huge_memory.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/migrate.h>
  22. #include <linux/hashtable.h>
  23. #include <asm/tlb.h>
  24. #include <asm/pgalloc.h>
  25. #include "internal.h"
  26. /*
  27. * By default transparent hugepage support is enabled for all mappings
  28. * and khugepaged scans all mappings. Defrag is only invoked by
  29. * khugepaged hugepage allocations and by page faults inside
  30. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  31. * allocations.
  32. */
  33. unsigned long transparent_hugepage_flags __read_mostly =
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  35. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  36. #endif
  37. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  38. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  39. #endif
  40. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  41. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  42. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  43. /* default scan 8*512 pte (or vmas) every 30 second */
  44. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  45. static unsigned int khugepaged_pages_collapsed;
  46. static unsigned int khugepaged_full_scans;
  47. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  48. /* during fragmentation poll the hugepage allocator once every minute */
  49. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  50. static struct task_struct *khugepaged_thread __read_mostly;
  51. static DEFINE_MUTEX(khugepaged_mutex);
  52. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  53. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  54. /*
  55. * default collapse hugepages if there is at least one pte mapped like
  56. * it would have happened if the vma was large enough during page
  57. * fault.
  58. */
  59. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  60. static int khugepaged(void *none);
  61. static int khugepaged_slab_init(void);
  62. #define MM_SLOTS_HASH_BITS 10
  63. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  64. static struct kmem_cache *mm_slot_cache __read_mostly;
  65. /**
  66. * struct mm_slot - hash lookup from mm to mm_slot
  67. * @hash: hash collision list
  68. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  69. * @mm: the mm that this information is valid for
  70. */
  71. struct mm_slot {
  72. struct hlist_node hash;
  73. struct list_head mm_node;
  74. struct mm_struct *mm;
  75. };
  76. /**
  77. * struct khugepaged_scan - cursor for scanning
  78. * @mm_head: the head of the mm list to scan
  79. * @mm_slot: the current mm_slot we are scanning
  80. * @address: the next address inside that to be scanned
  81. *
  82. * There is only the one khugepaged_scan instance of this cursor structure.
  83. */
  84. struct khugepaged_scan {
  85. struct list_head mm_head;
  86. struct mm_slot *mm_slot;
  87. unsigned long address;
  88. };
  89. static struct khugepaged_scan khugepaged_scan = {
  90. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  91. };
  92. static int set_recommended_min_free_kbytes(void)
  93. {
  94. struct zone *zone;
  95. int nr_zones = 0;
  96. unsigned long recommended_min;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static atomic_t huge_zero_refcount;
  144. static unsigned long huge_zero_pfn __read_mostly;
  145. static inline bool is_huge_zero_pfn(unsigned long pfn)
  146. {
  147. unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
  148. return zero_pfn && pfn == zero_pfn;
  149. }
  150. static inline bool is_huge_zero_pmd(pmd_t pmd)
  151. {
  152. return is_huge_zero_pfn(pmd_pfn(pmd));
  153. }
  154. static unsigned long get_huge_zero_page(void)
  155. {
  156. struct page *zero_page;
  157. retry:
  158. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  159. return ACCESS_ONCE(huge_zero_pfn);
  160. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  161. HPAGE_PMD_ORDER);
  162. if (!zero_page) {
  163. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  164. return 0;
  165. }
  166. count_vm_event(THP_ZERO_PAGE_ALLOC);
  167. preempt_disable();
  168. if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
  169. preempt_enable();
  170. __free_page(zero_page);
  171. goto retry;
  172. }
  173. /* We take additional reference here. It will be put back by shrinker */
  174. atomic_set(&huge_zero_refcount, 2);
  175. preempt_enable();
  176. return ACCESS_ONCE(huge_zero_pfn);
  177. }
  178. static void put_huge_zero_page(void)
  179. {
  180. /*
  181. * Counter should never go to zero here. Only shrinker can put
  182. * last reference.
  183. */
  184. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  185. }
  186. static int shrink_huge_zero_page(struct shrinker *shrink,
  187. struct shrink_control *sc)
  188. {
  189. if (!sc->nr_to_scan)
  190. /* we can free zero page only if last reference remains */
  191. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  192. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  193. unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
  194. BUG_ON(zero_pfn == 0);
  195. __free_page(__pfn_to_page(zero_pfn));
  196. }
  197. return 0;
  198. }
  199. static struct shrinker huge_zero_page_shrinker = {
  200. .shrink = shrink_huge_zero_page,
  201. .seeks = DEFAULT_SEEKS,
  202. };
  203. #ifdef CONFIG_SYSFS
  204. static ssize_t double_flag_show(struct kobject *kobj,
  205. struct kobj_attribute *attr, char *buf,
  206. enum transparent_hugepage_flag enabled,
  207. enum transparent_hugepage_flag req_madv)
  208. {
  209. if (test_bit(enabled, &transparent_hugepage_flags)) {
  210. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  211. return sprintf(buf, "[always] madvise never\n");
  212. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  213. return sprintf(buf, "always [madvise] never\n");
  214. else
  215. return sprintf(buf, "always madvise [never]\n");
  216. }
  217. static ssize_t double_flag_store(struct kobject *kobj,
  218. struct kobj_attribute *attr,
  219. const char *buf, size_t count,
  220. enum transparent_hugepage_flag enabled,
  221. enum transparent_hugepage_flag req_madv)
  222. {
  223. if (!memcmp("always", buf,
  224. min(sizeof("always")-1, count))) {
  225. set_bit(enabled, &transparent_hugepage_flags);
  226. clear_bit(req_madv, &transparent_hugepage_flags);
  227. } else if (!memcmp("madvise", buf,
  228. min(sizeof("madvise")-1, count))) {
  229. clear_bit(enabled, &transparent_hugepage_flags);
  230. set_bit(req_madv, &transparent_hugepage_flags);
  231. } else if (!memcmp("never", buf,
  232. min(sizeof("never")-1, count))) {
  233. clear_bit(enabled, &transparent_hugepage_flags);
  234. clear_bit(req_madv, &transparent_hugepage_flags);
  235. } else
  236. return -EINVAL;
  237. return count;
  238. }
  239. static ssize_t enabled_show(struct kobject *kobj,
  240. struct kobj_attribute *attr, char *buf)
  241. {
  242. return double_flag_show(kobj, attr, buf,
  243. TRANSPARENT_HUGEPAGE_FLAG,
  244. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  245. }
  246. static ssize_t enabled_store(struct kobject *kobj,
  247. struct kobj_attribute *attr,
  248. const char *buf, size_t count)
  249. {
  250. ssize_t ret;
  251. ret = double_flag_store(kobj, attr, buf, count,
  252. TRANSPARENT_HUGEPAGE_FLAG,
  253. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  254. if (ret > 0) {
  255. int err;
  256. mutex_lock(&khugepaged_mutex);
  257. err = start_khugepaged();
  258. mutex_unlock(&khugepaged_mutex);
  259. if (err)
  260. ret = err;
  261. }
  262. return ret;
  263. }
  264. static struct kobj_attribute enabled_attr =
  265. __ATTR(enabled, 0644, enabled_show, enabled_store);
  266. static ssize_t single_flag_show(struct kobject *kobj,
  267. struct kobj_attribute *attr, char *buf,
  268. enum transparent_hugepage_flag flag)
  269. {
  270. return sprintf(buf, "%d\n",
  271. !!test_bit(flag, &transparent_hugepage_flags));
  272. }
  273. static ssize_t single_flag_store(struct kobject *kobj,
  274. struct kobj_attribute *attr,
  275. const char *buf, size_t count,
  276. enum transparent_hugepage_flag flag)
  277. {
  278. unsigned long value;
  279. int ret;
  280. ret = kstrtoul(buf, 10, &value);
  281. if (ret < 0)
  282. return ret;
  283. if (value > 1)
  284. return -EINVAL;
  285. if (value)
  286. set_bit(flag, &transparent_hugepage_flags);
  287. else
  288. clear_bit(flag, &transparent_hugepage_flags);
  289. return count;
  290. }
  291. /*
  292. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  293. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  294. * memory just to allocate one more hugepage.
  295. */
  296. static ssize_t defrag_show(struct kobject *kobj,
  297. struct kobj_attribute *attr, char *buf)
  298. {
  299. return double_flag_show(kobj, attr, buf,
  300. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  301. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  302. }
  303. static ssize_t defrag_store(struct kobject *kobj,
  304. struct kobj_attribute *attr,
  305. const char *buf, size_t count)
  306. {
  307. return double_flag_store(kobj, attr, buf, count,
  308. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  309. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  310. }
  311. static struct kobj_attribute defrag_attr =
  312. __ATTR(defrag, 0644, defrag_show, defrag_store);
  313. static ssize_t use_zero_page_show(struct kobject *kobj,
  314. struct kobj_attribute *attr, char *buf)
  315. {
  316. return single_flag_show(kobj, attr, buf,
  317. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  318. }
  319. static ssize_t use_zero_page_store(struct kobject *kobj,
  320. struct kobj_attribute *attr, const char *buf, size_t count)
  321. {
  322. return single_flag_store(kobj, attr, buf, count,
  323. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  324. }
  325. static struct kobj_attribute use_zero_page_attr =
  326. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  327. #ifdef CONFIG_DEBUG_VM
  328. static ssize_t debug_cow_show(struct kobject *kobj,
  329. struct kobj_attribute *attr, char *buf)
  330. {
  331. return single_flag_show(kobj, attr, buf,
  332. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  333. }
  334. static ssize_t debug_cow_store(struct kobject *kobj,
  335. struct kobj_attribute *attr,
  336. const char *buf, size_t count)
  337. {
  338. return single_flag_store(kobj, attr, buf, count,
  339. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  340. }
  341. static struct kobj_attribute debug_cow_attr =
  342. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  343. #endif /* CONFIG_DEBUG_VM */
  344. static struct attribute *hugepage_attr[] = {
  345. &enabled_attr.attr,
  346. &defrag_attr.attr,
  347. &use_zero_page_attr.attr,
  348. #ifdef CONFIG_DEBUG_VM
  349. &debug_cow_attr.attr,
  350. #endif
  351. NULL,
  352. };
  353. static struct attribute_group hugepage_attr_group = {
  354. .attrs = hugepage_attr,
  355. };
  356. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  357. struct kobj_attribute *attr,
  358. char *buf)
  359. {
  360. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  361. }
  362. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  363. struct kobj_attribute *attr,
  364. const char *buf, size_t count)
  365. {
  366. unsigned long msecs;
  367. int err;
  368. err = strict_strtoul(buf, 10, &msecs);
  369. if (err || msecs > UINT_MAX)
  370. return -EINVAL;
  371. khugepaged_scan_sleep_millisecs = msecs;
  372. wake_up_interruptible(&khugepaged_wait);
  373. return count;
  374. }
  375. static struct kobj_attribute scan_sleep_millisecs_attr =
  376. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  377. scan_sleep_millisecs_store);
  378. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  379. struct kobj_attribute *attr,
  380. char *buf)
  381. {
  382. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  383. }
  384. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  385. struct kobj_attribute *attr,
  386. const char *buf, size_t count)
  387. {
  388. unsigned long msecs;
  389. int err;
  390. err = strict_strtoul(buf, 10, &msecs);
  391. if (err || msecs > UINT_MAX)
  392. return -EINVAL;
  393. khugepaged_alloc_sleep_millisecs = msecs;
  394. wake_up_interruptible(&khugepaged_wait);
  395. return count;
  396. }
  397. static struct kobj_attribute alloc_sleep_millisecs_attr =
  398. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  399. alloc_sleep_millisecs_store);
  400. static ssize_t pages_to_scan_show(struct kobject *kobj,
  401. struct kobj_attribute *attr,
  402. char *buf)
  403. {
  404. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  405. }
  406. static ssize_t pages_to_scan_store(struct kobject *kobj,
  407. struct kobj_attribute *attr,
  408. const char *buf, size_t count)
  409. {
  410. int err;
  411. unsigned long pages;
  412. err = strict_strtoul(buf, 10, &pages);
  413. if (err || !pages || pages > UINT_MAX)
  414. return -EINVAL;
  415. khugepaged_pages_to_scan = pages;
  416. return count;
  417. }
  418. static struct kobj_attribute pages_to_scan_attr =
  419. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  420. pages_to_scan_store);
  421. static ssize_t pages_collapsed_show(struct kobject *kobj,
  422. struct kobj_attribute *attr,
  423. char *buf)
  424. {
  425. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  426. }
  427. static struct kobj_attribute pages_collapsed_attr =
  428. __ATTR_RO(pages_collapsed);
  429. static ssize_t full_scans_show(struct kobject *kobj,
  430. struct kobj_attribute *attr,
  431. char *buf)
  432. {
  433. return sprintf(buf, "%u\n", khugepaged_full_scans);
  434. }
  435. static struct kobj_attribute full_scans_attr =
  436. __ATTR_RO(full_scans);
  437. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  438. struct kobj_attribute *attr, char *buf)
  439. {
  440. return single_flag_show(kobj, attr, buf,
  441. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  442. }
  443. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  444. struct kobj_attribute *attr,
  445. const char *buf, size_t count)
  446. {
  447. return single_flag_store(kobj, attr, buf, count,
  448. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  449. }
  450. static struct kobj_attribute khugepaged_defrag_attr =
  451. __ATTR(defrag, 0644, khugepaged_defrag_show,
  452. khugepaged_defrag_store);
  453. /*
  454. * max_ptes_none controls if khugepaged should collapse hugepages over
  455. * any unmapped ptes in turn potentially increasing the memory
  456. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  457. * reduce the available free memory in the system as it
  458. * runs. Increasing max_ptes_none will instead potentially reduce the
  459. * free memory in the system during the khugepaged scan.
  460. */
  461. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  462. struct kobj_attribute *attr,
  463. char *buf)
  464. {
  465. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  466. }
  467. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  468. struct kobj_attribute *attr,
  469. const char *buf, size_t count)
  470. {
  471. int err;
  472. unsigned long max_ptes_none;
  473. err = strict_strtoul(buf, 10, &max_ptes_none);
  474. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  475. return -EINVAL;
  476. khugepaged_max_ptes_none = max_ptes_none;
  477. return count;
  478. }
  479. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  480. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  481. khugepaged_max_ptes_none_store);
  482. static struct attribute *khugepaged_attr[] = {
  483. &khugepaged_defrag_attr.attr,
  484. &khugepaged_max_ptes_none_attr.attr,
  485. &pages_to_scan_attr.attr,
  486. &pages_collapsed_attr.attr,
  487. &full_scans_attr.attr,
  488. &scan_sleep_millisecs_attr.attr,
  489. &alloc_sleep_millisecs_attr.attr,
  490. NULL,
  491. };
  492. static struct attribute_group khugepaged_attr_group = {
  493. .attrs = khugepaged_attr,
  494. .name = "khugepaged",
  495. };
  496. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  497. {
  498. int err;
  499. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  500. if (unlikely(!*hugepage_kobj)) {
  501. printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
  502. return -ENOMEM;
  503. }
  504. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  505. if (err) {
  506. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  507. goto delete_obj;
  508. }
  509. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  510. if (err) {
  511. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  512. goto remove_hp_group;
  513. }
  514. return 0;
  515. remove_hp_group:
  516. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  517. delete_obj:
  518. kobject_put(*hugepage_kobj);
  519. return err;
  520. }
  521. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  522. {
  523. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  524. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  525. kobject_put(hugepage_kobj);
  526. }
  527. #else
  528. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  529. {
  530. return 0;
  531. }
  532. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  533. {
  534. }
  535. #endif /* CONFIG_SYSFS */
  536. static int __init hugepage_init(void)
  537. {
  538. int err;
  539. struct kobject *hugepage_kobj;
  540. if (!has_transparent_hugepage()) {
  541. transparent_hugepage_flags = 0;
  542. return -EINVAL;
  543. }
  544. err = hugepage_init_sysfs(&hugepage_kobj);
  545. if (err)
  546. return err;
  547. err = khugepaged_slab_init();
  548. if (err)
  549. goto out;
  550. register_shrinker(&huge_zero_page_shrinker);
  551. /*
  552. * By default disable transparent hugepages on smaller systems,
  553. * where the extra memory used could hurt more than TLB overhead
  554. * is likely to save. The admin can still enable it through /sys.
  555. */
  556. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  557. transparent_hugepage_flags = 0;
  558. start_khugepaged();
  559. return 0;
  560. out:
  561. hugepage_exit_sysfs(hugepage_kobj);
  562. return err;
  563. }
  564. module_init(hugepage_init)
  565. static int __init setup_transparent_hugepage(char *str)
  566. {
  567. int ret = 0;
  568. if (!str)
  569. goto out;
  570. if (!strcmp(str, "always")) {
  571. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  572. &transparent_hugepage_flags);
  573. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  574. &transparent_hugepage_flags);
  575. ret = 1;
  576. } else if (!strcmp(str, "madvise")) {
  577. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  578. &transparent_hugepage_flags);
  579. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  580. &transparent_hugepage_flags);
  581. ret = 1;
  582. } else if (!strcmp(str, "never")) {
  583. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  584. &transparent_hugepage_flags);
  585. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  586. &transparent_hugepage_flags);
  587. ret = 1;
  588. }
  589. out:
  590. if (!ret)
  591. printk(KERN_WARNING
  592. "transparent_hugepage= cannot parse, ignored\n");
  593. return ret;
  594. }
  595. __setup("transparent_hugepage=", setup_transparent_hugepage);
  596. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  597. {
  598. if (likely(vma->vm_flags & VM_WRITE))
  599. pmd = pmd_mkwrite(pmd);
  600. return pmd;
  601. }
  602. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  603. {
  604. pmd_t entry;
  605. entry = mk_pmd(page, vma->vm_page_prot);
  606. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  607. entry = pmd_mkhuge(entry);
  608. return entry;
  609. }
  610. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  611. struct vm_area_struct *vma,
  612. unsigned long haddr, pmd_t *pmd,
  613. struct page *page)
  614. {
  615. pgtable_t pgtable;
  616. VM_BUG_ON(!PageCompound(page));
  617. pgtable = pte_alloc_one(mm, haddr);
  618. if (unlikely(!pgtable))
  619. return VM_FAULT_OOM;
  620. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  621. /*
  622. * The memory barrier inside __SetPageUptodate makes sure that
  623. * clear_huge_page writes become visible before the set_pmd_at()
  624. * write.
  625. */
  626. __SetPageUptodate(page);
  627. spin_lock(&mm->page_table_lock);
  628. if (unlikely(!pmd_none(*pmd))) {
  629. spin_unlock(&mm->page_table_lock);
  630. mem_cgroup_uncharge_page(page);
  631. put_page(page);
  632. pte_free(mm, pgtable);
  633. } else {
  634. pmd_t entry;
  635. entry = mk_huge_pmd(page, vma);
  636. page_add_new_anon_rmap(page, vma, haddr);
  637. set_pmd_at(mm, haddr, pmd, entry);
  638. pgtable_trans_huge_deposit(mm, pgtable);
  639. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  640. mm->nr_ptes++;
  641. spin_unlock(&mm->page_table_lock);
  642. }
  643. return 0;
  644. }
  645. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  646. {
  647. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  648. }
  649. static inline struct page *alloc_hugepage_vma(int defrag,
  650. struct vm_area_struct *vma,
  651. unsigned long haddr, int nd,
  652. gfp_t extra_gfp)
  653. {
  654. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  655. HPAGE_PMD_ORDER, vma, haddr, nd);
  656. }
  657. #ifndef CONFIG_NUMA
  658. static inline struct page *alloc_hugepage(int defrag)
  659. {
  660. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  661. HPAGE_PMD_ORDER);
  662. }
  663. #endif
  664. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  665. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  666. unsigned long zero_pfn)
  667. {
  668. pmd_t entry;
  669. if (!pmd_none(*pmd))
  670. return false;
  671. entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
  672. entry = pmd_wrprotect(entry);
  673. entry = pmd_mkhuge(entry);
  674. set_pmd_at(mm, haddr, pmd, entry);
  675. pgtable_trans_huge_deposit(mm, pgtable);
  676. mm->nr_ptes++;
  677. return true;
  678. }
  679. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  680. unsigned long address, pmd_t *pmd,
  681. unsigned int flags)
  682. {
  683. struct page *page;
  684. unsigned long haddr = address & HPAGE_PMD_MASK;
  685. pte_t *pte;
  686. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  687. if (unlikely(anon_vma_prepare(vma)))
  688. return VM_FAULT_OOM;
  689. if (unlikely(khugepaged_enter(vma)))
  690. return VM_FAULT_OOM;
  691. if (!(flags & FAULT_FLAG_WRITE) &&
  692. transparent_hugepage_use_zero_page()) {
  693. pgtable_t pgtable;
  694. unsigned long zero_pfn;
  695. bool set;
  696. pgtable = pte_alloc_one(mm, haddr);
  697. if (unlikely(!pgtable))
  698. return VM_FAULT_OOM;
  699. zero_pfn = get_huge_zero_page();
  700. if (unlikely(!zero_pfn)) {
  701. pte_free(mm, pgtable);
  702. count_vm_event(THP_FAULT_FALLBACK);
  703. goto out;
  704. }
  705. spin_lock(&mm->page_table_lock);
  706. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  707. zero_pfn);
  708. spin_unlock(&mm->page_table_lock);
  709. if (!set) {
  710. pte_free(mm, pgtable);
  711. put_huge_zero_page();
  712. }
  713. return 0;
  714. }
  715. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  716. vma, haddr, numa_node_id(), 0);
  717. if (unlikely(!page)) {
  718. count_vm_event(THP_FAULT_FALLBACK);
  719. goto out;
  720. }
  721. count_vm_event(THP_FAULT_ALLOC);
  722. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  723. put_page(page);
  724. goto out;
  725. }
  726. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  727. page))) {
  728. mem_cgroup_uncharge_page(page);
  729. put_page(page);
  730. goto out;
  731. }
  732. return 0;
  733. }
  734. out:
  735. /*
  736. * Use __pte_alloc instead of pte_alloc_map, because we can't
  737. * run pte_offset_map on the pmd, if an huge pmd could
  738. * materialize from under us from a different thread.
  739. */
  740. if (unlikely(pmd_none(*pmd)) &&
  741. unlikely(__pte_alloc(mm, vma, pmd, address)))
  742. return VM_FAULT_OOM;
  743. /* if an huge pmd materialized from under us just retry later */
  744. if (unlikely(pmd_trans_huge(*pmd)))
  745. return 0;
  746. /*
  747. * A regular pmd is established and it can't morph into a huge pmd
  748. * from under us anymore at this point because we hold the mmap_sem
  749. * read mode and khugepaged takes it in write mode. So now it's
  750. * safe to run pte_offset_map().
  751. */
  752. pte = pte_offset_map(pmd, address);
  753. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  754. }
  755. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  756. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  757. struct vm_area_struct *vma)
  758. {
  759. struct page *src_page;
  760. pmd_t pmd;
  761. pgtable_t pgtable;
  762. int ret;
  763. ret = -ENOMEM;
  764. pgtable = pte_alloc_one(dst_mm, addr);
  765. if (unlikely(!pgtable))
  766. goto out;
  767. spin_lock(&dst_mm->page_table_lock);
  768. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  769. ret = -EAGAIN;
  770. pmd = *src_pmd;
  771. if (unlikely(!pmd_trans_huge(pmd))) {
  772. pte_free(dst_mm, pgtable);
  773. goto out_unlock;
  774. }
  775. /*
  776. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  777. * under splitting since we don't split the page itself, only pmd to
  778. * a page table.
  779. */
  780. if (is_huge_zero_pmd(pmd)) {
  781. unsigned long zero_pfn;
  782. bool set;
  783. /*
  784. * get_huge_zero_page() will never allocate a new page here,
  785. * since we already have a zero page to copy. It just takes a
  786. * reference.
  787. */
  788. zero_pfn = get_huge_zero_page();
  789. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  790. zero_pfn);
  791. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  792. ret = 0;
  793. goto out_unlock;
  794. }
  795. if (unlikely(pmd_trans_splitting(pmd))) {
  796. /* split huge page running from under us */
  797. spin_unlock(&src_mm->page_table_lock);
  798. spin_unlock(&dst_mm->page_table_lock);
  799. pte_free(dst_mm, pgtable);
  800. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  801. goto out;
  802. }
  803. src_page = pmd_page(pmd);
  804. VM_BUG_ON(!PageHead(src_page));
  805. get_page(src_page);
  806. page_dup_rmap(src_page);
  807. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  808. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  809. pmd = pmd_mkold(pmd_wrprotect(pmd));
  810. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  811. pgtable_trans_huge_deposit(dst_mm, pgtable);
  812. dst_mm->nr_ptes++;
  813. ret = 0;
  814. out_unlock:
  815. spin_unlock(&src_mm->page_table_lock);
  816. spin_unlock(&dst_mm->page_table_lock);
  817. out:
  818. return ret;
  819. }
  820. void huge_pmd_set_accessed(struct mm_struct *mm,
  821. struct vm_area_struct *vma,
  822. unsigned long address,
  823. pmd_t *pmd, pmd_t orig_pmd,
  824. int dirty)
  825. {
  826. pmd_t entry;
  827. unsigned long haddr;
  828. spin_lock(&mm->page_table_lock);
  829. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  830. goto unlock;
  831. entry = pmd_mkyoung(orig_pmd);
  832. haddr = address & HPAGE_PMD_MASK;
  833. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  834. update_mmu_cache_pmd(vma, address, pmd);
  835. unlock:
  836. spin_unlock(&mm->page_table_lock);
  837. }
  838. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  839. struct vm_area_struct *vma, unsigned long address,
  840. pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
  841. {
  842. pgtable_t pgtable;
  843. pmd_t _pmd;
  844. struct page *page;
  845. int i, ret = 0;
  846. unsigned long mmun_start; /* For mmu_notifiers */
  847. unsigned long mmun_end; /* For mmu_notifiers */
  848. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  849. if (!page) {
  850. ret |= VM_FAULT_OOM;
  851. goto out;
  852. }
  853. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  854. put_page(page);
  855. ret |= VM_FAULT_OOM;
  856. goto out;
  857. }
  858. clear_user_highpage(page, address);
  859. __SetPageUptodate(page);
  860. mmun_start = haddr;
  861. mmun_end = haddr + HPAGE_PMD_SIZE;
  862. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  863. spin_lock(&mm->page_table_lock);
  864. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  865. goto out_free_page;
  866. pmdp_clear_flush(vma, haddr, pmd);
  867. /* leave pmd empty until pte is filled */
  868. pgtable = pgtable_trans_huge_withdraw(mm);
  869. pmd_populate(mm, &_pmd, pgtable);
  870. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  871. pte_t *pte, entry;
  872. if (haddr == (address & PAGE_MASK)) {
  873. entry = mk_pte(page, vma->vm_page_prot);
  874. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  875. page_add_new_anon_rmap(page, vma, haddr);
  876. } else {
  877. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  878. entry = pte_mkspecial(entry);
  879. }
  880. pte = pte_offset_map(&_pmd, haddr);
  881. VM_BUG_ON(!pte_none(*pte));
  882. set_pte_at(mm, haddr, pte, entry);
  883. pte_unmap(pte);
  884. }
  885. smp_wmb(); /* make pte visible before pmd */
  886. pmd_populate(mm, pmd, pgtable);
  887. spin_unlock(&mm->page_table_lock);
  888. put_huge_zero_page();
  889. inc_mm_counter(mm, MM_ANONPAGES);
  890. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  891. ret |= VM_FAULT_WRITE;
  892. out:
  893. return ret;
  894. out_free_page:
  895. spin_unlock(&mm->page_table_lock);
  896. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  897. mem_cgroup_uncharge_page(page);
  898. put_page(page);
  899. goto out;
  900. }
  901. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  902. struct vm_area_struct *vma,
  903. unsigned long address,
  904. pmd_t *pmd, pmd_t orig_pmd,
  905. struct page *page,
  906. unsigned long haddr)
  907. {
  908. pgtable_t pgtable;
  909. pmd_t _pmd;
  910. int ret = 0, i;
  911. struct page **pages;
  912. unsigned long mmun_start; /* For mmu_notifiers */
  913. unsigned long mmun_end; /* For mmu_notifiers */
  914. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  915. GFP_KERNEL);
  916. if (unlikely(!pages)) {
  917. ret |= VM_FAULT_OOM;
  918. goto out;
  919. }
  920. for (i = 0; i < HPAGE_PMD_NR; i++) {
  921. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  922. __GFP_OTHER_NODE,
  923. vma, address, page_to_nid(page));
  924. if (unlikely(!pages[i] ||
  925. mem_cgroup_newpage_charge(pages[i], mm,
  926. GFP_KERNEL))) {
  927. if (pages[i])
  928. put_page(pages[i]);
  929. mem_cgroup_uncharge_start();
  930. while (--i >= 0) {
  931. mem_cgroup_uncharge_page(pages[i]);
  932. put_page(pages[i]);
  933. }
  934. mem_cgroup_uncharge_end();
  935. kfree(pages);
  936. ret |= VM_FAULT_OOM;
  937. goto out;
  938. }
  939. }
  940. for (i = 0; i < HPAGE_PMD_NR; i++) {
  941. copy_user_highpage(pages[i], page + i,
  942. haddr + PAGE_SIZE * i, vma);
  943. __SetPageUptodate(pages[i]);
  944. cond_resched();
  945. }
  946. mmun_start = haddr;
  947. mmun_end = haddr + HPAGE_PMD_SIZE;
  948. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  949. spin_lock(&mm->page_table_lock);
  950. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  951. goto out_free_pages;
  952. VM_BUG_ON(!PageHead(page));
  953. pmdp_clear_flush(vma, haddr, pmd);
  954. /* leave pmd empty until pte is filled */
  955. pgtable = pgtable_trans_huge_withdraw(mm);
  956. pmd_populate(mm, &_pmd, pgtable);
  957. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  958. pte_t *pte, entry;
  959. entry = mk_pte(pages[i], vma->vm_page_prot);
  960. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  961. page_add_new_anon_rmap(pages[i], vma, haddr);
  962. pte = pte_offset_map(&_pmd, haddr);
  963. VM_BUG_ON(!pte_none(*pte));
  964. set_pte_at(mm, haddr, pte, entry);
  965. pte_unmap(pte);
  966. }
  967. kfree(pages);
  968. smp_wmb(); /* make pte visible before pmd */
  969. pmd_populate(mm, pmd, pgtable);
  970. page_remove_rmap(page);
  971. spin_unlock(&mm->page_table_lock);
  972. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  973. ret |= VM_FAULT_WRITE;
  974. put_page(page);
  975. out:
  976. return ret;
  977. out_free_pages:
  978. spin_unlock(&mm->page_table_lock);
  979. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  980. mem_cgroup_uncharge_start();
  981. for (i = 0; i < HPAGE_PMD_NR; i++) {
  982. mem_cgroup_uncharge_page(pages[i]);
  983. put_page(pages[i]);
  984. }
  985. mem_cgroup_uncharge_end();
  986. kfree(pages);
  987. goto out;
  988. }
  989. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  990. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  991. {
  992. int ret = 0;
  993. struct page *page = NULL, *new_page;
  994. unsigned long haddr;
  995. unsigned long mmun_start; /* For mmu_notifiers */
  996. unsigned long mmun_end; /* For mmu_notifiers */
  997. VM_BUG_ON(!vma->anon_vma);
  998. haddr = address & HPAGE_PMD_MASK;
  999. if (is_huge_zero_pmd(orig_pmd))
  1000. goto alloc;
  1001. spin_lock(&mm->page_table_lock);
  1002. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1003. goto out_unlock;
  1004. page = pmd_page(orig_pmd);
  1005. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  1006. if (page_mapcount(page) == 1) {
  1007. pmd_t entry;
  1008. entry = pmd_mkyoung(orig_pmd);
  1009. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1010. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1011. update_mmu_cache_pmd(vma, address, pmd);
  1012. ret |= VM_FAULT_WRITE;
  1013. goto out_unlock;
  1014. }
  1015. get_page(page);
  1016. spin_unlock(&mm->page_table_lock);
  1017. alloc:
  1018. if (transparent_hugepage_enabled(vma) &&
  1019. !transparent_hugepage_debug_cow())
  1020. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  1021. vma, haddr, numa_node_id(), 0);
  1022. else
  1023. new_page = NULL;
  1024. if (unlikely(!new_page)) {
  1025. count_vm_event(THP_FAULT_FALLBACK);
  1026. if (is_huge_zero_pmd(orig_pmd)) {
  1027. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  1028. address, pmd, orig_pmd, haddr);
  1029. } else {
  1030. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1031. pmd, orig_pmd, page, haddr);
  1032. if (ret & VM_FAULT_OOM)
  1033. split_huge_page(page);
  1034. put_page(page);
  1035. }
  1036. goto out;
  1037. }
  1038. count_vm_event(THP_FAULT_ALLOC);
  1039. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1040. put_page(new_page);
  1041. if (page) {
  1042. split_huge_page(page);
  1043. put_page(page);
  1044. }
  1045. ret |= VM_FAULT_OOM;
  1046. goto out;
  1047. }
  1048. if (is_huge_zero_pmd(orig_pmd))
  1049. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1050. else
  1051. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1052. __SetPageUptodate(new_page);
  1053. mmun_start = haddr;
  1054. mmun_end = haddr + HPAGE_PMD_SIZE;
  1055. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1056. spin_lock(&mm->page_table_lock);
  1057. if (page)
  1058. put_page(page);
  1059. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1060. spin_unlock(&mm->page_table_lock);
  1061. mem_cgroup_uncharge_page(new_page);
  1062. put_page(new_page);
  1063. goto out_mn;
  1064. } else {
  1065. pmd_t entry;
  1066. entry = mk_huge_pmd(new_page, vma);
  1067. pmdp_clear_flush(vma, haddr, pmd);
  1068. page_add_new_anon_rmap(new_page, vma, haddr);
  1069. set_pmd_at(mm, haddr, pmd, entry);
  1070. update_mmu_cache_pmd(vma, address, pmd);
  1071. if (is_huge_zero_pmd(orig_pmd)) {
  1072. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1073. put_huge_zero_page();
  1074. } else {
  1075. VM_BUG_ON(!PageHead(page));
  1076. page_remove_rmap(page);
  1077. put_page(page);
  1078. }
  1079. ret |= VM_FAULT_WRITE;
  1080. }
  1081. spin_unlock(&mm->page_table_lock);
  1082. out_mn:
  1083. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1084. out:
  1085. return ret;
  1086. out_unlock:
  1087. spin_unlock(&mm->page_table_lock);
  1088. return ret;
  1089. }
  1090. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1091. unsigned long addr,
  1092. pmd_t *pmd,
  1093. unsigned int flags)
  1094. {
  1095. struct mm_struct *mm = vma->vm_mm;
  1096. struct page *page = NULL;
  1097. assert_spin_locked(&mm->page_table_lock);
  1098. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1099. goto out;
  1100. /* Avoid dumping huge zero page */
  1101. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1102. return ERR_PTR(-EFAULT);
  1103. page = pmd_page(*pmd);
  1104. VM_BUG_ON(!PageHead(page));
  1105. if (flags & FOLL_TOUCH) {
  1106. pmd_t _pmd;
  1107. /*
  1108. * We should set the dirty bit only for FOLL_WRITE but
  1109. * for now the dirty bit in the pmd is meaningless.
  1110. * And if the dirty bit will become meaningful and
  1111. * we'll only set it with FOLL_WRITE, an atomic
  1112. * set_bit will be required on the pmd to set the
  1113. * young bit, instead of the current set_pmd_at.
  1114. */
  1115. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1116. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  1117. }
  1118. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1119. if (page->mapping && trylock_page(page)) {
  1120. lru_add_drain();
  1121. if (page->mapping)
  1122. mlock_vma_page(page);
  1123. unlock_page(page);
  1124. }
  1125. }
  1126. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1127. VM_BUG_ON(!PageCompound(page));
  1128. if (flags & FOLL_GET)
  1129. get_page_foll(page);
  1130. out:
  1131. return page;
  1132. }
  1133. /* NUMA hinting page fault entry point for trans huge pmds */
  1134. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1135. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1136. {
  1137. struct page *page;
  1138. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1139. int target_nid;
  1140. int current_nid = -1;
  1141. bool migrated;
  1142. spin_lock(&mm->page_table_lock);
  1143. if (unlikely(!pmd_same(pmd, *pmdp)))
  1144. goto out_unlock;
  1145. page = pmd_page(pmd);
  1146. get_page(page);
  1147. current_nid = page_to_nid(page);
  1148. count_vm_numa_event(NUMA_HINT_FAULTS);
  1149. if (current_nid == numa_node_id())
  1150. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1151. target_nid = mpol_misplaced(page, vma, haddr);
  1152. if (target_nid == -1) {
  1153. put_page(page);
  1154. goto clear_pmdnuma;
  1155. }
  1156. /* Acquire the page lock to serialise THP migrations */
  1157. spin_unlock(&mm->page_table_lock);
  1158. lock_page(page);
  1159. /* Confirm the PTE did not while locked */
  1160. spin_lock(&mm->page_table_lock);
  1161. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1162. unlock_page(page);
  1163. put_page(page);
  1164. goto out_unlock;
  1165. }
  1166. spin_unlock(&mm->page_table_lock);
  1167. /* Migrate the THP to the requested node */
  1168. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1169. pmdp, pmd, addr, page, target_nid);
  1170. if (!migrated)
  1171. goto check_same;
  1172. task_numa_fault(target_nid, HPAGE_PMD_NR, true);
  1173. return 0;
  1174. check_same:
  1175. spin_lock(&mm->page_table_lock);
  1176. if (unlikely(!pmd_same(pmd, *pmdp)))
  1177. goto out_unlock;
  1178. clear_pmdnuma:
  1179. pmd = pmd_mknonnuma(pmd);
  1180. set_pmd_at(mm, haddr, pmdp, pmd);
  1181. VM_BUG_ON(pmd_numa(*pmdp));
  1182. update_mmu_cache_pmd(vma, addr, pmdp);
  1183. out_unlock:
  1184. spin_unlock(&mm->page_table_lock);
  1185. if (current_nid != -1)
  1186. task_numa_fault(current_nid, HPAGE_PMD_NR, false);
  1187. return 0;
  1188. }
  1189. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1190. pmd_t *pmd, unsigned long addr)
  1191. {
  1192. int ret = 0;
  1193. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1194. struct page *page;
  1195. pgtable_t pgtable;
  1196. pmd_t orig_pmd;
  1197. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  1198. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1199. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1200. if (is_huge_zero_pmd(orig_pmd)) {
  1201. tlb->mm->nr_ptes--;
  1202. spin_unlock(&tlb->mm->page_table_lock);
  1203. put_huge_zero_page();
  1204. } else {
  1205. page = pmd_page(orig_pmd);
  1206. page_remove_rmap(page);
  1207. VM_BUG_ON(page_mapcount(page) < 0);
  1208. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1209. VM_BUG_ON(!PageHead(page));
  1210. tlb->mm->nr_ptes--;
  1211. spin_unlock(&tlb->mm->page_table_lock);
  1212. tlb_remove_page(tlb, page);
  1213. }
  1214. pte_free(tlb->mm, pgtable);
  1215. ret = 1;
  1216. }
  1217. return ret;
  1218. }
  1219. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1220. unsigned long addr, unsigned long end,
  1221. unsigned char *vec)
  1222. {
  1223. int ret = 0;
  1224. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1225. /*
  1226. * All logical pages in the range are present
  1227. * if backed by a huge page.
  1228. */
  1229. spin_unlock(&vma->vm_mm->page_table_lock);
  1230. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1231. ret = 1;
  1232. }
  1233. return ret;
  1234. }
  1235. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1236. unsigned long old_addr,
  1237. unsigned long new_addr, unsigned long old_end,
  1238. pmd_t *old_pmd, pmd_t *new_pmd)
  1239. {
  1240. int ret = 0;
  1241. pmd_t pmd;
  1242. struct mm_struct *mm = vma->vm_mm;
  1243. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1244. (new_addr & ~HPAGE_PMD_MASK) ||
  1245. old_end - old_addr < HPAGE_PMD_SIZE ||
  1246. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1247. goto out;
  1248. /*
  1249. * The destination pmd shouldn't be established, free_pgtables()
  1250. * should have release it.
  1251. */
  1252. if (WARN_ON(!pmd_none(*new_pmd))) {
  1253. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1254. goto out;
  1255. }
  1256. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1257. if (ret == 1) {
  1258. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1259. VM_BUG_ON(!pmd_none(*new_pmd));
  1260. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1261. spin_unlock(&mm->page_table_lock);
  1262. }
  1263. out:
  1264. return ret;
  1265. }
  1266. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1267. unsigned long addr, pgprot_t newprot, int prot_numa)
  1268. {
  1269. struct mm_struct *mm = vma->vm_mm;
  1270. int ret = 0;
  1271. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1272. pmd_t entry;
  1273. entry = pmdp_get_and_clear(mm, addr, pmd);
  1274. if (!prot_numa) {
  1275. entry = pmd_modify(entry, newprot);
  1276. BUG_ON(pmd_write(entry));
  1277. } else {
  1278. struct page *page = pmd_page(*pmd);
  1279. /* only check non-shared pages */
  1280. if (page_mapcount(page) == 1 &&
  1281. !pmd_numa(*pmd)) {
  1282. entry = pmd_mknuma(entry);
  1283. }
  1284. }
  1285. set_pmd_at(mm, addr, pmd, entry);
  1286. spin_unlock(&vma->vm_mm->page_table_lock);
  1287. ret = 1;
  1288. }
  1289. return ret;
  1290. }
  1291. /*
  1292. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1293. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1294. *
  1295. * Note that if it returns 1, this routine returns without unlocking page
  1296. * table locks. So callers must unlock them.
  1297. */
  1298. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1299. {
  1300. spin_lock(&vma->vm_mm->page_table_lock);
  1301. if (likely(pmd_trans_huge(*pmd))) {
  1302. if (unlikely(pmd_trans_splitting(*pmd))) {
  1303. spin_unlock(&vma->vm_mm->page_table_lock);
  1304. wait_split_huge_page(vma->anon_vma, pmd);
  1305. return -1;
  1306. } else {
  1307. /* Thp mapped by 'pmd' is stable, so we can
  1308. * handle it as it is. */
  1309. return 1;
  1310. }
  1311. }
  1312. spin_unlock(&vma->vm_mm->page_table_lock);
  1313. return 0;
  1314. }
  1315. pmd_t *page_check_address_pmd(struct page *page,
  1316. struct mm_struct *mm,
  1317. unsigned long address,
  1318. enum page_check_address_pmd_flag flag)
  1319. {
  1320. pmd_t *pmd, *ret = NULL;
  1321. if (address & ~HPAGE_PMD_MASK)
  1322. goto out;
  1323. pmd = mm_find_pmd(mm, address);
  1324. if (!pmd)
  1325. goto out;
  1326. if (pmd_none(*pmd))
  1327. goto out;
  1328. if (pmd_page(*pmd) != page)
  1329. goto out;
  1330. /*
  1331. * split_vma() may create temporary aliased mappings. There is
  1332. * no risk as long as all huge pmd are found and have their
  1333. * splitting bit set before __split_huge_page_refcount
  1334. * runs. Finding the same huge pmd more than once during the
  1335. * same rmap walk is not a problem.
  1336. */
  1337. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1338. pmd_trans_splitting(*pmd))
  1339. goto out;
  1340. if (pmd_trans_huge(*pmd)) {
  1341. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1342. !pmd_trans_splitting(*pmd));
  1343. ret = pmd;
  1344. }
  1345. out:
  1346. return ret;
  1347. }
  1348. static int __split_huge_page_splitting(struct page *page,
  1349. struct vm_area_struct *vma,
  1350. unsigned long address)
  1351. {
  1352. struct mm_struct *mm = vma->vm_mm;
  1353. pmd_t *pmd;
  1354. int ret = 0;
  1355. /* For mmu_notifiers */
  1356. const unsigned long mmun_start = address;
  1357. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1358. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1359. spin_lock(&mm->page_table_lock);
  1360. pmd = page_check_address_pmd(page, mm, address,
  1361. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1362. if (pmd) {
  1363. /*
  1364. * We can't temporarily set the pmd to null in order
  1365. * to split it, the pmd must remain marked huge at all
  1366. * times or the VM won't take the pmd_trans_huge paths
  1367. * and it won't wait on the anon_vma->root->rwsem to
  1368. * serialize against split_huge_page*.
  1369. */
  1370. pmdp_splitting_flush(vma, address, pmd);
  1371. ret = 1;
  1372. }
  1373. spin_unlock(&mm->page_table_lock);
  1374. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1375. return ret;
  1376. }
  1377. static void __split_huge_page_refcount(struct page *page,
  1378. struct list_head *list)
  1379. {
  1380. int i;
  1381. struct zone *zone = page_zone(page);
  1382. struct lruvec *lruvec;
  1383. int tail_count = 0;
  1384. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1385. spin_lock_irq(&zone->lru_lock);
  1386. lruvec = mem_cgroup_page_lruvec(page, zone);
  1387. compound_lock(page);
  1388. /* complete memcg works before add pages to LRU */
  1389. mem_cgroup_split_huge_fixup(page);
  1390. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1391. struct page *page_tail = page + i;
  1392. /* tail_page->_mapcount cannot change */
  1393. BUG_ON(page_mapcount(page_tail) < 0);
  1394. tail_count += page_mapcount(page_tail);
  1395. /* check for overflow */
  1396. BUG_ON(tail_count < 0);
  1397. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1398. /*
  1399. * tail_page->_count is zero and not changing from
  1400. * under us. But get_page_unless_zero() may be running
  1401. * from under us on the tail_page. If we used
  1402. * atomic_set() below instead of atomic_add(), we
  1403. * would then run atomic_set() concurrently with
  1404. * get_page_unless_zero(), and atomic_set() is
  1405. * implemented in C not using locked ops. spin_unlock
  1406. * on x86 sometime uses locked ops because of PPro
  1407. * errata 66, 92, so unless somebody can guarantee
  1408. * atomic_set() here would be safe on all archs (and
  1409. * not only on x86), it's safer to use atomic_add().
  1410. */
  1411. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1412. &page_tail->_count);
  1413. /* after clearing PageTail the gup refcount can be released */
  1414. smp_mb();
  1415. /*
  1416. * retain hwpoison flag of the poisoned tail page:
  1417. * fix for the unsuitable process killed on Guest Machine(KVM)
  1418. * by the memory-failure.
  1419. */
  1420. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1421. page_tail->flags |= (page->flags &
  1422. ((1L << PG_referenced) |
  1423. (1L << PG_swapbacked) |
  1424. (1L << PG_mlocked) |
  1425. (1L << PG_uptodate)));
  1426. page_tail->flags |= (1L << PG_dirty);
  1427. /* clear PageTail before overwriting first_page */
  1428. smp_wmb();
  1429. /*
  1430. * __split_huge_page_splitting() already set the
  1431. * splitting bit in all pmd that could map this
  1432. * hugepage, that will ensure no CPU can alter the
  1433. * mapcount on the head page. The mapcount is only
  1434. * accounted in the head page and it has to be
  1435. * transferred to all tail pages in the below code. So
  1436. * for this code to be safe, the split the mapcount
  1437. * can't change. But that doesn't mean userland can't
  1438. * keep changing and reading the page contents while
  1439. * we transfer the mapcount, so the pmd splitting
  1440. * status is achieved setting a reserved bit in the
  1441. * pmd, not by clearing the present bit.
  1442. */
  1443. page_tail->_mapcount = page->_mapcount;
  1444. BUG_ON(page_tail->mapping);
  1445. page_tail->mapping = page->mapping;
  1446. page_tail->index = page->index + i;
  1447. page_nid_xchg_last(page_tail, page_nid_last(page));
  1448. BUG_ON(!PageAnon(page_tail));
  1449. BUG_ON(!PageUptodate(page_tail));
  1450. BUG_ON(!PageDirty(page_tail));
  1451. BUG_ON(!PageSwapBacked(page_tail));
  1452. lru_add_page_tail(page, page_tail, lruvec, list);
  1453. }
  1454. atomic_sub(tail_count, &page->_count);
  1455. BUG_ON(atomic_read(&page->_count) <= 0);
  1456. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1457. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1458. ClearPageCompound(page);
  1459. compound_unlock(page);
  1460. spin_unlock_irq(&zone->lru_lock);
  1461. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1462. struct page *page_tail = page + i;
  1463. BUG_ON(page_count(page_tail) <= 0);
  1464. /*
  1465. * Tail pages may be freed if there wasn't any mapping
  1466. * like if add_to_swap() is running on a lru page that
  1467. * had its mapping zapped. And freeing these pages
  1468. * requires taking the lru_lock so we do the put_page
  1469. * of the tail pages after the split is complete.
  1470. */
  1471. put_page(page_tail);
  1472. }
  1473. /*
  1474. * Only the head page (now become a regular page) is required
  1475. * to be pinned by the caller.
  1476. */
  1477. BUG_ON(page_count(page) <= 0);
  1478. }
  1479. static int __split_huge_page_map(struct page *page,
  1480. struct vm_area_struct *vma,
  1481. unsigned long address)
  1482. {
  1483. struct mm_struct *mm = vma->vm_mm;
  1484. pmd_t *pmd, _pmd;
  1485. int ret = 0, i;
  1486. pgtable_t pgtable;
  1487. unsigned long haddr;
  1488. spin_lock(&mm->page_table_lock);
  1489. pmd = page_check_address_pmd(page, mm, address,
  1490. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1491. if (pmd) {
  1492. pgtable = pgtable_trans_huge_withdraw(mm);
  1493. pmd_populate(mm, &_pmd, pgtable);
  1494. haddr = address;
  1495. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1496. pte_t *pte, entry;
  1497. BUG_ON(PageCompound(page+i));
  1498. entry = mk_pte(page + i, vma->vm_page_prot);
  1499. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1500. if (!pmd_write(*pmd))
  1501. entry = pte_wrprotect(entry);
  1502. else
  1503. BUG_ON(page_mapcount(page) != 1);
  1504. if (!pmd_young(*pmd))
  1505. entry = pte_mkold(entry);
  1506. if (pmd_numa(*pmd))
  1507. entry = pte_mknuma(entry);
  1508. pte = pte_offset_map(&_pmd, haddr);
  1509. BUG_ON(!pte_none(*pte));
  1510. set_pte_at(mm, haddr, pte, entry);
  1511. pte_unmap(pte);
  1512. }
  1513. smp_wmb(); /* make pte visible before pmd */
  1514. /*
  1515. * Up to this point the pmd is present and huge and
  1516. * userland has the whole access to the hugepage
  1517. * during the split (which happens in place). If we
  1518. * overwrite the pmd with the not-huge version
  1519. * pointing to the pte here (which of course we could
  1520. * if all CPUs were bug free), userland could trigger
  1521. * a small page size TLB miss on the small sized TLB
  1522. * while the hugepage TLB entry is still established
  1523. * in the huge TLB. Some CPU doesn't like that. See
  1524. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1525. * Erratum 383 on page 93. Intel should be safe but is
  1526. * also warns that it's only safe if the permission
  1527. * and cache attributes of the two entries loaded in
  1528. * the two TLB is identical (which should be the case
  1529. * here). But it is generally safer to never allow
  1530. * small and huge TLB entries for the same virtual
  1531. * address to be loaded simultaneously. So instead of
  1532. * doing "pmd_populate(); flush_tlb_range();" we first
  1533. * mark the current pmd notpresent (atomically because
  1534. * here the pmd_trans_huge and pmd_trans_splitting
  1535. * must remain set at all times on the pmd until the
  1536. * split is complete for this pmd), then we flush the
  1537. * SMP TLB and finally we write the non-huge version
  1538. * of the pmd entry with pmd_populate.
  1539. */
  1540. pmdp_invalidate(vma, address, pmd);
  1541. pmd_populate(mm, pmd, pgtable);
  1542. ret = 1;
  1543. }
  1544. spin_unlock(&mm->page_table_lock);
  1545. return ret;
  1546. }
  1547. /* must be called with anon_vma->root->rwsem held */
  1548. static void __split_huge_page(struct page *page,
  1549. struct anon_vma *anon_vma,
  1550. struct list_head *list)
  1551. {
  1552. int mapcount, mapcount2;
  1553. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1554. struct anon_vma_chain *avc;
  1555. BUG_ON(!PageHead(page));
  1556. BUG_ON(PageTail(page));
  1557. mapcount = 0;
  1558. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1559. struct vm_area_struct *vma = avc->vma;
  1560. unsigned long addr = vma_address(page, vma);
  1561. BUG_ON(is_vma_temporary_stack(vma));
  1562. mapcount += __split_huge_page_splitting(page, vma, addr);
  1563. }
  1564. /*
  1565. * It is critical that new vmas are added to the tail of the
  1566. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1567. * and establishes a child pmd before
  1568. * __split_huge_page_splitting() freezes the parent pmd (so if
  1569. * we fail to prevent copy_huge_pmd() from running until the
  1570. * whole __split_huge_page() is complete), we will still see
  1571. * the newly established pmd of the child later during the
  1572. * walk, to be able to set it as pmd_trans_splitting too.
  1573. */
  1574. if (mapcount != page_mapcount(page))
  1575. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1576. mapcount, page_mapcount(page));
  1577. BUG_ON(mapcount != page_mapcount(page));
  1578. __split_huge_page_refcount(page, list);
  1579. mapcount2 = 0;
  1580. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1581. struct vm_area_struct *vma = avc->vma;
  1582. unsigned long addr = vma_address(page, vma);
  1583. BUG_ON(is_vma_temporary_stack(vma));
  1584. mapcount2 += __split_huge_page_map(page, vma, addr);
  1585. }
  1586. if (mapcount != mapcount2)
  1587. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1588. mapcount, mapcount2, page_mapcount(page));
  1589. BUG_ON(mapcount != mapcount2);
  1590. }
  1591. /*
  1592. * Split a hugepage into normal pages. This doesn't change the position of head
  1593. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1594. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1595. * from the hugepage.
  1596. * Return 0 if the hugepage is split successfully otherwise return 1.
  1597. */
  1598. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1599. {
  1600. struct anon_vma *anon_vma;
  1601. int ret = 1;
  1602. BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
  1603. BUG_ON(!PageAnon(page));
  1604. /*
  1605. * The caller does not necessarily hold an mmap_sem that would prevent
  1606. * the anon_vma disappearing so we first we take a reference to it
  1607. * and then lock the anon_vma for write. This is similar to
  1608. * page_lock_anon_vma_read except the write lock is taken to serialise
  1609. * against parallel split or collapse operations.
  1610. */
  1611. anon_vma = page_get_anon_vma(page);
  1612. if (!anon_vma)
  1613. goto out;
  1614. anon_vma_lock_write(anon_vma);
  1615. ret = 0;
  1616. if (!PageCompound(page))
  1617. goto out_unlock;
  1618. BUG_ON(!PageSwapBacked(page));
  1619. __split_huge_page(page, anon_vma, list);
  1620. count_vm_event(THP_SPLIT);
  1621. BUG_ON(PageCompound(page));
  1622. out_unlock:
  1623. anon_vma_unlock_write(anon_vma);
  1624. put_anon_vma(anon_vma);
  1625. out:
  1626. return ret;
  1627. }
  1628. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1629. int hugepage_madvise(struct vm_area_struct *vma,
  1630. unsigned long *vm_flags, int advice)
  1631. {
  1632. struct mm_struct *mm = vma->vm_mm;
  1633. switch (advice) {
  1634. case MADV_HUGEPAGE:
  1635. /*
  1636. * Be somewhat over-protective like KSM for now!
  1637. */
  1638. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1639. return -EINVAL;
  1640. if (mm->def_flags & VM_NOHUGEPAGE)
  1641. return -EINVAL;
  1642. *vm_flags &= ~VM_NOHUGEPAGE;
  1643. *vm_flags |= VM_HUGEPAGE;
  1644. /*
  1645. * If the vma become good for khugepaged to scan,
  1646. * register it here without waiting a page fault that
  1647. * may not happen any time soon.
  1648. */
  1649. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1650. return -ENOMEM;
  1651. break;
  1652. case MADV_NOHUGEPAGE:
  1653. /*
  1654. * Be somewhat over-protective like KSM for now!
  1655. */
  1656. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1657. return -EINVAL;
  1658. *vm_flags &= ~VM_HUGEPAGE;
  1659. *vm_flags |= VM_NOHUGEPAGE;
  1660. /*
  1661. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1662. * this vma even if we leave the mm registered in khugepaged if
  1663. * it got registered before VM_NOHUGEPAGE was set.
  1664. */
  1665. break;
  1666. }
  1667. return 0;
  1668. }
  1669. static int __init khugepaged_slab_init(void)
  1670. {
  1671. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1672. sizeof(struct mm_slot),
  1673. __alignof__(struct mm_slot), 0, NULL);
  1674. if (!mm_slot_cache)
  1675. return -ENOMEM;
  1676. return 0;
  1677. }
  1678. static inline struct mm_slot *alloc_mm_slot(void)
  1679. {
  1680. if (!mm_slot_cache) /* initialization failed */
  1681. return NULL;
  1682. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1683. }
  1684. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1685. {
  1686. kmem_cache_free(mm_slot_cache, mm_slot);
  1687. }
  1688. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1689. {
  1690. struct mm_slot *mm_slot;
  1691. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1692. if (mm == mm_slot->mm)
  1693. return mm_slot;
  1694. return NULL;
  1695. }
  1696. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1697. struct mm_slot *mm_slot)
  1698. {
  1699. mm_slot->mm = mm;
  1700. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1701. }
  1702. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1703. {
  1704. return atomic_read(&mm->mm_users) == 0;
  1705. }
  1706. int __khugepaged_enter(struct mm_struct *mm)
  1707. {
  1708. struct mm_slot *mm_slot;
  1709. int wakeup;
  1710. mm_slot = alloc_mm_slot();
  1711. if (!mm_slot)
  1712. return -ENOMEM;
  1713. /* __khugepaged_exit() must not run from under us */
  1714. VM_BUG_ON(khugepaged_test_exit(mm));
  1715. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1716. free_mm_slot(mm_slot);
  1717. return 0;
  1718. }
  1719. spin_lock(&khugepaged_mm_lock);
  1720. insert_to_mm_slots_hash(mm, mm_slot);
  1721. /*
  1722. * Insert just behind the scanning cursor, to let the area settle
  1723. * down a little.
  1724. */
  1725. wakeup = list_empty(&khugepaged_scan.mm_head);
  1726. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1727. spin_unlock(&khugepaged_mm_lock);
  1728. atomic_inc(&mm->mm_count);
  1729. if (wakeup)
  1730. wake_up_interruptible(&khugepaged_wait);
  1731. return 0;
  1732. }
  1733. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1734. {
  1735. unsigned long hstart, hend;
  1736. if (!vma->anon_vma)
  1737. /*
  1738. * Not yet faulted in so we will register later in the
  1739. * page fault if needed.
  1740. */
  1741. return 0;
  1742. if (vma->vm_ops)
  1743. /* khugepaged not yet working on file or special mappings */
  1744. return 0;
  1745. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1746. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1747. hend = vma->vm_end & HPAGE_PMD_MASK;
  1748. if (hstart < hend)
  1749. return khugepaged_enter(vma);
  1750. return 0;
  1751. }
  1752. void __khugepaged_exit(struct mm_struct *mm)
  1753. {
  1754. struct mm_slot *mm_slot;
  1755. int free = 0;
  1756. spin_lock(&khugepaged_mm_lock);
  1757. mm_slot = get_mm_slot(mm);
  1758. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1759. hash_del(&mm_slot->hash);
  1760. list_del(&mm_slot->mm_node);
  1761. free = 1;
  1762. }
  1763. spin_unlock(&khugepaged_mm_lock);
  1764. if (free) {
  1765. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1766. free_mm_slot(mm_slot);
  1767. mmdrop(mm);
  1768. } else if (mm_slot) {
  1769. /*
  1770. * This is required to serialize against
  1771. * khugepaged_test_exit() (which is guaranteed to run
  1772. * under mmap sem read mode). Stop here (after we
  1773. * return all pagetables will be destroyed) until
  1774. * khugepaged has finished working on the pagetables
  1775. * under the mmap_sem.
  1776. */
  1777. down_write(&mm->mmap_sem);
  1778. up_write(&mm->mmap_sem);
  1779. }
  1780. }
  1781. static void release_pte_page(struct page *page)
  1782. {
  1783. /* 0 stands for page_is_file_cache(page) == false */
  1784. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1785. unlock_page(page);
  1786. putback_lru_page(page);
  1787. }
  1788. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1789. {
  1790. while (--_pte >= pte) {
  1791. pte_t pteval = *_pte;
  1792. if (!pte_none(pteval))
  1793. release_pte_page(pte_page(pteval));
  1794. }
  1795. }
  1796. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1797. unsigned long address,
  1798. pte_t *pte)
  1799. {
  1800. struct page *page;
  1801. pte_t *_pte;
  1802. int referenced = 0, none = 0;
  1803. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1804. _pte++, address += PAGE_SIZE) {
  1805. pte_t pteval = *_pte;
  1806. if (pte_none(pteval)) {
  1807. if (++none <= khugepaged_max_ptes_none)
  1808. continue;
  1809. else
  1810. goto out;
  1811. }
  1812. if (!pte_present(pteval) || !pte_write(pteval))
  1813. goto out;
  1814. page = vm_normal_page(vma, address, pteval);
  1815. if (unlikely(!page))
  1816. goto out;
  1817. VM_BUG_ON(PageCompound(page));
  1818. BUG_ON(!PageAnon(page));
  1819. VM_BUG_ON(!PageSwapBacked(page));
  1820. /* cannot use mapcount: can't collapse if there's a gup pin */
  1821. if (page_count(page) != 1)
  1822. goto out;
  1823. /*
  1824. * We can do it before isolate_lru_page because the
  1825. * page can't be freed from under us. NOTE: PG_lock
  1826. * is needed to serialize against split_huge_page
  1827. * when invoked from the VM.
  1828. */
  1829. if (!trylock_page(page))
  1830. goto out;
  1831. /*
  1832. * Isolate the page to avoid collapsing an hugepage
  1833. * currently in use by the VM.
  1834. */
  1835. if (isolate_lru_page(page)) {
  1836. unlock_page(page);
  1837. goto out;
  1838. }
  1839. /* 0 stands for page_is_file_cache(page) == false */
  1840. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1841. VM_BUG_ON(!PageLocked(page));
  1842. VM_BUG_ON(PageLRU(page));
  1843. /* If there is no mapped pte young don't collapse the page */
  1844. if (pte_young(pteval) || PageReferenced(page) ||
  1845. mmu_notifier_test_young(vma->vm_mm, address))
  1846. referenced = 1;
  1847. }
  1848. if (likely(referenced))
  1849. return 1;
  1850. out:
  1851. release_pte_pages(pte, _pte);
  1852. return 0;
  1853. }
  1854. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1855. struct vm_area_struct *vma,
  1856. unsigned long address,
  1857. spinlock_t *ptl)
  1858. {
  1859. pte_t *_pte;
  1860. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1861. pte_t pteval = *_pte;
  1862. struct page *src_page;
  1863. if (pte_none(pteval)) {
  1864. clear_user_highpage(page, address);
  1865. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1866. } else {
  1867. src_page = pte_page(pteval);
  1868. copy_user_highpage(page, src_page, address, vma);
  1869. VM_BUG_ON(page_mapcount(src_page) != 1);
  1870. release_pte_page(src_page);
  1871. /*
  1872. * ptl mostly unnecessary, but preempt has to
  1873. * be disabled to update the per-cpu stats
  1874. * inside page_remove_rmap().
  1875. */
  1876. spin_lock(ptl);
  1877. /*
  1878. * paravirt calls inside pte_clear here are
  1879. * superfluous.
  1880. */
  1881. pte_clear(vma->vm_mm, address, _pte);
  1882. page_remove_rmap(src_page);
  1883. spin_unlock(ptl);
  1884. free_page_and_swap_cache(src_page);
  1885. }
  1886. address += PAGE_SIZE;
  1887. page++;
  1888. }
  1889. }
  1890. static void khugepaged_alloc_sleep(void)
  1891. {
  1892. wait_event_freezable_timeout(khugepaged_wait, false,
  1893. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1894. }
  1895. #ifdef CONFIG_NUMA
  1896. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1897. {
  1898. if (IS_ERR(*hpage)) {
  1899. if (!*wait)
  1900. return false;
  1901. *wait = false;
  1902. *hpage = NULL;
  1903. khugepaged_alloc_sleep();
  1904. } else if (*hpage) {
  1905. put_page(*hpage);
  1906. *hpage = NULL;
  1907. }
  1908. return true;
  1909. }
  1910. static struct page
  1911. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1912. struct vm_area_struct *vma, unsigned long address,
  1913. int node)
  1914. {
  1915. VM_BUG_ON(*hpage);
  1916. /*
  1917. * Allocate the page while the vma is still valid and under
  1918. * the mmap_sem read mode so there is no memory allocation
  1919. * later when we take the mmap_sem in write mode. This is more
  1920. * friendly behavior (OTOH it may actually hide bugs) to
  1921. * filesystems in userland with daemons allocating memory in
  1922. * the userland I/O paths. Allocating memory with the
  1923. * mmap_sem in read mode is good idea also to allow greater
  1924. * scalability.
  1925. */
  1926. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1927. node, __GFP_OTHER_NODE);
  1928. /*
  1929. * After allocating the hugepage, release the mmap_sem read lock in
  1930. * preparation for taking it in write mode.
  1931. */
  1932. up_read(&mm->mmap_sem);
  1933. if (unlikely(!*hpage)) {
  1934. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1935. *hpage = ERR_PTR(-ENOMEM);
  1936. return NULL;
  1937. }
  1938. count_vm_event(THP_COLLAPSE_ALLOC);
  1939. return *hpage;
  1940. }
  1941. #else
  1942. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1943. {
  1944. struct page *hpage;
  1945. do {
  1946. hpage = alloc_hugepage(khugepaged_defrag());
  1947. if (!hpage) {
  1948. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1949. if (!*wait)
  1950. return NULL;
  1951. *wait = false;
  1952. khugepaged_alloc_sleep();
  1953. } else
  1954. count_vm_event(THP_COLLAPSE_ALLOC);
  1955. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1956. return hpage;
  1957. }
  1958. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1959. {
  1960. if (!*hpage)
  1961. *hpage = khugepaged_alloc_hugepage(wait);
  1962. if (unlikely(!*hpage))
  1963. return false;
  1964. return true;
  1965. }
  1966. static struct page
  1967. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1968. struct vm_area_struct *vma, unsigned long address,
  1969. int node)
  1970. {
  1971. up_read(&mm->mmap_sem);
  1972. VM_BUG_ON(!*hpage);
  1973. return *hpage;
  1974. }
  1975. #endif
  1976. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1977. {
  1978. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1979. (vma->vm_flags & VM_NOHUGEPAGE))
  1980. return false;
  1981. if (!vma->anon_vma || vma->vm_ops)
  1982. return false;
  1983. if (is_vma_temporary_stack(vma))
  1984. return false;
  1985. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1986. return true;
  1987. }
  1988. static void collapse_huge_page(struct mm_struct *mm,
  1989. unsigned long address,
  1990. struct page **hpage,
  1991. struct vm_area_struct *vma,
  1992. int node)
  1993. {
  1994. pmd_t *pmd, _pmd;
  1995. pte_t *pte;
  1996. pgtable_t pgtable;
  1997. struct page *new_page;
  1998. spinlock_t *ptl;
  1999. int isolated;
  2000. unsigned long hstart, hend;
  2001. unsigned long mmun_start; /* For mmu_notifiers */
  2002. unsigned long mmun_end; /* For mmu_notifiers */
  2003. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2004. /* release the mmap_sem read lock. */
  2005. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  2006. if (!new_page)
  2007. return;
  2008. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  2009. return;
  2010. /*
  2011. * Prevent all access to pagetables with the exception of
  2012. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2013. * handled by the anon_vma lock + PG_lock.
  2014. */
  2015. down_write(&mm->mmap_sem);
  2016. if (unlikely(khugepaged_test_exit(mm)))
  2017. goto out;
  2018. vma = find_vma(mm, address);
  2019. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2020. hend = vma->vm_end & HPAGE_PMD_MASK;
  2021. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2022. goto out;
  2023. if (!hugepage_vma_check(vma))
  2024. goto out;
  2025. pmd = mm_find_pmd(mm, address);
  2026. if (!pmd)
  2027. goto out;
  2028. if (pmd_trans_huge(*pmd))
  2029. goto out;
  2030. anon_vma_lock_write(vma->anon_vma);
  2031. pte = pte_offset_map(pmd, address);
  2032. ptl = pte_lockptr(mm, pmd);
  2033. mmun_start = address;
  2034. mmun_end = address + HPAGE_PMD_SIZE;
  2035. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2036. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  2037. /*
  2038. * After this gup_fast can't run anymore. This also removes
  2039. * any huge TLB entry from the CPU so we won't allow
  2040. * huge and small TLB entries for the same virtual address
  2041. * to avoid the risk of CPU bugs in that area.
  2042. */
  2043. _pmd = pmdp_clear_flush(vma, address, pmd);
  2044. spin_unlock(&mm->page_table_lock);
  2045. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2046. spin_lock(ptl);
  2047. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2048. spin_unlock(ptl);
  2049. if (unlikely(!isolated)) {
  2050. pte_unmap(pte);
  2051. spin_lock(&mm->page_table_lock);
  2052. BUG_ON(!pmd_none(*pmd));
  2053. set_pmd_at(mm, address, pmd, _pmd);
  2054. spin_unlock(&mm->page_table_lock);
  2055. anon_vma_unlock_write(vma->anon_vma);
  2056. goto out;
  2057. }
  2058. /*
  2059. * All pages are isolated and locked so anon_vma rmap
  2060. * can't run anymore.
  2061. */
  2062. anon_vma_unlock_write(vma->anon_vma);
  2063. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  2064. pte_unmap(pte);
  2065. __SetPageUptodate(new_page);
  2066. pgtable = pmd_pgtable(_pmd);
  2067. _pmd = mk_huge_pmd(new_page, vma);
  2068. /*
  2069. * spin_lock() below is not the equivalent of smp_wmb(), so
  2070. * this is needed to avoid the copy_huge_page writes to become
  2071. * visible after the set_pmd_at() write.
  2072. */
  2073. smp_wmb();
  2074. spin_lock(&mm->page_table_lock);
  2075. BUG_ON(!pmd_none(*pmd));
  2076. page_add_new_anon_rmap(new_page, vma, address);
  2077. set_pmd_at(mm, address, pmd, _pmd);
  2078. update_mmu_cache_pmd(vma, address, pmd);
  2079. pgtable_trans_huge_deposit(mm, pgtable);
  2080. spin_unlock(&mm->page_table_lock);
  2081. *hpage = NULL;
  2082. khugepaged_pages_collapsed++;
  2083. out_up_write:
  2084. up_write(&mm->mmap_sem);
  2085. return;
  2086. out:
  2087. mem_cgroup_uncharge_page(new_page);
  2088. goto out_up_write;
  2089. }
  2090. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2091. struct vm_area_struct *vma,
  2092. unsigned long address,
  2093. struct page **hpage)
  2094. {
  2095. pmd_t *pmd;
  2096. pte_t *pte, *_pte;
  2097. int ret = 0, referenced = 0, none = 0;
  2098. struct page *page;
  2099. unsigned long _address;
  2100. spinlock_t *ptl;
  2101. int node = NUMA_NO_NODE;
  2102. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2103. pmd = mm_find_pmd(mm, address);
  2104. if (!pmd)
  2105. goto out;
  2106. if (pmd_trans_huge(*pmd))
  2107. goto out;
  2108. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2109. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2110. _pte++, _address += PAGE_SIZE) {
  2111. pte_t pteval = *_pte;
  2112. if (pte_none(pteval)) {
  2113. if (++none <= khugepaged_max_ptes_none)
  2114. continue;
  2115. else
  2116. goto out_unmap;
  2117. }
  2118. if (!pte_present(pteval) || !pte_write(pteval))
  2119. goto out_unmap;
  2120. page = vm_normal_page(vma, _address, pteval);
  2121. if (unlikely(!page))
  2122. goto out_unmap;
  2123. /*
  2124. * Chose the node of the first page. This could
  2125. * be more sophisticated and look at more pages,
  2126. * but isn't for now.
  2127. */
  2128. if (node == NUMA_NO_NODE)
  2129. node = page_to_nid(page);
  2130. VM_BUG_ON(PageCompound(page));
  2131. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2132. goto out_unmap;
  2133. /* cannot use mapcount: can't collapse if there's a gup pin */
  2134. if (page_count(page) != 1)
  2135. goto out_unmap;
  2136. if (pte_young(pteval) || PageReferenced(page) ||
  2137. mmu_notifier_test_young(vma->vm_mm, address))
  2138. referenced = 1;
  2139. }
  2140. if (referenced)
  2141. ret = 1;
  2142. out_unmap:
  2143. pte_unmap_unlock(pte, ptl);
  2144. if (ret)
  2145. /* collapse_huge_page will return with the mmap_sem released */
  2146. collapse_huge_page(mm, address, hpage, vma, node);
  2147. out:
  2148. return ret;
  2149. }
  2150. static void collect_mm_slot(struct mm_slot *mm_slot)
  2151. {
  2152. struct mm_struct *mm = mm_slot->mm;
  2153. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2154. if (khugepaged_test_exit(mm)) {
  2155. /* free mm_slot */
  2156. hash_del(&mm_slot->hash);
  2157. list_del(&mm_slot->mm_node);
  2158. /*
  2159. * Not strictly needed because the mm exited already.
  2160. *
  2161. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2162. */
  2163. /* khugepaged_mm_lock actually not necessary for the below */
  2164. free_mm_slot(mm_slot);
  2165. mmdrop(mm);
  2166. }
  2167. }
  2168. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2169. struct page **hpage)
  2170. __releases(&khugepaged_mm_lock)
  2171. __acquires(&khugepaged_mm_lock)
  2172. {
  2173. struct mm_slot *mm_slot;
  2174. struct mm_struct *mm;
  2175. struct vm_area_struct *vma;
  2176. int progress = 0;
  2177. VM_BUG_ON(!pages);
  2178. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2179. if (khugepaged_scan.mm_slot)
  2180. mm_slot = khugepaged_scan.mm_slot;
  2181. else {
  2182. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2183. struct mm_slot, mm_node);
  2184. khugepaged_scan.address = 0;
  2185. khugepaged_scan.mm_slot = mm_slot;
  2186. }
  2187. spin_unlock(&khugepaged_mm_lock);
  2188. mm = mm_slot->mm;
  2189. down_read(&mm->mmap_sem);
  2190. if (unlikely(khugepaged_test_exit(mm)))
  2191. vma = NULL;
  2192. else
  2193. vma = find_vma(mm, khugepaged_scan.address);
  2194. progress++;
  2195. for (; vma; vma = vma->vm_next) {
  2196. unsigned long hstart, hend;
  2197. cond_resched();
  2198. if (unlikely(khugepaged_test_exit(mm))) {
  2199. progress++;
  2200. break;
  2201. }
  2202. if (!hugepage_vma_check(vma)) {
  2203. skip:
  2204. progress++;
  2205. continue;
  2206. }
  2207. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2208. hend = vma->vm_end & HPAGE_PMD_MASK;
  2209. if (hstart >= hend)
  2210. goto skip;
  2211. if (khugepaged_scan.address > hend)
  2212. goto skip;
  2213. if (khugepaged_scan.address < hstart)
  2214. khugepaged_scan.address = hstart;
  2215. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2216. while (khugepaged_scan.address < hend) {
  2217. int ret;
  2218. cond_resched();
  2219. if (unlikely(khugepaged_test_exit(mm)))
  2220. goto breakouterloop;
  2221. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2222. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2223. hend);
  2224. ret = khugepaged_scan_pmd(mm, vma,
  2225. khugepaged_scan.address,
  2226. hpage);
  2227. /* move to next address */
  2228. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2229. progress += HPAGE_PMD_NR;
  2230. if (ret)
  2231. /* we released mmap_sem so break loop */
  2232. goto breakouterloop_mmap_sem;
  2233. if (progress >= pages)
  2234. goto breakouterloop;
  2235. }
  2236. }
  2237. breakouterloop:
  2238. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2239. breakouterloop_mmap_sem:
  2240. spin_lock(&khugepaged_mm_lock);
  2241. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2242. /*
  2243. * Release the current mm_slot if this mm is about to die, or
  2244. * if we scanned all vmas of this mm.
  2245. */
  2246. if (khugepaged_test_exit(mm) || !vma) {
  2247. /*
  2248. * Make sure that if mm_users is reaching zero while
  2249. * khugepaged runs here, khugepaged_exit will find
  2250. * mm_slot not pointing to the exiting mm.
  2251. */
  2252. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2253. khugepaged_scan.mm_slot = list_entry(
  2254. mm_slot->mm_node.next,
  2255. struct mm_slot, mm_node);
  2256. khugepaged_scan.address = 0;
  2257. } else {
  2258. khugepaged_scan.mm_slot = NULL;
  2259. khugepaged_full_scans++;
  2260. }
  2261. collect_mm_slot(mm_slot);
  2262. }
  2263. return progress;
  2264. }
  2265. static int khugepaged_has_work(void)
  2266. {
  2267. return !list_empty(&khugepaged_scan.mm_head) &&
  2268. khugepaged_enabled();
  2269. }
  2270. static int khugepaged_wait_event(void)
  2271. {
  2272. return !list_empty(&khugepaged_scan.mm_head) ||
  2273. kthread_should_stop();
  2274. }
  2275. static void khugepaged_do_scan(void)
  2276. {
  2277. struct page *hpage = NULL;
  2278. unsigned int progress = 0, pass_through_head = 0;
  2279. unsigned int pages = khugepaged_pages_to_scan;
  2280. bool wait = true;
  2281. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2282. while (progress < pages) {
  2283. if (!khugepaged_prealloc_page(&hpage, &wait))
  2284. break;
  2285. cond_resched();
  2286. if (unlikely(kthread_should_stop() || freezing(current)))
  2287. break;
  2288. spin_lock(&khugepaged_mm_lock);
  2289. if (!khugepaged_scan.mm_slot)
  2290. pass_through_head++;
  2291. if (khugepaged_has_work() &&
  2292. pass_through_head < 2)
  2293. progress += khugepaged_scan_mm_slot(pages - progress,
  2294. &hpage);
  2295. else
  2296. progress = pages;
  2297. spin_unlock(&khugepaged_mm_lock);
  2298. }
  2299. if (!IS_ERR_OR_NULL(hpage))
  2300. put_page(hpage);
  2301. }
  2302. static void khugepaged_wait_work(void)
  2303. {
  2304. try_to_freeze();
  2305. if (khugepaged_has_work()) {
  2306. if (!khugepaged_scan_sleep_millisecs)
  2307. return;
  2308. wait_event_freezable_timeout(khugepaged_wait,
  2309. kthread_should_stop(),
  2310. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2311. return;
  2312. }
  2313. if (khugepaged_enabled())
  2314. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2315. }
  2316. static int khugepaged(void *none)
  2317. {
  2318. struct mm_slot *mm_slot;
  2319. set_freezable();
  2320. set_user_nice(current, 19);
  2321. while (!kthread_should_stop()) {
  2322. khugepaged_do_scan();
  2323. khugepaged_wait_work();
  2324. }
  2325. spin_lock(&khugepaged_mm_lock);
  2326. mm_slot = khugepaged_scan.mm_slot;
  2327. khugepaged_scan.mm_slot = NULL;
  2328. if (mm_slot)
  2329. collect_mm_slot(mm_slot);
  2330. spin_unlock(&khugepaged_mm_lock);
  2331. return 0;
  2332. }
  2333. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2334. unsigned long haddr, pmd_t *pmd)
  2335. {
  2336. struct mm_struct *mm = vma->vm_mm;
  2337. pgtable_t pgtable;
  2338. pmd_t _pmd;
  2339. int i;
  2340. pmdp_clear_flush(vma, haddr, pmd);
  2341. /* leave pmd empty until pte is filled */
  2342. pgtable = pgtable_trans_huge_withdraw(mm);
  2343. pmd_populate(mm, &_pmd, pgtable);
  2344. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2345. pte_t *pte, entry;
  2346. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2347. entry = pte_mkspecial(entry);
  2348. pte = pte_offset_map(&_pmd, haddr);
  2349. VM_BUG_ON(!pte_none(*pte));
  2350. set_pte_at(mm, haddr, pte, entry);
  2351. pte_unmap(pte);
  2352. }
  2353. smp_wmb(); /* make pte visible before pmd */
  2354. pmd_populate(mm, pmd, pgtable);
  2355. put_huge_zero_page();
  2356. }
  2357. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2358. pmd_t *pmd)
  2359. {
  2360. struct page *page;
  2361. struct mm_struct *mm = vma->vm_mm;
  2362. unsigned long haddr = address & HPAGE_PMD_MASK;
  2363. unsigned long mmun_start; /* For mmu_notifiers */
  2364. unsigned long mmun_end; /* For mmu_notifiers */
  2365. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2366. mmun_start = haddr;
  2367. mmun_end = haddr + HPAGE_PMD_SIZE;
  2368. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2369. spin_lock(&mm->page_table_lock);
  2370. if (unlikely(!pmd_trans_huge(*pmd))) {
  2371. spin_unlock(&mm->page_table_lock);
  2372. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2373. return;
  2374. }
  2375. if (is_huge_zero_pmd(*pmd)) {
  2376. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2377. spin_unlock(&mm->page_table_lock);
  2378. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2379. return;
  2380. }
  2381. page = pmd_page(*pmd);
  2382. VM_BUG_ON(!page_count(page));
  2383. get_page(page);
  2384. spin_unlock(&mm->page_table_lock);
  2385. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2386. split_huge_page(page);
  2387. put_page(page);
  2388. BUG_ON(pmd_trans_huge(*pmd));
  2389. }
  2390. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2391. pmd_t *pmd)
  2392. {
  2393. struct vm_area_struct *vma;
  2394. vma = find_vma(mm, address);
  2395. BUG_ON(vma == NULL);
  2396. split_huge_page_pmd(vma, address, pmd);
  2397. }
  2398. static void split_huge_page_address(struct mm_struct *mm,
  2399. unsigned long address)
  2400. {
  2401. pmd_t *pmd;
  2402. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2403. pmd = mm_find_pmd(mm, address);
  2404. if (!pmd)
  2405. return;
  2406. /*
  2407. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2408. * materialize from under us.
  2409. */
  2410. split_huge_page_pmd_mm(mm, address, pmd);
  2411. }
  2412. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2413. unsigned long start,
  2414. unsigned long end,
  2415. long adjust_next)
  2416. {
  2417. /*
  2418. * If the new start address isn't hpage aligned and it could
  2419. * previously contain an hugepage: check if we need to split
  2420. * an huge pmd.
  2421. */
  2422. if (start & ~HPAGE_PMD_MASK &&
  2423. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2424. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2425. split_huge_page_address(vma->vm_mm, start);
  2426. /*
  2427. * If the new end address isn't hpage aligned and it could
  2428. * previously contain an hugepage: check if we need to split
  2429. * an huge pmd.
  2430. */
  2431. if (end & ~HPAGE_PMD_MASK &&
  2432. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2433. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2434. split_huge_page_address(vma->vm_mm, end);
  2435. /*
  2436. * If we're also updating the vma->vm_next->vm_start, if the new
  2437. * vm_next->vm_start isn't page aligned and it could previously
  2438. * contain an hugepage: check if we need to split an huge pmd.
  2439. */
  2440. if (adjust_next > 0) {
  2441. struct vm_area_struct *next = vma->vm_next;
  2442. unsigned long nstart = next->vm_start;
  2443. nstart += adjust_next << PAGE_SHIFT;
  2444. if (nstart & ~HPAGE_PMD_MASK &&
  2445. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2446. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2447. split_huge_page_address(next->vm_mm, nstart);
  2448. }
  2449. }