smp.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229
  1. /* smp.c: Sparc64 SMP support.
  2. *
  3. * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/smp_lock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel_stat.h>
  15. #include <linux/delay.h>
  16. #include <linux/init.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/cache.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/profile.h>
  23. #include <linux/bootmem.h>
  24. #include <asm/head.h>
  25. #include <asm/ptrace.h>
  26. #include <asm/atomic.h>
  27. #include <asm/tlbflush.h>
  28. #include <asm/mmu_context.h>
  29. #include <asm/cpudata.h>
  30. #include <asm/irq.h>
  31. #include <asm/page.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/oplib.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/timer.h>
  36. #include <asm/starfire.h>
  37. #include <asm/tlb.h>
  38. extern int linux_num_cpus;
  39. extern void calibrate_delay(void);
  40. /* Please don't make this stuff initdata!!! --DaveM */
  41. static unsigned char boot_cpu_id;
  42. cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
  43. cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
  44. static cpumask_t smp_commenced_mask;
  45. static cpumask_t cpu_callout_map;
  46. void smp_info(struct seq_file *m)
  47. {
  48. int i;
  49. seq_printf(m, "State:\n");
  50. for (i = 0; i < NR_CPUS; i++) {
  51. if (cpu_online(i))
  52. seq_printf(m,
  53. "CPU%d:\t\tonline\n", i);
  54. }
  55. }
  56. void smp_bogo(struct seq_file *m)
  57. {
  58. int i;
  59. for (i = 0; i < NR_CPUS; i++)
  60. if (cpu_online(i))
  61. seq_printf(m,
  62. "Cpu%dBogo\t: %lu.%02lu\n"
  63. "Cpu%dClkTck\t: %016lx\n",
  64. i, cpu_data(i).udelay_val / (500000/HZ),
  65. (cpu_data(i).udelay_val / (5000/HZ)) % 100,
  66. i, cpu_data(i).clock_tick);
  67. }
  68. void __init smp_store_cpu_info(int id)
  69. {
  70. int cpu_node;
  71. /* multiplier and counter set by
  72. smp_setup_percpu_timer() */
  73. cpu_data(id).udelay_val = loops_per_jiffy;
  74. cpu_find_by_mid(id, &cpu_node);
  75. cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
  76. "clock-frequency", 0);
  77. cpu_data(id).pgcache_size = 0;
  78. cpu_data(id).pte_cache[0] = NULL;
  79. cpu_data(id).pte_cache[1] = NULL;
  80. cpu_data(id).pgd_cache = NULL;
  81. cpu_data(id).idle_volume = 1;
  82. cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
  83. 16 * 1024);
  84. cpu_data(id).dcache_line_size =
  85. prom_getintdefault(cpu_node, "dcache-line-size", 32);
  86. cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
  87. 16 * 1024);
  88. cpu_data(id).icache_line_size =
  89. prom_getintdefault(cpu_node, "icache-line-size", 32);
  90. cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
  91. 4 * 1024 * 1024);
  92. cpu_data(id).ecache_line_size =
  93. prom_getintdefault(cpu_node, "ecache-line-size", 64);
  94. printk("CPU[%d]: Caches "
  95. "D[sz(%d):line_sz(%d)] "
  96. "I[sz(%d):line_sz(%d)] "
  97. "E[sz(%d):line_sz(%d)]\n",
  98. id,
  99. cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
  100. cpu_data(id).icache_size, cpu_data(id).icache_line_size,
  101. cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
  102. }
  103. static void smp_setup_percpu_timer(void);
  104. static volatile unsigned long callin_flag = 0;
  105. extern void inherit_locked_prom_mappings(int save_p);
  106. static inline void cpu_setup_percpu_base(unsigned long cpu_id)
  107. {
  108. __asm__ __volatile__("mov %0, %%g5\n\t"
  109. "stxa %0, [%1] %2\n\t"
  110. "membar #Sync"
  111. : /* no outputs */
  112. : "r" (__per_cpu_offset(cpu_id)),
  113. "r" (TSB_REG), "i" (ASI_IMMU));
  114. }
  115. void __init smp_callin(void)
  116. {
  117. int cpuid = hard_smp_processor_id();
  118. inherit_locked_prom_mappings(0);
  119. __flush_tlb_all();
  120. cpu_setup_percpu_base(cpuid);
  121. smp_setup_percpu_timer();
  122. if (cheetah_pcache_forced_on)
  123. cheetah_enable_pcache();
  124. local_irq_enable();
  125. calibrate_delay();
  126. smp_store_cpu_info(cpuid);
  127. callin_flag = 1;
  128. __asm__ __volatile__("membar #Sync\n\t"
  129. "flush %%g6" : : : "memory");
  130. /* Clear this or we will die instantly when we
  131. * schedule back to this idler...
  132. */
  133. current_thread_info()->new_child = 0;
  134. /* Attach to the address space of init_task. */
  135. atomic_inc(&init_mm.mm_count);
  136. current->active_mm = &init_mm;
  137. while (!cpu_isset(cpuid, smp_commenced_mask))
  138. rmb();
  139. cpu_set(cpuid, cpu_online_map);
  140. /* idle thread is expected to have preempt disabled */
  141. preempt_disable();
  142. }
  143. void cpu_panic(void)
  144. {
  145. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  146. panic("SMP bolixed\n");
  147. }
  148. static unsigned long current_tick_offset __read_mostly;
  149. /* This tick register synchronization scheme is taken entirely from
  150. * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
  151. *
  152. * The only change I've made is to rework it so that the master
  153. * initiates the synchonization instead of the slave. -DaveM
  154. */
  155. #define MASTER 0
  156. #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
  157. #define NUM_ROUNDS 64 /* magic value */
  158. #define NUM_ITERS 5 /* likewise */
  159. static DEFINE_SPINLOCK(itc_sync_lock);
  160. static unsigned long go[SLAVE + 1];
  161. #define DEBUG_TICK_SYNC 0
  162. static inline long get_delta (long *rt, long *master)
  163. {
  164. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  165. unsigned long tcenter, t0, t1, tm;
  166. unsigned long i;
  167. for (i = 0; i < NUM_ITERS; i++) {
  168. t0 = tick_ops->get_tick();
  169. go[MASTER] = 1;
  170. membar_storeload();
  171. while (!(tm = go[SLAVE]))
  172. rmb();
  173. go[SLAVE] = 0;
  174. wmb();
  175. t1 = tick_ops->get_tick();
  176. if (t1 - t0 < best_t1 - best_t0)
  177. best_t0 = t0, best_t1 = t1, best_tm = tm;
  178. }
  179. *rt = best_t1 - best_t0;
  180. *master = best_tm - best_t0;
  181. /* average best_t0 and best_t1 without overflow: */
  182. tcenter = (best_t0/2 + best_t1/2);
  183. if (best_t0 % 2 + best_t1 % 2 == 2)
  184. tcenter++;
  185. return tcenter - best_tm;
  186. }
  187. void smp_synchronize_tick_client(void)
  188. {
  189. long i, delta, adj, adjust_latency = 0, done = 0;
  190. unsigned long flags, rt, master_time_stamp, bound;
  191. #if DEBUG_TICK_SYNC
  192. struct {
  193. long rt; /* roundtrip time */
  194. long master; /* master's timestamp */
  195. long diff; /* difference between midpoint and master's timestamp */
  196. long lat; /* estimate of itc adjustment latency */
  197. } t[NUM_ROUNDS];
  198. #endif
  199. go[MASTER] = 1;
  200. while (go[MASTER])
  201. rmb();
  202. local_irq_save(flags);
  203. {
  204. for (i = 0; i < NUM_ROUNDS; i++) {
  205. delta = get_delta(&rt, &master_time_stamp);
  206. if (delta == 0) {
  207. done = 1; /* let's lock on to this... */
  208. bound = rt;
  209. }
  210. if (!done) {
  211. if (i > 0) {
  212. adjust_latency += -delta;
  213. adj = -delta + adjust_latency/4;
  214. } else
  215. adj = -delta;
  216. tick_ops->add_tick(adj, current_tick_offset);
  217. }
  218. #if DEBUG_TICK_SYNC
  219. t[i].rt = rt;
  220. t[i].master = master_time_stamp;
  221. t[i].diff = delta;
  222. t[i].lat = adjust_latency/4;
  223. #endif
  224. }
  225. }
  226. local_irq_restore(flags);
  227. #if DEBUG_TICK_SYNC
  228. for (i = 0; i < NUM_ROUNDS; i++)
  229. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  230. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  231. #endif
  232. printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
  233. "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
  234. }
  235. static void smp_start_sync_tick_client(int cpu);
  236. static void smp_synchronize_one_tick(int cpu)
  237. {
  238. unsigned long flags, i;
  239. go[MASTER] = 0;
  240. smp_start_sync_tick_client(cpu);
  241. /* wait for client to be ready */
  242. while (!go[MASTER])
  243. rmb();
  244. /* now let the client proceed into his loop */
  245. go[MASTER] = 0;
  246. membar_storeload();
  247. spin_lock_irqsave(&itc_sync_lock, flags);
  248. {
  249. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
  250. while (!go[MASTER])
  251. rmb();
  252. go[MASTER] = 0;
  253. wmb();
  254. go[SLAVE] = tick_ops->get_tick();
  255. membar_storeload();
  256. }
  257. }
  258. spin_unlock_irqrestore(&itc_sync_lock, flags);
  259. }
  260. extern unsigned long sparc64_cpu_startup;
  261. /* The OBP cpu startup callback truncates the 3rd arg cookie to
  262. * 32-bits (I think) so to be safe we have it read the pointer
  263. * contained here so we work on >4GB machines. -DaveM
  264. */
  265. static struct thread_info *cpu_new_thread = NULL;
  266. static int __devinit smp_boot_one_cpu(unsigned int cpu)
  267. {
  268. unsigned long entry =
  269. (unsigned long)(&sparc64_cpu_startup);
  270. unsigned long cookie =
  271. (unsigned long)(&cpu_new_thread);
  272. struct task_struct *p;
  273. int timeout, ret, cpu_node;
  274. p = fork_idle(cpu);
  275. callin_flag = 0;
  276. cpu_new_thread = p->thread_info;
  277. cpu_set(cpu, cpu_callout_map);
  278. cpu_find_by_mid(cpu, &cpu_node);
  279. prom_startcpu(cpu_node, entry, cookie);
  280. for (timeout = 0; timeout < 5000000; timeout++) {
  281. if (callin_flag)
  282. break;
  283. udelay(100);
  284. }
  285. if (callin_flag) {
  286. ret = 0;
  287. } else {
  288. printk("Processor %d is stuck.\n", cpu);
  289. cpu_clear(cpu, cpu_callout_map);
  290. ret = -ENODEV;
  291. }
  292. cpu_new_thread = NULL;
  293. return ret;
  294. }
  295. static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
  296. {
  297. u64 result, target;
  298. int stuck, tmp;
  299. if (this_is_starfire) {
  300. /* map to real upaid */
  301. cpu = (((cpu & 0x3c) << 1) |
  302. ((cpu & 0x40) >> 4) |
  303. (cpu & 0x3));
  304. }
  305. target = (cpu << 14) | 0x70;
  306. again:
  307. /* Ok, this is the real Spitfire Errata #54.
  308. * One must read back from a UDB internal register
  309. * after writes to the UDB interrupt dispatch, but
  310. * before the membar Sync for that write.
  311. * So we use the high UDB control register (ASI 0x7f,
  312. * ADDR 0x20) for the dummy read. -DaveM
  313. */
  314. tmp = 0x40;
  315. __asm__ __volatile__(
  316. "wrpr %1, %2, %%pstate\n\t"
  317. "stxa %4, [%0] %3\n\t"
  318. "stxa %5, [%0+%8] %3\n\t"
  319. "add %0, %8, %0\n\t"
  320. "stxa %6, [%0+%8] %3\n\t"
  321. "membar #Sync\n\t"
  322. "stxa %%g0, [%7] %3\n\t"
  323. "membar #Sync\n\t"
  324. "mov 0x20, %%g1\n\t"
  325. "ldxa [%%g1] 0x7f, %%g0\n\t"
  326. "membar #Sync"
  327. : "=r" (tmp)
  328. : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
  329. "r" (data0), "r" (data1), "r" (data2), "r" (target),
  330. "r" (0x10), "0" (tmp)
  331. : "g1");
  332. /* NOTE: PSTATE_IE is still clear. */
  333. stuck = 100000;
  334. do {
  335. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  336. : "=r" (result)
  337. : "i" (ASI_INTR_DISPATCH_STAT));
  338. if (result == 0) {
  339. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  340. : : "r" (pstate));
  341. return;
  342. }
  343. stuck -= 1;
  344. if (stuck == 0)
  345. break;
  346. } while (result & 0x1);
  347. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  348. : : "r" (pstate));
  349. if (stuck == 0) {
  350. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  351. smp_processor_id(), result);
  352. } else {
  353. udelay(2);
  354. goto again;
  355. }
  356. }
  357. static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
  358. {
  359. u64 pstate;
  360. int i;
  361. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  362. for_each_cpu_mask(i, mask)
  363. spitfire_xcall_helper(data0, data1, data2, pstate, i);
  364. }
  365. /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
  366. * packet, but we have no use for that. However we do take advantage of
  367. * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
  368. */
  369. static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
  370. {
  371. u64 pstate, ver;
  372. int nack_busy_id, is_jalapeno;
  373. if (cpus_empty(mask))
  374. return;
  375. /* Unfortunately, someone at Sun had the brilliant idea to make the
  376. * busy/nack fields hard-coded by ITID number for this Ultra-III
  377. * derivative processor.
  378. */
  379. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  380. is_jalapeno = ((ver >> 32) == 0x003e0016);
  381. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  382. retry:
  383. __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
  384. : : "r" (pstate), "i" (PSTATE_IE));
  385. /* Setup the dispatch data registers. */
  386. __asm__ __volatile__("stxa %0, [%3] %6\n\t"
  387. "stxa %1, [%4] %6\n\t"
  388. "stxa %2, [%5] %6\n\t"
  389. "membar #Sync\n\t"
  390. : /* no outputs */
  391. : "r" (data0), "r" (data1), "r" (data2),
  392. "r" (0x40), "r" (0x50), "r" (0x60),
  393. "i" (ASI_INTR_W));
  394. nack_busy_id = 0;
  395. {
  396. int i;
  397. for_each_cpu_mask(i, mask) {
  398. u64 target = (i << 14) | 0x70;
  399. if (!is_jalapeno)
  400. target |= (nack_busy_id << 24);
  401. __asm__ __volatile__(
  402. "stxa %%g0, [%0] %1\n\t"
  403. "membar #Sync\n\t"
  404. : /* no outputs */
  405. : "r" (target), "i" (ASI_INTR_W));
  406. nack_busy_id++;
  407. }
  408. }
  409. /* Now, poll for completion. */
  410. {
  411. u64 dispatch_stat;
  412. long stuck;
  413. stuck = 100000 * nack_busy_id;
  414. do {
  415. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  416. : "=r" (dispatch_stat)
  417. : "i" (ASI_INTR_DISPATCH_STAT));
  418. if (dispatch_stat == 0UL) {
  419. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  420. : : "r" (pstate));
  421. return;
  422. }
  423. if (!--stuck)
  424. break;
  425. } while (dispatch_stat & 0x5555555555555555UL);
  426. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  427. : : "r" (pstate));
  428. if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
  429. /* Busy bits will not clear, continue instead
  430. * of freezing up on this cpu.
  431. */
  432. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  433. smp_processor_id(), dispatch_stat);
  434. } else {
  435. int i, this_busy_nack = 0;
  436. /* Delay some random time with interrupts enabled
  437. * to prevent deadlock.
  438. */
  439. udelay(2 * nack_busy_id);
  440. /* Clear out the mask bits for cpus which did not
  441. * NACK us.
  442. */
  443. for_each_cpu_mask(i, mask) {
  444. u64 check_mask;
  445. if (is_jalapeno)
  446. check_mask = (0x2UL << (2*i));
  447. else
  448. check_mask = (0x2UL <<
  449. this_busy_nack);
  450. if ((dispatch_stat & check_mask) == 0)
  451. cpu_clear(i, mask);
  452. this_busy_nack += 2;
  453. }
  454. goto retry;
  455. }
  456. }
  457. }
  458. /* Send cross call to all processors mentioned in MASK
  459. * except self.
  460. */
  461. static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
  462. {
  463. u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
  464. int this_cpu = get_cpu();
  465. cpus_and(mask, mask, cpu_online_map);
  466. cpu_clear(this_cpu, mask);
  467. if (tlb_type == spitfire)
  468. spitfire_xcall_deliver(data0, data1, data2, mask);
  469. else
  470. cheetah_xcall_deliver(data0, data1, data2, mask);
  471. /* NOTE: Caller runs local copy on master. */
  472. put_cpu();
  473. }
  474. extern unsigned long xcall_sync_tick;
  475. static void smp_start_sync_tick_client(int cpu)
  476. {
  477. cpumask_t mask = cpumask_of_cpu(cpu);
  478. smp_cross_call_masked(&xcall_sync_tick,
  479. 0, 0, 0, mask);
  480. }
  481. /* Send cross call to all processors except self. */
  482. #define smp_cross_call(func, ctx, data1, data2) \
  483. smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
  484. struct call_data_struct {
  485. void (*func) (void *info);
  486. void *info;
  487. atomic_t finished;
  488. int wait;
  489. };
  490. static DEFINE_SPINLOCK(call_lock);
  491. static struct call_data_struct *call_data;
  492. extern unsigned long xcall_call_function;
  493. /*
  494. * You must not call this function with disabled interrupts or from a
  495. * hardware interrupt handler or from a bottom half handler.
  496. */
  497. int smp_call_function(void (*func)(void *info), void *info,
  498. int nonatomic, int wait)
  499. {
  500. struct call_data_struct data;
  501. int cpus = num_online_cpus() - 1;
  502. long timeout;
  503. if (!cpus)
  504. return 0;
  505. /* Can deadlock when called with interrupts disabled */
  506. WARN_ON(irqs_disabled());
  507. data.func = func;
  508. data.info = info;
  509. atomic_set(&data.finished, 0);
  510. data.wait = wait;
  511. spin_lock(&call_lock);
  512. call_data = &data;
  513. smp_cross_call(&xcall_call_function, 0, 0, 0);
  514. /*
  515. * Wait for other cpus to complete function or at
  516. * least snap the call data.
  517. */
  518. timeout = 1000000;
  519. while (atomic_read(&data.finished) != cpus) {
  520. if (--timeout <= 0)
  521. goto out_timeout;
  522. barrier();
  523. udelay(1);
  524. }
  525. spin_unlock(&call_lock);
  526. return 0;
  527. out_timeout:
  528. spin_unlock(&call_lock);
  529. printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
  530. (long) num_online_cpus() - 1L,
  531. (long) atomic_read(&data.finished));
  532. return 0;
  533. }
  534. void smp_call_function_client(int irq, struct pt_regs *regs)
  535. {
  536. void (*func) (void *info) = call_data->func;
  537. void *info = call_data->info;
  538. clear_softint(1 << irq);
  539. if (call_data->wait) {
  540. /* let initiator proceed only after completion */
  541. func(info);
  542. atomic_inc(&call_data->finished);
  543. } else {
  544. /* let initiator proceed after getting data */
  545. atomic_inc(&call_data->finished);
  546. func(info);
  547. }
  548. }
  549. extern unsigned long xcall_flush_tlb_mm;
  550. extern unsigned long xcall_flush_tlb_pending;
  551. extern unsigned long xcall_flush_tlb_kernel_range;
  552. extern unsigned long xcall_flush_tlb_all_spitfire;
  553. extern unsigned long xcall_flush_tlb_all_cheetah;
  554. extern unsigned long xcall_report_regs;
  555. extern unsigned long xcall_receive_signal;
  556. #ifdef DCACHE_ALIASING_POSSIBLE
  557. extern unsigned long xcall_flush_dcache_page_cheetah;
  558. #endif
  559. extern unsigned long xcall_flush_dcache_page_spitfire;
  560. #ifdef CONFIG_DEBUG_DCFLUSH
  561. extern atomic_t dcpage_flushes;
  562. extern atomic_t dcpage_flushes_xcall;
  563. #endif
  564. static __inline__ void __local_flush_dcache_page(struct page *page)
  565. {
  566. #ifdef DCACHE_ALIASING_POSSIBLE
  567. __flush_dcache_page(page_address(page),
  568. ((tlb_type == spitfire) &&
  569. page_mapping(page) != NULL));
  570. #else
  571. if (page_mapping(page) != NULL &&
  572. tlb_type == spitfire)
  573. __flush_icache_page(__pa(page_address(page)));
  574. #endif
  575. }
  576. void smp_flush_dcache_page_impl(struct page *page, int cpu)
  577. {
  578. cpumask_t mask = cpumask_of_cpu(cpu);
  579. int this_cpu = get_cpu();
  580. #ifdef CONFIG_DEBUG_DCFLUSH
  581. atomic_inc(&dcpage_flushes);
  582. #endif
  583. if (cpu == this_cpu) {
  584. __local_flush_dcache_page(page);
  585. } else if (cpu_online(cpu)) {
  586. void *pg_addr = page_address(page);
  587. u64 data0;
  588. if (tlb_type == spitfire) {
  589. data0 =
  590. ((u64)&xcall_flush_dcache_page_spitfire);
  591. if (page_mapping(page) != NULL)
  592. data0 |= ((u64)1 << 32);
  593. spitfire_xcall_deliver(data0,
  594. __pa(pg_addr),
  595. (u64) pg_addr,
  596. mask);
  597. } else {
  598. #ifdef DCACHE_ALIASING_POSSIBLE
  599. data0 =
  600. ((u64)&xcall_flush_dcache_page_cheetah);
  601. cheetah_xcall_deliver(data0,
  602. __pa(pg_addr),
  603. 0, mask);
  604. #endif
  605. }
  606. #ifdef CONFIG_DEBUG_DCFLUSH
  607. atomic_inc(&dcpage_flushes_xcall);
  608. #endif
  609. }
  610. put_cpu();
  611. }
  612. void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
  613. {
  614. void *pg_addr = page_address(page);
  615. cpumask_t mask = cpu_online_map;
  616. u64 data0;
  617. int this_cpu = get_cpu();
  618. cpu_clear(this_cpu, mask);
  619. #ifdef CONFIG_DEBUG_DCFLUSH
  620. atomic_inc(&dcpage_flushes);
  621. #endif
  622. if (cpus_empty(mask))
  623. goto flush_self;
  624. if (tlb_type == spitfire) {
  625. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  626. if (page_mapping(page) != NULL)
  627. data0 |= ((u64)1 << 32);
  628. spitfire_xcall_deliver(data0,
  629. __pa(pg_addr),
  630. (u64) pg_addr,
  631. mask);
  632. } else {
  633. #ifdef DCACHE_ALIASING_POSSIBLE
  634. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  635. cheetah_xcall_deliver(data0,
  636. __pa(pg_addr),
  637. 0, mask);
  638. #endif
  639. }
  640. #ifdef CONFIG_DEBUG_DCFLUSH
  641. atomic_inc(&dcpage_flushes_xcall);
  642. #endif
  643. flush_self:
  644. __local_flush_dcache_page(page);
  645. put_cpu();
  646. }
  647. void smp_receive_signal(int cpu)
  648. {
  649. cpumask_t mask = cpumask_of_cpu(cpu);
  650. if (cpu_online(cpu)) {
  651. u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
  652. if (tlb_type == spitfire)
  653. spitfire_xcall_deliver(data0, 0, 0, mask);
  654. else
  655. cheetah_xcall_deliver(data0, 0, 0, mask);
  656. }
  657. }
  658. void smp_receive_signal_client(int irq, struct pt_regs *regs)
  659. {
  660. /* Just return, rtrap takes care of the rest. */
  661. clear_softint(1 << irq);
  662. }
  663. void smp_report_regs(void)
  664. {
  665. smp_cross_call(&xcall_report_regs, 0, 0, 0);
  666. }
  667. void smp_flush_tlb_all(void)
  668. {
  669. if (tlb_type == spitfire)
  670. smp_cross_call(&xcall_flush_tlb_all_spitfire, 0, 0, 0);
  671. else
  672. smp_cross_call(&xcall_flush_tlb_all_cheetah, 0, 0, 0);
  673. __flush_tlb_all();
  674. }
  675. /* We know that the window frames of the user have been flushed
  676. * to the stack before we get here because all callers of us
  677. * are flush_tlb_*() routines, and these run after flush_cache_*()
  678. * which performs the flushw.
  679. *
  680. * The SMP TLB coherency scheme we use works as follows:
  681. *
  682. * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
  683. * space has (potentially) executed on, this is the heuristic
  684. * we use to avoid doing cross calls.
  685. *
  686. * Also, for flushing from kswapd and also for clones, we
  687. * use cpu_vm_mask as the list of cpus to make run the TLB.
  688. *
  689. * 2) TLB context numbers are shared globally across all processors
  690. * in the system, this allows us to play several games to avoid
  691. * cross calls.
  692. *
  693. * One invariant is that when a cpu switches to a process, and
  694. * that processes tsk->active_mm->cpu_vm_mask does not have the
  695. * current cpu's bit set, that tlb context is flushed locally.
  696. *
  697. * If the address space is non-shared (ie. mm->count == 1) we avoid
  698. * cross calls when we want to flush the currently running process's
  699. * tlb state. This is done by clearing all cpu bits except the current
  700. * processor's in current->active_mm->cpu_vm_mask and performing the
  701. * flush locally only. This will force any subsequent cpus which run
  702. * this task to flush the context from the local tlb if the process
  703. * migrates to another cpu (again).
  704. *
  705. * 3) For shared address spaces (threads) and swapping we bite the
  706. * bullet for most cases and perform the cross call (but only to
  707. * the cpus listed in cpu_vm_mask).
  708. *
  709. * The performance gain from "optimizing" away the cross call for threads is
  710. * questionable (in theory the big win for threads is the massive sharing of
  711. * address space state across processors).
  712. */
  713. /* This currently is only used by the hugetlb arch pre-fault
  714. * hook on UltraSPARC-III+ and later when changing the pagesize
  715. * bits of the context register for an address space.
  716. */
  717. void smp_flush_tlb_mm(struct mm_struct *mm)
  718. {
  719. u32 ctx = CTX_HWBITS(mm->context);
  720. int cpu = get_cpu();
  721. if (atomic_read(&mm->mm_users) == 1) {
  722. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  723. goto local_flush_and_out;
  724. }
  725. smp_cross_call_masked(&xcall_flush_tlb_mm,
  726. ctx, 0, 0,
  727. mm->cpu_vm_mask);
  728. local_flush_and_out:
  729. __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
  730. put_cpu();
  731. }
  732. void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
  733. {
  734. u32 ctx = CTX_HWBITS(mm->context);
  735. int cpu = get_cpu();
  736. if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
  737. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  738. else
  739. smp_cross_call_masked(&xcall_flush_tlb_pending,
  740. ctx, nr, (unsigned long) vaddrs,
  741. mm->cpu_vm_mask);
  742. __flush_tlb_pending(ctx, nr, vaddrs);
  743. put_cpu();
  744. }
  745. void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  746. {
  747. start &= PAGE_MASK;
  748. end = PAGE_ALIGN(end);
  749. if (start != end) {
  750. smp_cross_call(&xcall_flush_tlb_kernel_range,
  751. 0, start, end);
  752. __flush_tlb_kernel_range(start, end);
  753. }
  754. }
  755. /* CPU capture. */
  756. /* #define CAPTURE_DEBUG */
  757. extern unsigned long xcall_capture;
  758. static atomic_t smp_capture_depth = ATOMIC_INIT(0);
  759. static atomic_t smp_capture_registry = ATOMIC_INIT(0);
  760. static unsigned long penguins_are_doing_time;
  761. void smp_capture(void)
  762. {
  763. int result = atomic_add_ret(1, &smp_capture_depth);
  764. if (result == 1) {
  765. int ncpus = num_online_cpus();
  766. #ifdef CAPTURE_DEBUG
  767. printk("CPU[%d]: Sending penguins to jail...",
  768. smp_processor_id());
  769. #endif
  770. penguins_are_doing_time = 1;
  771. membar_storestore_loadstore();
  772. atomic_inc(&smp_capture_registry);
  773. smp_cross_call(&xcall_capture, 0, 0, 0);
  774. while (atomic_read(&smp_capture_registry) != ncpus)
  775. rmb();
  776. #ifdef CAPTURE_DEBUG
  777. printk("done\n");
  778. #endif
  779. }
  780. }
  781. void smp_release(void)
  782. {
  783. if (atomic_dec_and_test(&smp_capture_depth)) {
  784. #ifdef CAPTURE_DEBUG
  785. printk("CPU[%d]: Giving pardon to "
  786. "imprisoned penguins\n",
  787. smp_processor_id());
  788. #endif
  789. penguins_are_doing_time = 0;
  790. membar_storeload_storestore();
  791. atomic_dec(&smp_capture_registry);
  792. }
  793. }
  794. /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
  795. * can service tlb flush xcalls...
  796. */
  797. extern void prom_world(int);
  798. extern void save_alternate_globals(unsigned long *);
  799. extern void restore_alternate_globals(unsigned long *);
  800. void smp_penguin_jailcell(int irq, struct pt_regs *regs)
  801. {
  802. unsigned long global_save[24];
  803. clear_softint(1 << irq);
  804. preempt_disable();
  805. __asm__ __volatile__("flushw");
  806. save_alternate_globals(global_save);
  807. prom_world(1);
  808. atomic_inc(&smp_capture_registry);
  809. membar_storeload_storestore();
  810. while (penguins_are_doing_time)
  811. rmb();
  812. restore_alternate_globals(global_save);
  813. atomic_dec(&smp_capture_registry);
  814. prom_world(0);
  815. preempt_enable();
  816. }
  817. #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
  818. #define prof_counter(__cpu) cpu_data(__cpu).counter
  819. void smp_percpu_timer_interrupt(struct pt_regs *regs)
  820. {
  821. unsigned long compare, tick, pstate;
  822. int cpu = smp_processor_id();
  823. int user = user_mode(regs);
  824. /*
  825. * Check for level 14 softint.
  826. */
  827. {
  828. unsigned long tick_mask = tick_ops->softint_mask;
  829. if (!(get_softint() & tick_mask)) {
  830. extern void handler_irq(int, struct pt_regs *);
  831. handler_irq(14, regs);
  832. return;
  833. }
  834. clear_softint(tick_mask);
  835. }
  836. do {
  837. profile_tick(CPU_PROFILING, regs);
  838. if (!--prof_counter(cpu)) {
  839. irq_enter();
  840. if (cpu == boot_cpu_id) {
  841. kstat_this_cpu.irqs[0]++;
  842. timer_tick_interrupt(regs);
  843. }
  844. update_process_times(user);
  845. irq_exit();
  846. prof_counter(cpu) = prof_multiplier(cpu);
  847. }
  848. /* Guarantee that the following sequences execute
  849. * uninterrupted.
  850. */
  851. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  852. "wrpr %0, %1, %%pstate"
  853. : "=r" (pstate)
  854. : "i" (PSTATE_IE));
  855. compare = tick_ops->add_compare(current_tick_offset);
  856. tick = tick_ops->get_tick();
  857. /* Restore PSTATE_IE. */
  858. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  859. : /* no outputs */
  860. : "r" (pstate));
  861. } while (time_after_eq(tick, compare));
  862. }
  863. static void __init smp_setup_percpu_timer(void)
  864. {
  865. int cpu = smp_processor_id();
  866. unsigned long pstate;
  867. prof_counter(cpu) = prof_multiplier(cpu) = 1;
  868. /* Guarantee that the following sequences execute
  869. * uninterrupted.
  870. */
  871. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  872. "wrpr %0, %1, %%pstate"
  873. : "=r" (pstate)
  874. : "i" (PSTATE_IE));
  875. tick_ops->init_tick(current_tick_offset);
  876. /* Restore PSTATE_IE. */
  877. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  878. : /* no outputs */
  879. : "r" (pstate));
  880. }
  881. void __init smp_tick_init(void)
  882. {
  883. boot_cpu_id = hard_smp_processor_id();
  884. current_tick_offset = timer_tick_offset;
  885. cpu_set(boot_cpu_id, cpu_online_map);
  886. prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
  887. }
  888. /* /proc/profile writes can call this, don't __init it please. */
  889. static DEFINE_SPINLOCK(prof_setup_lock);
  890. int setup_profiling_timer(unsigned int multiplier)
  891. {
  892. unsigned long flags;
  893. int i;
  894. if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
  895. return -EINVAL;
  896. spin_lock_irqsave(&prof_setup_lock, flags);
  897. for (i = 0; i < NR_CPUS; i++)
  898. prof_multiplier(i) = multiplier;
  899. current_tick_offset = (timer_tick_offset / multiplier);
  900. spin_unlock_irqrestore(&prof_setup_lock, flags);
  901. return 0;
  902. }
  903. void __init smp_prepare_cpus(unsigned int max_cpus)
  904. {
  905. int instance, mid;
  906. instance = 0;
  907. while (!cpu_find_by_instance(instance, NULL, &mid)) {
  908. if (mid < max_cpus)
  909. cpu_set(mid, phys_cpu_present_map);
  910. instance++;
  911. }
  912. if (num_possible_cpus() > max_cpus) {
  913. instance = 0;
  914. while (!cpu_find_by_instance(instance, NULL, &mid)) {
  915. if (mid != boot_cpu_id) {
  916. cpu_clear(mid, phys_cpu_present_map);
  917. if (num_possible_cpus() <= max_cpus)
  918. break;
  919. }
  920. instance++;
  921. }
  922. }
  923. smp_store_cpu_info(boot_cpu_id);
  924. }
  925. void __devinit smp_prepare_boot_cpu(void)
  926. {
  927. if (hard_smp_processor_id() >= NR_CPUS) {
  928. prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
  929. prom_halt();
  930. }
  931. current_thread_info()->cpu = hard_smp_processor_id();
  932. cpu_set(smp_processor_id(), cpu_online_map);
  933. cpu_set(smp_processor_id(), phys_cpu_present_map);
  934. }
  935. int __devinit __cpu_up(unsigned int cpu)
  936. {
  937. int ret = smp_boot_one_cpu(cpu);
  938. if (!ret) {
  939. cpu_set(cpu, smp_commenced_mask);
  940. while (!cpu_isset(cpu, cpu_online_map))
  941. mb();
  942. if (!cpu_isset(cpu, cpu_online_map)) {
  943. ret = -ENODEV;
  944. } else {
  945. smp_synchronize_one_tick(cpu);
  946. }
  947. }
  948. return ret;
  949. }
  950. void __init smp_cpus_done(unsigned int max_cpus)
  951. {
  952. unsigned long bogosum = 0;
  953. int i;
  954. for (i = 0; i < NR_CPUS; i++) {
  955. if (cpu_online(i))
  956. bogosum += cpu_data(i).udelay_val;
  957. }
  958. printk("Total of %ld processors activated "
  959. "(%lu.%02lu BogoMIPS).\n",
  960. (long) num_online_cpus(),
  961. bogosum/(500000/HZ),
  962. (bogosum/(5000/HZ))%100);
  963. }
  964. /* This needn't do anything as we do not sleep the cpu
  965. * inside of the idler task, so an interrupt is not needed
  966. * to get a clean fast response.
  967. *
  968. * XXX Reverify this assumption... -DaveM
  969. *
  970. * Addendum: We do want it to do something for the signal
  971. * delivery case, we detect that by just seeing
  972. * if we are trying to send this to an idler or not.
  973. */
  974. void smp_send_reschedule(int cpu)
  975. {
  976. if (cpu_data(cpu).idle_volume == 0)
  977. smp_receive_signal(cpu);
  978. }
  979. /* This is a nop because we capture all other cpus
  980. * anyways when making the PROM active.
  981. */
  982. void smp_send_stop(void)
  983. {
  984. }
  985. unsigned long __per_cpu_base __read_mostly;
  986. unsigned long __per_cpu_shift __read_mostly;
  987. EXPORT_SYMBOL(__per_cpu_base);
  988. EXPORT_SYMBOL(__per_cpu_shift);
  989. void __init setup_per_cpu_areas(void)
  990. {
  991. unsigned long goal, size, i;
  992. char *ptr;
  993. /* Created by linker magic */
  994. extern char __per_cpu_start[], __per_cpu_end[];
  995. /* Copy section for each CPU (we discard the original) */
  996. goal = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE);
  997. #ifdef CONFIG_MODULES
  998. if (goal < PERCPU_ENOUGH_ROOM)
  999. goal = PERCPU_ENOUGH_ROOM;
  1000. #endif
  1001. __per_cpu_shift = 0;
  1002. for (size = 1UL; size < goal; size <<= 1UL)
  1003. __per_cpu_shift++;
  1004. /* Make sure the resulting __per_cpu_base value
  1005. * will fit in the 43-bit sign extended IMMU
  1006. * TSB register.
  1007. */
  1008. ptr = __alloc_bootmem(size * NR_CPUS, PAGE_SIZE,
  1009. (unsigned long) __per_cpu_start);
  1010. __per_cpu_base = ptr - __per_cpu_start;
  1011. if ((__per_cpu_shift < PAGE_SHIFT) ||
  1012. (__per_cpu_base & ~PAGE_MASK) ||
  1013. (__per_cpu_base != (((long) __per_cpu_base << 20) >> 20))) {
  1014. prom_printf("PER_CPU: Invalid layout, "
  1015. "ptr[%p] shift[%lx] base[%lx]\n",
  1016. ptr, __per_cpu_shift, __per_cpu_base);
  1017. prom_halt();
  1018. }
  1019. for (i = 0; i < NR_CPUS; i++, ptr += size)
  1020. memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
  1021. /* Finally, load in the boot cpu's base value.
  1022. * We abuse the IMMU TSB register for trap handler
  1023. * entry and exit loading of %g5. That is why it
  1024. * has to be page aligned.
  1025. */
  1026. cpu_setup_percpu_base(hard_smp_processor_id());
  1027. }