags)
  2832. {
  2833. struct io_context *ret;
  2834. ret = current_io_context(gfp_flags);
  2835. if (likely(ret))
  2836. atomic_inc(&ret->refcount);
  2837. return ret;
  2838. }
  2839. EXPORT_SYMBOL(get_io_context);
  2840. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  2841. {
  2842. struct io_context *src = *psrc;
  2843. struct io_context *dst = *pdst;
  2844. if (src) {
  2845. BUG_ON(atomic_read(&src->refcount) == 0);
  2846. atomic_inc(&src->refcount);
  2847. put_io_context(dst);
  2848. *pdst = src;
  2849. }
  2850. }
  2851. EXPORT_SYMBOL(copy_io_context);
  2852. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  2853. {
  2854. struct io_context *temp;
  2855. temp = *ioc1;
  2856. *ioc1 = *ioc2;
  2857. *ioc2 = temp;
  2858. }
  2859. EXPORT_SYMBOL(swap_io_context);
  2860. /*
  2861. * sysfs parts below
  2862. */
  2863. struct queue_sysfs_entry {
  2864. struct attribute attr;
  2865. ssize_t (*show)(struct request_queue *, char *);
  2866. ssize_t (*store)(struct request_queue *, const char *, size_t);
  2867. };
  2868. static ssize_t
  2869. queue_var_show(unsigned int var, char *page)
  2870. {
  2871. return sprintf(page, "%d\n", var);
  2872. }
  2873. static ssize_t
  2874. queue_var_store(unsigned long *var, const char *page, size_t count)
  2875. {
  2876. char *p = (char *) page;
  2877. *var = simple_strtoul(p, &p, 10);
  2878. return count;
  2879. }
  2880. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  2881. {
  2882. return queue_var_show(q->nr_requests, (page));
  2883. }
  2884. static ssize_t
  2885. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  2886. {
  2887. struct request_list *rl = &q->rq;
  2888. int ret = queue_var_store(&q->nr_requests, page, count);
  2889. if (q->nr_requests < BLKDEV_MIN_RQ)
  2890. q->nr_requests = BLKDEV_MIN_RQ;
  2891. blk_queue_congestion_threshold(q);
  2892. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  2893. set_queue_congested(q, READ);
  2894. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  2895. clear_queue_congested(q, READ);
  2896. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  2897. set_queue_congested(q, WRITE);
  2898. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  2899. clear_queue_congested(q, WRITE);
  2900. if (rl->count[READ] >= q->nr_requests) {
  2901. blk_set_queue_full(q, READ);
  2902. } else if (rl->count[READ]+1 <= q->nr_requests) {
  2903. blk_clear_queue_full(q, READ);
  2904. wake_up(&rl->wait[READ]);
  2905. }
  2906. if (rl->count[WRITE] >= q->nr_requests) {
  2907. blk_set_queue_full(q, WRITE);
  2908. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  2909. blk_clear_queue_full(q, WRITE);
  2910. wake_up(&rl->wait[WRITE]);
  2911. }
  2912. return ret;
  2913. }
  2914. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  2915. {
  2916. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2917. return queue_var_show(ra_kb, (page));
  2918. }
  2919. static ssize_t
  2920. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  2921. {
  2922. unsigned long ra_kb;
  2923. ssize_t ret = queue_var_store(&ra_kb, page, count);
  2924. spin_lock_irq(q->queue_lock);
  2925. if (ra_kb > (q->max_sectors >> 1))
  2926. ra_kb = (q->max_sectors >> 1);
  2927. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  2928. spin_unlock_irq(q->queue_lock);
  2929. return ret;
  2930. }
  2931. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  2932. {
  2933. int max_sectors_kb = q->max_sectors >> 1;
  2934. return queue_var_show(max_sectors_kb, (page));
  2935. }
  2936. static ssize_t
  2937. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  2938. {
  2939. unsigned long max_sectors_kb,
  2940. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  2941. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  2942. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  2943. int ra_kb;
  2944. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  2945. return -EINVAL;
  2946. /*
  2947. * Take the queue lock to update the readahead and max_sectors
  2948. * values synchronously:
  2949. */
  2950. spin_lock_irq(q->queue_lock);
  2951. /*
  2952. * Trim readahead window as well, if necessary:
  2953. */
  2954. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2955. if (ra_kb > max_sectors_kb)
  2956. q->backing_dev_info.ra_pages =
  2957. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  2958. q->max_sectors = max_sectors_kb << 1;
  2959. spin_unlock_irq(q->queue_lock);
  2960. return ret;
  2961. }
  2962. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  2963. {
  2964. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  2965. return queue_var_show(max_hw_sectors_kb, (page));
  2966. }
  2967. static struct queue_sysfs_entry queue_requests_entry = {
  2968. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  2969. .show = queue_requests_show,
  2970. .store = queue_requests_store,
  2971. };
  2972. static struct queue_sysfs_entry queue_ra_entry = {
  2973. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  2974. .show = queue_ra_show,
  2975. .store = queue_ra_store,
  2976. };
  2977. static struct queue_sysfs_entry queue_max_sectors_entry = {
  2978. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  2979. .show = queue_max_sectors_show,
  2980. .store = queue_max_sectors_store,
  2981. };
  2982. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  2983. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  2984. .show = queue_max_hw_sectors_show,
  2985. };
  2986. static struct queue_sysfs_entry queue_iosched_entry = {
  2987. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  2988. .show = elv_iosched_show,
  2989. .store = elv_iosched_store,
  2990. };
  2991. static struct attribute *default_attrs[] = {
  2992. &queue_requests_entry.attr,
  2993. &queue_ra_entry.attr,
  2994. &queue_max_hw_sectors_entry.attr,
  2995. &queue_max_sectors_entry.attr,
  2996. &queue_iosched_entry.attr,
  2997. NULL,
  2998. };
  2999. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3000. static ssize_t
  3001. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3002. {
  3003. struct queue_sysfs_entry *entry = to_queue(attr);
  3004. struct request_queue *q;
  3005. q = container_of(kobj, struct request_queue, kobj);
  3006. if (!entry->show)
  3007. return -EIO;
  3008. return entry->show(q, page);
  3009. }
  3010. static ssize_t
  3011. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3012. const char *page, size_t length)
  3013. {
  3014. struct queue_sysfs_entry *entry = to_queue(attr);
  3015. struct request_queue *q;
  3016. q = container_of(kobj, struct request_queue, kobj);
  3017. if (!entry->store)
  3018. return -EIO;
  3019. return entry->store(q, page, length);
  3020. }
  3021. static struct sysfs_ops queue_sysfs_ops = {
  3022. .show = queue_attr_show,
  3023. .store = queue_attr_store,
  3024. };
  3025. static struct kobj_type queue_ktype = {
  3026. .sysfs_ops = &queue_sysfs_ops,
  3027. .default_attrs = default_attrs,
  3028. };
  3029. int blk_register_queue(struct gendisk *disk)
  3030. {
  3031. int ret;
  3032. request_queue_t *q = disk->queue;
  3033. if (!q || !q->request_fn)
  3034. return -ENXIO;
  3035. q->kobj.parent = kobject_get(&disk->kobj);
  3036. if (!q->kobj.parent)
  3037. return -EBUSY;
  3038. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  3039. q->kobj.ktype = &queue_ktype;
  3040. ret = kobject_register(&q->kobj);
  3041. if (ret < 0)
  3042. return ret;
  3043. ret = elv_register_queue(q);
  3044. if (ret) {
  3045. kobject_unregister(&q->kobj);
  3046. return ret;
  3047. }
  3048. return 0;
  3049. }
  3050. void blk_unregister_queue(struct gendisk *disk)
  3051. {
  3052. request_queue_t *q = disk->queue;
  3053. if (q && q->request_fn) {
  3054. elv_unregister_queue(q);
  3055. kobject_unregister(&q->kobj);
  3056. kobject_put(&disk->kobj);
  3057. }
  3058. }