pxa2xx_spi.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/hardware.h>
  33. #include <asm/delay.h>
  34. #include <asm/dma.h>
  35. #include <asm/arch/hardware.h>
  36. #include <asm/arch/pxa-regs.h>
  37. #include <asm/arch/regs-ssp.h>
  38. #include <asm/arch/ssp.h>
  39. #include <asm/arch/pxa2xx_spi.h>
  40. MODULE_AUTHOR("Stephen Street");
  41. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  42. MODULE_LICENSE("GPL");
  43. #define MAX_BUSES 3
  44. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  45. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  46. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  47. /* for testing SSCR1 changes that require SSP restart, basically
  48. * everything except the service and interrupt enables */
  49. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_EBCEI | SSCR1_SCFR \
  50. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  51. | SSCR1_RWOT | SSCR1_TRAIL | SSCR1_PINTE \
  52. | SSCR1_STRF | SSCR1_EFWR |SSCR1_RFT \
  53. | SSCR1_TFT | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  54. #define DEFINE_SSP_REG(reg, off) \
  55. static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
  56. static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
  57. DEFINE_SSP_REG(SSCR0, 0x00)
  58. DEFINE_SSP_REG(SSCR1, 0x04)
  59. DEFINE_SSP_REG(SSSR, 0x08)
  60. DEFINE_SSP_REG(SSITR, 0x0c)
  61. DEFINE_SSP_REG(SSDR, 0x10)
  62. DEFINE_SSP_REG(SSTO, 0x28)
  63. DEFINE_SSP_REG(SSPSP, 0x2c)
  64. #define START_STATE ((void*)0)
  65. #define RUNNING_STATE ((void*)1)
  66. #define DONE_STATE ((void*)2)
  67. #define ERROR_STATE ((void*)-1)
  68. #define QUEUE_RUNNING 0
  69. #define QUEUE_STOPPED 1
  70. struct driver_data {
  71. /* Driver model hookup */
  72. struct platform_device *pdev;
  73. /* SSP Info */
  74. struct ssp_device *ssp;
  75. /* SPI framework hookup */
  76. enum pxa_ssp_type ssp_type;
  77. struct spi_master *master;
  78. /* PXA hookup */
  79. struct pxa2xx_spi_master *master_info;
  80. /* DMA setup stuff */
  81. int rx_channel;
  82. int tx_channel;
  83. u32 *null_dma_buf;
  84. /* SSP register addresses */
  85. void *ioaddr;
  86. u32 ssdr_physical;
  87. /* SSP masks*/
  88. u32 dma_cr1;
  89. u32 int_cr1;
  90. u32 clear_sr;
  91. u32 mask_sr;
  92. /* Driver message queue */
  93. struct workqueue_struct *workqueue;
  94. struct work_struct pump_messages;
  95. spinlock_t lock;
  96. struct list_head queue;
  97. int busy;
  98. int run;
  99. /* Message Transfer pump */
  100. struct tasklet_struct pump_transfers;
  101. /* Current message transfer state info */
  102. struct spi_message* cur_msg;
  103. struct spi_transfer* cur_transfer;
  104. struct chip_data *cur_chip;
  105. size_t len;
  106. void *tx;
  107. void *tx_end;
  108. void *rx;
  109. void *rx_end;
  110. int dma_mapped;
  111. dma_addr_t rx_dma;
  112. dma_addr_t tx_dma;
  113. size_t rx_map_len;
  114. size_t tx_map_len;
  115. u8 n_bytes;
  116. u32 dma_width;
  117. int cs_change;
  118. int (*write)(struct driver_data *drv_data);
  119. int (*read)(struct driver_data *drv_data);
  120. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  121. void (*cs_control)(u32 command);
  122. };
  123. struct chip_data {
  124. u32 cr0;
  125. u32 cr1;
  126. u32 psp;
  127. u32 timeout;
  128. u8 n_bytes;
  129. u32 dma_width;
  130. u32 dma_burst_size;
  131. u32 threshold;
  132. u32 dma_threshold;
  133. u8 enable_dma;
  134. u8 bits_per_word;
  135. u32 speed_hz;
  136. int (*write)(struct driver_data *drv_data);
  137. int (*read)(struct driver_data *drv_data);
  138. void (*cs_control)(u32 command);
  139. };
  140. static void pump_messages(struct work_struct *work);
  141. static int flush(struct driver_data *drv_data)
  142. {
  143. unsigned long limit = loops_per_jiffy << 1;
  144. void *reg = drv_data->ioaddr;
  145. do {
  146. while (read_SSSR(reg) & SSSR_RNE) {
  147. read_SSDR(reg);
  148. }
  149. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  150. write_SSSR(SSSR_ROR, reg);
  151. return limit;
  152. }
  153. static void null_cs_control(u32 command)
  154. {
  155. }
  156. static int null_writer(struct driver_data *drv_data)
  157. {
  158. void *reg = drv_data->ioaddr;
  159. u8 n_bytes = drv_data->n_bytes;
  160. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  161. || (drv_data->tx == drv_data->tx_end))
  162. return 0;
  163. write_SSDR(0, reg);
  164. drv_data->tx += n_bytes;
  165. return 1;
  166. }
  167. static int null_reader(struct driver_data *drv_data)
  168. {
  169. void *reg = drv_data->ioaddr;
  170. u8 n_bytes = drv_data->n_bytes;
  171. while ((read_SSSR(reg) & SSSR_RNE)
  172. && (drv_data->rx < drv_data->rx_end)) {
  173. read_SSDR(reg);
  174. drv_data->rx += n_bytes;
  175. }
  176. return drv_data->rx == drv_data->rx_end;
  177. }
  178. static int u8_writer(struct driver_data *drv_data)
  179. {
  180. void *reg = drv_data->ioaddr;
  181. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  182. || (drv_data->tx == drv_data->tx_end))
  183. return 0;
  184. write_SSDR(*(u8 *)(drv_data->tx), reg);
  185. ++drv_data->tx;
  186. return 1;
  187. }
  188. static int u8_reader(struct driver_data *drv_data)
  189. {
  190. void *reg = drv_data->ioaddr;
  191. while ((read_SSSR(reg) & SSSR_RNE)
  192. && (drv_data->rx < drv_data->rx_end)) {
  193. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  194. ++drv_data->rx;
  195. }
  196. return drv_data->rx == drv_data->rx_end;
  197. }
  198. static int u16_writer(struct driver_data *drv_data)
  199. {
  200. void *reg = drv_data->ioaddr;
  201. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  202. || (drv_data->tx == drv_data->tx_end))
  203. return 0;
  204. write_SSDR(*(u16 *)(drv_data->tx), reg);
  205. drv_data->tx += 2;
  206. return 1;
  207. }
  208. static int u16_reader(struct driver_data *drv_data)
  209. {
  210. void *reg = drv_data->ioaddr;
  211. while ((read_SSSR(reg) & SSSR_RNE)
  212. && (drv_data->rx < drv_data->rx_end)) {
  213. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  214. drv_data->rx += 2;
  215. }
  216. return drv_data->rx == drv_data->rx_end;
  217. }
  218. static int u32_writer(struct driver_data *drv_data)
  219. {
  220. void *reg = drv_data->ioaddr;
  221. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  222. || (drv_data->tx == drv_data->tx_end))
  223. return 0;
  224. write_SSDR(*(u32 *)(drv_data->tx), reg);
  225. drv_data->tx += 4;
  226. return 1;
  227. }
  228. static int u32_reader(struct driver_data *drv_data)
  229. {
  230. void *reg = drv_data->ioaddr;
  231. while ((read_SSSR(reg) & SSSR_RNE)
  232. && (drv_data->rx < drv_data->rx_end)) {
  233. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  234. drv_data->rx += 4;
  235. }
  236. return drv_data->rx == drv_data->rx_end;
  237. }
  238. static void *next_transfer(struct driver_data *drv_data)
  239. {
  240. struct spi_message *msg = drv_data->cur_msg;
  241. struct spi_transfer *trans = drv_data->cur_transfer;
  242. /* Move to next transfer */
  243. if (trans->transfer_list.next != &msg->transfers) {
  244. drv_data->cur_transfer =
  245. list_entry(trans->transfer_list.next,
  246. struct spi_transfer,
  247. transfer_list);
  248. return RUNNING_STATE;
  249. } else
  250. return DONE_STATE;
  251. }
  252. static int map_dma_buffers(struct driver_data *drv_data)
  253. {
  254. struct spi_message *msg = drv_data->cur_msg;
  255. struct device *dev = &msg->spi->dev;
  256. if (!drv_data->cur_chip->enable_dma)
  257. return 0;
  258. if (msg->is_dma_mapped)
  259. return drv_data->rx_dma && drv_data->tx_dma;
  260. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  261. return 0;
  262. /* Modify setup if rx buffer is null */
  263. if (drv_data->rx == NULL) {
  264. *drv_data->null_dma_buf = 0;
  265. drv_data->rx = drv_data->null_dma_buf;
  266. drv_data->rx_map_len = 4;
  267. } else
  268. drv_data->rx_map_len = drv_data->len;
  269. /* Modify setup if tx buffer is null */
  270. if (drv_data->tx == NULL) {
  271. *drv_data->null_dma_buf = 0;
  272. drv_data->tx = drv_data->null_dma_buf;
  273. drv_data->tx_map_len = 4;
  274. } else
  275. drv_data->tx_map_len = drv_data->len;
  276. /* Stream map the rx buffer */
  277. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  278. drv_data->rx_map_len,
  279. DMA_FROM_DEVICE);
  280. if (dma_mapping_error(drv_data->rx_dma))
  281. return 0;
  282. /* Stream map the tx buffer */
  283. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  284. drv_data->tx_map_len,
  285. DMA_TO_DEVICE);
  286. if (dma_mapping_error(drv_data->tx_dma)) {
  287. dma_unmap_single(dev, drv_data->rx_dma,
  288. drv_data->rx_map_len, DMA_FROM_DEVICE);
  289. return 0;
  290. }
  291. return 1;
  292. }
  293. static void unmap_dma_buffers(struct driver_data *drv_data)
  294. {
  295. struct device *dev;
  296. if (!drv_data->dma_mapped)
  297. return;
  298. if (!drv_data->cur_msg->is_dma_mapped) {
  299. dev = &drv_data->cur_msg->spi->dev;
  300. dma_unmap_single(dev, drv_data->rx_dma,
  301. drv_data->rx_map_len, DMA_FROM_DEVICE);
  302. dma_unmap_single(dev, drv_data->tx_dma,
  303. drv_data->tx_map_len, DMA_TO_DEVICE);
  304. }
  305. drv_data->dma_mapped = 0;
  306. }
  307. /* caller already set message->status; dma and pio irqs are blocked */
  308. static void giveback(struct driver_data *drv_data)
  309. {
  310. struct spi_transfer* last_transfer;
  311. unsigned long flags;
  312. struct spi_message *msg;
  313. spin_lock_irqsave(&drv_data->lock, flags);
  314. msg = drv_data->cur_msg;
  315. drv_data->cur_msg = NULL;
  316. drv_data->cur_transfer = NULL;
  317. drv_data->cur_chip = NULL;
  318. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  319. spin_unlock_irqrestore(&drv_data->lock, flags);
  320. last_transfer = list_entry(msg->transfers.prev,
  321. struct spi_transfer,
  322. transfer_list);
  323. if (!last_transfer->cs_change)
  324. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  325. msg->state = NULL;
  326. if (msg->complete)
  327. msg->complete(msg->context);
  328. }
  329. static int wait_ssp_rx_stall(void *ioaddr)
  330. {
  331. unsigned long limit = loops_per_jiffy << 1;
  332. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  333. cpu_relax();
  334. return limit;
  335. }
  336. static int wait_dma_channel_stop(int channel)
  337. {
  338. unsigned long limit = loops_per_jiffy << 1;
  339. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  340. cpu_relax();
  341. return limit;
  342. }
  343. void dma_error_stop(struct driver_data *drv_data, const char *msg)
  344. {
  345. void *reg = drv_data->ioaddr;
  346. /* Stop and reset */
  347. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  348. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  349. write_SSSR(drv_data->clear_sr, reg);
  350. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  351. if (drv_data->ssp_type != PXA25x_SSP)
  352. write_SSTO(0, reg);
  353. flush(drv_data);
  354. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  355. unmap_dma_buffers(drv_data);
  356. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  357. drv_data->cur_msg->state = ERROR_STATE;
  358. tasklet_schedule(&drv_data->pump_transfers);
  359. }
  360. static void dma_transfer_complete(struct driver_data *drv_data)
  361. {
  362. void *reg = drv_data->ioaddr;
  363. struct spi_message *msg = drv_data->cur_msg;
  364. /* Clear and disable interrupts on SSP and DMA channels*/
  365. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  366. write_SSSR(drv_data->clear_sr, reg);
  367. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  368. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  369. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  370. dev_err(&drv_data->pdev->dev,
  371. "dma_handler: dma rx channel stop failed\n");
  372. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  373. dev_err(&drv_data->pdev->dev,
  374. "dma_transfer: ssp rx stall failed\n");
  375. unmap_dma_buffers(drv_data);
  376. /* update the buffer pointer for the amount completed in dma */
  377. drv_data->rx += drv_data->len -
  378. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  379. /* read trailing data from fifo, it does not matter how many
  380. * bytes are in the fifo just read until buffer is full
  381. * or fifo is empty, which ever occurs first */
  382. drv_data->read(drv_data);
  383. /* return count of what was actually read */
  384. msg->actual_length += drv_data->len -
  385. (drv_data->rx_end - drv_data->rx);
  386. /* Release chip select if requested, transfer delays are
  387. * handled in pump_transfers */
  388. if (drv_data->cs_change)
  389. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  390. /* Move to next transfer */
  391. msg->state = next_transfer(drv_data);
  392. /* Schedule transfer tasklet */
  393. tasklet_schedule(&drv_data->pump_transfers);
  394. }
  395. static void dma_handler(int channel, void *data)
  396. {
  397. struct driver_data *drv_data = data;
  398. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  399. if (irq_status & DCSR_BUSERR) {
  400. if (channel == drv_data->tx_channel)
  401. dma_error_stop(drv_data,
  402. "dma_handler: "
  403. "bad bus address on tx channel");
  404. else
  405. dma_error_stop(drv_data,
  406. "dma_handler: "
  407. "bad bus address on rx channel");
  408. return;
  409. }
  410. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  411. if ((channel == drv_data->tx_channel)
  412. && (irq_status & DCSR_ENDINTR)
  413. && (drv_data->ssp_type == PXA25x_SSP)) {
  414. /* Wait for rx to stall */
  415. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  416. dev_err(&drv_data->pdev->dev,
  417. "dma_handler: ssp rx stall failed\n");
  418. /* finish this transfer, start the next */
  419. dma_transfer_complete(drv_data);
  420. }
  421. }
  422. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  423. {
  424. u32 irq_status;
  425. void *reg = drv_data->ioaddr;
  426. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  427. if (irq_status & SSSR_ROR) {
  428. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  429. return IRQ_HANDLED;
  430. }
  431. /* Check for false positive timeout */
  432. if ((irq_status & SSSR_TINT)
  433. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  434. write_SSSR(SSSR_TINT, reg);
  435. return IRQ_HANDLED;
  436. }
  437. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  438. /* Clear and disable timeout interrupt, do the rest in
  439. * dma_transfer_complete */
  440. if (drv_data->ssp_type != PXA25x_SSP)
  441. write_SSTO(0, reg);
  442. /* finish this transfer, start the next */
  443. dma_transfer_complete(drv_data);
  444. return IRQ_HANDLED;
  445. }
  446. /* Opps problem detected */
  447. return IRQ_NONE;
  448. }
  449. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  450. {
  451. void *reg = drv_data->ioaddr;
  452. /* Stop and reset SSP */
  453. write_SSSR(drv_data->clear_sr, reg);
  454. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  455. if (drv_data->ssp_type != PXA25x_SSP)
  456. write_SSTO(0, reg);
  457. flush(drv_data);
  458. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  459. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  460. drv_data->cur_msg->state = ERROR_STATE;
  461. tasklet_schedule(&drv_data->pump_transfers);
  462. }
  463. static void int_transfer_complete(struct driver_data *drv_data)
  464. {
  465. void *reg = drv_data->ioaddr;
  466. /* Stop SSP */
  467. write_SSSR(drv_data->clear_sr, reg);
  468. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  469. if (drv_data->ssp_type != PXA25x_SSP)
  470. write_SSTO(0, reg);
  471. /* Update total byte transfered return count actual bytes read */
  472. drv_data->cur_msg->actual_length += drv_data->len -
  473. (drv_data->rx_end - drv_data->rx);
  474. /* Release chip select if requested, transfer delays are
  475. * handled in pump_transfers */
  476. if (drv_data->cs_change)
  477. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  478. /* Move to next transfer */
  479. drv_data->cur_msg->state = next_transfer(drv_data);
  480. /* Schedule transfer tasklet */
  481. tasklet_schedule(&drv_data->pump_transfers);
  482. }
  483. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  484. {
  485. void *reg = drv_data->ioaddr;
  486. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  487. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  488. u32 irq_status = read_SSSR(reg) & irq_mask;
  489. if (irq_status & SSSR_ROR) {
  490. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  491. return IRQ_HANDLED;
  492. }
  493. if (irq_status & SSSR_TINT) {
  494. write_SSSR(SSSR_TINT, reg);
  495. if (drv_data->read(drv_data)) {
  496. int_transfer_complete(drv_data);
  497. return IRQ_HANDLED;
  498. }
  499. }
  500. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  501. do {
  502. if (drv_data->read(drv_data)) {
  503. int_transfer_complete(drv_data);
  504. return IRQ_HANDLED;
  505. }
  506. } while (drv_data->write(drv_data));
  507. if (drv_data->read(drv_data)) {
  508. int_transfer_complete(drv_data);
  509. return IRQ_HANDLED;
  510. }
  511. if (drv_data->tx == drv_data->tx_end) {
  512. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  513. /* PXA25x_SSP has no timeout, read trailing bytes */
  514. if (drv_data->ssp_type == PXA25x_SSP) {
  515. if (!wait_ssp_rx_stall(reg))
  516. {
  517. int_error_stop(drv_data, "interrupt_transfer: "
  518. "rx stall failed");
  519. return IRQ_HANDLED;
  520. }
  521. if (!drv_data->read(drv_data))
  522. {
  523. int_error_stop(drv_data,
  524. "interrupt_transfer: "
  525. "trailing byte read failed");
  526. return IRQ_HANDLED;
  527. }
  528. int_transfer_complete(drv_data);
  529. }
  530. }
  531. /* We did something */
  532. return IRQ_HANDLED;
  533. }
  534. static irqreturn_t ssp_int(int irq, void *dev_id)
  535. {
  536. struct driver_data *drv_data = dev_id;
  537. void *reg = drv_data->ioaddr;
  538. if (!drv_data->cur_msg) {
  539. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  540. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  541. if (drv_data->ssp_type != PXA25x_SSP)
  542. write_SSTO(0, reg);
  543. write_SSSR(drv_data->clear_sr, reg);
  544. dev_err(&drv_data->pdev->dev, "bad message state "
  545. "in interrupt handler\n");
  546. /* Never fail */
  547. return IRQ_HANDLED;
  548. }
  549. return drv_data->transfer_handler(drv_data);
  550. }
  551. int set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi,
  552. u8 bits_per_word, u32 *burst_code,
  553. u32 *threshold)
  554. {
  555. struct pxa2xx_spi_chip *chip_info =
  556. (struct pxa2xx_spi_chip *)spi->controller_data;
  557. int bytes_per_word;
  558. int burst_bytes;
  559. int thresh_words;
  560. int req_burst_size;
  561. int retval = 0;
  562. /* Set the threshold (in registers) to equal the same amount of data
  563. * as represented by burst size (in bytes). The computation below
  564. * is (burst_size rounded up to nearest 8 byte, word or long word)
  565. * divided by (bytes/register); the tx threshold is the inverse of
  566. * the rx, so that there will always be enough data in the rx fifo
  567. * to satisfy a burst, and there will always be enough space in the
  568. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  569. * there is not enough space), there must always remain enough empty
  570. * space in the rx fifo for any data loaded to the tx fifo.
  571. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  572. * will be 8, or half the fifo;
  573. * The threshold can only be set to 2, 4 or 8, but not 16, because
  574. * to burst 16 to the tx fifo, the fifo would have to be empty;
  575. * however, the minimum fifo trigger level is 1, and the tx will
  576. * request service when the fifo is at this level, with only 15 spaces.
  577. */
  578. /* find bytes/word */
  579. if (bits_per_word <= 8)
  580. bytes_per_word = 1;
  581. else if (bits_per_word <= 16)
  582. bytes_per_word = 2;
  583. else
  584. bytes_per_word = 4;
  585. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  586. if (chip_info)
  587. req_burst_size = chip_info->dma_burst_size;
  588. else {
  589. switch (chip->dma_burst_size) {
  590. default:
  591. /* if the default burst size is not set,
  592. * do it now */
  593. chip->dma_burst_size = DCMD_BURST8;
  594. case DCMD_BURST8:
  595. req_burst_size = 8;
  596. break;
  597. case DCMD_BURST16:
  598. req_burst_size = 16;
  599. break;
  600. case DCMD_BURST32:
  601. req_burst_size = 32;
  602. break;
  603. }
  604. }
  605. if (req_burst_size <= 8) {
  606. *burst_code = DCMD_BURST8;
  607. burst_bytes = 8;
  608. } else if (req_burst_size <= 16) {
  609. if (bytes_per_word == 1) {
  610. /* don't burst more than 1/2 the fifo */
  611. *burst_code = DCMD_BURST8;
  612. burst_bytes = 8;
  613. retval = 1;
  614. } else {
  615. *burst_code = DCMD_BURST16;
  616. burst_bytes = 16;
  617. }
  618. } else {
  619. if (bytes_per_word == 1) {
  620. /* don't burst more than 1/2 the fifo */
  621. *burst_code = DCMD_BURST8;
  622. burst_bytes = 8;
  623. retval = 1;
  624. } else if (bytes_per_word == 2) {
  625. /* don't burst more than 1/2 the fifo */
  626. *burst_code = DCMD_BURST16;
  627. burst_bytes = 16;
  628. retval = 1;
  629. } else {
  630. *burst_code = DCMD_BURST32;
  631. burst_bytes = 32;
  632. }
  633. }
  634. thresh_words = burst_bytes / bytes_per_word;
  635. /* thresh_words will be between 2 and 8 */
  636. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  637. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  638. return retval;
  639. }
  640. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  641. {
  642. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  643. if (ssp->type == PXA25x_SSP)
  644. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  645. else
  646. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  647. }
  648. static void pump_transfers(unsigned long data)
  649. {
  650. struct driver_data *drv_data = (struct driver_data *)data;
  651. struct spi_message *message = NULL;
  652. struct spi_transfer *transfer = NULL;
  653. struct spi_transfer *previous = NULL;
  654. struct chip_data *chip = NULL;
  655. struct ssp_device *ssp = drv_data->ssp;
  656. void *reg = drv_data->ioaddr;
  657. u32 clk_div = 0;
  658. u8 bits = 0;
  659. u32 speed = 0;
  660. u32 cr0;
  661. u32 cr1;
  662. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  663. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  664. /* Get current state information */
  665. message = drv_data->cur_msg;
  666. transfer = drv_data->cur_transfer;
  667. chip = drv_data->cur_chip;
  668. /* Handle for abort */
  669. if (message->state == ERROR_STATE) {
  670. message->status = -EIO;
  671. giveback(drv_data);
  672. return;
  673. }
  674. /* Handle end of message */
  675. if (message->state == DONE_STATE) {
  676. message->status = 0;
  677. giveback(drv_data);
  678. return;
  679. }
  680. /* Delay if requested at end of transfer*/
  681. if (message->state == RUNNING_STATE) {
  682. previous = list_entry(transfer->transfer_list.prev,
  683. struct spi_transfer,
  684. transfer_list);
  685. if (previous->delay_usecs)
  686. udelay(previous->delay_usecs);
  687. }
  688. /* Check transfer length */
  689. if (transfer->len > 8191)
  690. {
  691. dev_warn(&drv_data->pdev->dev, "pump_transfers: transfer "
  692. "length greater than 8191\n");
  693. message->status = -EINVAL;
  694. giveback(drv_data);
  695. return;
  696. }
  697. /* Setup the transfer state based on the type of transfer */
  698. if (flush(drv_data) == 0) {
  699. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  700. message->status = -EIO;
  701. giveback(drv_data);
  702. return;
  703. }
  704. drv_data->n_bytes = chip->n_bytes;
  705. drv_data->dma_width = chip->dma_width;
  706. drv_data->cs_control = chip->cs_control;
  707. drv_data->tx = (void *)transfer->tx_buf;
  708. drv_data->tx_end = drv_data->tx + transfer->len;
  709. drv_data->rx = transfer->rx_buf;
  710. drv_data->rx_end = drv_data->rx + transfer->len;
  711. drv_data->rx_dma = transfer->rx_dma;
  712. drv_data->tx_dma = transfer->tx_dma;
  713. drv_data->len = transfer->len & DCMD_LENGTH;
  714. drv_data->write = drv_data->tx ? chip->write : null_writer;
  715. drv_data->read = drv_data->rx ? chip->read : null_reader;
  716. drv_data->cs_change = transfer->cs_change;
  717. /* Change speed and bit per word on a per transfer */
  718. cr0 = chip->cr0;
  719. if (transfer->speed_hz || transfer->bits_per_word) {
  720. bits = chip->bits_per_word;
  721. speed = chip->speed_hz;
  722. if (transfer->speed_hz)
  723. speed = transfer->speed_hz;
  724. if (transfer->bits_per_word)
  725. bits = transfer->bits_per_word;
  726. clk_div = ssp_get_clk_div(ssp, speed);
  727. if (bits <= 8) {
  728. drv_data->n_bytes = 1;
  729. drv_data->dma_width = DCMD_WIDTH1;
  730. drv_data->read = drv_data->read != null_reader ?
  731. u8_reader : null_reader;
  732. drv_data->write = drv_data->write != null_writer ?
  733. u8_writer : null_writer;
  734. } else if (bits <= 16) {
  735. drv_data->n_bytes = 2;
  736. drv_data->dma_width = DCMD_WIDTH2;
  737. drv_data->read = drv_data->read != null_reader ?
  738. u16_reader : null_reader;
  739. drv_data->write = drv_data->write != null_writer ?
  740. u16_writer : null_writer;
  741. } else if (bits <= 32) {
  742. drv_data->n_bytes = 4;
  743. drv_data->dma_width = DCMD_WIDTH4;
  744. drv_data->read = drv_data->read != null_reader ?
  745. u32_reader : null_reader;
  746. drv_data->write = drv_data->write != null_writer ?
  747. u32_writer : null_writer;
  748. }
  749. /* if bits/word is changed in dma mode, then must check the
  750. * thresholds and burst also */
  751. if (chip->enable_dma) {
  752. if (set_dma_burst_and_threshold(chip, message->spi,
  753. bits, &dma_burst,
  754. &dma_thresh))
  755. if (printk_ratelimit())
  756. dev_warn(&message->spi->dev,
  757. "pump_transfer: "
  758. "DMA burst size reduced to "
  759. "match bits_per_word\n");
  760. }
  761. cr0 = clk_div
  762. | SSCR0_Motorola
  763. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  764. | SSCR0_SSE
  765. | (bits > 16 ? SSCR0_EDSS : 0);
  766. }
  767. message->state = RUNNING_STATE;
  768. /* Try to map dma buffer and do a dma transfer if successful */
  769. if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
  770. /* Ensure we have the correct interrupt handler */
  771. drv_data->transfer_handler = dma_transfer;
  772. /* Setup rx DMA Channel */
  773. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  774. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  775. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  776. if (drv_data->rx == drv_data->null_dma_buf)
  777. /* No target address increment */
  778. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  779. | drv_data->dma_width
  780. | dma_burst
  781. | drv_data->len;
  782. else
  783. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  784. | DCMD_FLOWSRC
  785. | drv_data->dma_width
  786. | dma_burst
  787. | drv_data->len;
  788. /* Setup tx DMA Channel */
  789. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  790. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  791. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  792. if (drv_data->tx == drv_data->null_dma_buf)
  793. /* No source address increment */
  794. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  795. | drv_data->dma_width
  796. | dma_burst
  797. | drv_data->len;
  798. else
  799. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  800. | DCMD_FLOWTRG
  801. | drv_data->dma_width
  802. | dma_burst
  803. | drv_data->len;
  804. /* Enable dma end irqs on SSP to detect end of transfer */
  805. if (drv_data->ssp_type == PXA25x_SSP)
  806. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  807. /* Fix me, need to handle cs polarity */
  808. drv_data->cs_control(PXA2XX_CS_ASSERT);
  809. /* Clear status and start DMA engine */
  810. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  811. write_SSSR(drv_data->clear_sr, reg);
  812. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  813. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  814. } else {
  815. /* Ensure we have the correct interrupt handler */
  816. drv_data->transfer_handler = interrupt_transfer;
  817. /* Fix me, need to handle cs polarity */
  818. drv_data->cs_control(PXA2XX_CS_ASSERT);
  819. /* Clear status */
  820. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  821. write_SSSR(drv_data->clear_sr, reg);
  822. }
  823. /* see if we need to reload the config registers */
  824. if ((read_SSCR0(reg) != cr0)
  825. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  826. (cr1 & SSCR1_CHANGE_MASK)) {
  827. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  828. if (drv_data->ssp_type != PXA25x_SSP)
  829. write_SSTO(chip->timeout, reg);
  830. write_SSCR1(cr1, reg);
  831. write_SSCR0(cr0, reg);
  832. } else {
  833. if (drv_data->ssp_type != PXA25x_SSP)
  834. write_SSTO(chip->timeout, reg);
  835. write_SSCR1(cr1, reg);
  836. }
  837. }
  838. static void pump_messages(struct work_struct *work)
  839. {
  840. struct driver_data *drv_data =
  841. container_of(work, struct driver_data, pump_messages);
  842. unsigned long flags;
  843. /* Lock queue and check for queue work */
  844. spin_lock_irqsave(&drv_data->lock, flags);
  845. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  846. drv_data->busy = 0;
  847. spin_unlock_irqrestore(&drv_data->lock, flags);
  848. return;
  849. }
  850. /* Make sure we are not already running a message */
  851. if (drv_data->cur_msg) {
  852. spin_unlock_irqrestore(&drv_data->lock, flags);
  853. return;
  854. }
  855. /* Extract head of queue */
  856. drv_data->cur_msg = list_entry(drv_data->queue.next,
  857. struct spi_message, queue);
  858. list_del_init(&drv_data->cur_msg->queue);
  859. /* Initial message state*/
  860. drv_data->cur_msg->state = START_STATE;
  861. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  862. struct spi_transfer,
  863. transfer_list);
  864. /* prepare to setup the SSP, in pump_transfers, using the per
  865. * chip configuration */
  866. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  867. /* Mark as busy and launch transfers */
  868. tasklet_schedule(&drv_data->pump_transfers);
  869. drv_data->busy = 1;
  870. spin_unlock_irqrestore(&drv_data->lock, flags);
  871. }
  872. static int transfer(struct spi_device *spi, struct spi_message *msg)
  873. {
  874. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  875. unsigned long flags;
  876. spin_lock_irqsave(&drv_data->lock, flags);
  877. if (drv_data->run == QUEUE_STOPPED) {
  878. spin_unlock_irqrestore(&drv_data->lock, flags);
  879. return -ESHUTDOWN;
  880. }
  881. msg->actual_length = 0;
  882. msg->status = -EINPROGRESS;
  883. msg->state = START_STATE;
  884. list_add_tail(&msg->queue, &drv_data->queue);
  885. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  886. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  887. spin_unlock_irqrestore(&drv_data->lock, flags);
  888. return 0;
  889. }
  890. /* the spi->mode bits understood by this driver: */
  891. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  892. static int setup(struct spi_device *spi)
  893. {
  894. struct pxa2xx_spi_chip *chip_info = NULL;
  895. struct chip_data *chip;
  896. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  897. struct ssp_device *ssp = drv_data->ssp;
  898. unsigned int clk_div;
  899. if (!spi->bits_per_word)
  900. spi->bits_per_word = 8;
  901. if (drv_data->ssp_type != PXA25x_SSP
  902. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  903. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  904. "b/w not 4-32 for type non-PXA25x_SSP\n",
  905. drv_data->ssp_type, spi->bits_per_word);
  906. return -EINVAL;
  907. }
  908. else if (drv_data->ssp_type == PXA25x_SSP
  909. && (spi->bits_per_word < 4
  910. || spi->bits_per_word > 16)) {
  911. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  912. "b/w not 4-16 for type PXA25x_SSP\n",
  913. drv_data->ssp_type, spi->bits_per_word);
  914. return -EINVAL;
  915. }
  916. if (spi->mode & ~MODEBITS) {
  917. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  918. spi->mode & ~MODEBITS);
  919. return -EINVAL;
  920. }
  921. /* Only alloc on first setup */
  922. chip = spi_get_ctldata(spi);
  923. if (!chip) {
  924. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  925. if (!chip) {
  926. dev_err(&spi->dev,
  927. "failed setup: can't allocate chip data\n");
  928. return -ENOMEM;
  929. }
  930. chip->cs_control = null_cs_control;
  931. chip->enable_dma = 0;
  932. chip->timeout = 1000;
  933. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  934. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  935. DCMD_BURST8 : 0;
  936. }
  937. /* protocol drivers may change the chip settings, so...
  938. * if chip_info exists, use it */
  939. chip_info = spi->controller_data;
  940. /* chip_info isn't always needed */
  941. chip->cr1 = 0;
  942. if (chip_info) {
  943. if (chip_info->cs_control)
  944. chip->cs_control = chip_info->cs_control;
  945. chip->timeout = chip_info->timeout;
  946. chip->threshold = (SSCR1_RxTresh(chip_info->rx_threshold) &
  947. SSCR1_RFT) |
  948. (SSCR1_TxTresh(chip_info->tx_threshold) &
  949. SSCR1_TFT);
  950. chip->enable_dma = chip_info->dma_burst_size != 0
  951. && drv_data->master_info->enable_dma;
  952. chip->dma_threshold = 0;
  953. if (chip_info->enable_loopback)
  954. chip->cr1 = SSCR1_LBM;
  955. }
  956. /* set dma burst and threshold outside of chip_info path so that if
  957. * chip_info goes away after setting chip->enable_dma, the
  958. * burst and threshold can still respond to changes in bits_per_word */
  959. if (chip->enable_dma) {
  960. /* set up legal burst and threshold for dma */
  961. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  962. &chip->dma_burst_size,
  963. &chip->dma_threshold)) {
  964. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  965. "to match bits_per_word\n");
  966. }
  967. }
  968. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  969. chip->speed_hz = spi->max_speed_hz;
  970. chip->cr0 = clk_div
  971. | SSCR0_Motorola
  972. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  973. spi->bits_per_word - 16 : spi->bits_per_word)
  974. | SSCR0_SSE
  975. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  976. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  977. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  978. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  979. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  980. if (drv_data->ssp_type != PXA25x_SSP)
  981. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  982. spi->bits_per_word,
  983. clk_get_rate(ssp->clk)
  984. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  985. spi->mode & 0x3);
  986. else
  987. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  988. spi->bits_per_word,
  989. clk_get_rate(ssp->clk)
  990. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  991. spi->mode & 0x3);
  992. if (spi->bits_per_word <= 8) {
  993. chip->n_bytes = 1;
  994. chip->dma_width = DCMD_WIDTH1;
  995. chip->read = u8_reader;
  996. chip->write = u8_writer;
  997. } else if (spi->bits_per_word <= 16) {
  998. chip->n_bytes = 2;
  999. chip->dma_width = DCMD_WIDTH2;
  1000. chip->read = u16_reader;
  1001. chip->write = u16_writer;
  1002. } else if (spi->bits_per_word <= 32) {
  1003. chip->cr0 |= SSCR0_EDSS;
  1004. chip->n_bytes = 4;
  1005. chip->dma_width = DCMD_WIDTH4;
  1006. chip->read = u32_reader;
  1007. chip->write = u32_writer;
  1008. } else {
  1009. dev_err(&spi->dev, "invalid wordsize\n");
  1010. return -ENODEV;
  1011. }
  1012. chip->bits_per_word = spi->bits_per_word;
  1013. spi_set_ctldata(spi, chip);
  1014. return 0;
  1015. }
  1016. static void cleanup(struct spi_device *spi)
  1017. {
  1018. struct chip_data *chip = spi_get_ctldata(spi);
  1019. kfree(chip);
  1020. }
  1021. static int __init init_queue(struct driver_data *drv_data)
  1022. {
  1023. INIT_LIST_HEAD(&drv_data->queue);
  1024. spin_lock_init(&drv_data->lock);
  1025. drv_data->run = QUEUE_STOPPED;
  1026. drv_data->busy = 0;
  1027. tasklet_init(&drv_data->pump_transfers,
  1028. pump_transfers, (unsigned long)drv_data);
  1029. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1030. drv_data->workqueue = create_singlethread_workqueue(
  1031. drv_data->master->dev.parent->bus_id);
  1032. if (drv_data->workqueue == NULL)
  1033. return -EBUSY;
  1034. return 0;
  1035. }
  1036. static int start_queue(struct driver_data *drv_data)
  1037. {
  1038. unsigned long flags;
  1039. spin_lock_irqsave(&drv_data->lock, flags);
  1040. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1041. spin_unlock_irqrestore(&drv_data->lock, flags);
  1042. return -EBUSY;
  1043. }
  1044. drv_data->run = QUEUE_RUNNING;
  1045. drv_data->cur_msg = NULL;
  1046. drv_data->cur_transfer = NULL;
  1047. drv_data->cur_chip = NULL;
  1048. spin_unlock_irqrestore(&drv_data->lock, flags);
  1049. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1050. return 0;
  1051. }
  1052. static int stop_queue(struct driver_data *drv_data)
  1053. {
  1054. unsigned long flags;
  1055. unsigned limit = 500;
  1056. int status = 0;
  1057. spin_lock_irqsave(&drv_data->lock, flags);
  1058. /* This is a bit lame, but is optimized for the common execution path.
  1059. * A wait_queue on the drv_data->busy could be used, but then the common
  1060. * execution path (pump_messages) would be required to call wake_up or
  1061. * friends on every SPI message. Do this instead */
  1062. drv_data->run = QUEUE_STOPPED;
  1063. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1064. spin_unlock_irqrestore(&drv_data->lock, flags);
  1065. msleep(10);
  1066. spin_lock_irqsave(&drv_data->lock, flags);
  1067. }
  1068. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1069. status = -EBUSY;
  1070. spin_unlock_irqrestore(&drv_data->lock, flags);
  1071. return status;
  1072. }
  1073. static int destroy_queue(struct driver_data *drv_data)
  1074. {
  1075. int status;
  1076. status = stop_queue(drv_data);
  1077. /* we are unloading the module or failing to load (only two calls
  1078. * to this routine), and neither call can handle a return value.
  1079. * However, destroy_workqueue calls flush_workqueue, and that will
  1080. * block until all work is done. If the reason that stop_queue
  1081. * timed out is that the work will never finish, then it does no
  1082. * good to call destroy_workqueue, so return anyway. */
  1083. if (status != 0)
  1084. return status;
  1085. destroy_workqueue(drv_data->workqueue);
  1086. return 0;
  1087. }
  1088. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1089. {
  1090. struct device *dev = &pdev->dev;
  1091. struct pxa2xx_spi_master *platform_info;
  1092. struct spi_master *master;
  1093. struct driver_data *drv_data = 0;
  1094. struct ssp_device *ssp;
  1095. int status = 0;
  1096. platform_info = dev->platform_data;
  1097. ssp = ssp_request(pdev->id, pdev->name);
  1098. if (ssp == NULL) {
  1099. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1100. return -ENODEV;
  1101. }
  1102. /* Allocate master with space for drv_data and null dma buffer */
  1103. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1104. if (!master) {
  1105. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1106. ssp_free(ssp);
  1107. return -ENOMEM;
  1108. }
  1109. drv_data = spi_master_get_devdata(master);
  1110. drv_data->master = master;
  1111. drv_data->master_info = platform_info;
  1112. drv_data->pdev = pdev;
  1113. drv_data->ssp = ssp;
  1114. master->bus_num = pdev->id;
  1115. master->num_chipselect = platform_info->num_chipselect;
  1116. master->cleanup = cleanup;
  1117. master->setup = setup;
  1118. master->transfer = transfer;
  1119. drv_data->ssp_type = ssp->type;
  1120. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1121. sizeof(struct driver_data)), 8);
  1122. drv_data->ioaddr = ssp->mmio_base;
  1123. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1124. if (ssp->type == PXA25x_SSP) {
  1125. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1126. drv_data->dma_cr1 = 0;
  1127. drv_data->clear_sr = SSSR_ROR;
  1128. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1129. } else {
  1130. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1131. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1132. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1133. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1134. }
  1135. status = request_irq(ssp->irq, ssp_int, 0, dev->bus_id, drv_data);
  1136. if (status < 0) {
  1137. dev_err(&pdev->dev, "can not get IRQ\n");
  1138. goto out_error_master_alloc;
  1139. }
  1140. /* Setup DMA if requested */
  1141. drv_data->tx_channel = -1;
  1142. drv_data->rx_channel = -1;
  1143. if (platform_info->enable_dma) {
  1144. /* Get two DMA channels (rx and tx) */
  1145. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1146. DMA_PRIO_HIGH,
  1147. dma_handler,
  1148. drv_data);
  1149. if (drv_data->rx_channel < 0) {
  1150. dev_err(dev, "problem (%d) requesting rx channel\n",
  1151. drv_data->rx_channel);
  1152. status = -ENODEV;
  1153. goto out_error_irq_alloc;
  1154. }
  1155. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1156. DMA_PRIO_MEDIUM,
  1157. dma_handler,
  1158. drv_data);
  1159. if (drv_data->tx_channel < 0) {
  1160. dev_err(dev, "problem (%d) requesting tx channel\n",
  1161. drv_data->tx_channel);
  1162. status = -ENODEV;
  1163. goto out_error_dma_alloc;
  1164. }
  1165. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1166. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1167. }
  1168. /* Enable SOC clock */
  1169. clk_enable(ssp->clk);
  1170. /* Load default SSP configuration */
  1171. write_SSCR0(0, drv_data->ioaddr);
  1172. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  1173. write_SSCR0(SSCR0_SerClkDiv(2)
  1174. | SSCR0_Motorola
  1175. | SSCR0_DataSize(8),
  1176. drv_data->ioaddr);
  1177. if (drv_data->ssp_type != PXA25x_SSP)
  1178. write_SSTO(0, drv_data->ioaddr);
  1179. write_SSPSP(0, drv_data->ioaddr);
  1180. /* Initial and start queue */
  1181. status = init_queue(drv_data);
  1182. if (status != 0) {
  1183. dev_err(&pdev->dev, "problem initializing queue\n");
  1184. goto out_error_clock_enabled;
  1185. }
  1186. status = start_queue(drv_data);
  1187. if (status != 0) {
  1188. dev_err(&pdev->dev, "problem starting queue\n");
  1189. goto out_error_clock_enabled;
  1190. }
  1191. /* Register with the SPI framework */
  1192. platform_set_drvdata(pdev, drv_data);
  1193. status = spi_register_master(master);
  1194. if (status != 0) {
  1195. dev_err(&pdev->dev, "problem registering spi master\n");
  1196. goto out_error_queue_alloc;
  1197. }
  1198. return status;
  1199. out_error_queue_alloc:
  1200. destroy_queue(drv_data);
  1201. out_error_clock_enabled:
  1202. clk_disable(ssp->clk);
  1203. out_error_dma_alloc:
  1204. if (drv_data->tx_channel != -1)
  1205. pxa_free_dma(drv_data->tx_channel);
  1206. if (drv_data->rx_channel != -1)
  1207. pxa_free_dma(drv_data->rx_channel);
  1208. out_error_irq_alloc:
  1209. free_irq(ssp->irq, drv_data);
  1210. out_error_master_alloc:
  1211. spi_master_put(master);
  1212. ssp_free(ssp);
  1213. return status;
  1214. }
  1215. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1216. {
  1217. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1218. struct ssp_device *ssp = drv_data->ssp;
  1219. int status = 0;
  1220. if (!drv_data)
  1221. return 0;
  1222. /* Remove the queue */
  1223. status = destroy_queue(drv_data);
  1224. if (status != 0)
  1225. /* the kernel does not check the return status of this
  1226. * this routine (mod->exit, within the kernel). Therefore
  1227. * nothing is gained by returning from here, the module is
  1228. * going away regardless, and we should not leave any more
  1229. * resources allocated than necessary. We cannot free the
  1230. * message memory in drv_data->queue, but we can release the
  1231. * resources below. I think the kernel should honor -EBUSY
  1232. * returns but... */
  1233. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1234. "complete, message memory not freed\n");
  1235. /* Disable the SSP at the peripheral and SOC level */
  1236. write_SSCR0(0, drv_data->ioaddr);
  1237. clk_disable(ssp->clk);
  1238. /* Release DMA */
  1239. if (drv_data->master_info->enable_dma) {
  1240. DRCMR(ssp->drcmr_rx) = 0;
  1241. DRCMR(ssp->drcmr_tx) = 0;
  1242. pxa_free_dma(drv_data->tx_channel);
  1243. pxa_free_dma(drv_data->rx_channel);
  1244. }
  1245. /* Release IRQ */
  1246. free_irq(ssp->irq, drv_data);
  1247. /* Release SSP */
  1248. ssp_free(ssp);
  1249. /* Disconnect from the SPI framework */
  1250. spi_unregister_master(drv_data->master);
  1251. /* Prevent double remove */
  1252. platform_set_drvdata(pdev, NULL);
  1253. return 0;
  1254. }
  1255. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1256. {
  1257. int status = 0;
  1258. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1259. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1260. }
  1261. #ifdef CONFIG_PM
  1262. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1263. {
  1264. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1265. struct ssp_device *ssp = drv_data->ssp;
  1266. int status = 0;
  1267. status = stop_queue(drv_data);
  1268. if (status != 0)
  1269. return status;
  1270. write_SSCR0(0, drv_data->ioaddr);
  1271. clk_disable(ssp->clk);
  1272. return 0;
  1273. }
  1274. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1275. {
  1276. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1277. struct ssp_device *ssp = drv_data->ssp;
  1278. int status = 0;
  1279. /* Enable the SSP clock */
  1280. clk_disable(ssp->clk);
  1281. /* Start the queue running */
  1282. status = start_queue(drv_data);
  1283. if (status != 0) {
  1284. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1285. return status;
  1286. }
  1287. return 0;
  1288. }
  1289. #else
  1290. #define pxa2xx_spi_suspend NULL
  1291. #define pxa2xx_spi_resume NULL
  1292. #endif /* CONFIG_PM */
  1293. static struct platform_driver driver = {
  1294. .driver = {
  1295. .name = "pxa2xx-spi",
  1296. .bus = &platform_bus_type,
  1297. .owner = THIS_MODULE,
  1298. },
  1299. .remove = pxa2xx_spi_remove,
  1300. .shutdown = pxa2xx_spi_shutdown,
  1301. .suspend = pxa2xx_spi_suspend,
  1302. .resume = pxa2xx_spi_resume,
  1303. };
  1304. static int __init pxa2xx_spi_init(void)
  1305. {
  1306. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1307. }
  1308. module_init(pxa2xx_spi_init);
  1309. static void __exit pxa2xx_spi_exit(void)
  1310. {
  1311. platform_driver_unregister(&driver);
  1312. }
  1313. module_exit(pxa2xx_spi_exit);