s3c2410.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690
  1. /* linux/drivers/mtd/nand/s3c2410.c
  2. *
  3. * Copyright (c) 2004,2005 Simtec Electronics
  4. * http://www.simtec.co.uk/products/SWLINUX/
  5. * Ben Dooks <ben@simtec.co.uk>
  6. *
  7. * Samsung S3C2410/S3C240 NAND driver
  8. *
  9. * Changelog:
  10. * 21-Sep-2004 BJD Initial version
  11. * 23-Sep-2004 BJD Mulitple device support
  12. * 28-Sep-2004 BJD Fixed ECC placement for Hardware mode
  13. * 12-Oct-2004 BJD Fixed errors in use of platform data
  14. * 18-Feb-2005 BJD Fix sparse errors
  15. * 14-Mar-2005 BJD Applied tglx's code reduction patch
  16. * 02-May-2005 BJD Fixed s3c2440 support
  17. * 02-May-2005 BJD Reduced hwcontrol decode
  18. * 20-Jun-2005 BJD Updated s3c2440 support, fixed timing bug
  19. * 08-Jul-2005 BJD Fix OOPS when no platform data supplied
  20. * 20-Oct-2005 BJD Fix timing calculation bug
  21. *
  22. * $Id: s3c2410.c,v 1.20 2005/11/07 11:14:31 gleixner Exp $
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2 of the License, or
  27. * (at your option) any later version.
  28. *
  29. * This program is distributed in the hope that it will be useful,
  30. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  31. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  32. * GNU General Public License for more details.
  33. *
  34. * You should have received a copy of the GNU General Public License
  35. * along with this program; if not, write to the Free Software
  36. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  37. */
  38. #include <config/mtd/nand/s3c2410/hwecc.h>
  39. #include <config/mtd/nand/s3c2410/debug.h>
  40. #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
  41. #define DEBUG
  42. #endif
  43. #include <linux/module.h>
  44. #include <linux/types.h>
  45. #include <linux/init.h>
  46. #include <linux/kernel.h>
  47. #include <linux/string.h>
  48. #include <linux/ioport.h>
  49. #include <linux/platform_device.h>
  50. #include <linux/delay.h>
  51. #include <linux/err.h>
  52. #include <linux/slab.h>
  53. #include <linux/clk.h>
  54. #include <linux/mtd/mtd.h>
  55. #include <linux/mtd/nand.h>
  56. #include <linux/mtd/nand_ecc.h>
  57. #include <linux/mtd/partitions.h>
  58. #include <asm/io.h>
  59. #include <asm/arch/regs-nand.h>
  60. #include <asm/arch/nand.h>
  61. #define PFX "s3c2410-nand: "
  62. #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
  63. static int hardware_ecc = 1;
  64. #else
  65. static int hardware_ecc = 0;
  66. #endif
  67. /* new oob placement block for use with hardware ecc generation
  68. */
  69. static struct nand_ecclayout nand_hw_eccoob = {
  70. .eccbytes = 3,
  71. .eccpos = {0, 1, 2},
  72. .oobfree = {{8, 8}}
  73. };
  74. /* controller and mtd information */
  75. struct s3c2410_nand_info;
  76. struct s3c2410_nand_mtd {
  77. struct mtd_info mtd;
  78. struct nand_chip chip;
  79. struct s3c2410_nand_set *set;
  80. struct s3c2410_nand_info *info;
  81. int scan_res;
  82. };
  83. /* overview of the s3c2410 nand state */
  84. struct s3c2410_nand_info {
  85. /* mtd info */
  86. struct nand_hw_control controller;
  87. struct s3c2410_nand_mtd *mtds;
  88. struct s3c2410_platform_nand *platform;
  89. /* device info */
  90. struct device *device;
  91. struct resource *area;
  92. struct clk *clk;
  93. void __iomem *regs;
  94. int mtd_count;
  95. unsigned char is_s3c2440;
  96. };
  97. /* conversion functions */
  98. static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
  99. {
  100. return container_of(mtd, struct s3c2410_nand_mtd, mtd);
  101. }
  102. static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
  103. {
  104. return s3c2410_nand_mtd_toours(mtd)->info;
  105. }
  106. static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
  107. {
  108. return platform_get_drvdata(dev);
  109. }
  110. static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
  111. {
  112. return dev->dev.platform_data;
  113. }
  114. /* timing calculations */
  115. #define NS_IN_KHZ 1000000
  116. static int s3c2410_nand_calc_rate(int wanted, unsigned long clk, int max)
  117. {
  118. int result;
  119. result = (wanted * clk) / NS_IN_KHZ;
  120. result++;
  121. pr_debug("result %d from %ld, %d\n", result, clk, wanted);
  122. if (result > max) {
  123. printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
  124. return -1;
  125. }
  126. if (result < 1)
  127. result = 1;
  128. return result;
  129. }
  130. #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
  131. /* controller setup */
  132. static int s3c2410_nand_inithw(struct s3c2410_nand_info *info, struct platform_device *pdev)
  133. {
  134. struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
  135. unsigned long clkrate = clk_get_rate(info->clk);
  136. int tacls, twrph0, twrph1;
  137. unsigned long cfg;
  138. /* calculate the timing information for the controller */
  139. clkrate /= 1000; /* turn clock into kHz for ease of use */
  140. if (plat != NULL) {
  141. tacls = s3c2410_nand_calc_rate(plat->tacls, clkrate, 4);
  142. twrph0 = s3c2410_nand_calc_rate(plat->twrph0, clkrate, 8);
  143. twrph1 = s3c2410_nand_calc_rate(plat->twrph1, clkrate, 8);
  144. } else {
  145. /* default timings */
  146. tacls = 4;
  147. twrph0 = 8;
  148. twrph1 = 8;
  149. }
  150. if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
  151. printk(KERN_ERR PFX "cannot get timings suitable for board\n");
  152. return -EINVAL;
  153. }
  154. printk(KERN_INFO PFX "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
  155. tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
  156. if (!info->is_s3c2440) {
  157. cfg = S3C2410_NFCONF_EN;
  158. cfg |= S3C2410_NFCONF_TACLS(tacls - 1);
  159. cfg |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
  160. cfg |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
  161. } else {
  162. cfg = S3C2440_NFCONF_TACLS(tacls - 1);
  163. cfg |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
  164. cfg |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
  165. }
  166. pr_debug(PFX "NF_CONF is 0x%lx\n", cfg);
  167. writel(cfg, info->regs + S3C2410_NFCONF);
  168. return 0;
  169. }
  170. /* select chip */
  171. static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
  172. {
  173. struct s3c2410_nand_info *info;
  174. struct s3c2410_nand_mtd *nmtd;
  175. struct nand_chip *this = mtd->priv;
  176. void __iomem *reg;
  177. unsigned long cur;
  178. unsigned long bit;
  179. nmtd = this->priv;
  180. info = nmtd->info;
  181. bit = (info->is_s3c2440) ? S3C2440_NFCONT_nFCE : S3C2410_NFCONF_nFCE;
  182. reg = info->regs + ((info->is_s3c2440) ? S3C2440_NFCONT : S3C2410_NFCONF);
  183. cur = readl(reg);
  184. if (chip == -1) {
  185. cur |= bit;
  186. } else {
  187. if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
  188. printk(KERN_ERR PFX "chip %d out of range\n", chip);
  189. return;
  190. }
  191. if (info->platform != NULL) {
  192. if (info->platform->select_chip != NULL)
  193. (info->platform->select_chip) (nmtd->set, chip);
  194. }
  195. cur &= ~bit;
  196. }
  197. writel(cur, reg);
  198. }
  199. /* command and control functions
  200. *
  201. * Note, these all use tglx's method of changing the IO_ADDR_W field
  202. * to make the code simpler, and use the nand layer's code to issue the
  203. * command and address sequences via the proper IO ports.
  204. *
  205. */
  206. static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
  207. unsigend int ctrl)
  208. {
  209. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  210. struct nand_chip *chip = mtd->priv;
  211. if (cmd == NAND_CMD_NONE)
  212. return;
  213. if (cmd & NAND_CLE)
  214. writeb(cmd, info->regs + S3C2410_NFCMD);
  215. else
  216. writeb(cmd, info->regs + S3C2410_NFADDR);
  217. }
  218. /* command and control functions */
  219. static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
  220. unsigend int ctrl)
  221. {
  222. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  223. struct nand_chip *chip = mtd->priv;
  224. if (cmd == NAND_CMD_NONE)
  225. return;
  226. if (cmd & NAND_CLE)
  227. writeb(cmd, info->regs + S3C2440_NFCMD);
  228. else
  229. writeb(cmd, info->regs + S3C2440_NFADDR);
  230. }
  231. /* s3c2410_nand_devready()
  232. *
  233. * returns 0 if the nand is busy, 1 if it is ready
  234. */
  235. static int s3c2410_nand_devready(struct mtd_info *mtd)
  236. {
  237. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  238. if (info->is_s3c2440)
  239. return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
  240. return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
  241. }
  242. /* ECC handling functions */
  243. static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
  244. {
  245. pr_debug("s3c2410_nand_correct_data(%p,%p,%p,%p)\n", mtd, dat, read_ecc, calc_ecc);
  246. pr_debug("eccs: read %02x,%02x,%02x vs calc %02x,%02x,%02x\n",
  247. read_ecc[0], read_ecc[1], read_ecc[2], calc_ecc[0], calc_ecc[1], calc_ecc[2]);
  248. if (read_ecc[0] == calc_ecc[0] && read_ecc[1] == calc_ecc[1] && read_ecc[2] == calc_ecc[2])
  249. return 0;
  250. /* we curently have no method for correcting the error */
  251. return -1;
  252. }
  253. /* ECC functions
  254. *
  255. * These allow the s3c2410 and s3c2440 to use the controller's ECC
  256. * generator block to ECC the data as it passes through]
  257. */
  258. static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
  259. {
  260. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  261. unsigned long ctrl;
  262. ctrl = readl(info->regs + S3C2410_NFCONF);
  263. ctrl |= S3C2410_NFCONF_INITECC;
  264. writel(ctrl, info->regs + S3C2410_NFCONF);
  265. }
  266. static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
  267. {
  268. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  269. unsigned long ctrl;
  270. ctrl = readl(info->regs + S3C2440_NFCONT);
  271. writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
  272. }
  273. static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
  274. {
  275. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  276. ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
  277. ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
  278. ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
  279. pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
  280. return 0;
  281. }
  282. static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
  283. {
  284. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  285. unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
  286. ecc_code[0] = ecc;
  287. ecc_code[1] = ecc >> 8;
  288. ecc_code[2] = ecc >> 16;
  289. pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
  290. return 0;
  291. }
  292. /* over-ride the standard functions for a little more speed. We can
  293. * use read/write block to move the data buffers to/from the controller
  294. */
  295. static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  296. {
  297. struct nand_chip *this = mtd->priv;
  298. readsb(this->IO_ADDR_R, buf, len);
  299. }
  300. static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
  301. {
  302. struct nand_chip *this = mtd->priv;
  303. writesb(this->IO_ADDR_W, buf, len);
  304. }
  305. /* device management functions */
  306. static int s3c2410_nand_remove(struct platform_device *pdev)
  307. {
  308. struct s3c2410_nand_info *info = to_nand_info(pdev);
  309. platform_set_drvdata(pdev, NULL);
  310. if (info == NULL)
  311. return 0;
  312. /* first thing we need to do is release all our mtds
  313. * and their partitions, then go through freeing the
  314. * resources used
  315. */
  316. if (info->mtds != NULL) {
  317. struct s3c2410_nand_mtd *ptr = info->mtds;
  318. int mtdno;
  319. for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
  320. pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
  321. nand_release(&ptr->mtd);
  322. }
  323. kfree(info->mtds);
  324. }
  325. /* free the common resources */
  326. if (info->clk != NULL && !IS_ERR(info->clk)) {
  327. clk_disable(info->clk);
  328. clk_put(info->clk);
  329. }
  330. if (info->regs != NULL) {
  331. iounmap(info->regs);
  332. info->regs = NULL;
  333. }
  334. if (info->area != NULL) {
  335. release_resource(info->area);
  336. kfree(info->area);
  337. info->area = NULL;
  338. }
  339. kfree(info);
  340. return 0;
  341. }
  342. #ifdef CONFIG_MTD_PARTITIONS
  343. static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
  344. struct s3c2410_nand_mtd *mtd,
  345. struct s3c2410_nand_set *set)
  346. {
  347. if (set == NULL)
  348. return add_mtd_device(&mtd->mtd);
  349. if (set->nr_partitions > 0 && set->partitions != NULL) {
  350. return add_mtd_partitions(&mtd->mtd, set->partitions, set->nr_partitions);
  351. }
  352. return add_mtd_device(&mtd->mtd);
  353. }
  354. #else
  355. static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
  356. struct s3c2410_nand_mtd *mtd,
  357. struct s3c2410_nand_set *set)
  358. {
  359. return add_mtd_device(&mtd->mtd);
  360. }
  361. #endif
  362. /* s3c2410_nand_init_chip
  363. *
  364. * init a single instance of an chip
  365. */
  366. static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
  367. struct s3c2410_nand_mtd *nmtd,
  368. struct s3c2410_nand_set *set)
  369. {
  370. struct nand_chip *chip = &nmtd->chip;
  371. chip->IO_ADDR_R = info->regs + S3C2410_NFDATA;
  372. chip->IO_ADDR_W = info->regs + S3C2410_NFDATA;
  373. chip->cmd_ctrl = s3c2410_nand_hwcontrol;
  374. chip->dev_ready = s3c2410_nand_devready;
  375. chip->write_buf = s3c2410_nand_write_buf;
  376. chip->read_buf = s3c2410_nand_read_buf;
  377. chip->select_chip = s3c2410_nand_select_chip;
  378. chip->chip_delay = 50;
  379. chip->priv = nmtd;
  380. chip->options = 0;
  381. chip->controller = &info->controller;
  382. if (info->is_s3c2440) {
  383. chip->IO_ADDR_R = info->regs + S3C2440_NFDATA;
  384. chip->IO_ADDR_W = info->regs + S3C2440_NFDATA;
  385. chip->cmd_ctrl = s3c2440_nand_hwcontrol;
  386. }
  387. nmtd->info = info;
  388. nmtd->mtd.priv = chip;
  389. nmtd->mtd.owner = THIS_MODULE;
  390. nmtd->set = set;
  391. if (hardware_ecc) {
  392. chip->ecc.correct = s3c2410_nand_correct_data;
  393. chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
  394. chip->ecc.calculate = s3c2410_nand_calculate_ecc;
  395. chip->ecc.mode = NAND_ECC_HW;
  396. chip->ecc.size = 512;
  397. chip->ecc.bytes = 3;
  398. chip->ecc.layout = &nand_hw_eccoob;
  399. if (info->is_s3c2440) {
  400. chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
  401. chip->ecc.calculate = s3c2440_nand_calculate_ecc;
  402. }
  403. } else {
  404. chip->ecc.mode = NAND_ECC_SOFT;
  405. }
  406. }
  407. /* s3c2410_nand_probe
  408. *
  409. * called by device layer when it finds a device matching
  410. * one our driver can handled. This code checks to see if
  411. * it can allocate all necessary resources then calls the
  412. * nand layer to look for devices
  413. */
  414. static int s3c24xx_nand_probe(struct platform_device *pdev, int is_s3c2440)
  415. {
  416. struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
  417. struct s3c2410_nand_info *info;
  418. struct s3c2410_nand_mtd *nmtd;
  419. struct s3c2410_nand_set *sets;
  420. struct resource *res;
  421. int err = 0;
  422. int size;
  423. int nr_sets;
  424. int setno;
  425. pr_debug("s3c2410_nand_probe(%p)\n", pdev);
  426. info = kmalloc(sizeof(*info), GFP_KERNEL);
  427. if (info == NULL) {
  428. dev_err(&pdev->dev, "no memory for flash info\n");
  429. err = -ENOMEM;
  430. goto exit_error;
  431. }
  432. memzero(info, sizeof(*info));
  433. platform_set_drvdata(pdev, info);
  434. spin_lock_init(&info->controller.lock);
  435. init_waitqueue_head(&info->controller.wq);
  436. /* get the clock source and enable it */
  437. info->clk = clk_get(&pdev->dev, "nand");
  438. if (IS_ERR(info->clk)) {
  439. dev_err(&pdev->dev, "failed to get clock");
  440. err = -ENOENT;
  441. goto exit_error;
  442. }
  443. clk_enable(info->clk);
  444. /* allocate and map the resource */
  445. /* currently we assume we have the one resource */
  446. res = pdev->resource;
  447. size = res->end - res->start + 1;
  448. info->area = request_mem_region(res->start, size, pdev->name);
  449. if (info->area == NULL) {
  450. dev_err(&pdev->dev, "cannot reserve register region\n");
  451. err = -ENOENT;
  452. goto exit_error;
  453. }
  454. info->device = &pdev->dev;
  455. info->platform = plat;
  456. info->regs = ioremap(res->start, size);
  457. info->is_s3c2440 = is_s3c2440;
  458. if (info->regs == NULL) {
  459. dev_err(&pdev->dev, "cannot reserve register region\n");
  460. err = -EIO;
  461. goto exit_error;
  462. }
  463. dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
  464. /* initialise the hardware */
  465. err = s3c2410_nand_inithw(info, pdev);
  466. if (err != 0)
  467. goto exit_error;
  468. sets = (plat != NULL) ? plat->sets : NULL;
  469. nr_sets = (plat != NULL) ? plat->nr_sets : 1;
  470. info->mtd_count = nr_sets;
  471. /* allocate our information */
  472. size = nr_sets * sizeof(*info->mtds);
  473. info->mtds = kmalloc(size, GFP_KERNEL);
  474. if (info->mtds == NULL) {
  475. dev_err(&pdev->dev, "failed to allocate mtd storage\n");
  476. err = -ENOMEM;
  477. goto exit_error;
  478. }
  479. memzero(info->mtds, size);
  480. /* initialise all possible chips */
  481. nmtd = info->mtds;
  482. for (setno = 0; setno < nr_sets; setno++, nmtd++) {
  483. pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
  484. s3c2410_nand_init_chip(info, nmtd, sets);
  485. nmtd->scan_res = nand_scan(&nmtd->mtd, (sets) ? sets->nr_chips : 1);
  486. if (nmtd->scan_res == 0) {
  487. s3c2410_nand_add_partition(info, nmtd, sets);
  488. }
  489. if (sets != NULL)
  490. sets++;
  491. }
  492. pr_debug("initialised ok\n");
  493. return 0;
  494. exit_error:
  495. s3c2410_nand_remove(pdev);
  496. if (err == 0)
  497. err = -EINVAL;
  498. return err;
  499. }
  500. /* driver device registration */
  501. static int s3c2410_nand_probe(struct platform_device *dev)
  502. {
  503. return s3c24xx_nand_probe(dev, 0);
  504. }
  505. static int s3c2440_nand_probe(struct platform_device *dev)
  506. {
  507. return s3c24xx_nand_probe(dev, 1);
  508. }
  509. static struct platform_driver s3c2410_nand_driver = {
  510. .probe = s3c2410_nand_probe,
  511. .remove = s3c2410_nand_remove,
  512. .driver = {
  513. .name = "s3c2410-nand",
  514. .owner = THIS_MODULE,
  515. },
  516. };
  517. static struct platform_driver s3c2440_nand_driver = {
  518. .probe = s3c2440_nand_probe,
  519. .remove = s3c2410_nand_remove,
  520. .driver = {
  521. .name = "s3c2440-nand",
  522. .owner = THIS_MODULE,
  523. },
  524. };
  525. static int __init s3c2410_nand_init(void)
  526. {
  527. printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
  528. platform_driver_register(&s3c2440_nand_driver);
  529. return platform_driver_register(&s3c2410_nand_driver);
  530. }
  531. static void __exit s3c2410_nand_exit(void)
  532. {
  533. platform_driver_unregister(&s3c2440_nand_driver);
  534. platform_driver_unregister(&s3c2410_nand_driver);
  535. }
  536. module_init(s3c2410_nand_init);
  537. module_exit(s3c2410_nand_exit);
  538. MODULE_LICENSE("GPL");
  539. MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
  540. MODULE_DESCRIPTION("S3C24XX MTD NAND driver");