slab.c 118 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/rcupdate.h>
  105. #include <linux/string.h>
  106. #include <linux/uaccess.h>
  107. #include <linux/nodemask.h>
  108. #include <linux/kmemleak.h>
  109. #include <linux/mempolicy.h>
  110. #include <linux/mutex.h>
  111. #include <linux/fault-inject.h>
  112. #include <linux/rtmutex.h>
  113. #include <linux/reciprocal_div.h>
  114. #include <linux/debugobjects.h>
  115. #include <linux/kmemcheck.h>
  116. #include <linux/memory.h>
  117. #include <asm/cacheflush.h>
  118. #include <asm/tlbflush.h>
  119. #include <asm/page.h>
  120. /*
  121. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  122. * 0 for faster, smaller code (especially in the critical paths).
  123. *
  124. * STATS - 1 to collect stats for /proc/slabinfo.
  125. * 0 for faster, smaller code (especially in the critical paths).
  126. *
  127. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  128. */
  129. #ifdef CONFIG_DEBUG_SLAB
  130. #define DEBUG 1
  131. #define STATS 1
  132. #define FORCED_DEBUG 1
  133. #else
  134. #define DEBUG 0
  135. #define STATS 0
  136. #define FORCED_DEBUG 0
  137. #endif
  138. /* Shouldn't this be in a header file somewhere? */
  139. #define BYTES_PER_WORD sizeof(void *)
  140. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  141. #ifndef ARCH_KMALLOC_FLAGS
  142. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  143. #endif
  144. /* Legal flag mask for kmem_cache_create(). */
  145. #if DEBUG
  146. # define CREATE_MASK (SLAB_RED_ZONE | \
  147. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  148. SLAB_CACHE_DMA | \
  149. SLAB_STORE_USER | \
  150. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  151. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  152. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  153. #else
  154. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  155. SLAB_CACHE_DMA | \
  156. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  157. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  158. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  159. #endif
  160. /*
  161. * kmem_bufctl_t:
  162. *
  163. * Bufctl's are used for linking objs within a slab
  164. * linked offsets.
  165. *
  166. * This implementation relies on "struct page" for locating the cache &
  167. * slab an object belongs to.
  168. * This allows the bufctl structure to be small (one int), but limits
  169. * the number of objects a slab (not a cache) can contain when off-slab
  170. * bufctls are used. The limit is the size of the largest general cache
  171. * that does not use off-slab slabs.
  172. * For 32bit archs with 4 kB pages, is this 56.
  173. * This is not serious, as it is only for large objects, when it is unwise
  174. * to have too many per slab.
  175. * Note: This limit can be raised by introducing a general cache whose size
  176. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  177. */
  178. typedef unsigned int kmem_bufctl_t;
  179. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  180. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  181. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  182. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  183. /*
  184. * struct slab_rcu
  185. *
  186. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  187. * arrange for kmem_freepages to be called via RCU. This is useful if
  188. * we need to approach a kernel structure obliquely, from its address
  189. * obtained without the usual locking. We can lock the structure to
  190. * stabilize it and check it's still at the given address, only if we
  191. * can be sure that the memory has not been meanwhile reused for some
  192. * other kind of object (which our subsystem's lock might corrupt).
  193. *
  194. * rcu_read_lock before reading the address, then rcu_read_unlock after
  195. * taking the spinlock within the structure expected at that address.
  196. */
  197. struct slab_rcu {
  198. struct rcu_head head;
  199. struct kmem_cache *cachep;
  200. void *addr;
  201. };
  202. /*
  203. * struct slab
  204. *
  205. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  206. * for a slab, or allocated from an general cache.
  207. * Slabs are chained into three list: fully used, partial, fully free slabs.
  208. */
  209. struct slab {
  210. union {
  211. struct {
  212. struct list_head list;
  213. unsigned long colouroff;
  214. void *s_mem; /* including colour offset */
  215. unsigned int inuse; /* num of objs active in slab */
  216. kmem_bufctl_t free;
  217. unsigned short nodeid;
  218. };
  219. struct slab_rcu __slab_cover_slab_rcu;
  220. };
  221. };
  222. /*
  223. * struct array_cache
  224. *
  225. * Purpose:
  226. * - LIFO ordering, to hand out cache-warm objects from _alloc
  227. * - reduce the number of linked list operations
  228. * - reduce spinlock operations
  229. *
  230. * The limit is stored in the per-cpu structure to reduce the data cache
  231. * footprint.
  232. *
  233. */
  234. struct array_cache {
  235. unsigned int avail;
  236. unsigned int limit;
  237. unsigned int batchcount;
  238. unsigned int touched;
  239. spinlock_t lock;
  240. void *entry[]; /*
  241. * Must have this definition in here for the proper
  242. * alignment of array_cache. Also simplifies accessing
  243. * the entries.
  244. */
  245. };
  246. /*
  247. * bootstrap: The caches do not work without cpuarrays anymore, but the
  248. * cpuarrays are allocated from the generic caches...
  249. */
  250. #define BOOT_CPUCACHE_ENTRIES 1
  251. struct arraycache_init {
  252. struct array_cache cache;
  253. void *entries[BOOT_CPUCACHE_ENTRIES];
  254. };
  255. /*
  256. * The slab lists for all objects.
  257. */
  258. struct kmem_list3 {
  259. struct list_head slabs_partial; /* partial list first, better asm code */
  260. struct list_head slabs_full;
  261. struct list_head slabs_free;
  262. unsigned long free_objects;
  263. unsigned int free_limit;
  264. unsigned int colour_next; /* Per-node cache coloring */
  265. spinlock_t list_lock;
  266. struct array_cache *shared; /* shared per node */
  267. struct array_cache **alien; /* on other nodes */
  268. unsigned long next_reap; /* updated without locking */
  269. int free_touched; /* updated without locking */
  270. };
  271. /*
  272. * Need this for bootstrapping a per node allocator.
  273. */
  274. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  275. static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  276. #define CACHE_CACHE 0
  277. #define SIZE_AC MAX_NUMNODES
  278. #define SIZE_L3 (2 * MAX_NUMNODES)
  279. static int drain_freelist(struct kmem_cache *cache,
  280. struct kmem_list3 *l3, int tofree);
  281. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  282. int node);
  283. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  284. static void cache_reap(struct work_struct *unused);
  285. /*
  286. * This function must be completely optimized away if a constant is passed to
  287. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  288. */
  289. static __always_inline int index_of(const size_t size)
  290. {
  291. extern void __bad_size(void);
  292. if (__builtin_constant_p(size)) {
  293. int i = 0;
  294. #define CACHE(x) \
  295. if (size <=x) \
  296. return i; \
  297. else \
  298. i++;
  299. #include <linux/kmalloc_sizes.h>
  300. #undef CACHE
  301. __bad_size();
  302. } else
  303. __bad_size();
  304. return 0;
  305. }
  306. static int slab_early_init = 1;
  307. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  308. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  309. static void kmem_list3_init(struct kmem_list3 *parent)
  310. {
  311. INIT_LIST_HEAD(&parent->slabs_full);
  312. INIT_LIST_HEAD(&parent->slabs_partial);
  313. INIT_LIST_HEAD(&parent->slabs_free);
  314. parent->shared = NULL;
  315. parent->alien = NULL;
  316. parent->colour_next = 0;
  317. spin_lock_init(&parent->list_lock);
  318. parent->free_objects = 0;
  319. parent->free_touched = 0;
  320. }
  321. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  322. do { \
  323. INIT_LIST_HEAD(listp); \
  324. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  325. } while (0)
  326. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  327. do { \
  328. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  329. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  330. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  331. } while (0)
  332. #define CFLGS_OFF_SLAB (0x80000000UL)
  333. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  334. #define BATCHREFILL_LIMIT 16
  335. /*
  336. * Optimization question: fewer reaps means less probability for unnessary
  337. * cpucache drain/refill cycles.
  338. *
  339. * OTOH the cpuarrays can contain lots of objects,
  340. * which could lock up otherwise freeable slabs.
  341. */
  342. #define REAPTIMEOUT_CPUC (2*HZ)
  343. #define REAPTIMEOUT_LIST3 (4*HZ)
  344. #if STATS
  345. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  346. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  347. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  348. #define STATS_INC_GROWN(x) ((x)->grown++)
  349. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  350. #define STATS_SET_HIGH(x) \
  351. do { \
  352. if ((x)->num_active > (x)->high_mark) \
  353. (x)->high_mark = (x)->num_active; \
  354. } while (0)
  355. #define STATS_INC_ERR(x) ((x)->errors++)
  356. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  357. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  358. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  359. #define STATS_SET_FREEABLE(x, i) \
  360. do { \
  361. if ((x)->max_freeable < i) \
  362. (x)->max_freeable = i; \
  363. } while (0)
  364. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  365. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  366. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  367. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  368. #else
  369. #define STATS_INC_ACTIVE(x) do { } while (0)
  370. #define STATS_DEC_ACTIVE(x) do { } while (0)
  371. #define STATS_INC_ALLOCED(x) do { } while (0)
  372. #define STATS_INC_GROWN(x) do { } while (0)
  373. #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
  374. #define STATS_SET_HIGH(x) do { } while (0)
  375. #define STATS_INC_ERR(x) do { } while (0)
  376. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  377. #define STATS_INC_NODEFREES(x) do { } while (0)
  378. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  379. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  380. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  381. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  382. #define STATS_INC_FREEHIT(x) do { } while (0)
  383. #define STATS_INC_FREEMISS(x) do { } while (0)
  384. #endif
  385. #if DEBUG
  386. /*
  387. * memory layout of objects:
  388. * 0 : objp
  389. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  390. * the end of an object is aligned with the end of the real
  391. * allocation. Catches writes behind the end of the allocation.
  392. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  393. * redzone word.
  394. * cachep->obj_offset: The real object.
  395. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  396. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  397. * [BYTES_PER_WORD long]
  398. */
  399. static int obj_offset(struct kmem_cache *cachep)
  400. {
  401. return cachep->obj_offset;
  402. }
  403. static int obj_size(struct kmem_cache *cachep)
  404. {
  405. return cachep->obj_size;
  406. }
  407. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  408. {
  409. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  410. return (unsigned long long*) (objp + obj_offset(cachep) -
  411. sizeof(unsigned long long));
  412. }
  413. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  414. {
  415. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  416. if (cachep->flags & SLAB_STORE_USER)
  417. return (unsigned long long *)(objp + cachep->buffer_size -
  418. sizeof(unsigned long long) -
  419. REDZONE_ALIGN);
  420. return (unsigned long long *) (objp + cachep->buffer_size -
  421. sizeof(unsigned long long));
  422. }
  423. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  424. {
  425. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  426. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  427. }
  428. #else
  429. #define obj_offset(x) 0
  430. #define obj_size(cachep) (cachep->buffer_size)
  431. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  432. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  433. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  434. #endif
  435. #ifdef CONFIG_TRACING
  436. size_t slab_buffer_size(struct kmem_cache *cachep)
  437. {
  438. return cachep->buffer_size;
  439. }
  440. EXPORT_SYMBOL(slab_buffer_size);
  441. #endif
  442. /*
  443. * Do not go above this order unless 0 objects fit into the slab.
  444. */
  445. #define BREAK_GFP_ORDER_HI 1
  446. #define BREAK_GFP_ORDER_LO 0
  447. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  448. /*
  449. * Functions for storing/retrieving the cachep and or slab from the page
  450. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  451. * these are used to find the cache which an obj belongs to.
  452. */
  453. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  454. {
  455. page->lru.next = (struct list_head *)cache;
  456. }
  457. static inline struct kmem_cache *page_get_cache(struct page *page)
  458. {
  459. page = compound_head(page);
  460. BUG_ON(!PageSlab(page));
  461. return (struct kmem_cache *)page->lru.next;
  462. }
  463. static inline void page_set_slab(struct page *page, struct slab *slab)
  464. {
  465. page->lru.prev = (struct list_head *)slab;
  466. }
  467. static inline struct slab *page_get_slab(struct page *page)
  468. {
  469. BUG_ON(!PageSlab(page));
  470. return (struct slab *)page->lru.prev;
  471. }
  472. static inline struct kmem_cache *virt_to_cache(const void *obj)
  473. {
  474. struct page *page = virt_to_head_page(obj);
  475. return page_get_cache(page);
  476. }
  477. static inline struct slab *virt_to_slab(const void *obj)
  478. {
  479. struct page *page = virt_to_head_page(obj);
  480. return page_get_slab(page);
  481. }
  482. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  483. unsigned int idx)
  484. {
  485. return slab->s_mem + cache->buffer_size * idx;
  486. }
  487. /*
  488. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  489. * Using the fact that buffer_size is a constant for a particular cache,
  490. * we can replace (offset / cache->buffer_size) by
  491. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  492. */
  493. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  494. const struct slab *slab, void *obj)
  495. {
  496. u32 offset = (obj - slab->s_mem);
  497. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  498. }
  499. /*
  500. * These are the default caches for kmalloc. Custom caches can have other sizes.
  501. */
  502. struct cache_sizes malloc_sizes[] = {
  503. #define CACHE(x) { .cs_size = (x) },
  504. #include <linux/kmalloc_sizes.h>
  505. CACHE(ULONG_MAX)
  506. #undef CACHE
  507. };
  508. EXPORT_SYMBOL(malloc_sizes);
  509. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  510. struct cache_names {
  511. char *name;
  512. char *name_dma;
  513. };
  514. static struct cache_names __initdata cache_names[] = {
  515. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  516. #include <linux/kmalloc_sizes.h>
  517. {NULL,}
  518. #undef CACHE
  519. };
  520. static struct arraycache_init initarray_cache __initdata =
  521. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  522. static struct arraycache_init initarray_generic =
  523. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  524. /* internal cache of cache description objs */
  525. static struct kmem_cache cache_cache = {
  526. .batchcount = 1,
  527. .limit = BOOT_CPUCACHE_ENTRIES,
  528. .shared = 1,
  529. .buffer_size = sizeof(struct kmem_cache),
  530. .name = "kmem_cache",
  531. };
  532. #define BAD_ALIEN_MAGIC 0x01020304ul
  533. /*
  534. * chicken and egg problem: delay the per-cpu array allocation
  535. * until the general caches are up.
  536. */
  537. static enum {
  538. NONE,
  539. PARTIAL_AC,
  540. PARTIAL_L3,
  541. EARLY,
  542. FULL
  543. } g_cpucache_up;
  544. /*
  545. * used by boot code to determine if it can use slab based allocator
  546. */
  547. int slab_is_available(void)
  548. {
  549. return g_cpucache_up >= EARLY;
  550. }
  551. #ifdef CONFIG_LOCKDEP
  552. /*
  553. * Slab sometimes uses the kmalloc slabs to store the slab headers
  554. * for other slabs "off slab".
  555. * The locking for this is tricky in that it nests within the locks
  556. * of all other slabs in a few places; to deal with this special
  557. * locking we put on-slab caches into a separate lock-class.
  558. *
  559. * We set lock class for alien array caches which are up during init.
  560. * The lock annotation will be lost if all cpus of a node goes down and
  561. * then comes back up during hotplug
  562. */
  563. static struct lock_class_key on_slab_l3_key;
  564. static struct lock_class_key on_slab_alc_key;
  565. static void init_node_lock_keys(int q)
  566. {
  567. struct cache_sizes *s = malloc_sizes;
  568. if (g_cpucache_up != FULL)
  569. return;
  570. for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
  571. struct array_cache **alc;
  572. struct kmem_list3 *l3;
  573. int r;
  574. l3 = s->cs_cachep->nodelists[q];
  575. if (!l3 || OFF_SLAB(s->cs_cachep))
  576. continue;
  577. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  578. alc = l3->alien;
  579. /*
  580. * FIXME: This check for BAD_ALIEN_MAGIC
  581. * should go away when common slab code is taught to
  582. * work even without alien caches.
  583. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  584. * for alloc_alien_cache,
  585. */
  586. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  587. continue;
  588. for_each_node(r) {
  589. if (alc[r])
  590. lockdep_set_class(&alc[r]->lock,
  591. &on_slab_alc_key);
  592. }
  593. }
  594. }
  595. static inline void init_lock_keys(void)
  596. {
  597. int node;
  598. for_each_node(node)
  599. init_node_lock_keys(node);
  600. }
  601. #else
  602. static void init_node_lock_keys(int q)
  603. {
  604. }
  605. static inline void init_lock_keys(void)
  606. {
  607. }
  608. #endif
  609. /*
  610. * Guard access to the cache-chain.
  611. */
  612. static DEFINE_MUTEX(cache_chain_mutex);
  613. static struct list_head cache_chain;
  614. static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
  615. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  616. {
  617. return cachep->array[smp_processor_id()];
  618. }
  619. static inline struct kmem_cache *__find_general_cachep(size_t size,
  620. gfp_t gfpflags)
  621. {
  622. struct cache_sizes *csizep = malloc_sizes;
  623. #if DEBUG
  624. /* This happens if someone tries to call
  625. * kmem_cache_create(), or __kmalloc(), before
  626. * the generic caches are initialized.
  627. */
  628. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  629. #endif
  630. if (!size)
  631. return ZERO_SIZE_PTR;
  632. while (size > csizep->cs_size)
  633. csizep++;
  634. /*
  635. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  636. * has cs_{dma,}cachep==NULL. Thus no special case
  637. * for large kmalloc calls required.
  638. */
  639. #ifdef CONFIG_ZONE_DMA
  640. if (unlikely(gfpflags & GFP_DMA))
  641. return csizep->cs_dmacachep;
  642. #endif
  643. return csizep->cs_cachep;
  644. }
  645. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  646. {
  647. return __find_general_cachep(size, gfpflags);
  648. }
  649. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  650. {
  651. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  652. }
  653. /*
  654. * Calculate the number of objects and left-over bytes for a given buffer size.
  655. */
  656. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  657. size_t align, int flags, size_t *left_over,
  658. unsigned int *num)
  659. {
  660. int nr_objs;
  661. size_t mgmt_size;
  662. size_t slab_size = PAGE_SIZE << gfporder;
  663. /*
  664. * The slab management structure can be either off the slab or
  665. * on it. For the latter case, the memory allocated for a
  666. * slab is used for:
  667. *
  668. * - The struct slab
  669. * - One kmem_bufctl_t for each object
  670. * - Padding to respect alignment of @align
  671. * - @buffer_size bytes for each object
  672. *
  673. * If the slab management structure is off the slab, then the
  674. * alignment will already be calculated into the size. Because
  675. * the slabs are all pages aligned, the objects will be at the
  676. * correct alignment when allocated.
  677. */
  678. if (flags & CFLGS_OFF_SLAB) {
  679. mgmt_size = 0;
  680. nr_objs = slab_size / buffer_size;
  681. if (nr_objs > SLAB_LIMIT)
  682. nr_objs = SLAB_LIMIT;
  683. } else {
  684. /*
  685. * Ignore padding for the initial guess. The padding
  686. * is at most @align-1 bytes, and @buffer_size is at
  687. * least @align. In the worst case, this result will
  688. * be one greater than the number of objects that fit
  689. * into the memory allocation when taking the padding
  690. * into account.
  691. */
  692. nr_objs = (slab_size - sizeof(struct slab)) /
  693. (buffer_size + sizeof(kmem_bufctl_t));
  694. /*
  695. * This calculated number will be either the right
  696. * amount, or one greater than what we want.
  697. */
  698. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  699. > slab_size)
  700. nr_objs--;
  701. if (nr_objs > SLAB_LIMIT)
  702. nr_objs = SLAB_LIMIT;
  703. mgmt_size = slab_mgmt_size(nr_objs, align);
  704. }
  705. *num = nr_objs;
  706. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  707. }
  708. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  709. static void __slab_error(const char *function, struct kmem_cache *cachep,
  710. char *msg)
  711. {
  712. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  713. function, cachep->name, msg);
  714. dump_stack();
  715. }
  716. /*
  717. * By default on NUMA we use alien caches to stage the freeing of
  718. * objects allocated from other nodes. This causes massive memory
  719. * inefficiencies when using fake NUMA setup to split memory into a
  720. * large number of small nodes, so it can be disabled on the command
  721. * line
  722. */
  723. static int use_alien_caches __read_mostly = 1;
  724. static int __init noaliencache_setup(char *s)
  725. {
  726. use_alien_caches = 0;
  727. return 1;
  728. }
  729. __setup("noaliencache", noaliencache_setup);
  730. #ifdef CONFIG_NUMA
  731. /*
  732. * Special reaping functions for NUMA systems called from cache_reap().
  733. * These take care of doing round robin flushing of alien caches (containing
  734. * objects freed on different nodes from which they were allocated) and the
  735. * flushing of remote pcps by calling drain_node_pages.
  736. */
  737. static DEFINE_PER_CPU(unsigned long, slab_reap_node);
  738. static void init_reap_node(int cpu)
  739. {
  740. int node;
  741. node = next_node(cpu_to_mem(cpu), node_online_map);
  742. if (node == MAX_NUMNODES)
  743. node = first_node(node_online_map);
  744. per_cpu(slab_reap_node, cpu) = node;
  745. }
  746. static void next_reap_node(void)
  747. {
  748. int node = __this_cpu_read(slab_reap_node);
  749. node = next_node(node, node_online_map);
  750. if (unlikely(node >= MAX_NUMNODES))
  751. node = first_node(node_online_map);
  752. __this_cpu_write(slab_reap_node, node);
  753. }
  754. #else
  755. #define init_reap_node(cpu) do { } while (0)
  756. #define next_reap_node(void) do { } while (0)
  757. #endif
  758. /*
  759. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  760. * via the workqueue/eventd.
  761. * Add the CPU number into the expiration time to minimize the possibility of
  762. * the CPUs getting into lockstep and contending for the global cache chain
  763. * lock.
  764. */
  765. static void __cpuinit start_cpu_timer(int cpu)
  766. {
  767. struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
  768. /*
  769. * When this gets called from do_initcalls via cpucache_init(),
  770. * init_workqueues() has already run, so keventd will be setup
  771. * at that time.
  772. */
  773. if (keventd_up() && reap_work->work.func == NULL) {
  774. init_reap_node(cpu);
  775. INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
  776. schedule_delayed_work_on(cpu, reap_work,
  777. __round_jiffies_relative(HZ, cpu));
  778. }
  779. }
  780. static struct array_cache *alloc_arraycache(int node, int entries,
  781. int batchcount, gfp_t gfp)
  782. {
  783. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  784. struct array_cache *nc = NULL;
  785. nc = kmalloc_node(memsize, gfp, node);
  786. /*
  787. * The array_cache structures contain pointers to free object.
  788. * However, when such objects are allocated or transfered to another
  789. * cache the pointers are not cleared and they could be counted as
  790. * valid references during a kmemleak scan. Therefore, kmemleak must
  791. * not scan such objects.
  792. */
  793. kmemleak_no_scan(nc);
  794. if (nc) {
  795. nc->avail = 0;
  796. nc->limit = entries;
  797. nc->batchcount = batchcount;
  798. nc->touched = 0;
  799. spin_lock_init(&nc->lock);
  800. }
  801. return nc;
  802. }
  803. /*
  804. * Transfer objects in one arraycache to another.
  805. * Locking must be handled by the caller.
  806. *
  807. * Return the number of entries transferred.
  808. */
  809. static int transfer_objects(struct array_cache *to,
  810. struct array_cache *from, unsigned int max)
  811. {
  812. /* Figure out how many entries to transfer */
  813. int nr = min3(from->avail, max, to->limit - to->avail);
  814. if (!nr)
  815. return 0;
  816. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  817. sizeof(void *) *nr);
  818. from->avail -= nr;
  819. to->avail += nr;
  820. return nr;
  821. }
  822. #ifndef CONFIG_NUMA
  823. #define drain_alien_cache(cachep, alien) do { } while (0)
  824. #define reap_alien(cachep, l3) do { } while (0)
  825. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  826. {
  827. return (struct array_cache **)BAD_ALIEN_MAGIC;
  828. }
  829. static inline void free_alien_cache(struct array_cache **ac_ptr)
  830. {
  831. }
  832. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  833. {
  834. return 0;
  835. }
  836. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  837. gfp_t flags)
  838. {
  839. return NULL;
  840. }
  841. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  842. gfp_t flags, int nodeid)
  843. {
  844. return NULL;
  845. }
  846. #else /* CONFIG_NUMA */
  847. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  848. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  849. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  850. {
  851. struct array_cache **ac_ptr;
  852. int memsize = sizeof(void *) * nr_node_ids;
  853. int i;
  854. if (limit > 1)
  855. limit = 12;
  856. ac_ptr = kzalloc_node(memsize, gfp, node);
  857. if (ac_ptr) {
  858. for_each_node(i) {
  859. if (i == node || !node_online(i))
  860. continue;
  861. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  862. if (!ac_ptr[i]) {
  863. for (i--; i >= 0; i--)
  864. kfree(ac_ptr[i]);
  865. kfree(ac_ptr);
  866. return NULL;
  867. }
  868. }
  869. }
  870. return ac_ptr;
  871. }
  872. static void free_alien_cache(struct array_cache **ac_ptr)
  873. {
  874. int i;
  875. if (!ac_ptr)
  876. return;
  877. for_each_node(i)
  878. kfree(ac_ptr[i]);
  879. kfree(ac_ptr);
  880. }
  881. static void __drain_alien_cache(struct kmem_cache *cachep,
  882. struct array_cache *ac, int node)
  883. {
  884. struct kmem_list3 *rl3 = cachep->nodelists[node];
  885. if (ac->avail) {
  886. spin_lock(&rl3->list_lock);
  887. /*
  888. * Stuff objects into the remote nodes shared array first.
  889. * That way we could avoid the overhead of putting the objects
  890. * into the free lists and getting them back later.
  891. */
  892. if (rl3->shared)
  893. transfer_objects(rl3->shared, ac, ac->limit);
  894. free_block(cachep, ac->entry, ac->avail, node);
  895. ac->avail = 0;
  896. spin_unlock(&rl3->list_lock);
  897. }
  898. }
  899. /*
  900. * Called from cache_reap() to regularly drain alien caches round robin.
  901. */
  902. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  903. {
  904. int node = __this_cpu_read(slab_reap_node);
  905. if (l3->alien) {
  906. struct array_cache *ac = l3->alien[node];
  907. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  908. __drain_alien_cache(cachep, ac, node);
  909. spin_unlock_irq(&ac->lock);
  910. }
  911. }
  912. }
  913. static void drain_alien_cache(struct kmem_cache *cachep,
  914. struct array_cache **alien)
  915. {
  916. int i = 0;
  917. struct array_cache *ac;
  918. unsigned long flags;
  919. for_each_online_node(i) {
  920. ac = alien[i];
  921. if (ac) {
  922. spin_lock_irqsave(&ac->lock, flags);
  923. __drain_alien_cache(cachep, ac, i);
  924. spin_unlock_irqrestore(&ac->lock, flags);
  925. }
  926. }
  927. }
  928. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  929. {
  930. struct slab *slabp = virt_to_slab(objp);
  931. int nodeid = slabp->nodeid;
  932. struct kmem_list3 *l3;
  933. struct array_cache *alien = NULL;
  934. int node;
  935. node = numa_mem_id();
  936. /*
  937. * Make sure we are not freeing a object from another node to the array
  938. * cache on this cpu.
  939. */
  940. if (likely(slabp->nodeid == node))
  941. return 0;
  942. l3 = cachep->nodelists[node];
  943. STATS_INC_NODEFREES(cachep);
  944. if (l3->alien && l3->alien[nodeid]) {
  945. alien = l3->alien[nodeid];
  946. spin_lock(&alien->lock);
  947. if (unlikely(alien->avail == alien->limit)) {
  948. STATS_INC_ACOVERFLOW(cachep);
  949. __drain_alien_cache(cachep, alien, nodeid);
  950. }
  951. alien->entry[alien->avail++] = objp;
  952. spin_unlock(&alien->lock);
  953. } else {
  954. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  955. free_block(cachep, &objp, 1, nodeid);
  956. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  957. }
  958. return 1;
  959. }
  960. #endif
  961. /*
  962. * Allocates and initializes nodelists for a node on each slab cache, used for
  963. * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
  964. * will be allocated off-node since memory is not yet online for the new node.
  965. * When hotplugging memory or a cpu, existing nodelists are not replaced if
  966. * already in use.
  967. *
  968. * Must hold cache_chain_mutex.
  969. */
  970. static int init_cache_nodelists_node(int node)
  971. {
  972. struct kmem_cache *cachep;
  973. struct kmem_list3 *l3;
  974. const int memsize = sizeof(struct kmem_list3);
  975. list_for_each_entry(cachep, &cache_chain, next) {
  976. /*
  977. * Set up the size64 kmemlist for cpu before we can
  978. * begin anything. Make sure some other cpu on this
  979. * node has not already allocated this
  980. */
  981. if (!cachep->nodelists[node]) {
  982. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  983. if (!l3)
  984. return -ENOMEM;
  985. kmem_list3_init(l3);
  986. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  987. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  988. /*
  989. * The l3s don't come and go as CPUs come and
  990. * go. cache_chain_mutex is sufficient
  991. * protection here.
  992. */
  993. cachep->nodelists[node] = l3;
  994. }
  995. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  996. cachep->nodelists[node]->free_limit =
  997. (1 + nr_cpus_node(node)) *
  998. cachep->batchcount + cachep->num;
  999. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1000. }
  1001. return 0;
  1002. }
  1003. static void __cpuinit cpuup_canceled(long cpu)
  1004. {
  1005. struct kmem_cache *cachep;
  1006. struct kmem_list3 *l3 = NULL;
  1007. int node = cpu_to_mem(cpu);
  1008. const struct cpumask *mask = cpumask_of_node(node);
  1009. list_for_each_entry(cachep, &cache_chain, next) {
  1010. struct array_cache *nc;
  1011. struct array_cache *shared;
  1012. struct array_cache **alien;
  1013. /* cpu is dead; no one can alloc from it. */
  1014. nc = cachep->array[cpu];
  1015. cachep->array[cpu] = NULL;
  1016. l3 = cachep->nodelists[node];
  1017. if (!l3)
  1018. goto free_array_cache;
  1019. spin_lock_irq(&l3->list_lock);
  1020. /* Free limit for this kmem_list3 */
  1021. l3->free_limit -= cachep->batchcount;
  1022. if (nc)
  1023. free_block(cachep, nc->entry, nc->avail, node);
  1024. if (!cpumask_empty(mask)) {
  1025. spin_unlock_irq(&l3->list_lock);
  1026. goto free_array_cache;
  1027. }
  1028. shared = l3->shared;
  1029. if (shared) {
  1030. free_block(cachep, shared->entry,
  1031. shared->avail, node);
  1032. l3->shared = NULL;
  1033. }
  1034. alien = l3->alien;
  1035. l3->alien = NULL;
  1036. spin_unlock_irq(&l3->list_lock);
  1037. kfree(shared);
  1038. if (alien) {
  1039. drain_alien_cache(cachep, alien);
  1040. free_alien_cache(alien);
  1041. }
  1042. free_array_cache:
  1043. kfree(nc);
  1044. }
  1045. /*
  1046. * In the previous loop, all the objects were freed to
  1047. * the respective cache's slabs, now we can go ahead and
  1048. * shrink each nodelist to its limit.
  1049. */
  1050. list_for_each_entry(cachep, &cache_chain, next) {
  1051. l3 = cachep->nodelists[node];
  1052. if (!l3)
  1053. continue;
  1054. drain_freelist(cachep, l3, l3->free_objects);
  1055. }
  1056. }
  1057. static int __cpuinit cpuup_prepare(long cpu)
  1058. {
  1059. struct kmem_cache *cachep;
  1060. struct kmem_list3 *l3 = NULL;
  1061. int node = cpu_to_mem(cpu);
  1062. int err;
  1063. /*
  1064. * We need to do this right in the beginning since
  1065. * alloc_arraycache's are going to use this list.
  1066. * kmalloc_node allows us to add the slab to the right
  1067. * kmem_list3 and not this cpu's kmem_list3
  1068. */
  1069. err = init_cache_nodelists_node(node);
  1070. if (err < 0)
  1071. goto bad;
  1072. /*
  1073. * Now we can go ahead with allocating the shared arrays and
  1074. * array caches
  1075. */
  1076. list_for_each_entry(cachep, &cache_chain, next) {
  1077. struct array_cache *nc;
  1078. struct array_cache *shared = NULL;
  1079. struct array_cache **alien = NULL;
  1080. nc = alloc_arraycache(node, cachep->limit,
  1081. cachep->batchcount, GFP_KERNEL);
  1082. if (!nc)
  1083. goto bad;
  1084. if (cachep->shared) {
  1085. shared = alloc_arraycache(node,
  1086. cachep->shared * cachep->batchcount,
  1087. 0xbaadf00d, GFP_KERNEL);
  1088. if (!shared) {
  1089. kfree(nc);
  1090. goto bad;
  1091. }
  1092. }
  1093. if (use_alien_caches) {
  1094. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1095. if (!alien) {
  1096. kfree(shared);
  1097. kfree(nc);
  1098. goto bad;
  1099. }
  1100. }
  1101. cachep->array[cpu] = nc;
  1102. l3 = cachep->nodelists[node];
  1103. BUG_ON(!l3);
  1104. spin_lock_irq(&l3->list_lock);
  1105. if (!l3->shared) {
  1106. /*
  1107. * We are serialised from CPU_DEAD or
  1108. * CPU_UP_CANCELLED by the cpucontrol lock
  1109. */
  1110. l3->shared = shared;
  1111. shared = NULL;
  1112. }
  1113. #ifdef CONFIG_NUMA
  1114. if (!l3->alien) {
  1115. l3->alien = alien;
  1116. alien = NULL;
  1117. }
  1118. #endif
  1119. spin_unlock_irq(&l3->list_lock);
  1120. kfree(shared);
  1121. free_alien_cache(alien);
  1122. }
  1123. init_node_lock_keys(node);
  1124. return 0;
  1125. bad:
  1126. cpuup_canceled(cpu);
  1127. return -ENOMEM;
  1128. }
  1129. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1130. unsigned long action, void *hcpu)
  1131. {
  1132. long cpu = (long)hcpu;
  1133. int err = 0;
  1134. switch (action) {
  1135. case CPU_UP_PREPARE:
  1136. case CPU_UP_PREPARE_FROZEN:
  1137. mutex_lock(&cache_chain_mutex);
  1138. err = cpuup_prepare(cpu);
  1139. mutex_unlock(&cache_chain_mutex);
  1140. break;
  1141. case CPU_ONLINE:
  1142. case CPU_ONLINE_FROZEN:
  1143. start_cpu_timer(cpu);
  1144. break;
  1145. #ifdef CONFIG_HOTPLUG_CPU
  1146. case CPU_DOWN_PREPARE:
  1147. case CPU_DOWN_PREPARE_FROZEN:
  1148. /*
  1149. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1150. * held so that if cache_reap() is invoked it cannot do
  1151. * anything expensive but will only modify reap_work
  1152. * and reschedule the timer.
  1153. */
  1154. cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
  1155. /* Now the cache_reaper is guaranteed to be not running. */
  1156. per_cpu(slab_reap_work, cpu).work.func = NULL;
  1157. break;
  1158. case CPU_DOWN_FAILED:
  1159. case CPU_DOWN_FAILED_FROZEN:
  1160. start_cpu_timer(cpu);
  1161. break;
  1162. case CPU_DEAD:
  1163. case CPU_DEAD_FROZEN:
  1164. /*
  1165. * Even if all the cpus of a node are down, we don't free the
  1166. * kmem_list3 of any cache. This to avoid a race between
  1167. * cpu_down, and a kmalloc allocation from another cpu for
  1168. * memory from the node of the cpu going down. The list3
  1169. * structure is usually allocated from kmem_cache_create() and
  1170. * gets destroyed at kmem_cache_destroy().
  1171. */
  1172. /* fall through */
  1173. #endif
  1174. case CPU_UP_CANCELED:
  1175. case CPU_UP_CANCELED_FROZEN:
  1176. mutex_lock(&cache_chain_mutex);
  1177. cpuup_canceled(cpu);
  1178. mutex_unlock(&cache_chain_mutex);
  1179. break;
  1180. }
  1181. return notifier_from_errno(err);
  1182. }
  1183. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1184. &cpuup_callback, NULL, 0
  1185. };
  1186. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  1187. /*
  1188. * Drains freelist for a node on each slab cache, used for memory hot-remove.
  1189. * Returns -EBUSY if all objects cannot be drained so that the node is not
  1190. * removed.
  1191. *
  1192. * Must hold cache_chain_mutex.
  1193. */
  1194. static int __meminit drain_cache_nodelists_node(int node)
  1195. {
  1196. struct kmem_cache *cachep;
  1197. int ret = 0;
  1198. list_for_each_entry(cachep, &cache_chain, next) {
  1199. struct kmem_list3 *l3;
  1200. l3 = cachep->nodelists[node];
  1201. if (!l3)
  1202. continue;
  1203. drain_freelist(cachep, l3, l3->free_objects);
  1204. if (!list_empty(&l3->slabs_full) ||
  1205. !list_empty(&l3->slabs_partial)) {
  1206. ret = -EBUSY;
  1207. break;
  1208. }
  1209. }
  1210. return ret;
  1211. }
  1212. static int __meminit slab_memory_callback(struct notifier_block *self,
  1213. unsigned long action, void *arg)
  1214. {
  1215. struct memory_notify *mnb = arg;
  1216. int ret = 0;
  1217. int nid;
  1218. nid = mnb->status_change_nid;
  1219. if (nid < 0)
  1220. goto out;
  1221. switch (action) {
  1222. case MEM_GOING_ONLINE:
  1223. mutex_lock(&cache_chain_mutex);
  1224. ret = init_cache_nodelists_node(nid);
  1225. mutex_unlock(&cache_chain_mutex);
  1226. break;
  1227. case MEM_GOING_OFFLINE:
  1228. mutex_lock(&cache_chain_mutex);
  1229. ret = drain_cache_nodelists_node(nid);
  1230. mutex_unlock(&cache_chain_mutex);
  1231. break;
  1232. case MEM_ONLINE:
  1233. case MEM_OFFLINE:
  1234. case MEM_CANCEL_ONLINE:
  1235. case MEM_CANCEL_OFFLINE:
  1236. break;
  1237. }
  1238. out:
  1239. return ret ? notifier_from_errno(ret) : NOTIFY_OK;
  1240. }
  1241. #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
  1242. /*
  1243. * swap the static kmem_list3 with kmalloced memory
  1244. */
  1245. static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1246. int nodeid)
  1247. {
  1248. struct kmem_list3 *ptr;
  1249. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1250. BUG_ON(!ptr);
  1251. memcpy(ptr, list, sizeof(struct kmem_list3));
  1252. /*
  1253. * Do not assume that spinlocks can be initialized via memcpy:
  1254. */
  1255. spin_lock_init(&ptr->list_lock);
  1256. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1257. cachep->nodelists[nodeid] = ptr;
  1258. }
  1259. /*
  1260. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1261. * size of kmem_list3.
  1262. */
  1263. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1264. {
  1265. int node;
  1266. for_each_online_node(node) {
  1267. cachep->nodelists[node] = &initkmem_list3[index + node];
  1268. cachep->nodelists[node]->next_reap = jiffies +
  1269. REAPTIMEOUT_LIST3 +
  1270. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1271. }
  1272. }
  1273. /*
  1274. * Initialisation. Called after the page allocator have been initialised and
  1275. * before smp_init().
  1276. */
  1277. void __init kmem_cache_init(void)
  1278. {
  1279. size_t left_over;
  1280. struct cache_sizes *sizes;
  1281. struct cache_names *names;
  1282. int i;
  1283. int order;
  1284. int node;
  1285. if (num_possible_nodes() == 1)
  1286. use_alien_caches = 0;
  1287. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1288. kmem_list3_init(&initkmem_list3[i]);
  1289. if (i < MAX_NUMNODES)
  1290. cache_cache.nodelists[i] = NULL;
  1291. }
  1292. set_up_list3s(&cache_cache, CACHE_CACHE);
  1293. /*
  1294. * Fragmentation resistance on low memory - only use bigger
  1295. * page orders on machines with more than 32MB of memory.
  1296. */
  1297. if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1298. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1299. /* Bootstrap is tricky, because several objects are allocated
  1300. * from caches that do not exist yet:
  1301. * 1) initialize the cache_cache cache: it contains the struct
  1302. * kmem_cache structures of all caches, except cache_cache itself:
  1303. * cache_cache is statically allocated.
  1304. * Initially an __init data area is used for the head array and the
  1305. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1306. * array at the end of the bootstrap.
  1307. * 2) Create the first kmalloc cache.
  1308. * The struct kmem_cache for the new cache is allocated normally.
  1309. * An __init data area is used for the head array.
  1310. * 3) Create the remaining kmalloc caches, with minimally sized
  1311. * head arrays.
  1312. * 4) Replace the __init data head arrays for cache_cache and the first
  1313. * kmalloc cache with kmalloc allocated arrays.
  1314. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1315. * the other cache's with kmalloc allocated memory.
  1316. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1317. */
  1318. node = numa_mem_id();
  1319. /* 1) create the cache_cache */
  1320. INIT_LIST_HEAD(&cache_chain);
  1321. list_add(&cache_cache.next, &cache_chain);
  1322. cache_cache.colour_off = cache_line_size();
  1323. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1324. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1325. /*
  1326. * struct kmem_cache size depends on nr_node_ids, which
  1327. * can be less than MAX_NUMNODES.
  1328. */
  1329. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1330. nr_node_ids * sizeof(struct kmem_list3 *);
  1331. #if DEBUG
  1332. cache_cache.obj_size = cache_cache.buffer_size;
  1333. #endif
  1334. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1335. cache_line_size());
  1336. cache_cache.reciprocal_buffer_size =
  1337. reciprocal_value(cache_cache.buffer_size);
  1338. for (order = 0; order < MAX_ORDER; order++) {
  1339. cache_estimate(order, cache_cache.buffer_size,
  1340. cache_line_size(), 0, &left_over, &cache_cache.num);
  1341. if (cache_cache.num)
  1342. break;
  1343. }
  1344. BUG_ON(!cache_cache.num);
  1345. cache_cache.gfporder = order;
  1346. cache_cache.colour = left_over / cache_cache.colour_off;
  1347. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1348. sizeof(struct slab), cache_line_size());
  1349. /* 2+3) create the kmalloc caches */
  1350. sizes = malloc_sizes;
  1351. names = cache_names;
  1352. /*
  1353. * Initialize the caches that provide memory for the array cache and the
  1354. * kmem_list3 structures first. Without this, further allocations will
  1355. * bug.
  1356. */
  1357. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1358. sizes[INDEX_AC].cs_size,
  1359. ARCH_KMALLOC_MINALIGN,
  1360. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1361. NULL);
  1362. if (INDEX_AC != INDEX_L3) {
  1363. sizes[INDEX_L3].cs_cachep =
  1364. kmem_cache_create(names[INDEX_L3].name,
  1365. sizes[INDEX_L3].cs_size,
  1366. ARCH_KMALLOC_MINALIGN,
  1367. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1368. NULL);
  1369. }
  1370. slab_early_init = 0;
  1371. while (sizes->cs_size != ULONG_MAX) {
  1372. /*
  1373. * For performance, all the general caches are L1 aligned.
  1374. * This should be particularly beneficial on SMP boxes, as it
  1375. * eliminates "false sharing".
  1376. * Note for systems short on memory removing the alignment will
  1377. * allow tighter packing of the smaller caches.
  1378. */
  1379. if (!sizes->cs_cachep) {
  1380. sizes->cs_cachep = kmem_cache_create(names->name,
  1381. sizes->cs_size,
  1382. ARCH_KMALLOC_MINALIGN,
  1383. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1384. NULL);
  1385. }
  1386. #ifdef CONFIG_ZONE_DMA
  1387. sizes->cs_dmacachep = kmem_cache_create(
  1388. names->name_dma,
  1389. sizes->cs_size,
  1390. ARCH_KMALLOC_MINALIGN,
  1391. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1392. SLAB_PANIC,
  1393. NULL);
  1394. #endif
  1395. sizes++;
  1396. names++;
  1397. }
  1398. /* 4) Replace the bootstrap head arrays */
  1399. {
  1400. struct array_cache *ptr;
  1401. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1402. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1403. memcpy(ptr, cpu_cache_get(&cache_cache),
  1404. sizeof(struct arraycache_init));
  1405. /*
  1406. * Do not assume that spinlocks can be initialized via memcpy:
  1407. */
  1408. spin_lock_init(&ptr->lock);
  1409. cache_cache.array[smp_processor_id()] = ptr;
  1410. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1411. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1412. != &initarray_generic.cache);
  1413. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1414. sizeof(struct arraycache_init));
  1415. /*
  1416. * Do not assume that spinlocks can be initialized via memcpy:
  1417. */
  1418. spin_lock_init(&ptr->lock);
  1419. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1420. ptr;
  1421. }
  1422. /* 5) Replace the bootstrap kmem_list3's */
  1423. {
  1424. int nid;
  1425. for_each_online_node(nid) {
  1426. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1427. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1428. &initkmem_list3[SIZE_AC + nid], nid);
  1429. if (INDEX_AC != INDEX_L3) {
  1430. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1431. &initkmem_list3[SIZE_L3 + nid], nid);
  1432. }
  1433. }
  1434. }
  1435. g_cpucache_up = EARLY;
  1436. }
  1437. void __init kmem_cache_init_late(void)
  1438. {
  1439. struct kmem_cache *cachep;
  1440. /* 6) resize the head arrays to their final sizes */
  1441. mutex_lock(&cache_chain_mutex);
  1442. list_for_each_entry(cachep, &cache_chain, next)
  1443. if (enable_cpucache(cachep, GFP_NOWAIT))
  1444. BUG();
  1445. mutex_unlock(&cache_chain_mutex);
  1446. /* Done! */
  1447. g_cpucache_up = FULL;
  1448. /* Annotate slab for lockdep -- annotate the malloc caches */
  1449. init_lock_keys();
  1450. /*
  1451. * Register a cpu startup notifier callback that initializes
  1452. * cpu_cache_get for all new cpus
  1453. */
  1454. register_cpu_notifier(&cpucache_notifier);
  1455. #ifdef CONFIG_NUMA
  1456. /*
  1457. * Register a memory hotplug callback that initializes and frees
  1458. * nodelists.
  1459. */
  1460. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  1461. #endif
  1462. /*
  1463. * The reap timers are started later, with a module init call: That part
  1464. * of the kernel is not yet operational.
  1465. */
  1466. }
  1467. static int __init cpucache_init(void)
  1468. {
  1469. int cpu;
  1470. /*
  1471. * Register the timers that return unneeded pages to the page allocator
  1472. */
  1473. for_each_online_cpu(cpu)
  1474. start_cpu_timer(cpu);
  1475. return 0;
  1476. }
  1477. __initcall(cpucache_init);
  1478. /*
  1479. * Interface to system's page allocator. No need to hold the cache-lock.
  1480. *
  1481. * If we requested dmaable memory, we will get it. Even if we
  1482. * did not request dmaable memory, we might get it, but that
  1483. * would be relatively rare and ignorable.
  1484. */
  1485. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1486. {
  1487. struct page *page;
  1488. int nr_pages;
  1489. int i;
  1490. #ifndef CONFIG_MMU
  1491. /*
  1492. * Nommu uses slab's for process anonymous memory allocations, and thus
  1493. * requires __GFP_COMP to properly refcount higher order allocations
  1494. */
  1495. flags |= __GFP_COMP;
  1496. #endif
  1497. flags |= cachep->gfpflags;
  1498. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1499. flags |= __GFP_RECLAIMABLE;
  1500. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1501. if (!page)
  1502. return NULL;
  1503. nr_pages = (1 << cachep->gfporder);
  1504. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1505. add_zone_page_state(page_zone(page),
  1506. NR_SLAB_RECLAIMABLE, nr_pages);
  1507. else
  1508. add_zone_page_state(page_zone(page),
  1509. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1510. for (i = 0; i < nr_pages; i++)
  1511. __SetPageSlab(page + i);
  1512. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1513. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1514. if (cachep->ctor)
  1515. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1516. else
  1517. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1518. }
  1519. return page_address(page);
  1520. }
  1521. /*
  1522. * Interface to system's page release.
  1523. */
  1524. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1525. {
  1526. unsigned long i = (1 << cachep->gfporder);
  1527. struct page *page = virt_to_page(addr);
  1528. const unsigned long nr_freed = i;
  1529. kmemcheck_free_shadow(page, cachep->gfporder);
  1530. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1531. sub_zone_page_state(page_zone(page),
  1532. NR_SLAB_RECLAIMABLE, nr_freed);
  1533. else
  1534. sub_zone_page_state(page_zone(page),
  1535. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1536. while (i--) {
  1537. BUG_ON(!PageSlab(page));
  1538. __ClearPageSlab(page);
  1539. page++;
  1540. }
  1541. if (current->reclaim_state)
  1542. current->reclaim_state->reclaimed_slab += nr_freed;
  1543. free_pages((unsigned long)addr, cachep->gfporder);
  1544. }
  1545. static void kmem_rcu_free(struct rcu_head *head)
  1546. {
  1547. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1548. struct kmem_cache *cachep = slab_rcu->cachep;
  1549. kmem_freepages(cachep, slab_rcu->addr);
  1550. if (OFF_SLAB(cachep))
  1551. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1552. }
  1553. #if DEBUG
  1554. #ifdef CONFIG_DEBUG_PAGEALLOC
  1555. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1556. unsigned long caller)
  1557. {
  1558. int size = obj_size(cachep);
  1559. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1560. if (size < 5 * sizeof(unsigned long))
  1561. return;
  1562. *addr++ = 0x12345678;
  1563. *addr++ = caller;
  1564. *addr++ = smp_processor_id();
  1565. size -= 3 * sizeof(unsigned long);
  1566. {
  1567. unsigned long *sptr = &caller;
  1568. unsigned long svalue;
  1569. while (!kstack_end(sptr)) {
  1570. svalue = *sptr++;
  1571. if (kernel_text_address(svalue)) {
  1572. *addr++ = svalue;
  1573. size -= sizeof(unsigned long);
  1574. if (size <= sizeof(unsigned long))
  1575. break;
  1576. }
  1577. }
  1578. }
  1579. *addr++ = 0x87654321;
  1580. }
  1581. #endif
  1582. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1583. {
  1584. int size = obj_size(cachep);
  1585. addr = &((char *)addr)[obj_offset(cachep)];
  1586. memset(addr, val, size);
  1587. *(unsigned char *)(addr + size - 1) = POISON_END;
  1588. }
  1589. static void dump_line(char *data, int offset, int limit)
  1590. {
  1591. int i;
  1592. unsigned char error = 0;
  1593. int bad_count = 0;
  1594. printk(KERN_ERR "%03x:", offset);
  1595. for (i = 0; i < limit; i++) {
  1596. if (data[offset + i] != POISON_FREE) {
  1597. error = data[offset + i];
  1598. bad_count++;
  1599. }
  1600. printk(" %02x", (unsigned char)data[offset + i]);
  1601. }
  1602. printk("\n");
  1603. if (bad_count == 1) {
  1604. error ^= POISON_FREE;
  1605. if (!(error & (error - 1))) {
  1606. printk(KERN_ERR "Single bit error detected. Probably "
  1607. "bad RAM.\n");
  1608. #ifdef CONFIG_X86
  1609. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1610. "test tool.\n");
  1611. #else
  1612. printk(KERN_ERR "Run a memory test tool.\n");
  1613. #endif
  1614. }
  1615. }
  1616. }
  1617. #endif
  1618. #if DEBUG
  1619. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1620. {
  1621. int i, size;
  1622. char *realobj;
  1623. if (cachep->flags & SLAB_RED_ZONE) {
  1624. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1625. *dbg_redzone1(cachep, objp),
  1626. *dbg_redzone2(cachep, objp));
  1627. }
  1628. if (cachep->flags & SLAB_STORE_USER) {
  1629. printk(KERN_ERR "Last user: [<%p>]",
  1630. *dbg_userword(cachep, objp));
  1631. print_symbol("(%s)",
  1632. (unsigned long)*dbg_userword(cachep, objp));
  1633. printk("\n");
  1634. }
  1635. realobj = (char *)objp + obj_offset(cachep);
  1636. size = obj_size(cachep);
  1637. for (i = 0; i < size && lines; i += 16, lines--) {
  1638. int limit;
  1639. limit = 16;
  1640. if (i + limit > size)
  1641. limit = size - i;
  1642. dump_line(realobj, i, limit);
  1643. }
  1644. }
  1645. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1646. {
  1647. char *realobj;
  1648. int size, i;
  1649. int lines = 0;
  1650. realobj = (char *)objp + obj_offset(cachep);
  1651. size = obj_size(cachep);
  1652. for (i = 0; i < size; i++) {
  1653. char exp = POISON_FREE;
  1654. if (i == size - 1)
  1655. exp = POISON_END;
  1656. if (realobj[i] != exp) {
  1657. int limit;
  1658. /* Mismatch ! */
  1659. /* Print header */
  1660. if (lines == 0) {
  1661. printk(KERN_ERR
  1662. "Slab corruption: %s start=%p, len=%d\n",
  1663. cachep->name, realobj, size);
  1664. print_objinfo(cachep, objp, 0);
  1665. }
  1666. /* Hexdump the affected line */
  1667. i = (i / 16) * 16;
  1668. limit = 16;
  1669. if (i + limit > size)
  1670. limit = size - i;
  1671. dump_line(realobj, i, limit);
  1672. i += 16;
  1673. lines++;
  1674. /* Limit to 5 lines */
  1675. if (lines > 5)
  1676. break;
  1677. }
  1678. }
  1679. if (lines != 0) {
  1680. /* Print some data about the neighboring objects, if they
  1681. * exist:
  1682. */
  1683. struct slab *slabp = virt_to_slab(objp);
  1684. unsigned int objnr;
  1685. objnr = obj_to_index(cachep, slabp, objp);
  1686. if (objnr) {
  1687. objp = index_to_obj(cachep, slabp, objnr - 1);
  1688. realobj = (char *)objp + obj_offset(cachep);
  1689. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1690. realobj, size);
  1691. print_objinfo(cachep, objp, 2);
  1692. }
  1693. if (objnr + 1 < cachep->num) {
  1694. objp = index_to_obj(cachep, slabp, objnr + 1);
  1695. realobj = (char *)objp + obj_offset(cachep);
  1696. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1697. realobj, size);
  1698. print_objinfo(cachep, objp, 2);
  1699. }
  1700. }
  1701. }
  1702. #endif
  1703. #if DEBUG
  1704. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1705. {
  1706. int i;
  1707. for (i = 0; i < cachep->num; i++) {
  1708. void *objp = index_to_obj(cachep, slabp, i);
  1709. if (cachep->flags & SLAB_POISON) {
  1710. #ifdef CONFIG_DEBUG_PAGEALLOC
  1711. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1712. OFF_SLAB(cachep))
  1713. kernel_map_pages(virt_to_page(objp),
  1714. cachep->buffer_size / PAGE_SIZE, 1);
  1715. else
  1716. check_poison_obj(cachep, objp);
  1717. #else
  1718. check_poison_obj(cachep, objp);
  1719. #endif
  1720. }
  1721. if (cachep->flags & SLAB_RED_ZONE) {
  1722. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1723. slab_error(cachep, "start of a freed object "
  1724. "was overwritten");
  1725. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1726. slab_error(cachep, "end of a freed object "
  1727. "was overwritten");
  1728. }
  1729. }
  1730. }
  1731. #else
  1732. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1733. {
  1734. }
  1735. #endif
  1736. /**
  1737. * slab_destroy - destroy and release all objects in a slab
  1738. * @cachep: cache pointer being destroyed
  1739. * @slabp: slab pointer being destroyed
  1740. *
  1741. * Destroy all the objs in a slab, and release the mem back to the system.
  1742. * Before calling the slab must have been unlinked from the cache. The
  1743. * cache-lock is not held/needed.
  1744. */
  1745. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1746. {
  1747. void *addr = slabp->s_mem - slabp->colouroff;
  1748. slab_destroy_debugcheck(cachep, slabp);
  1749. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1750. struct slab_rcu *slab_rcu;
  1751. slab_rcu = (struct slab_rcu *)slabp;
  1752. slab_rcu->cachep = cachep;
  1753. slab_rcu->addr = addr;
  1754. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1755. } else {
  1756. kmem_freepages(cachep, addr);
  1757. if (OFF_SLAB(cachep))
  1758. kmem_cache_free(cachep->slabp_cache, slabp);
  1759. }
  1760. }
  1761. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1762. {
  1763. int i;
  1764. struct kmem_list3 *l3;
  1765. for_each_online_cpu(i)
  1766. kfree(cachep->array[i]);
  1767. /* NUMA: free the list3 structures */
  1768. for_each_online_node(i) {
  1769. l3 = cachep->nodelists[i];
  1770. if (l3) {
  1771. kfree(l3->shared);
  1772. free_alien_cache(l3->alien);
  1773. kfree(l3);
  1774. }
  1775. }
  1776. kmem_cache_free(&cache_cache, cachep);
  1777. }
  1778. /**
  1779. * calculate_slab_order - calculate size (page order) of slabs
  1780. * @cachep: pointer to the cache that is being created
  1781. * @size: size of objects to be created in this cache.
  1782. * @align: required alignment for the objects.
  1783. * @flags: slab allocation flags
  1784. *
  1785. * Also calculates the number of objects per slab.
  1786. *
  1787. * This could be made much more intelligent. For now, try to avoid using
  1788. * high order pages for slabs. When the gfp() functions are more friendly
  1789. * towards high-order requests, this should be changed.
  1790. */
  1791. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1792. size_t size, size_t align, unsigned long flags)
  1793. {
  1794. unsigned long offslab_limit;
  1795. size_t left_over = 0;
  1796. int gfporder;
  1797. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1798. unsigned int num;
  1799. size_t remainder;
  1800. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1801. if (!num)
  1802. continue;
  1803. if (flags & CFLGS_OFF_SLAB) {
  1804. /*
  1805. * Max number of objs-per-slab for caches which
  1806. * use off-slab slabs. Needed to avoid a possible
  1807. * looping condition in cache_grow().
  1808. */
  1809. offslab_limit = size - sizeof(struct slab);
  1810. offslab_limit /= sizeof(kmem_bufctl_t);
  1811. if (num > offslab_limit)
  1812. break;
  1813. }
  1814. /* Found something acceptable - save it away */
  1815. cachep->num = num;
  1816. cachep->gfporder = gfporder;
  1817. left_over = remainder;
  1818. /*
  1819. * A VFS-reclaimable slab tends to have most allocations
  1820. * as GFP_NOFS and we really don't want to have to be allocating
  1821. * higher-order pages when we are unable to shrink dcache.
  1822. */
  1823. if (flags & SLAB_RECLAIM_ACCOUNT)
  1824. break;
  1825. /*
  1826. * Large number of objects is good, but very large slabs are
  1827. * currently bad for the gfp()s.
  1828. */
  1829. if (gfporder >= slab_break_gfp_order)
  1830. break;
  1831. /*
  1832. * Acceptable internal fragmentation?
  1833. */
  1834. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1835. break;
  1836. }
  1837. return left_over;
  1838. }
  1839. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1840. {
  1841. if (g_cpucache_up == FULL)
  1842. return enable_cpucache(cachep, gfp);
  1843. if (g_cpucache_up == NONE) {
  1844. /*
  1845. * Note: the first kmem_cache_create must create the cache
  1846. * that's used by kmalloc(24), otherwise the creation of
  1847. * further caches will BUG().
  1848. */
  1849. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1850. /*
  1851. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1852. * the first cache, then we need to set up all its list3s,
  1853. * otherwise the creation of further caches will BUG().
  1854. */
  1855. set_up_list3s(cachep, SIZE_AC);
  1856. if (INDEX_AC == INDEX_L3)
  1857. g_cpucache_up = PARTIAL_L3;
  1858. else
  1859. g_cpucache_up = PARTIAL_AC;
  1860. } else {
  1861. cachep->array[smp_processor_id()] =
  1862. kmalloc(sizeof(struct arraycache_init), gfp);
  1863. if (g_cpucache_up == PARTIAL_AC) {
  1864. set_up_list3s(cachep, SIZE_L3);
  1865. g_cpucache_up = PARTIAL_L3;
  1866. } else {
  1867. int node;
  1868. for_each_online_node(node) {
  1869. cachep->nodelists[node] =
  1870. kmalloc_node(sizeof(struct kmem_list3),
  1871. gfp, node);
  1872. BUG_ON(!cachep->nodelists[node]);
  1873. kmem_list3_init(cachep->nodelists[node]);
  1874. }
  1875. }
  1876. }
  1877. cachep->nodelists[numa_mem_id()]->next_reap =
  1878. jiffies + REAPTIMEOUT_LIST3 +
  1879. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1880. cpu_cache_get(cachep)->avail = 0;
  1881. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1882. cpu_cache_get(cachep)->batchcount = 1;
  1883. cpu_cache_get(cachep)->touched = 0;
  1884. cachep->batchcount = 1;
  1885. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1886. return 0;
  1887. }
  1888. /**
  1889. * kmem_cache_create - Create a cache.
  1890. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1891. * @size: The size of objects to be created in this cache.
  1892. * @align: The required alignment for the objects.
  1893. * @flags: SLAB flags
  1894. * @ctor: A constructor for the objects.
  1895. *
  1896. * Returns a ptr to the cache on success, NULL on failure.
  1897. * Cannot be called within a int, but can be interrupted.
  1898. * The @ctor is run when new pages are allocated by the cache.
  1899. *
  1900. * @name must be valid until the cache is destroyed. This implies that
  1901. * the module calling this has to destroy the cache before getting unloaded.
  1902. * Note that kmem_cache_name() is not guaranteed to return the same pointer,
  1903. * therefore applications must manage it themselves.
  1904. *
  1905. * The flags are
  1906. *
  1907. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1908. * to catch references to uninitialised memory.
  1909. *
  1910. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1911. * for buffer overruns.
  1912. *
  1913. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1914. * cacheline. This can be beneficial if you're counting cycles as closely
  1915. * as davem.
  1916. */
  1917. struct kmem_cache *
  1918. kmem_cache_create (const char *name, size_t size, size_t align,
  1919. unsigned long flags, void (*ctor)(void *))
  1920. {
  1921. size_t left_over, slab_size, ralign;
  1922. struct kmem_cache *cachep = NULL, *pc;
  1923. gfp_t gfp;
  1924. /*
  1925. * Sanity checks... these are all serious usage bugs.
  1926. */
  1927. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1928. size > KMALLOC_MAX_SIZE) {
  1929. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1930. name);
  1931. BUG();
  1932. }
  1933. /*
  1934. * We use cache_chain_mutex to ensure a consistent view of
  1935. * cpu_online_mask as well. Please see cpuup_callback
  1936. */
  1937. if (slab_is_available()) {
  1938. get_online_cpus();
  1939. mutex_lock(&cache_chain_mutex);
  1940. }
  1941. list_for_each_entry(pc, &cache_chain, next) {
  1942. char tmp;
  1943. int res;
  1944. /*
  1945. * This happens when the module gets unloaded and doesn't
  1946. * destroy its slab cache and no-one else reuses the vmalloc
  1947. * area of the module. Print a warning.
  1948. */
  1949. res = probe_kernel_address(pc->name, tmp);
  1950. if (res) {
  1951. printk(KERN_ERR
  1952. "SLAB: cache with size %d has lost its name\n",
  1953. pc->buffer_size);
  1954. continue;
  1955. }
  1956. if (!strcmp(pc->name, name)) {
  1957. printk(KERN_ERR
  1958. "kmem_cache_create: duplicate cache %s\n", name);
  1959. dump_stack();
  1960. goto oops;
  1961. }
  1962. }
  1963. #if DEBUG
  1964. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1965. #if FORCED_DEBUG
  1966. /*
  1967. * Enable redzoning and last user accounting, except for caches with
  1968. * large objects, if the increased size would increase the object size
  1969. * above the next power of two: caches with object sizes just above a
  1970. * power of two have a significant amount of internal fragmentation.
  1971. */
  1972. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1973. 2 * sizeof(unsigned long long)))
  1974. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1975. if (!(flags & SLAB_DESTROY_BY_RCU))
  1976. flags |= SLAB_POISON;
  1977. #endif
  1978. if (flags & SLAB_DESTROY_BY_RCU)
  1979. BUG_ON(flags & SLAB_POISON);
  1980. #endif
  1981. /*
  1982. * Always checks flags, a caller might be expecting debug support which
  1983. * isn't available.
  1984. */
  1985. BUG_ON(flags & ~CREATE_MASK);
  1986. /*
  1987. * Check that size is in terms of words. This is needed to avoid
  1988. * unaligned accesses for some archs when redzoning is used, and makes
  1989. * sure any on-slab bufctl's are also correctly aligned.
  1990. */
  1991. if (size & (BYTES_PER_WORD - 1)) {
  1992. size += (BYTES_PER_WORD - 1);
  1993. size &= ~(BYTES_PER_WORD - 1);
  1994. }
  1995. /* calculate the final buffer alignment: */
  1996. /* 1) arch recommendation: can be overridden for debug */
  1997. if (flags & SLAB_HWCACHE_ALIGN) {
  1998. /*
  1999. * Default alignment: as specified by the arch code. Except if
  2000. * an object is really small, then squeeze multiple objects into
  2001. * one cacheline.
  2002. */
  2003. ralign = cache_line_size();
  2004. while (size <= ralign / 2)
  2005. ralign /= 2;
  2006. } else {
  2007. ralign = BYTES_PER_WORD;
  2008. }
  2009. /*
  2010. * Redzoning and user store require word alignment or possibly larger.
  2011. * Note this will be overridden by architecture or caller mandated
  2012. * alignment if either is greater than BYTES_PER_WORD.
  2013. */
  2014. if (flags & SLAB_STORE_USER)
  2015. ralign = BYTES_PER_WORD;
  2016. if (flags & SLAB_RED_ZONE) {
  2017. ralign = REDZONE_ALIGN;
  2018. /* If redzoning, ensure that the second redzone is suitably
  2019. * aligned, by adjusting the object size accordingly. */
  2020. size += REDZONE_ALIGN - 1;
  2021. size &= ~(REDZONE_ALIGN - 1);
  2022. }
  2023. /* 2) arch mandated alignment */
  2024. if (ralign < ARCH_SLAB_MINALIGN) {
  2025. ralign = ARCH_SLAB_MINALIGN;
  2026. }
  2027. /* 3) caller mandated alignment */
  2028. if (ralign < align) {
  2029. ralign = align;
  2030. }
  2031. /* disable debug if not aligning with REDZONE_ALIGN */
  2032. if (ralign & (__alignof__(unsigned long long) - 1))
  2033. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2034. /*
  2035. * 4) Store it.
  2036. */
  2037. align = ralign;
  2038. if (slab_is_available())
  2039. gfp = GFP_KERNEL;
  2040. else
  2041. gfp = GFP_NOWAIT;
  2042. /* Get cache's description obj. */
  2043. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  2044. if (!cachep)
  2045. goto oops;
  2046. #if DEBUG
  2047. cachep->obj_size = size;
  2048. /*
  2049. * Both debugging options require word-alignment which is calculated
  2050. * into align above.
  2051. */
  2052. if (flags & SLAB_RED_ZONE) {
  2053. /* add space for red zone words */
  2054. cachep->obj_offset += align;
  2055. size += align + sizeof(unsigned long long);
  2056. }
  2057. if (flags & SLAB_STORE_USER) {
  2058. /* user store requires one word storage behind the end of
  2059. * the real object. But if the second red zone needs to be
  2060. * aligned to 64 bits, we must allow that much space.
  2061. */
  2062. if (flags & SLAB_RED_ZONE)
  2063. size += REDZONE_ALIGN;
  2064. else
  2065. size += BYTES_PER_WORD;
  2066. }
  2067. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2068. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2069. && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
  2070. cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
  2071. size = PAGE_SIZE;
  2072. }
  2073. #endif
  2074. #endif
  2075. /*
  2076. * Determine if the slab management is 'on' or 'off' slab.
  2077. * (bootstrapping cannot cope with offslab caches so don't do
  2078. * it too early on. Always use on-slab management when
  2079. * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
  2080. */
  2081. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
  2082. !(flags & SLAB_NOLEAKTRACE))
  2083. /*
  2084. * Size is large, assume best to place the slab management obj
  2085. * off-slab (should allow better packing of objs).
  2086. */
  2087. flags |= CFLGS_OFF_SLAB;
  2088. size = ALIGN(size, align);
  2089. left_over = calculate_slab_order(cachep, size, align, flags);
  2090. if (!cachep->num) {
  2091. printk(KERN_ERR
  2092. "kmem_cache_create: couldn't create cache %s.\n", name);
  2093. kmem_cache_free(&cache_cache, cachep);
  2094. cachep = NULL;
  2095. goto oops;
  2096. }
  2097. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2098. + sizeof(struct slab), align);
  2099. /*
  2100. * If the slab has been placed off-slab, and we have enough space then
  2101. * move it on-slab. This is at the expense of any extra colouring.
  2102. */
  2103. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2104. flags &= ~CFLGS_OFF_SLAB;
  2105. left_over -= slab_size;
  2106. }
  2107. if (flags & CFLGS_OFF_SLAB) {
  2108. /* really off slab. No need for manual alignment */
  2109. slab_size =
  2110. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2111. #ifdef CONFIG_PAGE_POISONING
  2112. /* If we're going to use the generic kernel_map_pages()
  2113. * poisoning, then it's going to smash the contents of
  2114. * the redzone and userword anyhow, so switch them off.
  2115. */
  2116. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  2117. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2118. #endif
  2119. }
  2120. cachep->colour_off = cache_line_size();
  2121. /* Offset must be a multiple of the alignment. */
  2122. if (cachep->colour_off < align)
  2123. cachep->colour_off = align;
  2124. cachep->colour = left_over / cachep->colour_off;
  2125. cachep->slab_size = slab_size;
  2126. cachep->flags = flags;
  2127. cachep->gfpflags = 0;
  2128. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2129. cachep->gfpflags |= GFP_DMA;
  2130. cachep->buffer_size = size;
  2131. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2132. if (flags & CFLGS_OFF_SLAB) {
  2133. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2134. /*
  2135. * This is a possibility for one of the malloc_sizes caches.
  2136. * But since we go off slab only for object size greater than
  2137. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2138. * this should not happen at all.
  2139. * But leave a BUG_ON for some lucky dude.
  2140. */
  2141. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2142. }
  2143. cachep->ctor = ctor;
  2144. cachep->name = name;
  2145. if (setup_cpu_cache(cachep, gfp)) {
  2146. __kmem_cache_destroy(cachep);
  2147. cachep = NULL;
  2148. goto oops;
  2149. }
  2150. /* cache setup completed, link it into the list */
  2151. list_add(&cachep->next, &cache_chain);
  2152. oops:
  2153. if (!cachep && (flags & SLAB_PANIC))
  2154. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2155. name);
  2156. if (slab_is_available()) {
  2157. mutex_unlock(&cache_chain_mutex);
  2158. put_online_cpus();
  2159. }
  2160. return cachep;
  2161. }
  2162. EXPORT_SYMBOL(kmem_cache_create);
  2163. #if DEBUG
  2164. static void check_irq_off(void)
  2165. {
  2166. BUG_ON(!irqs_disabled());
  2167. }
  2168. static void check_irq_on(void)
  2169. {
  2170. BUG_ON(irqs_disabled());
  2171. }
  2172. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2173. {
  2174. #ifdef CONFIG_SMP
  2175. check_irq_off();
  2176. assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
  2177. #endif
  2178. }
  2179. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2180. {
  2181. #ifdef CONFIG_SMP
  2182. check_irq_off();
  2183. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2184. #endif
  2185. }
  2186. #else
  2187. #define check_irq_off() do { } while(0)
  2188. #define check_irq_on() do { } while(0)
  2189. #define check_spinlock_acquired(x) do { } while(0)
  2190. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2191. #endif
  2192. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2193. struct array_cache *ac,
  2194. int force, int node);
  2195. static void do_drain(void *arg)
  2196. {
  2197. struct kmem_cache *cachep = arg;
  2198. struct array_cache *ac;
  2199. int node = numa_mem_id();
  2200. check_irq_off();
  2201. ac = cpu_cache_get(cachep);
  2202. spin_lock(&cachep->nodelists[node]->list_lock);
  2203. free_block(cachep, ac->entry, ac->avail, node);
  2204. spin_unlock(&cachep->nodelists[node]->list_lock);
  2205. ac->avail = 0;
  2206. }
  2207. static void drain_cpu_caches(struct kmem_cache *cachep)
  2208. {
  2209. struct kmem_list3 *l3;
  2210. int node;
  2211. on_each_cpu(do_drain, cachep, 1);
  2212. check_irq_on();
  2213. for_each_online_node(node) {
  2214. l3 = cachep->nodelists[node];
  2215. if (l3 && l3->alien)
  2216. drain_alien_cache(cachep, l3->alien);
  2217. }
  2218. for_each_online_node(node) {
  2219. l3 = cachep->nodelists[node];
  2220. if (l3)
  2221. drain_array(cachep, l3, l3->shared, 1, node);
  2222. }
  2223. }
  2224. /*
  2225. * Remove slabs from the list of free slabs.
  2226. * Specify the number of slabs to drain in tofree.
  2227. *
  2228. * Returns the actual number of slabs released.
  2229. */
  2230. static int drain_freelist(struct kmem_cache *cache,
  2231. struct kmem_list3 *l3, int tofree)
  2232. {
  2233. struct list_head *p;
  2234. int nr_freed;
  2235. struct slab *slabp;
  2236. nr_freed = 0;
  2237. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2238. spin_lock_irq(&l3->list_lock);
  2239. p = l3->slabs_free.prev;
  2240. if (p == &l3->slabs_free) {
  2241. spin_unlock_irq(&l3->list_lock);
  2242. goto out;
  2243. }
  2244. slabp = list_entry(p, struct slab, list);
  2245. #if DEBUG
  2246. BUG_ON(slabp->inuse);
  2247. #endif
  2248. list_del(&slabp->list);
  2249. /*
  2250. * Safe to drop the lock. The slab is no longer linked
  2251. * to the cache.
  2252. */
  2253. l3->free_objects -= cache->num;
  2254. spin_unlock_irq(&l3->list_lock);
  2255. slab_destroy(cache, slabp);
  2256. nr_freed++;
  2257. }
  2258. out:
  2259. return nr_freed;
  2260. }
  2261. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2262. static int __cache_shrink(struct kmem_cache *cachep)
  2263. {
  2264. int ret = 0, i = 0;
  2265. struct kmem_list3 *l3;
  2266. drain_cpu_caches(cachep);
  2267. check_irq_on();
  2268. for_each_online_node(i) {
  2269. l3 = cachep->nodelists[i];
  2270. if (!l3)
  2271. continue;
  2272. drain_freelist(cachep, l3, l3->free_objects);
  2273. ret += !list_empty(&l3->slabs_full) ||
  2274. !list_empty(&l3->slabs_partial);
  2275. }
  2276. return (ret ? 1 : 0);
  2277. }
  2278. /**
  2279. * kmem_cache_shrink - Shrink a cache.
  2280. * @cachep: The cache to shrink.
  2281. *
  2282. * Releases as many slabs as possible for a cache.
  2283. * To help debugging, a zero exit status indicates all slabs were released.
  2284. */
  2285. int kmem_cache_shrink(struct kmem_cache *cachep)
  2286. {
  2287. int ret;
  2288. BUG_ON(!cachep || in_interrupt());
  2289. get_online_cpus();
  2290. mutex_lock(&cache_chain_mutex);
  2291. ret = __cache_shrink(cachep);
  2292. mutex_unlock(&cache_chain_mutex);
  2293. put_online_cpus();
  2294. return ret;
  2295. }
  2296. EXPORT_SYMBOL(kmem_cache_shrink);
  2297. /**
  2298. * kmem_cache_destroy - delete a cache
  2299. * @cachep: the cache to destroy
  2300. *
  2301. * Remove a &struct kmem_cache object from the slab cache.
  2302. *
  2303. * It is expected this function will be called by a module when it is
  2304. * unloaded. This will remove the cache completely, and avoid a duplicate
  2305. * cache being allocated each time a module is loaded and unloaded, if the
  2306. * module doesn't have persistent in-kernel storage across loads and unloads.
  2307. *
  2308. * The cache must be empty before calling this function.
  2309. *
  2310. * The caller must guarantee that noone will allocate memory from the cache
  2311. * during the kmem_cache_destroy().
  2312. */
  2313. void kmem_cache_destroy(struct kmem_cache *cachep)
  2314. {
  2315. BUG_ON(!cachep || in_interrupt());
  2316. /* Find the cache in the chain of caches. */
  2317. get_online_cpus();
  2318. mutex_lock(&cache_chain_mutex);
  2319. /*
  2320. * the chain is never empty, cache_cache is never destroyed
  2321. */
  2322. list_del(&cachep->next);
  2323. if (__cache_shrink(cachep)) {
  2324. slab_error(cachep, "Can't free all objects");
  2325. list_add(&cachep->next, &cache_chain);
  2326. mutex_unlock(&cache_chain_mutex);
  2327. put_online_cpus();
  2328. return;
  2329. }
  2330. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2331. rcu_barrier();
  2332. __kmem_cache_destroy(cachep);
  2333. mutex_unlock(&cache_chain_mutex);
  2334. put_online_cpus();
  2335. }
  2336. EXPORT_SYMBOL(kmem_cache_destroy);
  2337. /*
  2338. * Get the memory for a slab management obj.
  2339. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2340. * always come from malloc_sizes caches. The slab descriptor cannot
  2341. * come from the same cache which is getting created because,
  2342. * when we are searching for an appropriate cache for these
  2343. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2344. * If we are creating a malloc_sizes cache here it would not be visible to
  2345. * kmem_find_general_cachep till the initialization is complete.
  2346. * Hence we cannot have slabp_cache same as the original cache.
  2347. */
  2348. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2349. int colour_off, gfp_t local_flags,
  2350. int nodeid)
  2351. {
  2352. struct slab *slabp;
  2353. if (OFF_SLAB(cachep)) {
  2354. /* Slab management obj is off-slab. */
  2355. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2356. local_flags, nodeid);
  2357. /*
  2358. * If the first object in the slab is leaked (it's allocated
  2359. * but no one has a reference to it), we want to make sure
  2360. * kmemleak does not treat the ->s_mem pointer as a reference
  2361. * to the object. Otherwise we will not report the leak.
  2362. */
  2363. kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
  2364. local_flags);
  2365. if (!slabp)
  2366. return NULL;
  2367. } else {
  2368. slabp = objp + colour_off;
  2369. colour_off += cachep->slab_size;
  2370. }
  2371. slabp->inuse = 0;
  2372. slabp->colouroff = colour_off;
  2373. slabp->s_mem = objp + colour_off;
  2374. slabp->nodeid = nodeid;
  2375. slabp->free = 0;
  2376. return slabp;
  2377. }
  2378. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2379. {
  2380. return (kmem_bufctl_t *) (slabp + 1);
  2381. }
  2382. static void cache_init_objs(struct kmem_cache *cachep,
  2383. struct slab *slabp)
  2384. {
  2385. int i;
  2386. for (i = 0; i < cachep->num; i++) {
  2387. void *objp = index_to_obj(cachep, slabp, i);
  2388. #if DEBUG
  2389. /* need to poison the objs? */
  2390. if (cachep->flags & SLAB_POISON)
  2391. poison_obj(cachep, objp, POISON_FREE);
  2392. if (cachep->flags & SLAB_STORE_USER)
  2393. *dbg_userword(cachep, objp) = NULL;
  2394. if (cachep->flags & SLAB_RED_ZONE) {
  2395. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2396. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2397. }
  2398. /*
  2399. * Constructors are not allowed to allocate memory from the same
  2400. * cache which they are a constructor for. Otherwise, deadlock.
  2401. * They must also be threaded.
  2402. */
  2403. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2404. cachep->ctor(objp + obj_offset(cachep));
  2405. if (cachep->flags & SLAB_RED_ZONE) {
  2406. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2407. slab_error(cachep, "constructor overwrote the"
  2408. " end of an object");
  2409. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2410. slab_error(cachep, "constructor overwrote the"
  2411. " start of an object");
  2412. }
  2413. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2414. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2415. kernel_map_pages(virt_to_page(objp),
  2416. cachep->buffer_size / PAGE_SIZE, 0);
  2417. #else
  2418. if (cachep->ctor)
  2419. cachep->ctor(objp);
  2420. #endif
  2421. slab_bufctl(slabp)[i] = i + 1;
  2422. }
  2423. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2424. }
  2425. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2426. {
  2427. if (CONFIG_ZONE_DMA_FLAG) {
  2428. if (flags & GFP_DMA)
  2429. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2430. else
  2431. BUG_ON(cachep->gfpflags & GFP_DMA);
  2432. }
  2433. }
  2434. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2435. int nodeid)
  2436. {
  2437. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2438. kmem_bufctl_t next;
  2439. slabp->inuse++;
  2440. next = slab_bufctl(slabp)[slabp->free];
  2441. #if DEBUG
  2442. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2443. WARN_ON(slabp->nodeid != nodeid);
  2444. #endif
  2445. slabp->free = next;
  2446. return objp;
  2447. }
  2448. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2449. void *objp, int nodeid)
  2450. {
  2451. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2452. #if DEBUG
  2453. /* Verify that the slab belongs to the intended node */
  2454. WARN_ON(slabp->nodeid != nodeid);
  2455. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2456. printk(KERN_ERR "slab: double free detected in cache "
  2457. "'%s', objp %p\n", cachep->name, objp);
  2458. BUG();
  2459. }
  2460. #endif
  2461. slab_bufctl(slabp)[objnr] = slabp->free;
  2462. slabp->free = objnr;
  2463. slabp->inuse--;
  2464. }
  2465. /*
  2466. * Map pages beginning at addr to the given cache and slab. This is required
  2467. * for the slab allocator to be able to lookup the cache and slab of a
  2468. * virtual address for kfree, ksize, and slab debugging.
  2469. */
  2470. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2471. void *addr)
  2472. {
  2473. int nr_pages;
  2474. struct page *page;
  2475. page = virt_to_page(addr);
  2476. nr_pages = 1;
  2477. if (likely(!PageCompound(page)))
  2478. nr_pages <<= cache->gfporder;
  2479. do {
  2480. page_set_cache(page, cache);
  2481. page_set_slab(page, slab);
  2482. page++;
  2483. } while (--nr_pages);
  2484. }
  2485. /*
  2486. * Grow (by 1) the number of slabs within a cache. This is called by
  2487. * kmem_cache_alloc() when there are no active objs left in a cache.
  2488. */
  2489. static int cache_grow(struct kmem_cache *cachep,
  2490. gfp_t flags, int nodeid, void *objp)
  2491. {
  2492. struct slab *slabp;
  2493. size_t offset;
  2494. gfp_t local_flags;
  2495. struct kmem_list3 *l3;
  2496. /*
  2497. * Be lazy and only check for valid flags here, keeping it out of the
  2498. * critical path in kmem_cache_alloc().
  2499. */
  2500. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2501. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2502. /* Take the l3 list lock to change the colour_next on this node */
  2503. check_irq_off();
  2504. l3 = cachep->nodelists[nodeid];
  2505. spin_lock(&l3->list_lock);
  2506. /* Get colour for the slab, and cal the next value. */
  2507. offset = l3->colour_next;
  2508. l3->colour_next++;
  2509. if (l3->colour_next >= cachep->colour)
  2510. l3->colour_next = 0;
  2511. spin_unlock(&l3->list_lock);
  2512. offset *= cachep->colour_off;
  2513. if (local_flags & __GFP_WAIT)
  2514. local_irq_enable();
  2515. /*
  2516. * The test for missing atomic flag is performed here, rather than
  2517. * the more obvious place, simply to reduce the critical path length
  2518. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2519. * will eventually be caught here (where it matters).
  2520. */
  2521. kmem_flagcheck(cachep, flags);
  2522. /*
  2523. * Get mem for the objs. Attempt to allocate a physical page from
  2524. * 'nodeid'.
  2525. */
  2526. if (!objp)
  2527. objp = kmem_getpages(cachep, local_flags, nodeid);
  2528. if (!objp)
  2529. goto failed;
  2530. /* Get slab management. */
  2531. slabp = alloc_slabmgmt(cachep, objp, offset,
  2532. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2533. if (!slabp)
  2534. goto opps1;
  2535. slab_map_pages(cachep, slabp, objp);
  2536. cache_init_objs(cachep, slabp);
  2537. if (local_flags & __GFP_WAIT)
  2538. local_irq_disable();
  2539. check_irq_off();
  2540. spin_lock(&l3->list_lock);
  2541. /* Make slab active. */
  2542. list_add_tail(&slabp->list, &(l3->slabs_free));
  2543. STATS_INC_GROWN(cachep);
  2544. l3->free_objects += cachep->num;
  2545. spin_unlock(&l3->list_lock);
  2546. return 1;
  2547. opps1:
  2548. kmem_freepages(cachep, objp);
  2549. failed:
  2550. if (local_flags & __GFP_WAIT)
  2551. local_irq_disable();
  2552. return 0;
  2553. }
  2554. #if DEBUG
  2555. /*
  2556. * Perform extra freeing checks:
  2557. * - detect bad pointers.
  2558. * - POISON/RED_ZONE checking
  2559. */
  2560. static void kfree_debugcheck(const void *objp)
  2561. {
  2562. if (!virt_addr_valid(objp)) {
  2563. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2564. (unsigned long)objp);
  2565. BUG();
  2566. }
  2567. }
  2568. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2569. {
  2570. unsigned long long redzone1, redzone2;
  2571. redzone1 = *dbg_redzone1(cache, obj);
  2572. redzone2 = *dbg_redzone2(cache, obj);
  2573. /*
  2574. * Redzone is ok.
  2575. */
  2576. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2577. return;
  2578. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2579. slab_error(cache, "double free detected");
  2580. else
  2581. slab_error(cache, "memory outside object was overwritten");
  2582. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2583. obj, redzone1, redzone2);
  2584. }
  2585. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2586. void *caller)
  2587. {
  2588. struct page *page;
  2589. unsigned int objnr;
  2590. struct slab *slabp;
  2591. BUG_ON(virt_to_cache(objp) != cachep);
  2592. objp -= obj_offset(cachep);
  2593. kfree_debugcheck(objp);
  2594. page = virt_to_head_page(objp);
  2595. slabp = page_get_slab(page);
  2596. if (cachep->flags & SLAB_RED_ZONE) {
  2597. verify_redzone_free(cachep, objp);
  2598. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2599. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2600. }
  2601. if (cachep->flags & SLAB_STORE_USER)
  2602. *dbg_userword(cachep, objp) = caller;
  2603. objnr = obj_to_index(cachep, slabp, objp);
  2604. BUG_ON(objnr >= cachep->num);
  2605. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2606. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2607. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2608. #endif
  2609. if (cachep->flags & SLAB_POISON) {
  2610. #ifdef CONFIG_DEBUG_PAGEALLOC
  2611. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2612. store_stackinfo(cachep, objp, (unsigned long)caller);
  2613. kernel_map_pages(virt_to_page(objp),
  2614. cachep->buffer_size / PAGE_SIZE, 0);
  2615. } else {
  2616. poison_obj(cachep, objp, POISON_FREE);
  2617. }
  2618. #else
  2619. poison_obj(cachep, objp, POISON_FREE);
  2620. #endif
  2621. }
  2622. return objp;
  2623. }
  2624. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2625. {
  2626. kmem_bufctl_t i;
  2627. int entries = 0;
  2628. /* Check slab's freelist to see if this obj is there. */
  2629. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2630. entries++;
  2631. if (entries > cachep->num || i >= cachep->num)
  2632. goto bad;
  2633. }
  2634. if (entries != cachep->num - slabp->inuse) {
  2635. bad:
  2636. printk(KERN_ERR "slab: Internal list corruption detected in "
  2637. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2638. cachep->name, cachep->num, slabp, slabp->inuse);
  2639. for (i = 0;
  2640. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2641. i++) {
  2642. if (i % 16 == 0)
  2643. printk("\n%03x:", i);
  2644. printk(" %02x", ((unsigned char *)slabp)[i]);
  2645. }
  2646. printk("\n");
  2647. BUG();
  2648. }
  2649. }
  2650. #else
  2651. #define kfree_debugcheck(x) do { } while(0)
  2652. #define cache_free_debugcheck(x,objp,z) (objp)
  2653. #define check_slabp(x,y) do { } while(0)
  2654. #endif
  2655. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2656. {
  2657. int batchcount;
  2658. struct kmem_list3 *l3;
  2659. struct array_cache *ac;
  2660. int node;
  2661. retry:
  2662. check_irq_off();
  2663. node = numa_mem_id();
  2664. ac = cpu_cache_get(cachep);
  2665. batchcount = ac->batchcount;
  2666. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2667. /*
  2668. * If there was little recent activity on this cache, then
  2669. * perform only a partial refill. Otherwise we could generate
  2670. * refill bouncing.
  2671. */
  2672. batchcount = BATCHREFILL_LIMIT;
  2673. }
  2674. l3 = cachep->nodelists[node];
  2675. BUG_ON(ac->avail > 0 || !l3);
  2676. spin_lock(&l3->list_lock);
  2677. /* See if we can refill from the shared array */
  2678. if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
  2679. l3->shared->touched = 1;
  2680. goto alloc_done;
  2681. }
  2682. while (batchcount > 0) {
  2683. struct list_head *entry;
  2684. struct slab *slabp;
  2685. /* Get slab alloc is to come from. */
  2686. entry = l3->slabs_partial.next;
  2687. if (entry == &l3->slabs_partial) {
  2688. l3->free_touched = 1;
  2689. entry = l3->slabs_free.next;
  2690. if (entry == &l3->slabs_free)
  2691. goto must_grow;
  2692. }
  2693. slabp = list_entry(entry, struct slab, list);
  2694. check_slabp(cachep, slabp);
  2695. check_spinlock_acquired(cachep);
  2696. /*
  2697. * The slab was either on partial or free list so
  2698. * there must be at least one object available for
  2699. * allocation.
  2700. */
  2701. BUG_ON(slabp->inuse >= cachep->num);
  2702. while (slabp->inuse < cachep->num && batchcount--) {
  2703. STATS_INC_ALLOCED(cachep);
  2704. STATS_INC_ACTIVE(cachep);
  2705. STATS_SET_HIGH(cachep);
  2706. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2707. node);
  2708. }
  2709. check_slabp(cachep, slabp);
  2710. /* move slabp to correct slabp list: */
  2711. list_del(&slabp->list);
  2712. if (slabp->free == BUFCTL_END)
  2713. list_add(&slabp->list, &l3->slabs_full);
  2714. else
  2715. list_add(&slabp->list, &l3->slabs_partial);
  2716. }
  2717. must_grow:
  2718. l3->free_objects -= ac->avail;
  2719. alloc_done:
  2720. spin_unlock(&l3->list_lock);
  2721. if (unlikely(!ac->avail)) {
  2722. int x;
  2723. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2724. /* cache_grow can reenable interrupts, then ac could change. */
  2725. ac = cpu_cache_get(cachep);
  2726. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2727. return NULL;
  2728. if (!ac->avail) /* objects refilled by interrupt? */
  2729. goto retry;
  2730. }
  2731. ac->touched = 1;
  2732. return ac->entry[--ac->avail];
  2733. }
  2734. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2735. gfp_t flags)
  2736. {
  2737. might_sleep_if(flags & __GFP_WAIT);
  2738. #if DEBUG
  2739. kmem_flagcheck(cachep, flags);
  2740. #endif
  2741. }
  2742. #if DEBUG
  2743. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2744. gfp_t flags, void *objp, void *caller)
  2745. {
  2746. if (!objp)
  2747. return objp;
  2748. if (cachep->flags & SLAB_POISON) {
  2749. #ifdef CONFIG_DEBUG_PAGEALLOC
  2750. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2751. kernel_map_pages(virt_to_page(objp),
  2752. cachep->buffer_size / PAGE_SIZE, 1);
  2753. else
  2754. check_poison_obj(cachep, objp);
  2755. #else
  2756. check_poison_obj(cachep, objp);
  2757. #endif
  2758. poison_obj(cachep, objp, POISON_INUSE);
  2759. }
  2760. if (cachep->flags & SLAB_STORE_USER)
  2761. *dbg_userword(cachep, objp) = caller;
  2762. if (cachep->flags & SLAB_RED_ZONE) {
  2763. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2764. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2765. slab_error(cachep, "double free, or memory outside"
  2766. " object was overwritten");
  2767. printk(KERN_ERR
  2768. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2769. objp, *dbg_redzone1(cachep, objp),
  2770. *dbg_redzone2(cachep, objp));
  2771. }
  2772. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2773. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2774. }
  2775. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2776. {
  2777. struct slab *slabp;
  2778. unsigned objnr;
  2779. slabp = page_get_slab(virt_to_head_page(objp));
  2780. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2781. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2782. }
  2783. #endif
  2784. objp += obj_offset(cachep);
  2785. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2786. cachep->ctor(objp);
  2787. #if ARCH_SLAB_MINALIGN
  2788. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2789. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2790. objp, ARCH_SLAB_MINALIGN);
  2791. }
  2792. #endif
  2793. return objp;
  2794. }
  2795. #else
  2796. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2797. #endif
  2798. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2799. {
  2800. if (cachep == &cache_cache)
  2801. return false;
  2802. return should_failslab(obj_size(cachep), flags, cachep->flags);
  2803. }
  2804. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2805. {
  2806. void *objp;
  2807. struct array_cache *ac;
  2808. check_irq_off();
  2809. ac = cpu_cache_get(cachep);
  2810. if (likely(ac->avail)) {
  2811. STATS_INC_ALLOCHIT(cachep);
  2812. ac->touched = 1;
  2813. objp = ac->entry[--ac->avail];
  2814. } else {
  2815. STATS_INC_ALLOCMISS(cachep);
  2816. objp = cache_alloc_refill(cachep, flags);
  2817. /*
  2818. * the 'ac' may be updated by cache_alloc_refill(),
  2819. * and kmemleak_erase() requires its correct value.
  2820. */
  2821. ac = cpu_cache_get(cachep);
  2822. }
  2823. /*
  2824. * To avoid a false negative, if an object that is in one of the
  2825. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2826. * treat the array pointers as a reference to the object.
  2827. */
  2828. if (objp)
  2829. kmemleak_erase(&ac->entry[ac->avail]);
  2830. return objp;
  2831. }
  2832. #ifdef CONFIG_NUMA
  2833. /*
  2834. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2835. *
  2836. * If we are in_interrupt, then process context, including cpusets and
  2837. * mempolicy, may not apply and should not be used for allocation policy.
  2838. */
  2839. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2840. {
  2841. int nid_alloc, nid_here;
  2842. if (in_interrupt() || (flags & __GFP_THISNODE))
  2843. return NULL;
  2844. nid_alloc = nid_here = numa_mem_id();
  2845. get_mems_allowed();
  2846. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2847. nid_alloc = cpuset_slab_spread_node();
  2848. else if (current->mempolicy)
  2849. nid_alloc = slab_node(current->mempolicy);
  2850. put_mems_allowed();
  2851. if (nid_alloc != nid_here)
  2852. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2853. return NULL;
  2854. }
  2855. /*
  2856. * Fallback function if there was no memory available and no objects on a
  2857. * certain node and fall back is permitted. First we scan all the
  2858. * available nodelists for available objects. If that fails then we
  2859. * perform an allocation without specifying a node. This allows the page
  2860. * allocator to do its reclaim / fallback magic. We then insert the
  2861. * slab into the proper nodelist and then allocate from it.
  2862. */
  2863. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2864. {
  2865. struct zonelist *zonelist;
  2866. gfp_t local_flags;
  2867. struct zoneref *z;
  2868. struct zone *zone;
  2869. enum zone_type high_zoneidx = gfp_zone(flags);
  2870. void *obj = NULL;
  2871. int nid;
  2872. if (flags & __GFP_THISNODE)
  2873. return NULL;
  2874. get_mems_allowed();
  2875. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2876. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2877. retry:
  2878. /*
  2879. * Look through allowed nodes for objects available
  2880. * from existing per node queues.
  2881. */
  2882. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2883. nid = zone_to_nid(zone);
  2884. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2885. cache->nodelists[nid] &&
  2886. cache->nodelists[nid]->free_objects) {
  2887. obj = ____cache_alloc_node(cache,
  2888. flags | GFP_THISNODE, nid);
  2889. if (obj)
  2890. break;
  2891. }
  2892. }
  2893. if (!obj) {
  2894. /*
  2895. * This allocation will be performed within the constraints
  2896. * of the current cpuset / memory policy requirements.
  2897. * We may trigger various forms of reclaim on the allowed
  2898. * set and go into memory reserves if necessary.
  2899. */
  2900. if (local_flags & __GFP_WAIT)
  2901. local_irq_enable();
  2902. kmem_flagcheck(cache, flags);
  2903. obj = kmem_getpages(cache, local_flags, numa_mem_id());
  2904. if (local_flags & __GFP_WAIT)
  2905. local_irq_disable();
  2906. if (obj) {
  2907. /*
  2908. * Insert into the appropriate per node queues
  2909. */
  2910. nid = page_to_nid(virt_to_page(obj));
  2911. if (cache_grow(cache, flags, nid, obj)) {
  2912. obj = ____cache_alloc_node(cache,
  2913. flags | GFP_THISNODE, nid);
  2914. if (!obj)
  2915. /*
  2916. * Another processor may allocate the
  2917. * objects in the slab since we are
  2918. * not holding any locks.
  2919. */
  2920. goto retry;
  2921. } else {
  2922. /* cache_grow already freed obj */
  2923. obj = NULL;
  2924. }
  2925. }
  2926. }
  2927. put_mems_allowed();
  2928. return obj;
  2929. }
  2930. /*
  2931. * A interface to enable slab creation on nodeid
  2932. */
  2933. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2934. int nodeid)
  2935. {
  2936. struct list_head *entry;
  2937. struct slab *slabp;
  2938. struct kmem_list3 *l3;
  2939. void *obj;
  2940. int x;
  2941. l3 = cachep->nodelists[nodeid];
  2942. BUG_ON(!l3);
  2943. retry:
  2944. check_irq_off();
  2945. spin_lock(&l3->list_lock);
  2946. entry = l3->slabs_partial.next;
  2947. if (entry == &l3->slabs_partial) {
  2948. l3->free_touched = 1;
  2949. entry = l3->slabs_free.next;
  2950. if (entry == &l3->slabs_free)
  2951. goto must_grow;
  2952. }
  2953. slabp = list_entry(entry, struct slab, list);
  2954. check_spinlock_acquired_node(cachep, nodeid);
  2955. check_slabp(cachep, slabp);
  2956. STATS_INC_NODEALLOCS(cachep);
  2957. STATS_INC_ACTIVE(cachep);
  2958. STATS_SET_HIGH(cachep);
  2959. BUG_ON(slabp->inuse == cachep->num);
  2960. obj = slab_get_obj(cachep, slabp, nodeid);
  2961. check_slabp(cachep, slabp);
  2962. l3->free_objects--;
  2963. /* move slabp to correct slabp list: */
  2964. list_del(&slabp->list);
  2965. if (slabp->free == BUFCTL_END)
  2966. list_add(&slabp->list, &l3->slabs_full);
  2967. else
  2968. list_add(&slabp->list, &l3->slabs_partial);
  2969. spin_unlock(&l3->list_lock);
  2970. goto done;
  2971. must_grow:
  2972. spin_unlock(&l3->list_lock);
  2973. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2974. if (x)
  2975. goto retry;
  2976. return fallback_alloc(cachep, flags);
  2977. done:
  2978. return obj;
  2979. }
  2980. /**
  2981. * kmem_cache_alloc_node - Allocate an object on the specified node
  2982. * @cachep: The cache to allocate from.
  2983. * @flags: See kmalloc().
  2984. * @nodeid: node number of the target node.
  2985. * @caller: return address of caller, used for debug information
  2986. *
  2987. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2988. * node, which can improve the performance for cpu bound structures.
  2989. *
  2990. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2991. */
  2992. static __always_inline void *
  2993. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2994. void *caller)
  2995. {
  2996. unsigned long save_flags;
  2997. void *ptr;
  2998. int slab_node = numa_mem_id();
  2999. flags &= gfp_allowed_mask;
  3000. lockdep_trace_alloc(flags);
  3001. if (slab_should_failslab(cachep, flags))
  3002. return NULL;
  3003. cache_alloc_debugcheck_before(cachep, flags);
  3004. local_irq_save(save_flags);
  3005. if (nodeid == -1)
  3006. nodeid = slab_node;
  3007. if (unlikely(!cachep->nodelists[nodeid])) {
  3008. /* Node not bootstrapped yet */
  3009. ptr = fallback_alloc(cachep, flags);
  3010. goto out;
  3011. }
  3012. if (nodeid == slab_node) {
  3013. /*
  3014. * Use the locally cached objects if possible.
  3015. * However ____cache_alloc does not allow fallback
  3016. * to other nodes. It may fail while we still have
  3017. * objects on other nodes available.
  3018. */
  3019. ptr = ____cache_alloc(cachep, flags);
  3020. if (ptr)
  3021. goto out;
  3022. }
  3023. /* ___cache_alloc_node can fall back to other nodes */
  3024. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3025. out:
  3026. local_irq_restore(save_flags);
  3027. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3028. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  3029. flags);
  3030. if (likely(ptr))
  3031. kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
  3032. if (unlikely((flags & __GFP_ZERO) && ptr))
  3033. memset(ptr, 0, obj_size(cachep));
  3034. return ptr;
  3035. }
  3036. static __always_inline void *
  3037. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3038. {
  3039. void *objp;
  3040. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3041. objp = alternate_node_alloc(cache, flags);
  3042. if (objp)
  3043. goto out;
  3044. }
  3045. objp = ____cache_alloc(cache, flags);
  3046. /*
  3047. * We may just have run out of memory on the local node.
  3048. * ____cache_alloc_node() knows how to locate memory on other nodes
  3049. */
  3050. if (!objp)
  3051. objp = ____cache_alloc_node(cache, flags, numa_mem_id());
  3052. out:
  3053. return objp;
  3054. }
  3055. #else
  3056. static __always_inline void *
  3057. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3058. {
  3059. return ____cache_alloc(cachep, flags);
  3060. }
  3061. #endif /* CONFIG_NUMA */
  3062. static __always_inline void *
  3063. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3064. {
  3065. unsigned long save_flags;
  3066. void *objp;
  3067. flags &= gfp_allowed_mask;
  3068. lockdep_trace_alloc(flags);
  3069. if (slab_should_failslab(cachep, flags))
  3070. return NULL;
  3071. cache_alloc_debugcheck_before(cachep, flags);
  3072. local_irq_save(save_flags);
  3073. objp = __do_cache_alloc(cachep, flags);
  3074. local_irq_restore(save_flags);
  3075. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3076. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  3077. flags);
  3078. prefetchw(objp);
  3079. if (likely(objp))
  3080. kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
  3081. if (unlikely((flags & __GFP_ZERO) && objp))
  3082. memset(objp, 0, obj_size(cachep));
  3083. return objp;
  3084. }
  3085. /*
  3086. * Caller needs to acquire correct kmem_list's list_lock
  3087. */
  3088. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3089. int node)
  3090. {
  3091. int i;
  3092. struct kmem_list3 *l3;
  3093. for (i = 0; i < nr_objects; i++) {
  3094. void *objp = objpp[i];
  3095. struct slab *slabp;
  3096. slabp = virt_to_slab(objp);
  3097. l3 = cachep->nodelists[node];
  3098. list_del(&slabp->list);
  3099. check_spinlock_acquired_node(cachep, node);
  3100. check_slabp(cachep, slabp);
  3101. slab_put_obj(cachep, slabp, objp, node);
  3102. STATS_DEC_ACTIVE(cachep);
  3103. l3->free_objects++;
  3104. check_slabp(cachep, slabp);
  3105. /* fixup slab chains */
  3106. if (slabp->inuse == 0) {
  3107. if (l3->free_objects > l3->free_limit) {
  3108. l3->free_objects -= cachep->num;
  3109. /* No need to drop any previously held
  3110. * lock here, even if we have a off-slab slab
  3111. * descriptor it is guaranteed to come from
  3112. * a different cache, refer to comments before
  3113. * alloc_slabmgmt.
  3114. */
  3115. slab_destroy(cachep, slabp);
  3116. } else {
  3117. list_add(&slabp->list, &l3->slabs_free);
  3118. }
  3119. } else {
  3120. /* Unconditionally move a slab to the end of the
  3121. * partial list on free - maximum time for the
  3122. * other objects to be freed, too.
  3123. */
  3124. list_add_tail(&slabp->list, &l3->slabs_partial);
  3125. }
  3126. }
  3127. }
  3128. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3129. {
  3130. int batchcount;
  3131. struct kmem_list3 *l3;
  3132. int node = numa_mem_id();
  3133. batchcount = ac->batchcount;
  3134. #if DEBUG
  3135. BUG_ON(!batchcount || batchcount > ac->avail);
  3136. #endif
  3137. check_irq_off();
  3138. l3 = cachep->nodelists[node];
  3139. spin_lock(&l3->list_lock);
  3140. if (l3->shared) {
  3141. struct array_cache *shared_array = l3->shared;
  3142. int max = shared_array->limit - shared_array->avail;
  3143. if (max) {
  3144. if (batchcount > max)
  3145. batchcount = max;
  3146. memcpy(&(shared_array->entry[shared_array->avail]),
  3147. ac->entry, sizeof(void *) * batchcount);
  3148. shared_array->avail += batchcount;
  3149. goto free_done;
  3150. }
  3151. }
  3152. free_block(cachep, ac->entry, batchcount, node);
  3153. free_done:
  3154. #if STATS
  3155. {
  3156. int i = 0;
  3157. struct list_head *p;
  3158. p = l3->slabs_free.next;
  3159. while (p != &(l3->slabs_free)) {
  3160. struct slab *slabp;
  3161. slabp = list_entry(p, struct slab, list);
  3162. BUG_ON(slabp->inuse);
  3163. i++;
  3164. p = p->next;
  3165. }
  3166. STATS_SET_FREEABLE(cachep, i);
  3167. }
  3168. #endif
  3169. spin_unlock(&l3->list_lock);
  3170. ac->avail -= batchcount;
  3171. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3172. }
  3173. /*
  3174. * Release an obj back to its cache. If the obj has a constructed state, it must
  3175. * be in this state _before_ it is released. Called with disabled ints.
  3176. */
  3177. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3178. {
  3179. struct array_cache *ac = cpu_cache_get(cachep);
  3180. check_irq_off();
  3181. kmemleak_free_recursive(objp, cachep->flags);
  3182. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3183. kmemcheck_slab_free(cachep, objp, obj_size(cachep));
  3184. /*
  3185. * Skip calling cache_free_alien() when the platform is not numa.
  3186. * This will avoid cache misses that happen while accessing slabp (which
  3187. * is per page memory reference) to get nodeid. Instead use a global
  3188. * variable to skip the call, which is mostly likely to be present in
  3189. * the cache.
  3190. */
  3191. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  3192. return;
  3193. if (likely(ac->avail < ac->limit)) {
  3194. STATS_INC_FREEHIT(cachep);
  3195. ac->entry[ac->avail++] = objp;
  3196. return;
  3197. } else {
  3198. STATS_INC_FREEMISS(cachep);
  3199. cache_flusharray(cachep, ac);
  3200. ac->entry[ac->avail++] = objp;
  3201. }
  3202. }
  3203. /**
  3204. * kmem_cache_alloc - Allocate an object
  3205. * @cachep: The cache to allocate from.
  3206. * @flags: See kmalloc().
  3207. *
  3208. * Allocate an object from this cache. The flags are only relevant
  3209. * if the cache has no available objects.
  3210. */
  3211. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3212. {
  3213. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3214. trace_kmem_cache_alloc(_RET_IP_, ret,
  3215. obj_size(cachep), cachep->buffer_size, flags);
  3216. return ret;
  3217. }
  3218. EXPORT_SYMBOL(kmem_cache_alloc);
  3219. #ifdef CONFIG_TRACING
  3220. void *
  3221. kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
  3222. {
  3223. void *ret;
  3224. ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3225. trace_kmalloc(_RET_IP_, ret,
  3226. size, slab_buffer_size(cachep), flags);
  3227. return ret;
  3228. }
  3229. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  3230. #endif
  3231. #ifdef CONFIG_NUMA
  3232. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3233. {
  3234. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3235. __builtin_return_address(0));
  3236. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3237. obj_size(cachep), cachep->buffer_size,
  3238. flags, nodeid);
  3239. return ret;
  3240. }
  3241. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3242. #ifdef CONFIG_TRACING
  3243. void *kmem_cache_alloc_node_trace(size_t size,
  3244. struct kmem_cache *cachep,
  3245. gfp_t flags,
  3246. int nodeid)
  3247. {
  3248. void *ret;
  3249. ret = __cache_alloc_node(cachep, flags, nodeid,
  3250. __builtin_return_address(0));
  3251. trace_kmalloc_node(_RET_IP_, ret,
  3252. size, slab_buffer_size(cachep),
  3253. flags, nodeid);
  3254. return ret;
  3255. }
  3256. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  3257. #endif
  3258. static __always_inline void *
  3259. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3260. {
  3261. struct kmem_cache *cachep;
  3262. cachep = kmem_find_general_cachep(size, flags);
  3263. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3264. return cachep;
  3265. return kmem_cache_alloc_node_trace(size, cachep, flags, node);
  3266. }
  3267. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3268. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3269. {
  3270. return __do_kmalloc_node(size, flags, node,
  3271. __builtin_return_address(0));
  3272. }
  3273. EXPORT_SYMBOL(__kmalloc_node);
  3274. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3275. int node, unsigned long caller)
  3276. {
  3277. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3278. }
  3279. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3280. #else
  3281. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3282. {
  3283. return __do_kmalloc_node(size, flags, node, NULL);
  3284. }
  3285. EXPORT_SYMBOL(__kmalloc_node);
  3286. #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
  3287. #endif /* CONFIG_NUMA */
  3288. /**
  3289. * __do_kmalloc - allocate memory
  3290. * @size: how many bytes of memory are required.
  3291. * @flags: the type of memory to allocate (see kmalloc).
  3292. * @caller: function caller for debug tracking of the caller
  3293. */
  3294. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3295. void *caller)
  3296. {
  3297. struct kmem_cache *cachep;
  3298. void *ret;
  3299. /* If you want to save a few bytes .text space: replace
  3300. * __ with kmem_.
  3301. * Then kmalloc uses the uninlined functions instead of the inline
  3302. * functions.
  3303. */
  3304. cachep = __find_general_cachep(size, flags);
  3305. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3306. return cachep;
  3307. ret = __cache_alloc(cachep, flags, caller);
  3308. trace_kmalloc((unsigned long) caller, ret,
  3309. size, cachep->buffer_size, flags);
  3310. return ret;
  3311. }
  3312. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3313. void *__kmalloc(size_t size, gfp_t flags)
  3314. {
  3315. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3316. }
  3317. EXPORT_SYMBOL(__kmalloc);
  3318. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3319. {
  3320. return __do_kmalloc(size, flags, (void *)caller);
  3321. }
  3322. EXPORT_SYMBOL(__kmalloc_track_caller);
  3323. #else
  3324. void *__kmalloc(size_t size, gfp_t flags)
  3325. {
  3326. return __do_kmalloc(size, flags, NULL);
  3327. }
  3328. EXPORT_SYMBOL(__kmalloc);
  3329. #endif
  3330. /**
  3331. * kmem_cache_free - Deallocate an object
  3332. * @cachep: The cache the allocation was from.
  3333. * @objp: The previously allocated object.
  3334. *
  3335. * Free an object which was previously allocated from this
  3336. * cache.
  3337. */
  3338. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3339. {
  3340. unsigned long flags;
  3341. local_irq_save(flags);
  3342. debug_check_no_locks_freed(objp, obj_size(cachep));
  3343. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3344. debug_check_no_obj_freed(objp, obj_size(cachep));
  3345. __cache_free(cachep, objp);
  3346. local_irq_restore(flags);
  3347. trace_kmem_cache_free(_RET_IP_, objp);
  3348. }
  3349. EXPORT_SYMBOL(kmem_cache_free);
  3350. /**
  3351. * kfree - free previously allocated memory
  3352. * @objp: pointer returned by kmalloc.
  3353. *
  3354. * If @objp is NULL, no operation is performed.
  3355. *
  3356. * Don't free memory not originally allocated by kmalloc()
  3357. * or you will run into trouble.
  3358. */
  3359. void kfree(const void *objp)
  3360. {
  3361. struct kmem_cache *c;
  3362. unsigned long flags;
  3363. trace_kfree(_RET_IP_, objp);
  3364. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3365. return;
  3366. local_irq_save(flags);
  3367. kfree_debugcheck(objp);
  3368. c = virt_to_cache(objp);
  3369. debug_check_no_locks_freed(objp, obj_size(c));
  3370. debug_check_no_obj_freed(objp, obj_size(c));
  3371. __cache_free(c, (void *)objp);
  3372. local_irq_restore(flags);
  3373. }
  3374. EXPORT_SYMBOL(kfree);
  3375. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3376. {
  3377. return obj_size(cachep);
  3378. }
  3379. EXPORT_SYMBOL(kmem_cache_size);
  3380. const char *kmem_cache_name(struct kmem_cache *cachep)
  3381. {
  3382. return cachep->name;
  3383. }
  3384. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3385. /*
  3386. * This initializes kmem_list3 or resizes various caches for all nodes.
  3387. */
  3388. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3389. {
  3390. int node;
  3391. struct kmem_list3 *l3;
  3392. struct array_cache *new_shared;
  3393. struct array_cache **new_alien = NULL;
  3394. for_each_online_node(node) {
  3395. if (use_alien_caches) {
  3396. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3397. if (!new_alien)
  3398. goto fail;
  3399. }
  3400. new_shared = NULL;
  3401. if (cachep->shared) {
  3402. new_shared = alloc_arraycache(node,
  3403. cachep->shared*cachep->batchcount,
  3404. 0xbaadf00d, gfp);
  3405. if (!new_shared) {
  3406. free_alien_cache(new_alien);
  3407. goto fail;
  3408. }
  3409. }
  3410. l3 = cachep->nodelists[node];
  3411. if (l3) {
  3412. struct array_cache *shared = l3->shared;
  3413. spin_lock_irq(&l3->list_lock);
  3414. if (shared)
  3415. free_block(cachep, shared->entry,
  3416. shared->avail, node);
  3417. l3->shared = new_shared;
  3418. if (!l3->alien) {
  3419. l3->alien = new_alien;
  3420. new_alien = NULL;
  3421. }
  3422. l3->free_limit = (1 + nr_cpus_node(node)) *
  3423. cachep->batchcount + cachep->num;
  3424. spin_unlock_irq(&l3->list_lock);
  3425. kfree(shared);
  3426. free_alien_cache(new_alien);
  3427. continue;
  3428. }
  3429. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3430. if (!l3) {
  3431. free_alien_cache(new_alien);
  3432. kfree(new_shared);
  3433. goto fail;
  3434. }
  3435. kmem_list3_init(l3);
  3436. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3437. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3438. l3->shared = new_shared;
  3439. l3->alien = new_alien;
  3440. l3->free_limit = (1 + nr_cpus_node(node)) *
  3441. cachep->batchcount + cachep->num;
  3442. cachep->nodelists[node] = l3;
  3443. }
  3444. return 0;
  3445. fail:
  3446. if (!cachep->next.next) {
  3447. /* Cache is not active yet. Roll back what we did */
  3448. node--;
  3449. while (node >= 0) {
  3450. if (cachep->nodelists[node]) {
  3451. l3 = cachep->nodelists[node];
  3452. kfree(l3->shared);
  3453. free_alien_cache(l3->alien);
  3454. kfree(l3);
  3455. cachep->nodelists[node] = NULL;
  3456. }
  3457. node--;
  3458. }
  3459. }
  3460. return -ENOMEM;
  3461. }
  3462. struct ccupdate_struct {
  3463. struct kmem_cache *cachep;
  3464. struct array_cache *new[NR_CPUS];
  3465. };
  3466. static void do_ccupdate_local(void *info)
  3467. {
  3468. struct ccupdate_struct *new = info;
  3469. struct array_cache *old;
  3470. check_irq_off();
  3471. old = cpu_cache_get(new->cachep);
  3472. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3473. new->new[smp_processor_id()] = old;
  3474. }
  3475. /* Always called with the cache_chain_mutex held */
  3476. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3477. int batchcount, int shared, gfp_t gfp)
  3478. {
  3479. struct ccupdate_struct *new;
  3480. int i;
  3481. new = kzalloc(sizeof(*new), gfp);
  3482. if (!new)
  3483. return -ENOMEM;
  3484. for_each_online_cpu(i) {
  3485. new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
  3486. batchcount, gfp);
  3487. if (!new->new[i]) {
  3488. for (i--; i >= 0; i--)
  3489. kfree(new->new[i]);
  3490. kfree(new);
  3491. return -ENOMEM;
  3492. }
  3493. }
  3494. new->cachep = cachep;
  3495. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3496. check_irq_on();
  3497. cachep->batchcount = batchcount;
  3498. cachep->limit = limit;
  3499. cachep->shared = shared;
  3500. for_each_online_cpu(i) {
  3501. struct array_cache *ccold = new->new[i];
  3502. if (!ccold)
  3503. continue;
  3504. spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
  3505. free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
  3506. spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
  3507. kfree(ccold);
  3508. }
  3509. kfree(new);
  3510. return alloc_kmemlist(cachep, gfp);
  3511. }
  3512. /* Called with cache_chain_mutex held always */
  3513. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3514. {
  3515. int err;
  3516. int limit, shared;
  3517. /*
  3518. * The head array serves three purposes:
  3519. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3520. * - reduce the number of spinlock operations.
  3521. * - reduce the number of linked list operations on the slab and
  3522. * bufctl chains: array operations are cheaper.
  3523. * The numbers are guessed, we should auto-tune as described by
  3524. * Bonwick.
  3525. */
  3526. if (cachep->buffer_size > 131072)
  3527. limit = 1;
  3528. else if (cachep->buffer_size > PAGE_SIZE)
  3529. limit = 8;
  3530. else if (cachep->buffer_size > 1024)
  3531. limit = 24;
  3532. else if (cachep->buffer_size > 256)
  3533. limit = 54;
  3534. else
  3535. limit = 120;
  3536. /*
  3537. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3538. * allocation behaviour: Most allocs on one cpu, most free operations
  3539. * on another cpu. For these cases, an efficient object passing between
  3540. * cpus is necessary. This is provided by a shared array. The array
  3541. * replaces Bonwick's magazine layer.
  3542. * On uniprocessor, it's functionally equivalent (but less efficient)
  3543. * to a larger limit. Thus disabled by default.
  3544. */
  3545. shared = 0;
  3546. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3547. shared = 8;
  3548. #if DEBUG
  3549. /*
  3550. * With debugging enabled, large batchcount lead to excessively long
  3551. * periods with disabled local interrupts. Limit the batchcount
  3552. */
  3553. if (limit > 32)
  3554. limit = 32;
  3555. #endif
  3556. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3557. if (err)
  3558. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3559. cachep->name, -err);
  3560. return err;
  3561. }
  3562. /*
  3563. * Drain an array if it contains any elements taking the l3 lock only if
  3564. * necessary. Note that the l3 listlock also protects the array_cache
  3565. * if drain_array() is used on the shared array.
  3566. */
  3567. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3568. struct array_cache *ac, int force, int node)
  3569. {
  3570. int tofree;
  3571. if (!ac || !ac->avail)
  3572. return;
  3573. if (ac->touched && !force) {
  3574. ac->touched = 0;
  3575. } else {
  3576. spin_lock_irq(&l3->list_lock);
  3577. if (ac->avail) {
  3578. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3579. if (tofree > ac->avail)
  3580. tofree = (ac->avail + 1) / 2;
  3581. free_block(cachep, ac->entry, tofree, node);
  3582. ac->avail -= tofree;
  3583. memmove(ac->entry, &(ac->entry[tofree]),
  3584. sizeof(void *) * ac->avail);
  3585. }
  3586. spin_unlock_irq(&l3->list_lock);
  3587. }
  3588. }
  3589. /**
  3590. * cache_reap - Reclaim memory from caches.
  3591. * @w: work descriptor
  3592. *
  3593. * Called from workqueue/eventd every few seconds.
  3594. * Purpose:
  3595. * - clear the per-cpu caches for this CPU.
  3596. * - return freeable pages to the main free memory pool.
  3597. *
  3598. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3599. * again on the next iteration.
  3600. */
  3601. static void cache_reap(struct work_struct *w)
  3602. {
  3603. struct kmem_cache *searchp;
  3604. struct kmem_list3 *l3;
  3605. int node = numa_mem_id();
  3606. struct delayed_work *work = to_delayed_work(w);
  3607. if (!mutex_trylock(&cache_chain_mutex))
  3608. /* Give up. Setup the next iteration. */
  3609. goto out;
  3610. list_for_each_entry(searchp, &cache_chain, next) {
  3611. check_irq_on();
  3612. /*
  3613. * We only take the l3 lock if absolutely necessary and we
  3614. * have established with reasonable certainty that
  3615. * we can do some work if the lock was obtained.
  3616. */
  3617. l3 = searchp->nodelists[node];
  3618. reap_alien(searchp, l3);
  3619. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3620. /*
  3621. * These are racy checks but it does not matter
  3622. * if we skip one check or scan twice.
  3623. */
  3624. if (time_after(l3->next_reap, jiffies))
  3625. goto next;
  3626. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3627. drain_array(searchp, l3, l3->shared, 0, node);
  3628. if (l3->free_touched)
  3629. l3->free_touched = 0;
  3630. else {
  3631. int freed;
  3632. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3633. 5 * searchp->num - 1) / (5 * searchp->num));
  3634. STATS_ADD_REAPED(searchp, freed);
  3635. }
  3636. next:
  3637. cond_resched();
  3638. }
  3639. check_irq_on();
  3640. mutex_unlock(&cache_chain_mutex);
  3641. next_reap_node();
  3642. out:
  3643. /* Set up the next iteration */
  3644. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3645. }
  3646. #ifdef CONFIG_SLABINFO
  3647. static void print_slabinfo_header(struct seq_file *m)
  3648. {
  3649. /*
  3650. * Output format version, so at least we can change it
  3651. * without _too_ many complaints.
  3652. */
  3653. #if STATS
  3654. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3655. #else
  3656. seq_puts(m, "slabinfo - version: 2.1\n");
  3657. #endif
  3658. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3659. "<objperslab> <pagesperslab>");
  3660. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3661. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3662. #if STATS
  3663. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3664. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3665. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3666. #endif
  3667. seq_putc(m, '\n');
  3668. }
  3669. static void *s_start(struct seq_file *m, loff_t *pos)
  3670. {
  3671. loff_t n = *pos;
  3672. mutex_lock(&cache_chain_mutex);
  3673. if (!n)
  3674. print_slabinfo_header(m);
  3675. return seq_list_start(&cache_chain, *pos);
  3676. }
  3677. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3678. {
  3679. return seq_list_next(p, &cache_chain, pos);
  3680. }
  3681. static void s_stop(struct seq_file *m, void *p)
  3682. {
  3683. mutex_unlock(&cache_chain_mutex);
  3684. }
  3685. static int s_show(struct seq_file *m, void *p)
  3686. {
  3687. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3688. struct slab *slabp;
  3689. unsigned long active_objs;
  3690. unsigned long num_objs;
  3691. unsigned long active_slabs = 0;
  3692. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3693. const char *name;
  3694. char *error = NULL;
  3695. int node;
  3696. struct kmem_list3 *l3;
  3697. active_objs = 0;
  3698. num_slabs = 0;
  3699. for_each_online_node(node) {
  3700. l3 = cachep->nodelists[node];
  3701. if (!l3)
  3702. continue;
  3703. check_irq_on();
  3704. spin_lock_irq(&l3->list_lock);
  3705. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3706. if (slabp->inuse != cachep->num && !error)
  3707. error = "slabs_full accounting error";
  3708. active_objs += cachep->num;
  3709. active_slabs++;
  3710. }
  3711. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3712. if (slabp->inuse == cachep->num && !error)
  3713. error = "slabs_partial inuse accounting error";
  3714. if (!slabp->inuse && !error)
  3715. error = "slabs_partial/inuse accounting error";
  3716. active_objs += slabp->inuse;
  3717. active_slabs++;
  3718. }
  3719. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3720. if (slabp->inuse && !error)
  3721. error = "slabs_free/inuse accounting error";
  3722. num_slabs++;
  3723. }
  3724. free_objects += l3->free_objects;
  3725. if (l3->shared)
  3726. shared_avail += l3->shared->avail;
  3727. spin_unlock_irq(&l3->list_lock);
  3728. }
  3729. num_slabs += active_slabs;
  3730. num_objs = num_slabs * cachep->num;
  3731. if (num_objs - active_objs != free_objects && !error)
  3732. error = "free_objects accounting error";
  3733. name = cachep->name;
  3734. if (error)
  3735. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3736. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3737. name, active_objs, num_objs, cachep->buffer_size,
  3738. cachep->num, (1 << cachep->gfporder));
  3739. seq_printf(m, " : tunables %4u %4u %4u",
  3740. cachep->limit, cachep->batchcount, cachep->shared);
  3741. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3742. active_slabs, num_slabs, shared_avail);
  3743. #if STATS
  3744. { /* list3 stats */
  3745. unsigned long high = cachep->high_mark;
  3746. unsigned long allocs = cachep->num_allocations;
  3747. unsigned long grown = cachep->grown;
  3748. unsigned long reaped = cachep->reaped;
  3749. unsigned long errors = cachep->errors;
  3750. unsigned long max_freeable = cachep->max_freeable;
  3751. unsigned long node_allocs = cachep->node_allocs;
  3752. unsigned long node_frees = cachep->node_frees;
  3753. unsigned long overflows = cachep->node_overflow;
  3754. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
  3755. "%4lu %4lu %4lu %4lu %4lu",
  3756. allocs, high, grown,
  3757. reaped, errors, max_freeable, node_allocs,
  3758. node_frees, overflows);
  3759. }
  3760. /* cpu stats */
  3761. {
  3762. unsigned long allochit = atomic_read(&cachep->allochit);
  3763. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3764. unsigned long freehit = atomic_read(&cachep->freehit);
  3765. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3766. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3767. allochit, allocmiss, freehit, freemiss);
  3768. }
  3769. #endif
  3770. seq_putc(m, '\n');
  3771. return 0;
  3772. }
  3773. /*
  3774. * slabinfo_op - iterator that generates /proc/slabinfo
  3775. *
  3776. * Output layout:
  3777. * cache-name
  3778. * num-active-objs
  3779. * total-objs
  3780. * object size
  3781. * num-active-slabs
  3782. * total-slabs
  3783. * num-pages-per-slab
  3784. * + further values on SMP and with statistics enabled
  3785. */
  3786. static const struct seq_operations slabinfo_op = {
  3787. .start = s_start,
  3788. .next = s_next,
  3789. .stop = s_stop,
  3790. .show = s_show,
  3791. };
  3792. #define MAX_SLABINFO_WRITE 128
  3793. /**
  3794. * slabinfo_write - Tuning for the slab allocator
  3795. * @file: unused
  3796. * @buffer: user buffer
  3797. * @count: data length
  3798. * @ppos: unused
  3799. */
  3800. static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  3801. size_t count, loff_t *ppos)
  3802. {
  3803. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3804. int limit, batchcount, shared, res;
  3805. struct kmem_cache *cachep;
  3806. if (count > MAX_SLABINFO_WRITE)
  3807. return -EINVAL;
  3808. if (copy_from_user(&kbuf, buffer, count))
  3809. return -EFAULT;
  3810. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3811. tmp = strchr(kbuf, ' ');
  3812. if (!tmp)
  3813. return -EINVAL;
  3814. *tmp = '\0';
  3815. tmp++;
  3816. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3817. return -EINVAL;
  3818. /* Find the cache in the chain of caches. */
  3819. mutex_lock(&cache_chain_mutex);
  3820. res = -EINVAL;
  3821. list_for_each_entry(cachep, &cache_chain, next) {
  3822. if (!strcmp(cachep->name, kbuf)) {
  3823. if (limit < 1 || batchcount < 1 ||
  3824. batchcount > limit || shared < 0) {
  3825. res = 0;
  3826. } else {
  3827. res = do_tune_cpucache(cachep, limit,
  3828. batchcount, shared,
  3829. GFP_KERNEL);
  3830. }
  3831. break;
  3832. }
  3833. }
  3834. mutex_unlock(&cache_chain_mutex);
  3835. if (res >= 0)
  3836. res = count;
  3837. return res;
  3838. }
  3839. static int slabinfo_open(struct inode *inode, struct file *file)
  3840. {
  3841. return seq_open(file, &slabinfo_op);
  3842. }
  3843. static const struct file_operations proc_slabinfo_operations = {
  3844. .open = slabinfo_open,
  3845. .read = seq_read,
  3846. .write = slabinfo_write,
  3847. .llseek = seq_lseek,
  3848. .release = seq_release,
  3849. };
  3850. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3851. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3852. {
  3853. mutex_lock(&cache_chain_mutex);
  3854. return seq_list_start(&cache_chain, *pos);
  3855. }
  3856. static inline int add_caller(unsigned long *n, unsigned long v)
  3857. {
  3858. unsigned long *p;
  3859. int l;
  3860. if (!v)
  3861. return 1;
  3862. l = n[1];
  3863. p = n + 2;
  3864. while (l) {
  3865. int i = l/2;
  3866. unsigned long *q = p + 2 * i;
  3867. if (*q == v) {
  3868. q[1]++;
  3869. return 1;
  3870. }
  3871. if (*q > v) {
  3872. l = i;
  3873. } else {
  3874. p = q + 2;
  3875. l -= i + 1;
  3876. }
  3877. }
  3878. if (++n[1] == n[0])
  3879. return 0;
  3880. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3881. p[0] = v;
  3882. p[1] = 1;
  3883. return 1;
  3884. }
  3885. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3886. {
  3887. void *p;
  3888. int i;
  3889. if (n[0] == n[1])
  3890. return;
  3891. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3892. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3893. continue;
  3894. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3895. return;
  3896. }
  3897. }
  3898. static void show_symbol(struct seq_file *m, unsigned long address)
  3899. {
  3900. #ifdef CONFIG_KALLSYMS
  3901. unsigned long offset, size;
  3902. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3903. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3904. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3905. if (modname[0])
  3906. seq_printf(m, " [%s]", modname);
  3907. return;
  3908. }
  3909. #endif
  3910. seq_printf(m, "%p", (void *)address);
  3911. }
  3912. static int leaks_show(struct seq_file *m, void *p)
  3913. {
  3914. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3915. struct slab *slabp;
  3916. struct kmem_list3 *l3;
  3917. const char *name;
  3918. unsigned long *n = m->private;
  3919. int node;
  3920. int i;
  3921. if (!(cachep->flags & SLAB_STORE_USER))
  3922. return 0;
  3923. if (!(cachep->flags & SLAB_RED_ZONE))
  3924. return 0;
  3925. /* OK, we can do it */
  3926. n[1] = 0;
  3927. for_each_online_node(node) {
  3928. l3 = cachep->nodelists[node];
  3929. if (!l3)
  3930. continue;
  3931. check_irq_on();
  3932. spin_lock_irq(&l3->list_lock);
  3933. list_for_each_entry(slabp, &l3->slabs_full, list)
  3934. handle_slab(n, cachep, slabp);
  3935. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3936. handle_slab(n, cachep, slabp);
  3937. spin_unlock_irq(&l3->list_lock);
  3938. }
  3939. name = cachep->name;
  3940. if (n[0] == n[1]) {
  3941. /* Increase the buffer size */
  3942. mutex_unlock(&cache_chain_mutex);
  3943. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3944. if (!m->private) {
  3945. /* Too bad, we are really out */
  3946. m->private = n;
  3947. mutex_lock(&cache_chain_mutex);
  3948. return -ENOMEM;
  3949. }
  3950. *(unsigned long *)m->private = n[0] * 2;
  3951. kfree(n);
  3952. mutex_lock(&cache_chain_mutex);
  3953. /* Now make sure this entry will be retried */
  3954. m->count = m->size;
  3955. return 0;
  3956. }
  3957. for (i = 0; i < n[1]; i++) {
  3958. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3959. show_symbol(m, n[2*i+2]);
  3960. seq_putc(m, '\n');
  3961. }
  3962. return 0;
  3963. }
  3964. static const struct seq_operations slabstats_op = {
  3965. .start = leaks_start,
  3966. .next = s_next,
  3967. .stop = s_stop,
  3968. .show = leaks_show,
  3969. };
  3970. static int slabstats_open(struct inode *inode, struct file *file)
  3971. {
  3972. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3973. int ret = -ENOMEM;
  3974. if (n) {
  3975. ret = seq_open(file, &slabstats_op);
  3976. if (!ret) {
  3977. struct seq_file *m = file->private_data;
  3978. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3979. m->private = n;
  3980. n = NULL;
  3981. }
  3982. kfree(n);
  3983. }
  3984. return ret;
  3985. }
  3986. static const struct file_operations proc_slabstats_operations = {
  3987. .open = slabstats_open,
  3988. .read = seq_read,
  3989. .llseek = seq_lseek,
  3990. .release = seq_release_private,
  3991. };
  3992. #endif
  3993. static int __init slab_proc_init(void)
  3994. {
  3995. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3996. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3997. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3998. #endif
  3999. return 0;
  4000. }
  4001. module_init(slab_proc_init);
  4002. #endif
  4003. /**
  4004. * ksize - get the actual amount of memory allocated for a given object
  4005. * @objp: Pointer to the object
  4006. *
  4007. * kmalloc may internally round up allocations and return more memory
  4008. * than requested. ksize() can be used to determine the actual amount of
  4009. * memory allocated. The caller may use this additional memory, even though
  4010. * a smaller amount of memory was initially specified with the kmalloc call.
  4011. * The caller must guarantee that objp points to a valid object previously
  4012. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  4013. * must not be freed during the duration of the call.
  4014. */
  4015. size_t ksize(const void *objp)
  4016. {
  4017. BUG_ON(!objp);
  4018. if (unlikely(objp == ZERO_SIZE_PTR))
  4019. return 0;
  4020. return obj_size(virt_to_cache(objp));
  4021. }
  4022. EXPORT_SYMBOL(ksize);