rmap.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  64. }
  65. void anon_vma_free(struct anon_vma *anon_vma)
  66. {
  67. kmem_cache_free(anon_vma_cachep, anon_vma);
  68. }
  69. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  70. {
  71. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  72. }
  73. void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  74. {
  75. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  76. }
  77. /**
  78. * anon_vma_prepare - attach an anon_vma to a memory region
  79. * @vma: the memory region in question
  80. *
  81. * This makes sure the memory mapping described by 'vma' has
  82. * an 'anon_vma' attached to it, so that we can associate the
  83. * anonymous pages mapped into it with that anon_vma.
  84. *
  85. * The common case will be that we already have one, but if
  86. * if not we either need to find an adjacent mapping that we
  87. * can re-use the anon_vma from (very common when the only
  88. * reason for splitting a vma has been mprotect()), or we
  89. * allocate a new one.
  90. *
  91. * Anon-vma allocations are very subtle, because we may have
  92. * optimistically looked up an anon_vma in page_lock_anon_vma()
  93. * and that may actually touch the spinlock even in the newly
  94. * allocated vma (it depends on RCU to make sure that the
  95. * anon_vma isn't actually destroyed).
  96. *
  97. * As a result, we need to do proper anon_vma locking even
  98. * for the new allocation. At the same time, we do not want
  99. * to do any locking for the common case of already having
  100. * an anon_vma.
  101. *
  102. * This must be called with the mmap_sem held for reading.
  103. */
  104. int anon_vma_prepare(struct vm_area_struct *vma)
  105. {
  106. struct anon_vma *anon_vma = vma->anon_vma;
  107. struct anon_vma_chain *avc;
  108. might_sleep();
  109. if (unlikely(!anon_vma)) {
  110. struct mm_struct *mm = vma->vm_mm;
  111. struct anon_vma *allocated;
  112. avc = anon_vma_chain_alloc();
  113. if (!avc)
  114. goto out_enomem;
  115. anon_vma = find_mergeable_anon_vma(vma);
  116. allocated = NULL;
  117. if (!anon_vma) {
  118. anon_vma = anon_vma_alloc();
  119. if (unlikely(!anon_vma))
  120. goto out_enomem_free_avc;
  121. allocated = anon_vma;
  122. }
  123. spin_lock(&anon_vma->lock);
  124. /* page_table_lock to protect against threads */
  125. spin_lock(&mm->page_table_lock);
  126. if (likely(!vma->anon_vma)) {
  127. vma->anon_vma = anon_vma;
  128. avc->anon_vma = anon_vma;
  129. avc->vma = vma;
  130. list_add(&avc->same_vma, &vma->anon_vma_chain);
  131. list_add(&avc->same_anon_vma, &anon_vma->head);
  132. allocated = NULL;
  133. }
  134. spin_unlock(&mm->page_table_lock);
  135. spin_unlock(&anon_vma->lock);
  136. if (unlikely(allocated)) {
  137. anon_vma_free(allocated);
  138. anon_vma_chain_free(avc);
  139. }
  140. }
  141. return 0;
  142. out_enomem_free_avc:
  143. anon_vma_chain_free(avc);
  144. out_enomem:
  145. return -ENOMEM;
  146. }
  147. static void anon_vma_chain_link(struct vm_area_struct *vma,
  148. struct anon_vma_chain *avc,
  149. struct anon_vma *anon_vma)
  150. {
  151. avc->vma = vma;
  152. avc->anon_vma = anon_vma;
  153. list_add(&avc->same_vma, &vma->anon_vma_chain);
  154. spin_lock(&anon_vma->lock);
  155. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  156. spin_unlock(&anon_vma->lock);
  157. }
  158. /*
  159. * Attach the anon_vmas from src to dst.
  160. * Returns 0 on success, -ENOMEM on failure.
  161. */
  162. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  163. {
  164. struct anon_vma_chain *avc, *pavc;
  165. list_for_each_entry(pavc, &src->anon_vma_chain, same_vma) {
  166. avc = anon_vma_chain_alloc();
  167. if (!avc)
  168. goto enomem_failure;
  169. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  170. }
  171. return 0;
  172. enomem_failure:
  173. unlink_anon_vmas(dst);
  174. return -ENOMEM;
  175. }
  176. /*
  177. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  178. * the corresponding VMA in the parent process is attached to.
  179. * Returns 0 on success, non-zero on failure.
  180. */
  181. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  182. {
  183. struct anon_vma_chain *avc;
  184. struct anon_vma *anon_vma;
  185. /* Don't bother if the parent process has no anon_vma here. */
  186. if (!pvma->anon_vma)
  187. return 0;
  188. /*
  189. * First, attach the new VMA to the parent VMA's anon_vmas,
  190. * so rmap can find non-COWed pages in child processes.
  191. */
  192. if (anon_vma_clone(vma, pvma))
  193. return -ENOMEM;
  194. /* Then add our own anon_vma. */
  195. anon_vma = anon_vma_alloc();
  196. if (!anon_vma)
  197. goto out_error;
  198. avc = anon_vma_chain_alloc();
  199. if (!avc)
  200. goto out_error_free_anon_vma;
  201. anon_vma_chain_link(vma, avc, anon_vma);
  202. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  203. vma->anon_vma = anon_vma;
  204. return 0;
  205. out_error_free_anon_vma:
  206. anon_vma_free(anon_vma);
  207. out_error:
  208. return -ENOMEM;
  209. }
  210. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  211. {
  212. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  213. int empty;
  214. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  215. if (!anon_vma)
  216. return;
  217. spin_lock(&anon_vma->lock);
  218. list_del(&anon_vma_chain->same_anon_vma);
  219. /* We must garbage collect the anon_vma if it's empty */
  220. empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
  221. spin_unlock(&anon_vma->lock);
  222. if (empty)
  223. anon_vma_free(anon_vma);
  224. }
  225. void unlink_anon_vmas(struct vm_area_struct *vma)
  226. {
  227. struct anon_vma_chain *avc, *next;
  228. /* Unlink each anon_vma chained to the VMA. */
  229. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  230. anon_vma_unlink(avc);
  231. list_del(&avc->same_vma);
  232. anon_vma_chain_free(avc);
  233. }
  234. }
  235. static void anon_vma_ctor(void *data)
  236. {
  237. struct anon_vma *anon_vma = data;
  238. spin_lock_init(&anon_vma->lock);
  239. ksm_refcount_init(anon_vma);
  240. INIT_LIST_HEAD(&anon_vma->head);
  241. }
  242. void __init anon_vma_init(void)
  243. {
  244. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  245. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  246. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  247. }
  248. /*
  249. * Getting a lock on a stable anon_vma from a page off the LRU is
  250. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  251. */
  252. struct anon_vma *page_lock_anon_vma(struct page *page)
  253. {
  254. struct anon_vma *anon_vma;
  255. unsigned long anon_mapping;
  256. rcu_read_lock();
  257. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  258. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  259. goto out;
  260. if (!page_mapped(page))
  261. goto out;
  262. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  263. spin_lock(&anon_vma->lock);
  264. return anon_vma;
  265. out:
  266. rcu_read_unlock();
  267. return NULL;
  268. }
  269. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  270. {
  271. spin_unlock(&anon_vma->lock);
  272. rcu_read_unlock();
  273. }
  274. /*
  275. * At what user virtual address is page expected in @vma?
  276. * Returns virtual address or -EFAULT if page's index/offset is not
  277. * within the range mapped the @vma.
  278. */
  279. static inline unsigned long
  280. vma_address(struct page *page, struct vm_area_struct *vma)
  281. {
  282. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  283. unsigned long address;
  284. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  285. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  286. /* page should be within @vma mapping range */
  287. return -EFAULT;
  288. }
  289. if (unlikely(vma->vm_flags & VM_LOCK_RMAP)) {
  290. /*
  291. * This VMA is being unlinked or is not yet linked into the
  292. * VMA tree. Do not try to follow this rmap. This race
  293. * condition can result in page_referenced() ignoring a
  294. * reference or in try_to_unmap() failing to unmap a page.
  295. * The VMA cannot be freed under us because we hold the
  296. * anon_vma->lock, which the munmap code takes while
  297. * unlinking the anon_vmas from the VMA.
  298. */
  299. return -EFAULT;
  300. }
  301. return address;
  302. }
  303. /*
  304. * At what user virtual address is page expected in vma?
  305. * checking that the page matches the vma.
  306. */
  307. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  308. {
  309. if (PageAnon(page)) {
  310. if (vma->anon_vma != page_anon_vma(page))
  311. return -EFAULT;
  312. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  313. if (!vma->vm_file ||
  314. vma->vm_file->f_mapping != page->mapping)
  315. return -EFAULT;
  316. } else
  317. return -EFAULT;
  318. return vma_address(page, vma);
  319. }
  320. /*
  321. * Check that @page is mapped at @address into @mm.
  322. *
  323. * If @sync is false, page_check_address may perform a racy check to avoid
  324. * the page table lock when the pte is not present (helpful when reclaiming
  325. * highly shared pages).
  326. *
  327. * On success returns with pte mapped and locked.
  328. */
  329. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  330. unsigned long address, spinlock_t **ptlp, int sync)
  331. {
  332. pgd_t *pgd;
  333. pud_t *pud;
  334. pmd_t *pmd;
  335. pte_t *pte;
  336. spinlock_t *ptl;
  337. pgd = pgd_offset(mm, address);
  338. if (!pgd_present(*pgd))
  339. return NULL;
  340. pud = pud_offset(pgd, address);
  341. if (!pud_present(*pud))
  342. return NULL;
  343. pmd = pmd_offset(pud, address);
  344. if (!pmd_present(*pmd))
  345. return NULL;
  346. pte = pte_offset_map(pmd, address);
  347. /* Make a quick check before getting the lock */
  348. if (!sync && !pte_present(*pte)) {
  349. pte_unmap(pte);
  350. return NULL;
  351. }
  352. ptl = pte_lockptr(mm, pmd);
  353. spin_lock(ptl);
  354. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  355. *ptlp = ptl;
  356. return pte;
  357. }
  358. pte_unmap_unlock(pte, ptl);
  359. return NULL;
  360. }
  361. /**
  362. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  363. * @page: the page to test
  364. * @vma: the VMA to test
  365. *
  366. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  367. * if the page is not mapped into the page tables of this VMA. Only
  368. * valid for normal file or anonymous VMAs.
  369. */
  370. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  371. {
  372. unsigned long address;
  373. pte_t *pte;
  374. spinlock_t *ptl;
  375. address = vma_address(page, vma);
  376. if (address == -EFAULT) /* out of vma range */
  377. return 0;
  378. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  379. if (!pte) /* the page is not in this mm */
  380. return 0;
  381. pte_unmap_unlock(pte, ptl);
  382. return 1;
  383. }
  384. /*
  385. * Subfunctions of page_referenced: page_referenced_one called
  386. * repeatedly from either page_referenced_anon or page_referenced_file.
  387. */
  388. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  389. unsigned long address, unsigned int *mapcount,
  390. unsigned long *vm_flags)
  391. {
  392. struct mm_struct *mm = vma->vm_mm;
  393. pte_t *pte;
  394. spinlock_t *ptl;
  395. int referenced = 0;
  396. pte = page_check_address(page, mm, address, &ptl, 0);
  397. if (!pte)
  398. goto out;
  399. /*
  400. * Don't want to elevate referenced for mlocked page that gets this far,
  401. * in order that it progresses to try_to_unmap and is moved to the
  402. * unevictable list.
  403. */
  404. if (vma->vm_flags & VM_LOCKED) {
  405. *mapcount = 1; /* break early from loop */
  406. *vm_flags |= VM_LOCKED;
  407. goto out_unmap;
  408. }
  409. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  410. /*
  411. * Don't treat a reference through a sequentially read
  412. * mapping as such. If the page has been used in
  413. * another mapping, we will catch it; if this other
  414. * mapping is already gone, the unmap path will have
  415. * set PG_referenced or activated the page.
  416. */
  417. if (likely(!VM_SequentialReadHint(vma)))
  418. referenced++;
  419. }
  420. /* Pretend the page is referenced if the task has the
  421. swap token and is in the middle of a page fault. */
  422. if (mm != current->mm && has_swap_token(mm) &&
  423. rwsem_is_locked(&mm->mmap_sem))
  424. referenced++;
  425. out_unmap:
  426. (*mapcount)--;
  427. pte_unmap_unlock(pte, ptl);
  428. if (referenced)
  429. *vm_flags |= vma->vm_flags;
  430. out:
  431. return referenced;
  432. }
  433. static int page_referenced_anon(struct page *page,
  434. struct mem_cgroup *mem_cont,
  435. unsigned long *vm_flags)
  436. {
  437. unsigned int mapcount;
  438. struct anon_vma *anon_vma;
  439. struct anon_vma_chain *avc;
  440. int referenced = 0;
  441. anon_vma = page_lock_anon_vma(page);
  442. if (!anon_vma)
  443. return referenced;
  444. mapcount = page_mapcount(page);
  445. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  446. struct vm_area_struct *vma = avc->vma;
  447. unsigned long address = vma_address(page, vma);
  448. if (address == -EFAULT)
  449. continue;
  450. /*
  451. * If we are reclaiming on behalf of a cgroup, skip
  452. * counting on behalf of references from different
  453. * cgroups
  454. */
  455. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  456. continue;
  457. referenced += page_referenced_one(page, vma, address,
  458. &mapcount, vm_flags);
  459. if (!mapcount)
  460. break;
  461. }
  462. page_unlock_anon_vma(anon_vma);
  463. return referenced;
  464. }
  465. /**
  466. * page_referenced_file - referenced check for object-based rmap
  467. * @page: the page we're checking references on.
  468. * @mem_cont: target memory controller
  469. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  470. *
  471. * For an object-based mapped page, find all the places it is mapped and
  472. * check/clear the referenced flag. This is done by following the page->mapping
  473. * pointer, then walking the chain of vmas it holds. It returns the number
  474. * of references it found.
  475. *
  476. * This function is only called from page_referenced for object-based pages.
  477. */
  478. static int page_referenced_file(struct page *page,
  479. struct mem_cgroup *mem_cont,
  480. unsigned long *vm_flags)
  481. {
  482. unsigned int mapcount;
  483. struct address_space *mapping = page->mapping;
  484. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  485. struct vm_area_struct *vma;
  486. struct prio_tree_iter iter;
  487. int referenced = 0;
  488. /*
  489. * The caller's checks on page->mapping and !PageAnon have made
  490. * sure that this is a file page: the check for page->mapping
  491. * excludes the case just before it gets set on an anon page.
  492. */
  493. BUG_ON(PageAnon(page));
  494. /*
  495. * The page lock not only makes sure that page->mapping cannot
  496. * suddenly be NULLified by truncation, it makes sure that the
  497. * structure at mapping cannot be freed and reused yet,
  498. * so we can safely take mapping->i_mmap_lock.
  499. */
  500. BUG_ON(!PageLocked(page));
  501. spin_lock(&mapping->i_mmap_lock);
  502. /*
  503. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  504. * is more likely to be accurate if we note it after spinning.
  505. */
  506. mapcount = page_mapcount(page);
  507. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  508. unsigned long address = vma_address(page, vma);
  509. if (address == -EFAULT)
  510. continue;
  511. /*
  512. * If we are reclaiming on behalf of a cgroup, skip
  513. * counting on behalf of references from different
  514. * cgroups
  515. */
  516. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  517. continue;
  518. referenced += page_referenced_one(page, vma, address,
  519. &mapcount, vm_flags);
  520. if (!mapcount)
  521. break;
  522. }
  523. spin_unlock(&mapping->i_mmap_lock);
  524. return referenced;
  525. }
  526. /**
  527. * page_referenced - test if the page was referenced
  528. * @page: the page to test
  529. * @is_locked: caller holds lock on the page
  530. * @mem_cont: target memory controller
  531. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  532. *
  533. * Quick test_and_clear_referenced for all mappings to a page,
  534. * returns the number of ptes which referenced the page.
  535. */
  536. int page_referenced(struct page *page,
  537. int is_locked,
  538. struct mem_cgroup *mem_cont,
  539. unsigned long *vm_flags)
  540. {
  541. int referenced = 0;
  542. int we_locked = 0;
  543. if (TestClearPageReferenced(page))
  544. referenced++;
  545. *vm_flags = 0;
  546. if (page_mapped(page) && page_rmapping(page)) {
  547. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  548. we_locked = trylock_page(page);
  549. if (!we_locked) {
  550. referenced++;
  551. goto out;
  552. }
  553. }
  554. if (unlikely(PageKsm(page)))
  555. referenced += page_referenced_ksm(page, mem_cont,
  556. vm_flags);
  557. else if (PageAnon(page))
  558. referenced += page_referenced_anon(page, mem_cont,
  559. vm_flags);
  560. else if (page->mapping)
  561. referenced += page_referenced_file(page, mem_cont,
  562. vm_flags);
  563. if (we_locked)
  564. unlock_page(page);
  565. }
  566. out:
  567. if (page_test_and_clear_young(page))
  568. referenced++;
  569. return referenced;
  570. }
  571. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  572. unsigned long address)
  573. {
  574. struct mm_struct *mm = vma->vm_mm;
  575. pte_t *pte;
  576. spinlock_t *ptl;
  577. int ret = 0;
  578. pte = page_check_address(page, mm, address, &ptl, 1);
  579. if (!pte)
  580. goto out;
  581. if (pte_dirty(*pte) || pte_write(*pte)) {
  582. pte_t entry;
  583. flush_cache_page(vma, address, pte_pfn(*pte));
  584. entry = ptep_clear_flush_notify(vma, address, pte);
  585. entry = pte_wrprotect(entry);
  586. entry = pte_mkclean(entry);
  587. set_pte_at(mm, address, pte, entry);
  588. ret = 1;
  589. }
  590. pte_unmap_unlock(pte, ptl);
  591. out:
  592. return ret;
  593. }
  594. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  595. {
  596. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  597. struct vm_area_struct *vma;
  598. struct prio_tree_iter iter;
  599. int ret = 0;
  600. BUG_ON(PageAnon(page));
  601. spin_lock(&mapping->i_mmap_lock);
  602. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  603. if (vma->vm_flags & VM_SHARED) {
  604. unsigned long address = vma_address(page, vma);
  605. if (address == -EFAULT)
  606. continue;
  607. ret += page_mkclean_one(page, vma, address);
  608. }
  609. }
  610. spin_unlock(&mapping->i_mmap_lock);
  611. return ret;
  612. }
  613. int page_mkclean(struct page *page)
  614. {
  615. int ret = 0;
  616. BUG_ON(!PageLocked(page));
  617. if (page_mapped(page)) {
  618. struct address_space *mapping = page_mapping(page);
  619. if (mapping) {
  620. ret = page_mkclean_file(mapping, page);
  621. if (page_test_dirty(page)) {
  622. page_clear_dirty(page);
  623. ret = 1;
  624. }
  625. }
  626. }
  627. return ret;
  628. }
  629. EXPORT_SYMBOL_GPL(page_mkclean);
  630. /**
  631. * __page_set_anon_rmap - setup new anonymous rmap
  632. * @page: the page to add the mapping to
  633. * @vma: the vm area in which the mapping is added
  634. * @address: the user virtual address mapped
  635. */
  636. static void __page_set_anon_rmap(struct page *page,
  637. struct vm_area_struct *vma, unsigned long address)
  638. {
  639. struct anon_vma *anon_vma = vma->anon_vma;
  640. BUG_ON(!anon_vma);
  641. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  642. page->mapping = (struct address_space *) anon_vma;
  643. page->index = linear_page_index(vma, address);
  644. }
  645. /**
  646. * __page_check_anon_rmap - sanity check anonymous rmap addition
  647. * @page: the page to add the mapping to
  648. * @vma: the vm area in which the mapping is added
  649. * @address: the user virtual address mapped
  650. */
  651. static void __page_check_anon_rmap(struct page *page,
  652. struct vm_area_struct *vma, unsigned long address)
  653. {
  654. #ifdef CONFIG_DEBUG_VM
  655. /*
  656. * The page's anon-rmap details (mapping and index) are guaranteed to
  657. * be set up correctly at this point.
  658. *
  659. * We have exclusion against page_add_anon_rmap because the caller
  660. * always holds the page locked, except if called from page_dup_rmap,
  661. * in which case the page is already known to be setup.
  662. *
  663. * We have exclusion against page_add_new_anon_rmap because those pages
  664. * are initially only visible via the pagetables, and the pte is locked
  665. * over the call to page_add_new_anon_rmap.
  666. */
  667. struct anon_vma *anon_vma = vma->anon_vma;
  668. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  669. BUG_ON(page->mapping != (struct address_space *)anon_vma);
  670. BUG_ON(page->index != linear_page_index(vma, address));
  671. #endif
  672. }
  673. /**
  674. * page_add_anon_rmap - add pte mapping to an anonymous page
  675. * @page: the page to add the mapping to
  676. * @vma: the vm area in which the mapping is added
  677. * @address: the user virtual address mapped
  678. *
  679. * The caller needs to hold the pte lock, and the page must be locked in
  680. * the anon_vma case: to serialize mapping,index checking after setting,
  681. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  682. * (but PageKsm is never downgraded to PageAnon).
  683. */
  684. void page_add_anon_rmap(struct page *page,
  685. struct vm_area_struct *vma, unsigned long address)
  686. {
  687. int first = atomic_inc_and_test(&page->_mapcount);
  688. if (first)
  689. __inc_zone_page_state(page, NR_ANON_PAGES);
  690. if (unlikely(PageKsm(page)))
  691. return;
  692. VM_BUG_ON(!PageLocked(page));
  693. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  694. if (first)
  695. __page_set_anon_rmap(page, vma, address);
  696. else
  697. __page_check_anon_rmap(page, vma, address);
  698. }
  699. /**
  700. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  701. * @page: the page to add the mapping to
  702. * @vma: the vm area in which the mapping is added
  703. * @address: the user virtual address mapped
  704. *
  705. * Same as page_add_anon_rmap but must only be called on *new* pages.
  706. * This means the inc-and-test can be bypassed.
  707. * Page does not have to be locked.
  708. */
  709. void page_add_new_anon_rmap(struct page *page,
  710. struct vm_area_struct *vma, unsigned long address)
  711. {
  712. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  713. SetPageSwapBacked(page);
  714. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  715. __inc_zone_page_state(page, NR_ANON_PAGES);
  716. __page_set_anon_rmap(page, vma, address);
  717. if (page_evictable(page, vma))
  718. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  719. else
  720. add_page_to_unevictable_list(page);
  721. }
  722. /**
  723. * page_add_file_rmap - add pte mapping to a file page
  724. * @page: the page to add the mapping to
  725. *
  726. * The caller needs to hold the pte lock.
  727. */
  728. void page_add_file_rmap(struct page *page)
  729. {
  730. if (atomic_inc_and_test(&page->_mapcount)) {
  731. __inc_zone_page_state(page, NR_FILE_MAPPED);
  732. mem_cgroup_update_file_mapped(page, 1);
  733. }
  734. }
  735. /**
  736. * page_remove_rmap - take down pte mapping from a page
  737. * @page: page to remove mapping from
  738. *
  739. * The caller needs to hold the pte lock.
  740. */
  741. void page_remove_rmap(struct page *page)
  742. {
  743. /* page still mapped by someone else? */
  744. if (!atomic_add_negative(-1, &page->_mapcount))
  745. return;
  746. /*
  747. * Now that the last pte has gone, s390 must transfer dirty
  748. * flag from storage key to struct page. We can usually skip
  749. * this if the page is anon, so about to be freed; but perhaps
  750. * not if it's in swapcache - there might be another pte slot
  751. * containing the swap entry, but page not yet written to swap.
  752. */
  753. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  754. page_clear_dirty(page);
  755. set_page_dirty(page);
  756. }
  757. if (PageAnon(page)) {
  758. mem_cgroup_uncharge_page(page);
  759. __dec_zone_page_state(page, NR_ANON_PAGES);
  760. } else {
  761. __dec_zone_page_state(page, NR_FILE_MAPPED);
  762. mem_cgroup_update_file_mapped(page, -1);
  763. }
  764. /*
  765. * It would be tidy to reset the PageAnon mapping here,
  766. * but that might overwrite a racing page_add_anon_rmap
  767. * which increments mapcount after us but sets mapping
  768. * before us: so leave the reset to free_hot_cold_page,
  769. * and remember that it's only reliable while mapped.
  770. * Leaving it set also helps swapoff to reinstate ptes
  771. * faster for those pages still in swapcache.
  772. */
  773. }
  774. /*
  775. * Subfunctions of try_to_unmap: try_to_unmap_one called
  776. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  777. */
  778. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  779. unsigned long address, enum ttu_flags flags)
  780. {
  781. struct mm_struct *mm = vma->vm_mm;
  782. pte_t *pte;
  783. pte_t pteval;
  784. spinlock_t *ptl;
  785. int ret = SWAP_AGAIN;
  786. pte = page_check_address(page, mm, address, &ptl, 0);
  787. if (!pte)
  788. goto out;
  789. /*
  790. * If the page is mlock()d, we cannot swap it out.
  791. * If it's recently referenced (perhaps page_referenced
  792. * skipped over this mm) then we should reactivate it.
  793. */
  794. if (!(flags & TTU_IGNORE_MLOCK)) {
  795. if (vma->vm_flags & VM_LOCKED)
  796. goto out_mlock;
  797. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  798. goto out_unmap;
  799. }
  800. if (!(flags & TTU_IGNORE_ACCESS)) {
  801. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  802. ret = SWAP_FAIL;
  803. goto out_unmap;
  804. }
  805. }
  806. /* Nuke the page table entry. */
  807. flush_cache_page(vma, address, page_to_pfn(page));
  808. pteval = ptep_clear_flush_notify(vma, address, pte);
  809. /* Move the dirty bit to the physical page now the pte is gone. */
  810. if (pte_dirty(pteval))
  811. set_page_dirty(page);
  812. /* Update high watermark before we lower rss */
  813. update_hiwater_rss(mm);
  814. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  815. if (PageAnon(page))
  816. dec_mm_counter(mm, MM_ANONPAGES);
  817. else
  818. dec_mm_counter(mm, MM_FILEPAGES);
  819. set_pte_at(mm, address, pte,
  820. swp_entry_to_pte(make_hwpoison_entry(page)));
  821. } else if (PageAnon(page)) {
  822. swp_entry_t entry = { .val = page_private(page) };
  823. if (PageSwapCache(page)) {
  824. /*
  825. * Store the swap location in the pte.
  826. * See handle_pte_fault() ...
  827. */
  828. if (swap_duplicate(entry) < 0) {
  829. set_pte_at(mm, address, pte, pteval);
  830. ret = SWAP_FAIL;
  831. goto out_unmap;
  832. }
  833. if (list_empty(&mm->mmlist)) {
  834. spin_lock(&mmlist_lock);
  835. if (list_empty(&mm->mmlist))
  836. list_add(&mm->mmlist, &init_mm.mmlist);
  837. spin_unlock(&mmlist_lock);
  838. }
  839. dec_mm_counter(mm, MM_ANONPAGES);
  840. inc_mm_counter(mm, MM_SWAPENTS);
  841. } else if (PAGE_MIGRATION) {
  842. /*
  843. * Store the pfn of the page in a special migration
  844. * pte. do_swap_page() will wait until the migration
  845. * pte is removed and then restart fault handling.
  846. */
  847. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  848. entry = make_migration_entry(page, pte_write(pteval));
  849. }
  850. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  851. BUG_ON(pte_file(*pte));
  852. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  853. /* Establish migration entry for a file page */
  854. swp_entry_t entry;
  855. entry = make_migration_entry(page, pte_write(pteval));
  856. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  857. } else
  858. dec_mm_counter(mm, MM_FILEPAGES);
  859. page_remove_rmap(page);
  860. page_cache_release(page);
  861. out_unmap:
  862. pte_unmap_unlock(pte, ptl);
  863. out:
  864. return ret;
  865. out_mlock:
  866. pte_unmap_unlock(pte, ptl);
  867. /*
  868. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  869. * unstable result and race. Plus, We can't wait here because
  870. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  871. * if trylock failed, the page remain in evictable lru and later
  872. * vmscan could retry to move the page to unevictable lru if the
  873. * page is actually mlocked.
  874. */
  875. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  876. if (vma->vm_flags & VM_LOCKED) {
  877. mlock_vma_page(page);
  878. ret = SWAP_MLOCK;
  879. }
  880. up_read(&vma->vm_mm->mmap_sem);
  881. }
  882. return ret;
  883. }
  884. /*
  885. * objrmap doesn't work for nonlinear VMAs because the assumption that
  886. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  887. * Consequently, given a particular page and its ->index, we cannot locate the
  888. * ptes which are mapping that page without an exhaustive linear search.
  889. *
  890. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  891. * maps the file to which the target page belongs. The ->vm_private_data field
  892. * holds the current cursor into that scan. Successive searches will circulate
  893. * around the vma's virtual address space.
  894. *
  895. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  896. * more scanning pressure is placed against them as well. Eventually pages
  897. * will become fully unmapped and are eligible for eviction.
  898. *
  899. * For very sparsely populated VMAs this is a little inefficient - chances are
  900. * there there won't be many ptes located within the scan cluster. In this case
  901. * maybe we could scan further - to the end of the pte page, perhaps.
  902. *
  903. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  904. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  905. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  906. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  907. */
  908. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  909. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  910. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  911. struct vm_area_struct *vma, struct page *check_page)
  912. {
  913. struct mm_struct *mm = vma->vm_mm;
  914. pgd_t *pgd;
  915. pud_t *pud;
  916. pmd_t *pmd;
  917. pte_t *pte;
  918. pte_t pteval;
  919. spinlock_t *ptl;
  920. struct page *page;
  921. unsigned long address;
  922. unsigned long end;
  923. int ret = SWAP_AGAIN;
  924. int locked_vma = 0;
  925. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  926. end = address + CLUSTER_SIZE;
  927. if (address < vma->vm_start)
  928. address = vma->vm_start;
  929. if (end > vma->vm_end)
  930. end = vma->vm_end;
  931. pgd = pgd_offset(mm, address);
  932. if (!pgd_present(*pgd))
  933. return ret;
  934. pud = pud_offset(pgd, address);
  935. if (!pud_present(*pud))
  936. return ret;
  937. pmd = pmd_offset(pud, address);
  938. if (!pmd_present(*pmd))
  939. return ret;
  940. /*
  941. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  942. * keep the sem while scanning the cluster for mlocking pages.
  943. */
  944. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  945. locked_vma = (vma->vm_flags & VM_LOCKED);
  946. if (!locked_vma)
  947. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  948. }
  949. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  950. /* Update high watermark before we lower rss */
  951. update_hiwater_rss(mm);
  952. for (; address < end; pte++, address += PAGE_SIZE) {
  953. if (!pte_present(*pte))
  954. continue;
  955. page = vm_normal_page(vma, address, *pte);
  956. BUG_ON(!page || PageAnon(page));
  957. if (locked_vma) {
  958. mlock_vma_page(page); /* no-op if already mlocked */
  959. if (page == check_page)
  960. ret = SWAP_MLOCK;
  961. continue; /* don't unmap */
  962. }
  963. if (ptep_clear_flush_young_notify(vma, address, pte))
  964. continue;
  965. /* Nuke the page table entry. */
  966. flush_cache_page(vma, address, pte_pfn(*pte));
  967. pteval = ptep_clear_flush_notify(vma, address, pte);
  968. /* If nonlinear, store the file page offset in the pte. */
  969. if (page->index != linear_page_index(vma, address))
  970. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  971. /* Move the dirty bit to the physical page now the pte is gone. */
  972. if (pte_dirty(pteval))
  973. set_page_dirty(page);
  974. page_remove_rmap(page);
  975. page_cache_release(page);
  976. dec_mm_counter(mm, MM_FILEPAGES);
  977. (*mapcount)--;
  978. }
  979. pte_unmap_unlock(pte - 1, ptl);
  980. if (locked_vma)
  981. up_read(&vma->vm_mm->mmap_sem);
  982. return ret;
  983. }
  984. /**
  985. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  986. * rmap method
  987. * @page: the page to unmap/unlock
  988. * @flags: action and flags
  989. *
  990. * Find all the mappings of a page using the mapping pointer and the vma chains
  991. * contained in the anon_vma struct it points to.
  992. *
  993. * This function is only called from try_to_unmap/try_to_munlock for
  994. * anonymous pages.
  995. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  996. * where the page was found will be held for write. So, we won't recheck
  997. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  998. * 'LOCKED.
  999. */
  1000. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1001. {
  1002. struct anon_vma *anon_vma;
  1003. struct anon_vma_chain *avc;
  1004. int ret = SWAP_AGAIN;
  1005. anon_vma = page_lock_anon_vma(page);
  1006. if (!anon_vma)
  1007. return ret;
  1008. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1009. struct vm_area_struct *vma = avc->vma;
  1010. unsigned long address = vma_address(page, vma);
  1011. if (address == -EFAULT)
  1012. continue;
  1013. ret = try_to_unmap_one(page, vma, address, flags);
  1014. if (ret != SWAP_AGAIN || !page_mapped(page))
  1015. break;
  1016. }
  1017. page_unlock_anon_vma(anon_vma);
  1018. return ret;
  1019. }
  1020. /**
  1021. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1022. * @page: the page to unmap/unlock
  1023. * @flags: action and flags
  1024. *
  1025. * Find all the mappings of a page using the mapping pointer and the vma chains
  1026. * contained in the address_space struct it points to.
  1027. *
  1028. * This function is only called from try_to_unmap/try_to_munlock for
  1029. * object-based pages.
  1030. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1031. * where the page was found will be held for write. So, we won't recheck
  1032. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1033. * 'LOCKED.
  1034. */
  1035. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1036. {
  1037. struct address_space *mapping = page->mapping;
  1038. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1039. struct vm_area_struct *vma;
  1040. struct prio_tree_iter iter;
  1041. int ret = SWAP_AGAIN;
  1042. unsigned long cursor;
  1043. unsigned long max_nl_cursor = 0;
  1044. unsigned long max_nl_size = 0;
  1045. unsigned int mapcount;
  1046. spin_lock(&mapping->i_mmap_lock);
  1047. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1048. unsigned long address = vma_address(page, vma);
  1049. if (address == -EFAULT)
  1050. continue;
  1051. ret = try_to_unmap_one(page, vma, address, flags);
  1052. if (ret != SWAP_AGAIN || !page_mapped(page))
  1053. goto out;
  1054. }
  1055. if (list_empty(&mapping->i_mmap_nonlinear))
  1056. goto out;
  1057. /*
  1058. * We don't bother to try to find the munlocked page in nonlinears.
  1059. * It's costly. Instead, later, page reclaim logic may call
  1060. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1061. */
  1062. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1063. goto out;
  1064. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1065. shared.vm_set.list) {
  1066. cursor = (unsigned long) vma->vm_private_data;
  1067. if (cursor > max_nl_cursor)
  1068. max_nl_cursor = cursor;
  1069. cursor = vma->vm_end - vma->vm_start;
  1070. if (cursor > max_nl_size)
  1071. max_nl_size = cursor;
  1072. }
  1073. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1074. ret = SWAP_FAIL;
  1075. goto out;
  1076. }
  1077. /*
  1078. * We don't try to search for this page in the nonlinear vmas,
  1079. * and page_referenced wouldn't have found it anyway. Instead
  1080. * just walk the nonlinear vmas trying to age and unmap some.
  1081. * The mapcount of the page we came in with is irrelevant,
  1082. * but even so use it as a guide to how hard we should try?
  1083. */
  1084. mapcount = page_mapcount(page);
  1085. if (!mapcount)
  1086. goto out;
  1087. cond_resched_lock(&mapping->i_mmap_lock);
  1088. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1089. if (max_nl_cursor == 0)
  1090. max_nl_cursor = CLUSTER_SIZE;
  1091. do {
  1092. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1093. shared.vm_set.list) {
  1094. cursor = (unsigned long) vma->vm_private_data;
  1095. while ( cursor < max_nl_cursor &&
  1096. cursor < vma->vm_end - vma->vm_start) {
  1097. if (try_to_unmap_cluster(cursor, &mapcount,
  1098. vma, page) == SWAP_MLOCK)
  1099. ret = SWAP_MLOCK;
  1100. cursor += CLUSTER_SIZE;
  1101. vma->vm_private_data = (void *) cursor;
  1102. if ((int)mapcount <= 0)
  1103. goto out;
  1104. }
  1105. vma->vm_private_data = (void *) max_nl_cursor;
  1106. }
  1107. cond_resched_lock(&mapping->i_mmap_lock);
  1108. max_nl_cursor += CLUSTER_SIZE;
  1109. } while (max_nl_cursor <= max_nl_size);
  1110. /*
  1111. * Don't loop forever (perhaps all the remaining pages are
  1112. * in locked vmas). Reset cursor on all unreserved nonlinear
  1113. * vmas, now forgetting on which ones it had fallen behind.
  1114. */
  1115. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1116. vma->vm_private_data = NULL;
  1117. out:
  1118. spin_unlock(&mapping->i_mmap_lock);
  1119. return ret;
  1120. }
  1121. /**
  1122. * try_to_unmap - try to remove all page table mappings to a page
  1123. * @page: the page to get unmapped
  1124. * @flags: action and flags
  1125. *
  1126. * Tries to remove all the page table entries which are mapping this
  1127. * page, used in the pageout path. Caller must hold the page lock.
  1128. * Return values are:
  1129. *
  1130. * SWAP_SUCCESS - we succeeded in removing all mappings
  1131. * SWAP_AGAIN - we missed a mapping, try again later
  1132. * SWAP_FAIL - the page is unswappable
  1133. * SWAP_MLOCK - page is mlocked.
  1134. */
  1135. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1136. {
  1137. int ret;
  1138. BUG_ON(!PageLocked(page));
  1139. if (unlikely(PageKsm(page)))
  1140. ret = try_to_unmap_ksm(page, flags);
  1141. else if (PageAnon(page))
  1142. ret = try_to_unmap_anon(page, flags);
  1143. else
  1144. ret = try_to_unmap_file(page, flags);
  1145. if (ret != SWAP_MLOCK && !page_mapped(page))
  1146. ret = SWAP_SUCCESS;
  1147. return ret;
  1148. }
  1149. /**
  1150. * try_to_munlock - try to munlock a page
  1151. * @page: the page to be munlocked
  1152. *
  1153. * Called from munlock code. Checks all of the VMAs mapping the page
  1154. * to make sure nobody else has this page mlocked. The page will be
  1155. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1156. *
  1157. * Return values are:
  1158. *
  1159. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1160. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1161. * SWAP_FAIL - page cannot be located at present
  1162. * SWAP_MLOCK - page is now mlocked.
  1163. */
  1164. int try_to_munlock(struct page *page)
  1165. {
  1166. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1167. if (unlikely(PageKsm(page)))
  1168. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1169. else if (PageAnon(page))
  1170. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1171. else
  1172. return try_to_unmap_file(page, TTU_MUNLOCK);
  1173. }
  1174. #ifdef CONFIG_MIGRATION
  1175. /*
  1176. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1177. * Called by migrate.c to remove migration ptes, but might be used more later.
  1178. */
  1179. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1180. struct vm_area_struct *, unsigned long, void *), void *arg)
  1181. {
  1182. struct anon_vma *anon_vma;
  1183. struct anon_vma_chain *avc;
  1184. int ret = SWAP_AGAIN;
  1185. /*
  1186. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1187. * because that depends on page_mapped(); but not all its usages
  1188. * are holding mmap_sem, which also gave the necessary guarantee
  1189. * (that this anon_vma's slab has not already been destroyed).
  1190. * This needs to be reviewed later: avoiding page_lock_anon_vma()
  1191. * is risky, and currently limits the usefulness of rmap_walk().
  1192. */
  1193. anon_vma = page_anon_vma(page);
  1194. if (!anon_vma)
  1195. return ret;
  1196. spin_lock(&anon_vma->lock);
  1197. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1198. struct vm_area_struct *vma = avc->vma;
  1199. unsigned long address = vma_address(page, vma);
  1200. if (address == -EFAULT)
  1201. continue;
  1202. ret = rmap_one(page, vma, address, arg);
  1203. if (ret != SWAP_AGAIN)
  1204. break;
  1205. }
  1206. spin_unlock(&anon_vma->lock);
  1207. return ret;
  1208. }
  1209. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1210. struct vm_area_struct *, unsigned long, void *), void *arg)
  1211. {
  1212. struct address_space *mapping = page->mapping;
  1213. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1214. struct vm_area_struct *vma;
  1215. struct prio_tree_iter iter;
  1216. int ret = SWAP_AGAIN;
  1217. if (!mapping)
  1218. return ret;
  1219. spin_lock(&mapping->i_mmap_lock);
  1220. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1221. unsigned long address = vma_address(page, vma);
  1222. if (address == -EFAULT)
  1223. continue;
  1224. ret = rmap_one(page, vma, address, arg);
  1225. if (ret != SWAP_AGAIN)
  1226. break;
  1227. }
  1228. /*
  1229. * No nonlinear handling: being always shared, nonlinear vmas
  1230. * never contain migration ptes. Decide what to do about this
  1231. * limitation to linear when we need rmap_walk() on nonlinear.
  1232. */
  1233. spin_unlock(&mapping->i_mmap_lock);
  1234. return ret;
  1235. }
  1236. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1237. struct vm_area_struct *, unsigned long, void *), void *arg)
  1238. {
  1239. VM_BUG_ON(!PageLocked(page));
  1240. if (unlikely(PageKsm(page)))
  1241. return rmap_walk_ksm(page, rmap_one, arg);
  1242. else if (PageAnon(page))
  1243. return rmap_walk_anon(page, rmap_one, arg);
  1244. else
  1245. return rmap_walk_file(page, rmap_one, arg);
  1246. }
  1247. #endif /* CONFIG_MIGRATION */