mtdpart.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * (C) 2000 Nicolas Pitre <nico@cam.org>
  5. *
  6. * This code is GPL
  7. *
  8. * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $
  9. *
  10. * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
  11. * added support for read_oob, write_oob
  12. */
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/slab.h>
  17. #include <linux/list.h>
  18. #include <linux/config.h>
  19. #include <linux/kmod.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/partitions.h>
  22. #include <linux/mtd/compatmac.h>
  23. /* Our partition linked list */
  24. static LIST_HEAD(mtd_partitions);
  25. /* Our partition node structure */
  26. struct mtd_part {
  27. struct mtd_info mtd;
  28. struct mtd_info *master;
  29. u_int32_t offset;
  30. int index;
  31. struct list_head list;
  32. int registered;
  33. };
  34. /*
  35. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  36. * the pointer to that structure with this macro.
  37. */
  38. #define PART(x) ((struct mtd_part *)(x))
  39. /*
  40. * MTD methods which simply translate the effective address and pass through
  41. * to the _real_ device.
  42. */
  43. static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
  44. size_t *retlen, u_char *buf)
  45. {
  46. struct mtd_part *part = PART(mtd);
  47. if (from >= mtd->size)
  48. len = 0;
  49. else if (from + len > mtd->size)
  50. len = mtd->size - from;
  51. return part->master->read (part->master, from + part->offset,
  52. len, retlen, buf);
  53. }
  54. static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
  55. size_t *retlen, u_char **buf)
  56. {
  57. struct mtd_part *part = PART(mtd);
  58. if (from >= mtd->size)
  59. len = 0;
  60. else if (from + len > mtd->size)
  61. len = mtd->size - from;
  62. return part->master->point (part->master, from + part->offset,
  63. len, retlen, buf);
  64. }
  65. static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
  66. {
  67. struct mtd_part *part = PART(mtd);
  68. part->master->unpoint (part->master, addr, from + part->offset, len);
  69. }
  70. static int part_read_oob (struct mtd_info *mtd, loff_t from, size_t len,
  71. size_t *retlen, u_char *buf)
  72. {
  73. struct mtd_part *part = PART(mtd);
  74. if (from >= mtd->size)
  75. len = 0;
  76. else if (from + len > mtd->size)
  77. len = mtd->size - from;
  78. return part->master->read_oob (part->master, from + part->offset,
  79. len, retlen, buf);
  80. }
  81. static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  82. size_t *retlen, u_char *buf)
  83. {
  84. struct mtd_part *part = PART(mtd);
  85. return part->master->read_user_prot_reg (part->master, from,
  86. len, retlen, buf);
  87. }
  88. static int part_get_user_prot_info (struct mtd_info *mtd,
  89. struct otp_info *buf, size_t len)
  90. {
  91. struct mtd_part *part = PART(mtd);
  92. return part->master->get_user_prot_info (part->master, buf, len);
  93. }
  94. static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  95. size_t *retlen, u_char *buf)
  96. {
  97. struct mtd_part *part = PART(mtd);
  98. return part->master->read_fact_prot_reg (part->master, from,
  99. len, retlen, buf);
  100. }
  101. static int part_get_fact_prot_info (struct mtd_info *mtd,
  102. struct otp_info *buf, size_t len)
  103. {
  104. struct mtd_part *part = PART(mtd);
  105. return part->master->get_fact_prot_info (part->master, buf, len);
  106. }
  107. static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
  108. size_t *retlen, const u_char *buf)
  109. {
  110. struct mtd_part *part = PART(mtd);
  111. if (!(mtd->flags & MTD_WRITEABLE))
  112. return -EROFS;
  113. if (to >= mtd->size)
  114. len = 0;
  115. else if (to + len > mtd->size)
  116. len = mtd->size - to;
  117. return part->master->write (part->master, to + part->offset,
  118. len, retlen, buf);
  119. }
  120. static int part_write_oob (struct mtd_info *mtd, loff_t to, size_t len,
  121. size_t *retlen, const u_char *buf)
  122. {
  123. struct mtd_part *part = PART(mtd);
  124. if (!(mtd->flags & MTD_WRITEABLE))
  125. return -EROFS;
  126. if (to >= mtd->size)
  127. len = 0;
  128. else if (to + len > mtd->size)
  129. len = mtd->size - to;
  130. return part->master->write_oob (part->master, to + part->offset,
  131. len, retlen, buf);
  132. }
  133. static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  134. size_t *retlen, u_char *buf)
  135. {
  136. struct mtd_part *part = PART(mtd);
  137. return part->master->write_user_prot_reg (part->master, from,
  138. len, retlen, buf);
  139. }
  140. static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
  141. {
  142. struct mtd_part *part = PART(mtd);
  143. return part->master->lock_user_prot_reg (part->master, from, len);
  144. }
  145. static int part_writev (struct mtd_info *mtd, const struct kvec *vecs,
  146. unsigned long count, loff_t to, size_t *retlen)
  147. {
  148. struct mtd_part *part = PART(mtd);
  149. if (!(mtd->flags & MTD_WRITEABLE))
  150. return -EROFS;
  151. return part->master->writev (part->master, vecs, count,
  152. to + part->offset, retlen);
  153. }
  154. static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
  155. {
  156. struct mtd_part *part = PART(mtd);
  157. int ret;
  158. if (!(mtd->flags & MTD_WRITEABLE))
  159. return -EROFS;
  160. if (instr->addr >= mtd->size)
  161. return -EINVAL;
  162. instr->addr += part->offset;
  163. ret = part->master->erase(part->master, instr);
  164. return ret;
  165. }
  166. void mtd_erase_callback(struct erase_info *instr)
  167. {
  168. if (instr->mtd->erase == part_erase) {
  169. struct mtd_part *part = PART(instr->mtd);
  170. if (instr->fail_addr != 0xffffffff)
  171. instr->fail_addr -= part->offset;
  172. instr->addr -= part->offset;
  173. }
  174. if (instr->callback)
  175. instr->callback(instr);
  176. }
  177. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  178. static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
  179. {
  180. struct mtd_part *part = PART(mtd);
  181. if ((len + ofs) > mtd->size)
  182. return -EINVAL;
  183. return part->master->lock(part->master, ofs + part->offset, len);
  184. }
  185. static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
  186. {
  187. struct mtd_part *part = PART(mtd);
  188. if ((len + ofs) > mtd->size)
  189. return -EINVAL;
  190. return part->master->unlock(part->master, ofs + part->offset, len);
  191. }
  192. static void part_sync(struct mtd_info *mtd)
  193. {
  194. struct mtd_part *part = PART(mtd);
  195. part->master->sync(part->master);
  196. }
  197. static int part_suspend(struct mtd_info *mtd)
  198. {
  199. struct mtd_part *part = PART(mtd);
  200. return part->master->suspend(part->master);
  201. }
  202. static void part_resume(struct mtd_info *mtd)
  203. {
  204. struct mtd_part *part = PART(mtd);
  205. part->master->resume(part->master);
  206. }
  207. static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
  208. {
  209. struct mtd_part *part = PART(mtd);
  210. if (ofs >= mtd->size)
  211. return -EINVAL;
  212. ofs += part->offset;
  213. return part->master->block_isbad(part->master, ofs);
  214. }
  215. static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
  216. {
  217. struct mtd_part *part = PART(mtd);
  218. if (!(mtd->flags & MTD_WRITEABLE))
  219. return -EROFS;
  220. if (ofs >= mtd->size)
  221. return -EINVAL;
  222. ofs += part->offset;
  223. return part->master->block_markbad(part->master, ofs);
  224. }
  225. /*
  226. * This function unregisters and destroy all slave MTD objects which are
  227. * attached to the given master MTD object.
  228. */
  229. int del_mtd_partitions(struct mtd_info *master)
  230. {
  231. struct list_head *node;
  232. struct mtd_part *slave;
  233. for (node = mtd_partitions.next;
  234. node != &mtd_partitions;
  235. node = node->next) {
  236. slave = list_entry(node, struct mtd_part, list);
  237. if (slave->master == master) {
  238. struct list_head *prev = node->prev;
  239. __list_del(prev, node->next);
  240. if(slave->registered)
  241. del_mtd_device(&slave->mtd);
  242. kfree(slave);
  243. node = prev;
  244. }
  245. }
  246. return 0;
  247. }
  248. /*
  249. * This function, given a master MTD object and a partition table, creates
  250. * and registers slave MTD objects which are bound to the master according to
  251. * the partition definitions.
  252. * (Q: should we register the master MTD object as well?)
  253. */
  254. int add_mtd_partitions(struct mtd_info *master,
  255. const struct mtd_partition *parts,
  256. int nbparts)
  257. {
  258. struct mtd_part *slave;
  259. u_int32_t cur_offset = 0;
  260. int i;
  261. printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  262. for (i = 0; i < nbparts; i++) {
  263. /* allocate the partition structure */
  264. slave = kmalloc (sizeof(*slave), GFP_KERNEL);
  265. if (!slave) {
  266. printk ("memory allocation error while creating partitions for \"%s\"\n",
  267. master->name);
  268. del_mtd_partitions(master);
  269. return -ENOMEM;
  270. }
  271. memset(slave, 0, sizeof(*slave));
  272. list_add(&slave->list, &mtd_partitions);
  273. /* set up the MTD object for this partition */
  274. slave->mtd.type = master->type;
  275. slave->mtd.flags = master->flags & ~parts[i].mask_flags;
  276. slave->mtd.size = parts[i].size;
  277. slave->mtd.writesize = master->writesize;
  278. slave->mtd.oobsize = master->oobsize;
  279. slave->mtd.ecctype = master->ecctype;
  280. slave->mtd.eccsize = master->eccsize;
  281. slave->mtd.name = parts[i].name;
  282. slave->mtd.bank_size = master->bank_size;
  283. slave->mtd.owner = master->owner;
  284. slave->mtd.read = part_read;
  285. slave->mtd.write = part_write;
  286. if(master->point && master->unpoint){
  287. slave->mtd.point = part_point;
  288. slave->mtd.unpoint = part_unpoint;
  289. }
  290. if (master->read_oob)
  291. slave->mtd.read_oob = part_read_oob;
  292. if (master->write_oob)
  293. slave->mtd.write_oob = part_write_oob;
  294. if(master->read_user_prot_reg)
  295. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  296. if(master->read_fact_prot_reg)
  297. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  298. if(master->write_user_prot_reg)
  299. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  300. if(master->lock_user_prot_reg)
  301. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  302. if(master->get_user_prot_info)
  303. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  304. if(master->get_fact_prot_info)
  305. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  306. if (master->sync)
  307. slave->mtd.sync = part_sync;
  308. if (!i && master->suspend && master->resume) {
  309. slave->mtd.suspend = part_suspend;
  310. slave->mtd.resume = part_resume;
  311. }
  312. if (master->writev)
  313. slave->mtd.writev = part_writev;
  314. if (master->lock)
  315. slave->mtd.lock = part_lock;
  316. if (master->unlock)
  317. slave->mtd.unlock = part_unlock;
  318. if (master->block_isbad)
  319. slave->mtd.block_isbad = part_block_isbad;
  320. if (master->block_markbad)
  321. slave->mtd.block_markbad = part_block_markbad;
  322. slave->mtd.erase = part_erase;
  323. slave->master = master;
  324. slave->offset = parts[i].offset;
  325. slave->index = i;
  326. if (slave->offset == MTDPART_OFS_APPEND)
  327. slave->offset = cur_offset;
  328. if (slave->offset == MTDPART_OFS_NXTBLK) {
  329. slave->offset = cur_offset;
  330. if ((cur_offset % master->erasesize) != 0) {
  331. /* Round up to next erasesize */
  332. slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
  333. printk(KERN_NOTICE "Moving partition %d: "
  334. "0x%08x -> 0x%08x\n", i,
  335. cur_offset, slave->offset);
  336. }
  337. }
  338. if (slave->mtd.size == MTDPART_SIZ_FULL)
  339. slave->mtd.size = master->size - slave->offset;
  340. cur_offset = slave->offset + slave->mtd.size;
  341. printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
  342. slave->offset + slave->mtd.size, slave->mtd.name);
  343. /* let's do some sanity checks */
  344. if (slave->offset >= master->size) {
  345. /* let's register it anyway to preserve ordering */
  346. slave->offset = 0;
  347. slave->mtd.size = 0;
  348. printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
  349. parts[i].name);
  350. }
  351. if (slave->offset + slave->mtd.size > master->size) {
  352. slave->mtd.size = master->size - slave->offset;
  353. printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
  354. parts[i].name, master->name, slave->mtd.size);
  355. }
  356. if (master->numeraseregions>1) {
  357. /* Deal with variable erase size stuff */
  358. int i;
  359. struct mtd_erase_region_info *regions = master->eraseregions;
  360. /* Find the first erase regions which is part of this partition. */
  361. for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
  362. ;
  363. for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
  364. if (slave->mtd.erasesize < regions[i].erasesize) {
  365. slave->mtd.erasesize = regions[i].erasesize;
  366. }
  367. }
  368. } else {
  369. /* Single erase size */
  370. slave->mtd.erasesize = master->erasesize;
  371. }
  372. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  373. (slave->offset % slave->mtd.erasesize)) {
  374. /* Doesn't start on a boundary of major erase size */
  375. /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
  376. slave->mtd.flags &= ~MTD_WRITEABLE;
  377. printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  378. parts[i].name);
  379. }
  380. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  381. (slave->mtd.size % slave->mtd.erasesize)) {
  382. slave->mtd.flags &= ~MTD_WRITEABLE;
  383. printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  384. parts[i].name);
  385. }
  386. slave->mtd.ecclayout = master->ecclayout;
  387. if(parts[i].mtdp)
  388. { /* store the object pointer (caller may or may not register it */
  389. *parts[i].mtdp = &slave->mtd;
  390. slave->registered = 0;
  391. }
  392. else
  393. {
  394. /* register our partition */
  395. add_mtd_device(&slave->mtd);
  396. slave->registered = 1;
  397. }
  398. }
  399. return 0;
  400. }
  401. EXPORT_SYMBOL(add_mtd_partitions);
  402. EXPORT_SYMBOL(del_mtd_partitions);
  403. static DEFINE_SPINLOCK(part_parser_lock);
  404. static LIST_HEAD(part_parsers);
  405. static struct mtd_part_parser *get_partition_parser(const char *name)
  406. {
  407. struct list_head *this;
  408. void *ret = NULL;
  409. spin_lock(&part_parser_lock);
  410. list_for_each(this, &part_parsers) {
  411. struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list);
  412. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  413. ret = p;
  414. break;
  415. }
  416. }
  417. spin_unlock(&part_parser_lock);
  418. return ret;
  419. }
  420. int register_mtd_parser(struct mtd_part_parser *p)
  421. {
  422. spin_lock(&part_parser_lock);
  423. list_add(&p->list, &part_parsers);
  424. spin_unlock(&part_parser_lock);
  425. return 0;
  426. }
  427. int deregister_mtd_parser(struct mtd_part_parser *p)
  428. {
  429. spin_lock(&part_parser_lock);
  430. list_del(&p->list);
  431. spin_unlock(&part_parser_lock);
  432. return 0;
  433. }
  434. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  435. struct mtd_partition **pparts, unsigned long origin)
  436. {
  437. struct mtd_part_parser *parser;
  438. int ret = 0;
  439. for ( ; ret <= 0 && *types; types++) {
  440. parser = get_partition_parser(*types);
  441. #ifdef CONFIG_KMOD
  442. if (!parser && !request_module("%s", *types))
  443. parser = get_partition_parser(*types);
  444. #endif
  445. if (!parser) {
  446. printk(KERN_NOTICE "%s partition parsing not available\n",
  447. *types);
  448. continue;
  449. }
  450. ret = (*parser->parse_fn)(master, pparts, origin);
  451. if (ret > 0) {
  452. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  453. ret, parser->name, master->name);
  454. }
  455. put_partition_parser(parser);
  456. }
  457. return ret;
  458. }
  459. EXPORT_SYMBOL_GPL(parse_mtd_partitions);
  460. EXPORT_SYMBOL_GPL(register_mtd_parser);
  461. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  462. MODULE_LICENSE("GPL");
  463. MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>");
  464. MODULE_DESCRIPTION("Generic support for partitioning of MTD devices");