eeprom_4k.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  18. {
  19. return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  20. }
  21. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  22. {
  23. return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  24. }
  25. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  26. {
  27. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  28. struct ath_common *common = ath9k_hw_common(ah);
  29. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  30. int addr, eep_start_loc = 0;
  31. eep_start_loc = 64;
  32. if (!ath9k_hw_use_flash(ah)) {
  33. ath_print(common, ATH_DBG_EEPROM,
  34. "Reading from EEPROM, not flash\n");
  35. }
  36. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  37. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
  38. ath_print(common, ATH_DBG_EEPROM,
  39. "Unable to read eeprom region \n");
  40. return false;
  41. }
  42. eep_data++;
  43. }
  44. return true;
  45. #undef SIZE_EEPROM_4K
  46. }
  47. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  48. {
  49. #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  50. struct ath_common *common = ath9k_hw_common(ah);
  51. struct ar5416_eeprom_4k *eep =
  52. (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
  53. u16 *eepdata, temp, magic, magic2;
  54. u32 sum = 0, el;
  55. bool need_swap = false;
  56. int i, addr;
  57. if (!ath9k_hw_use_flash(ah)) {
  58. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  59. &magic)) {
  60. ath_print(common, ATH_DBG_FATAL,
  61. "Reading Magic # failed\n");
  62. return false;
  63. }
  64. ath_print(common, ATH_DBG_EEPROM,
  65. "Read Magic = 0x%04X\n", magic);
  66. if (magic != AR5416_EEPROM_MAGIC) {
  67. magic2 = swab16(magic);
  68. if (magic2 == AR5416_EEPROM_MAGIC) {
  69. need_swap = true;
  70. eepdata = (u16 *) (&ah->eeprom);
  71. for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
  72. temp = swab16(*eepdata);
  73. *eepdata = temp;
  74. eepdata++;
  75. }
  76. } else {
  77. ath_print(common, ATH_DBG_FATAL,
  78. "Invalid EEPROM Magic. "
  79. "endianness mismatch.\n");
  80. return -EINVAL;
  81. }
  82. }
  83. }
  84. ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
  85. need_swap ? "True" : "False");
  86. if (need_swap)
  87. el = swab16(ah->eeprom.map4k.baseEepHeader.length);
  88. else
  89. el = ah->eeprom.map4k.baseEepHeader.length;
  90. if (el > sizeof(struct ar5416_eeprom_4k))
  91. el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
  92. else
  93. el = el / sizeof(u16);
  94. eepdata = (u16 *)(&ah->eeprom);
  95. for (i = 0; i < el; i++)
  96. sum ^= *eepdata++;
  97. if (need_swap) {
  98. u32 integer;
  99. u16 word;
  100. ath_print(common, ATH_DBG_EEPROM,
  101. "EEPROM Endianness is not native.. Changing\n");
  102. word = swab16(eep->baseEepHeader.length);
  103. eep->baseEepHeader.length = word;
  104. word = swab16(eep->baseEepHeader.checksum);
  105. eep->baseEepHeader.checksum = word;
  106. word = swab16(eep->baseEepHeader.version);
  107. eep->baseEepHeader.version = word;
  108. word = swab16(eep->baseEepHeader.regDmn[0]);
  109. eep->baseEepHeader.regDmn[0] = word;
  110. word = swab16(eep->baseEepHeader.regDmn[1]);
  111. eep->baseEepHeader.regDmn[1] = word;
  112. word = swab16(eep->baseEepHeader.rfSilent);
  113. eep->baseEepHeader.rfSilent = word;
  114. word = swab16(eep->baseEepHeader.blueToothOptions);
  115. eep->baseEepHeader.blueToothOptions = word;
  116. word = swab16(eep->baseEepHeader.deviceCap);
  117. eep->baseEepHeader.deviceCap = word;
  118. integer = swab32(eep->modalHeader.antCtrlCommon);
  119. eep->modalHeader.antCtrlCommon = integer;
  120. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  121. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  122. eep->modalHeader.antCtrlChain[i] = integer;
  123. }
  124. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  125. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  126. eep->modalHeader.spurChans[i].spurChan = word;
  127. }
  128. }
  129. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  130. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  131. ath_print(common, ATH_DBG_FATAL,
  132. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  133. sum, ah->eep_ops->get_eeprom_ver(ah));
  134. return -EINVAL;
  135. }
  136. return 0;
  137. #undef EEPROM_4K_SIZE
  138. }
  139. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  140. enum eeprom_param param)
  141. {
  142. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  143. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  144. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  145. switch (param) {
  146. case EEP_NFTHRESH_2:
  147. return pModal->noiseFloorThreshCh[0];
  148. case AR_EEPROM_MAC(0):
  149. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  150. case AR_EEPROM_MAC(1):
  151. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  152. case AR_EEPROM_MAC(2):
  153. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  154. case EEP_REG_0:
  155. return pBase->regDmn[0];
  156. case EEP_REG_1:
  157. return pBase->regDmn[1];
  158. case EEP_OP_CAP:
  159. return pBase->deviceCap;
  160. case EEP_OP_MODE:
  161. return pBase->opCapFlags;
  162. case EEP_RF_SILENT:
  163. return pBase->rfSilent;
  164. case EEP_OB_2:
  165. return pModal->ob_0;
  166. case EEP_DB_2:
  167. return pModal->db1_1;
  168. case EEP_MINOR_REV:
  169. return pBase->version & AR5416_EEP_VER_MINOR_MASK;
  170. case EEP_TX_MASK:
  171. return pBase->txMask;
  172. case EEP_RX_MASK:
  173. return pBase->rxMask;
  174. case EEP_FRAC_N_5G:
  175. return 0;
  176. default:
  177. return 0;
  178. }
  179. }
  180. static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
  181. struct ath9k_channel *chan,
  182. struct cal_data_per_freq_4k *pRawDataSet,
  183. u8 *bChans, u16 availPiers,
  184. u16 tPdGainOverlap, int16_t *pMinCalPower,
  185. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  186. u16 numXpdGains)
  187. {
  188. #define TMP_VAL_VPD_TABLE \
  189. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  190. int i, j, k;
  191. int16_t ss;
  192. u16 idxL = 0, idxR = 0, numPiers;
  193. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  194. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  195. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  196. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  197. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  198. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  199. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  200. u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  201. u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  202. int16_t vpdStep;
  203. int16_t tmpVal;
  204. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  205. bool match;
  206. int16_t minDelta = 0;
  207. struct chan_centers centers;
  208. #define PD_GAIN_BOUNDARY_DEFAULT 58;
  209. ath9k_hw_get_channel_centers(ah, chan, &centers);
  210. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  211. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  212. break;
  213. }
  214. match = ath9k_hw_get_lower_upper_index(
  215. (u8)FREQ2FBIN(centers.synth_center,
  216. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  217. &idxL, &idxR);
  218. if (match) {
  219. for (i = 0; i < numXpdGains; i++) {
  220. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  221. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  222. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  223. pRawDataSet[idxL].pwrPdg[i],
  224. pRawDataSet[idxL].vpdPdg[i],
  225. AR5416_EEP4K_PD_GAIN_ICEPTS,
  226. vpdTableI[i]);
  227. }
  228. } else {
  229. for (i = 0; i < numXpdGains; i++) {
  230. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  231. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  232. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  233. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  234. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  235. maxPwrT4[i] =
  236. min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
  237. pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
  238. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  239. pPwrL, pVpdL,
  240. AR5416_EEP4K_PD_GAIN_ICEPTS,
  241. vpdTableL[i]);
  242. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  243. pPwrR, pVpdR,
  244. AR5416_EEP4K_PD_GAIN_ICEPTS,
  245. vpdTableR[i]);
  246. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  247. vpdTableI[i][j] =
  248. (u8)(ath9k_hw_interpolate((u16)
  249. FREQ2FBIN(centers.
  250. synth_center,
  251. IS_CHAN_2GHZ
  252. (chan)),
  253. bChans[idxL], bChans[idxR],
  254. vpdTableL[i][j], vpdTableR[i][j]));
  255. }
  256. }
  257. }
  258. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  259. k = 0;
  260. for (i = 0; i < numXpdGains; i++) {
  261. if (i == (numXpdGains - 1))
  262. pPdGainBoundaries[i] =
  263. (u16)(maxPwrT4[i] / 2);
  264. else
  265. pPdGainBoundaries[i] =
  266. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  267. pPdGainBoundaries[i] =
  268. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  269. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  270. minDelta = pPdGainBoundaries[0] - 23;
  271. pPdGainBoundaries[0] = 23;
  272. } else {
  273. minDelta = 0;
  274. }
  275. if (i == 0) {
  276. if (AR_SREV_9280_10_OR_LATER(ah))
  277. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  278. else
  279. ss = 0;
  280. } else {
  281. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  282. (minPwrT4[i] / 2)) -
  283. tPdGainOverlap + 1 + minDelta);
  284. }
  285. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  286. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  287. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  288. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  289. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  290. ss++;
  291. }
  292. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  293. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  294. (minPwrT4[i] / 2));
  295. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  296. tgtIndex : sizeCurrVpdTable;
  297. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
  298. pPDADCValues[k++] = vpdTableI[i][ss++];
  299. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  300. vpdTableI[i][sizeCurrVpdTable - 2]);
  301. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  302. if (tgtIndex >= maxIndex) {
  303. while ((ss <= tgtIndex) &&
  304. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  305. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  306. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  307. 255 : tmpVal);
  308. ss++;
  309. }
  310. }
  311. }
  312. while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
  313. pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
  314. i++;
  315. }
  316. while (k < AR5416_NUM_PDADC_VALUES) {
  317. pPDADCValues[k] = pPDADCValues[k - 1];
  318. k++;
  319. }
  320. return;
  321. #undef TMP_VAL_VPD_TABLE
  322. }
  323. static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  324. struct ath9k_channel *chan,
  325. int16_t *pTxPowerIndexOffset)
  326. {
  327. struct ath_common *common = ath9k_hw_common(ah);
  328. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  329. struct cal_data_per_freq_4k *pRawDataset;
  330. u8 *pCalBChans = NULL;
  331. u16 pdGainOverlap_t2;
  332. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  333. u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
  334. u16 numPiers, i, j;
  335. int16_t tMinCalPower;
  336. u16 numXpdGain, xpdMask;
  337. u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
  338. u32 reg32, regOffset, regChainOffset;
  339. xpdMask = pEepData->modalHeader.xpdGain;
  340. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  341. AR5416_EEP_MINOR_VER_2) {
  342. pdGainOverlap_t2 =
  343. pEepData->modalHeader.pdGainOverlap;
  344. } else {
  345. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  346. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  347. }
  348. pCalBChans = pEepData->calFreqPier2G;
  349. numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
  350. numXpdGain = 0;
  351. for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
  352. if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
  353. if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
  354. break;
  355. xpdGainValues[numXpdGain] =
  356. (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
  357. numXpdGain++;
  358. }
  359. }
  360. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  361. (numXpdGain - 1) & 0x3);
  362. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  363. xpdGainValues[0]);
  364. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  365. xpdGainValues[1]);
  366. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
  367. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  368. if (AR_SREV_5416_20_OR_LATER(ah) &&
  369. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  370. (i != 0)) {
  371. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  372. } else
  373. regChainOffset = i * 0x1000;
  374. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  375. pRawDataset = pEepData->calPierData2G[i];
  376. ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
  377. pRawDataset, pCalBChans,
  378. numPiers, pdGainOverlap_t2,
  379. &tMinCalPower, gainBoundaries,
  380. pdadcValues, numXpdGain);
  381. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  382. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  383. SM(pdGainOverlap_t2,
  384. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  385. | SM(gainBoundaries[0],
  386. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  387. | SM(gainBoundaries[1],
  388. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  389. | SM(gainBoundaries[2],
  390. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  391. | SM(gainBoundaries[3],
  392. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  393. }
  394. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  395. for (j = 0; j < 32; j++) {
  396. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  397. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  398. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  399. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  400. REG_WRITE(ah, regOffset, reg32);
  401. ath_print(common, ATH_DBG_EEPROM,
  402. "PDADC (%d,%4x): %4.4x %8.8x\n",
  403. i, regChainOffset, regOffset,
  404. reg32);
  405. ath_print(common, ATH_DBG_EEPROM,
  406. "PDADC: Chain %d | "
  407. "PDADC %3d Value %3d | "
  408. "PDADC %3d Value %3d | "
  409. "PDADC %3d Value %3d | "
  410. "PDADC %3d Value %3d |\n",
  411. i, 4 * j, pdadcValues[4 * j],
  412. 4 * j + 1, pdadcValues[4 * j + 1],
  413. 4 * j + 2, pdadcValues[4 * j + 2],
  414. 4 * j + 3,
  415. pdadcValues[4 * j + 3]);
  416. regOffset += 4;
  417. }
  418. }
  419. }
  420. *pTxPowerIndexOffset = 0;
  421. }
  422. static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  423. struct ath9k_channel *chan,
  424. int16_t *ratesArray,
  425. u16 cfgCtl,
  426. u16 AntennaReduction,
  427. u16 twiceMaxRegulatoryPower,
  428. u16 powerLimit)
  429. {
  430. #define CMP_TEST_GRP \
  431. (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  432. pEepData->ctlIndex[i]) \
  433. || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  434. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  435. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  436. int i;
  437. int16_t twiceLargestAntenna;
  438. u16 twiceMinEdgePower;
  439. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  440. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  441. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  442. struct chan_centers centers;
  443. struct cal_ctl_data_4k *rep;
  444. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  445. static const u16 tpScaleReductionTable[5] =
  446. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  447. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  448. 0, { 0, 0, 0, 0}
  449. };
  450. struct cal_target_power_leg targetPowerOfdmExt = {
  451. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  452. 0, { 0, 0, 0, 0 }
  453. };
  454. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  455. 0, {0, 0, 0, 0}
  456. };
  457. u16 ctlModesFor11g[] =
  458. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  459. CTL_2GHT40
  460. };
  461. ath9k_hw_get_channel_centers(ah, chan, &centers);
  462. twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  463. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  464. twiceLargestAntenna, 0);
  465. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  466. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
  467. maxRegAllowedPower -=
  468. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  469. }
  470. scaledPower = min(powerLimit, maxRegAllowedPower);
  471. scaledPower = max((u16)0, scaledPower);
  472. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  473. pCtlMode = ctlModesFor11g;
  474. ath9k_hw_get_legacy_target_powers(ah, chan,
  475. pEepData->calTargetPowerCck,
  476. AR5416_NUM_2G_CCK_TARGET_POWERS,
  477. &targetPowerCck, 4, false);
  478. ath9k_hw_get_legacy_target_powers(ah, chan,
  479. pEepData->calTargetPower2G,
  480. AR5416_NUM_2G_20_TARGET_POWERS,
  481. &targetPowerOfdm, 4, false);
  482. ath9k_hw_get_target_powers(ah, chan,
  483. pEepData->calTargetPower2GHT20,
  484. AR5416_NUM_2G_20_TARGET_POWERS,
  485. &targetPowerHt20, 8, false);
  486. if (IS_CHAN_HT40(chan)) {
  487. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  488. ath9k_hw_get_target_powers(ah, chan,
  489. pEepData->calTargetPower2GHT40,
  490. AR5416_NUM_2G_40_TARGET_POWERS,
  491. &targetPowerHt40, 8, true);
  492. ath9k_hw_get_legacy_target_powers(ah, chan,
  493. pEepData->calTargetPowerCck,
  494. AR5416_NUM_2G_CCK_TARGET_POWERS,
  495. &targetPowerCckExt, 4, true);
  496. ath9k_hw_get_legacy_target_powers(ah, chan,
  497. pEepData->calTargetPower2G,
  498. AR5416_NUM_2G_20_TARGET_POWERS,
  499. &targetPowerOfdmExt, 4, true);
  500. }
  501. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  502. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  503. (pCtlMode[ctlMode] == CTL_2GHT40);
  504. if (isHt40CtlMode)
  505. freq = centers.synth_center;
  506. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  507. freq = centers.ext_center;
  508. else
  509. freq = centers.ctl_center;
  510. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  511. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  512. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  513. for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
  514. pEepData->ctlIndex[i]; i++) {
  515. if (CMP_TEST_GRP) {
  516. rep = &(pEepData->ctlData[i]);
  517. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  518. freq,
  519. rep->ctlEdges[
  520. ar5416_get_ntxchains(ah->txchainmask) - 1],
  521. IS_CHAN_2GHZ(chan),
  522. AR5416_EEP4K_NUM_BAND_EDGES);
  523. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  524. twiceMaxEdgePower =
  525. min(twiceMaxEdgePower,
  526. twiceMinEdgePower);
  527. } else {
  528. twiceMaxEdgePower = twiceMinEdgePower;
  529. break;
  530. }
  531. }
  532. }
  533. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  534. switch (pCtlMode[ctlMode]) {
  535. case CTL_11B:
  536. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  537. targetPowerCck.tPow2x[i] =
  538. min((u16)targetPowerCck.tPow2x[i],
  539. minCtlPower);
  540. }
  541. break;
  542. case CTL_11G:
  543. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  544. targetPowerOfdm.tPow2x[i] =
  545. min((u16)targetPowerOfdm.tPow2x[i],
  546. minCtlPower);
  547. }
  548. break;
  549. case CTL_2GHT20:
  550. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  551. targetPowerHt20.tPow2x[i] =
  552. min((u16)targetPowerHt20.tPow2x[i],
  553. minCtlPower);
  554. }
  555. break;
  556. case CTL_11B_EXT:
  557. targetPowerCckExt.tPow2x[0] =
  558. min((u16)targetPowerCckExt.tPow2x[0],
  559. minCtlPower);
  560. break;
  561. case CTL_11G_EXT:
  562. targetPowerOfdmExt.tPow2x[0] =
  563. min((u16)targetPowerOfdmExt.tPow2x[0],
  564. minCtlPower);
  565. break;
  566. case CTL_2GHT40:
  567. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  568. targetPowerHt40.tPow2x[i] =
  569. min((u16)targetPowerHt40.tPow2x[i],
  570. minCtlPower);
  571. }
  572. break;
  573. default:
  574. break;
  575. }
  576. }
  577. ratesArray[rate6mb] =
  578. ratesArray[rate9mb] =
  579. ratesArray[rate12mb] =
  580. ratesArray[rate18mb] =
  581. ratesArray[rate24mb] =
  582. targetPowerOfdm.tPow2x[0];
  583. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  584. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  585. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  586. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  587. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  588. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  589. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  590. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  591. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  592. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  593. if (IS_CHAN_HT40(chan)) {
  594. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  595. ratesArray[rateHt40_0 + i] =
  596. targetPowerHt40.tPow2x[i];
  597. }
  598. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  599. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  600. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  601. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  602. }
  603. #undef CMP_TEST_GRP
  604. }
  605. static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  606. struct ath9k_channel *chan,
  607. u16 cfgCtl,
  608. u8 twiceAntennaReduction,
  609. u8 twiceMaxRegulatoryPower,
  610. u8 powerLimit)
  611. {
  612. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  613. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  614. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  615. int16_t ratesArray[Ar5416RateSize];
  616. int16_t txPowerIndexOffset = 0;
  617. u8 ht40PowerIncForPdadc = 2;
  618. int i;
  619. memset(ratesArray, 0, sizeof(ratesArray));
  620. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  621. AR5416_EEP_MINOR_VER_2) {
  622. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  623. }
  624. ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  625. &ratesArray[0], cfgCtl,
  626. twiceAntennaReduction,
  627. twiceMaxRegulatoryPower,
  628. powerLimit);
  629. ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
  630. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  631. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  632. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  633. ratesArray[i] = AR5416_MAX_RATE_POWER;
  634. }
  635. /* Update regulatory */
  636. i = rate6mb;
  637. if (IS_CHAN_HT40(chan))
  638. i = rateHt40_0;
  639. else if (IS_CHAN_HT20(chan))
  640. i = rateHt20_0;
  641. regulatory->max_power_level = ratesArray[i];
  642. if (AR_SREV_9280_10_OR_LATER(ah)) {
  643. for (i = 0; i < Ar5416RateSize; i++)
  644. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
  645. }
  646. /* OFDM power per rate */
  647. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  648. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  649. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  650. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  651. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  652. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  653. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  654. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  655. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  656. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  657. /* CCK power per rate */
  658. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  659. ATH9K_POW_SM(ratesArray[rate2s], 24)
  660. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  661. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  662. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  663. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  664. ATH9K_POW_SM(ratesArray[rate11s], 24)
  665. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  666. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  667. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  668. /* HT20 power per rate */
  669. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  670. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  671. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  672. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  673. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  674. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  675. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  676. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  677. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  678. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  679. /* HT40 power per rate */
  680. if (IS_CHAN_HT40(chan)) {
  681. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  682. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  683. ht40PowerIncForPdadc, 24)
  684. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  685. ht40PowerIncForPdadc, 16)
  686. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  687. ht40PowerIncForPdadc, 8)
  688. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  689. ht40PowerIncForPdadc, 0));
  690. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  691. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  692. ht40PowerIncForPdadc, 24)
  693. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  694. ht40PowerIncForPdadc, 16)
  695. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  696. ht40PowerIncForPdadc, 8)
  697. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  698. ht40PowerIncForPdadc, 0));
  699. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  700. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  701. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  702. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  703. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  704. }
  705. }
  706. static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
  707. struct ath9k_channel *chan)
  708. {
  709. struct modal_eep_4k_header *pModal;
  710. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  711. u8 biaslevel;
  712. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  713. return;
  714. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  715. return;
  716. pModal = &eep->modalHeader;
  717. if (pModal->xpaBiasLvl != 0xff) {
  718. biaslevel = pModal->xpaBiasLvl;
  719. INI_RA(&ah->iniAddac, 7, 1) =
  720. (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
  721. }
  722. }
  723. static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
  724. struct modal_eep_4k_header *pModal,
  725. struct ar5416_eeprom_4k *eep,
  726. u8 txRxAttenLocal)
  727. {
  728. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
  729. pModal->antCtrlChain[0]);
  730. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
  731. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
  732. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  733. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  734. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  735. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  736. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  737. AR5416_EEP_MINOR_VER_3) {
  738. txRxAttenLocal = pModal->txRxAttenCh[0];
  739. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  740. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  741. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  742. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  743. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  744. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  745. pModal->xatten2Margin[0]);
  746. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  747. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  748. /* Set the block 1 value to block 0 value */
  749. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  750. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  751. pModal->bswMargin[0]);
  752. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  753. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  754. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  755. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  756. pModal->xatten2Margin[0]);
  757. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  758. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  759. pModal->xatten2Db[0]);
  760. }
  761. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  762. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  763. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  764. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  765. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  766. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  767. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  768. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  769. if (AR_SREV_9285_11(ah))
  770. REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
  771. }
  772. /*
  773. * Read EEPROM header info and program the device for correct operation
  774. * given the channel value.
  775. */
  776. static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  777. struct ath9k_channel *chan)
  778. {
  779. struct modal_eep_4k_header *pModal;
  780. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  781. u8 txRxAttenLocal;
  782. u8 ob[5], db1[5], db2[5];
  783. u8 ant_div_control1, ant_div_control2;
  784. u32 regVal;
  785. pModal = &eep->modalHeader;
  786. txRxAttenLocal = 23;
  787. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  788. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  789. /* Single chain for 4K EEPROM*/
  790. ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
  791. /* Initialize Ant Diversity settings from EEPROM */
  792. if (pModal->version >= 3) {
  793. ant_div_control1 = pModal->antdiv_ctl1;
  794. ant_div_control2 = pModal->antdiv_ctl2;
  795. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  796. regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
  797. regVal |= SM(ant_div_control1,
  798. AR_PHY_9285_ANT_DIV_CTL);
  799. regVal |= SM(ant_div_control2,
  800. AR_PHY_9285_ANT_DIV_ALT_LNACONF);
  801. regVal |= SM((ant_div_control2 >> 2),
  802. AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
  803. regVal |= SM((ant_div_control1 >> 1),
  804. AR_PHY_9285_ANT_DIV_ALT_GAINTB);
  805. regVal |= SM((ant_div_control1 >> 2),
  806. AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
  807. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  808. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  809. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  810. regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  811. regVal |= SM((ant_div_control1 >> 3),
  812. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  813. REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
  814. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  815. }
  816. if (pModal->version >= 2) {
  817. ob[0] = pModal->ob_0;
  818. ob[1] = pModal->ob_1;
  819. ob[2] = pModal->ob_2;
  820. ob[3] = pModal->ob_3;
  821. ob[4] = pModal->ob_4;
  822. db1[0] = pModal->db1_0;
  823. db1[1] = pModal->db1_1;
  824. db1[2] = pModal->db1_2;
  825. db1[3] = pModal->db1_3;
  826. db1[4] = pModal->db1_4;
  827. db2[0] = pModal->db2_0;
  828. db2[1] = pModal->db2_1;
  829. db2[2] = pModal->db2_2;
  830. db2[3] = pModal->db2_3;
  831. db2[4] = pModal->db2_4;
  832. } else if (pModal->version == 1) {
  833. ob[0] = pModal->ob_0;
  834. ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
  835. db1[0] = pModal->db1_0;
  836. db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
  837. db2[0] = pModal->db2_0;
  838. db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
  839. } else {
  840. int i;
  841. for (i = 0; i < 5; i++) {
  842. ob[i] = pModal->ob_0;
  843. db1[i] = pModal->db1_0;
  844. db2[i] = pModal->db1_0;
  845. }
  846. }
  847. if (AR_SREV_9271(ah)) {
  848. ath9k_hw_analog_shift_rmw(ah,
  849. AR9285_AN_RF2G3,
  850. AR9271_AN_RF2G3_OB_cck,
  851. AR9271_AN_RF2G3_OB_cck_S,
  852. ob[0]);
  853. ath9k_hw_analog_shift_rmw(ah,
  854. AR9285_AN_RF2G3,
  855. AR9271_AN_RF2G3_OB_psk,
  856. AR9271_AN_RF2G3_OB_psk_S,
  857. ob[1]);
  858. ath9k_hw_analog_shift_rmw(ah,
  859. AR9285_AN_RF2G3,
  860. AR9271_AN_RF2G3_OB_qam,
  861. AR9271_AN_RF2G3_OB_qam_S,
  862. ob[2]);
  863. ath9k_hw_analog_shift_rmw(ah,
  864. AR9285_AN_RF2G3,
  865. AR9271_AN_RF2G3_DB_1,
  866. AR9271_AN_RF2G3_DB_1_S,
  867. db1[0]);
  868. ath9k_hw_analog_shift_rmw(ah,
  869. AR9285_AN_RF2G4,
  870. AR9271_AN_RF2G4_DB_2,
  871. AR9271_AN_RF2G4_DB_2_S,
  872. db2[0]);
  873. } else {
  874. ath9k_hw_analog_shift_rmw(ah,
  875. AR9285_AN_RF2G3,
  876. AR9285_AN_RF2G3_OB_0,
  877. AR9285_AN_RF2G3_OB_0_S,
  878. ob[0]);
  879. ath9k_hw_analog_shift_rmw(ah,
  880. AR9285_AN_RF2G3,
  881. AR9285_AN_RF2G3_OB_1,
  882. AR9285_AN_RF2G3_OB_1_S,
  883. ob[1]);
  884. ath9k_hw_analog_shift_rmw(ah,
  885. AR9285_AN_RF2G3,
  886. AR9285_AN_RF2G3_OB_2,
  887. AR9285_AN_RF2G3_OB_2_S,
  888. ob[2]);
  889. ath9k_hw_analog_shift_rmw(ah,
  890. AR9285_AN_RF2G3,
  891. AR9285_AN_RF2G3_OB_3,
  892. AR9285_AN_RF2G3_OB_3_S,
  893. ob[3]);
  894. ath9k_hw_analog_shift_rmw(ah,
  895. AR9285_AN_RF2G3,
  896. AR9285_AN_RF2G3_OB_4,
  897. AR9285_AN_RF2G3_OB_4_S,
  898. ob[4]);
  899. ath9k_hw_analog_shift_rmw(ah,
  900. AR9285_AN_RF2G3,
  901. AR9285_AN_RF2G3_DB1_0,
  902. AR9285_AN_RF2G3_DB1_0_S,
  903. db1[0]);
  904. ath9k_hw_analog_shift_rmw(ah,
  905. AR9285_AN_RF2G3,
  906. AR9285_AN_RF2G3_DB1_1,
  907. AR9285_AN_RF2G3_DB1_1_S,
  908. db1[1]);
  909. ath9k_hw_analog_shift_rmw(ah,
  910. AR9285_AN_RF2G3,
  911. AR9285_AN_RF2G3_DB1_2,
  912. AR9285_AN_RF2G3_DB1_2_S,
  913. db1[2]);
  914. ath9k_hw_analog_shift_rmw(ah,
  915. AR9285_AN_RF2G4,
  916. AR9285_AN_RF2G4_DB1_3,
  917. AR9285_AN_RF2G4_DB1_3_S,
  918. db1[3]);
  919. ath9k_hw_analog_shift_rmw(ah,
  920. AR9285_AN_RF2G4,
  921. AR9285_AN_RF2G4_DB1_4,
  922. AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  923. ath9k_hw_analog_shift_rmw(ah,
  924. AR9285_AN_RF2G4,
  925. AR9285_AN_RF2G4_DB2_0,
  926. AR9285_AN_RF2G4_DB2_0_S,
  927. db2[0]);
  928. ath9k_hw_analog_shift_rmw(ah,
  929. AR9285_AN_RF2G4,
  930. AR9285_AN_RF2G4_DB2_1,
  931. AR9285_AN_RF2G4_DB2_1_S,
  932. db2[1]);
  933. ath9k_hw_analog_shift_rmw(ah,
  934. AR9285_AN_RF2G4,
  935. AR9285_AN_RF2G4_DB2_2,
  936. AR9285_AN_RF2G4_DB2_2_S,
  937. db2[2]);
  938. ath9k_hw_analog_shift_rmw(ah,
  939. AR9285_AN_RF2G4,
  940. AR9285_AN_RF2G4_DB2_3,
  941. AR9285_AN_RF2G4_DB2_3_S,
  942. db2[3]);
  943. ath9k_hw_analog_shift_rmw(ah,
  944. AR9285_AN_RF2G4,
  945. AR9285_AN_RF2G4_DB2_4,
  946. AR9285_AN_RF2G4_DB2_4_S,
  947. db2[4]);
  948. }
  949. if (AR_SREV_9285_11(ah))
  950. REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
  951. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  952. pModal->switchSettling);
  953. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  954. pModal->adcDesiredSize);
  955. REG_WRITE(ah, AR_PHY_RF_CTL4,
  956. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  957. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  958. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  959. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  960. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  961. pModal->txEndToRxOn);
  962. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  963. pModal->thresh62);
  964. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  965. pModal->thresh62);
  966. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  967. AR5416_EEP_MINOR_VER_2) {
  968. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  969. pModal->txFrameToDataStart);
  970. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  971. pModal->txFrameToPaOn);
  972. }
  973. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  974. AR5416_EEP_MINOR_VER_3) {
  975. if (IS_CHAN_HT40(chan))
  976. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  977. AR_PHY_SETTLING_SWITCH,
  978. pModal->swSettleHt40);
  979. }
  980. }
  981. static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
  982. struct ath9k_channel *chan)
  983. {
  984. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  985. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  986. return pModal->antCtrlCommon & 0xFFFF;
  987. }
  988. static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
  989. enum ieee80211_band freq_band)
  990. {
  991. return 1;
  992. }
  993. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  994. {
  995. #define EEP_MAP4K_SPURCHAN \
  996. (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
  997. struct ath_common *common = ath9k_hw_common(ah);
  998. u16 spur_val = AR_NO_SPUR;
  999. ath_print(common, ATH_DBG_ANI,
  1000. "Getting spur idx %d is2Ghz. %d val %x\n",
  1001. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  1002. switch (ah->config.spurmode) {
  1003. case SPUR_DISABLE:
  1004. break;
  1005. case SPUR_ENABLE_IOCTL:
  1006. spur_val = ah->config.spurchans[i][is2GHz];
  1007. ath_print(common, ATH_DBG_ANI,
  1008. "Getting spur val from new loc. %d\n", spur_val);
  1009. break;
  1010. case SPUR_ENABLE_EEPROM:
  1011. spur_val = EEP_MAP4K_SPURCHAN;
  1012. break;
  1013. }
  1014. return spur_val;
  1015. #undef EEP_MAP4K_SPURCHAN
  1016. }
  1017. const struct eeprom_ops eep_4k_ops = {
  1018. .check_eeprom = ath9k_hw_4k_check_eeprom,
  1019. .get_eeprom = ath9k_hw_4k_get_eeprom,
  1020. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  1021. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  1022. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  1023. .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
  1024. .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
  1025. .set_board_values = ath9k_hw_4k_set_board_values,
  1026. .set_addac = ath9k_hw_4k_set_addac,
  1027. .set_txpower = ath9k_hw_4k_set_txpower,
  1028. .get_spur_channel = ath9k_hw_4k_get_spur_channel
  1029. };