ordered-data.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/writeback.h>
  21. #include <linux/pagevec.h>
  22. #include "ctree.h"
  23. #include "transaction.h"
  24. #include "btrfs_inode.h"
  25. #include "extent_io.h"
  26. static struct kmem_cache *btrfs_ordered_extent_cache;
  27. static u64 entry_end(struct btrfs_ordered_extent *entry)
  28. {
  29. if (entry->file_offset + entry->len < entry->file_offset)
  30. return (u64)-1;
  31. return entry->file_offset + entry->len;
  32. }
  33. /* returns NULL if the insertion worked, or it returns the node it did find
  34. * in the tree
  35. */
  36. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  37. struct rb_node *node)
  38. {
  39. struct rb_node **p = &root->rb_node;
  40. struct rb_node *parent = NULL;
  41. struct btrfs_ordered_extent *entry;
  42. while (*p) {
  43. parent = *p;
  44. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  45. if (file_offset < entry->file_offset)
  46. p = &(*p)->rb_left;
  47. else if (file_offset >= entry_end(entry))
  48. p = &(*p)->rb_right;
  49. else
  50. return parent;
  51. }
  52. rb_link_node(node, parent, p);
  53. rb_insert_color(node, root);
  54. return NULL;
  55. }
  56. static void ordered_data_tree_panic(struct inode *inode, int errno,
  57. u64 offset)
  58. {
  59. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  60. btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  61. "%llu\n", (unsigned long long)offset);
  62. }
  63. /*
  64. * look for a given offset in the tree, and if it can't be found return the
  65. * first lesser offset
  66. */
  67. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  68. struct rb_node **prev_ret)
  69. {
  70. struct rb_node *n = root->rb_node;
  71. struct rb_node *prev = NULL;
  72. struct rb_node *test;
  73. struct btrfs_ordered_extent *entry;
  74. struct btrfs_ordered_extent *prev_entry = NULL;
  75. while (n) {
  76. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  77. prev = n;
  78. prev_entry = entry;
  79. if (file_offset < entry->file_offset)
  80. n = n->rb_left;
  81. else if (file_offset >= entry_end(entry))
  82. n = n->rb_right;
  83. else
  84. return n;
  85. }
  86. if (!prev_ret)
  87. return NULL;
  88. while (prev && file_offset >= entry_end(prev_entry)) {
  89. test = rb_next(prev);
  90. if (!test)
  91. break;
  92. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  93. rb_node);
  94. if (file_offset < entry_end(prev_entry))
  95. break;
  96. prev = test;
  97. }
  98. if (prev)
  99. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  100. rb_node);
  101. while (prev && file_offset < entry_end(prev_entry)) {
  102. test = rb_prev(prev);
  103. if (!test)
  104. break;
  105. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  106. rb_node);
  107. prev = test;
  108. }
  109. *prev_ret = prev;
  110. return NULL;
  111. }
  112. /*
  113. * helper to check if a given offset is inside a given entry
  114. */
  115. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  116. {
  117. if (file_offset < entry->file_offset ||
  118. entry->file_offset + entry->len <= file_offset)
  119. return 0;
  120. return 1;
  121. }
  122. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  123. u64 len)
  124. {
  125. if (file_offset + len <= entry->file_offset ||
  126. entry->file_offset + entry->len <= file_offset)
  127. return 0;
  128. return 1;
  129. }
  130. /*
  131. * look find the first ordered struct that has this offset, otherwise
  132. * the first one less than this offset
  133. */
  134. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  135. u64 file_offset)
  136. {
  137. struct rb_root *root = &tree->tree;
  138. struct rb_node *prev = NULL;
  139. struct rb_node *ret;
  140. struct btrfs_ordered_extent *entry;
  141. if (tree->last) {
  142. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  143. rb_node);
  144. if (offset_in_entry(entry, file_offset))
  145. return tree->last;
  146. }
  147. ret = __tree_search(root, file_offset, &prev);
  148. if (!ret)
  149. ret = prev;
  150. if (ret)
  151. tree->last = ret;
  152. return ret;
  153. }
  154. /* allocate and add a new ordered_extent into the per-inode tree.
  155. * file_offset is the logical offset in the file
  156. *
  157. * start is the disk block number of an extent already reserved in the
  158. * extent allocation tree
  159. *
  160. * len is the length of the extent
  161. *
  162. * The tree is given a single reference on the ordered extent that was
  163. * inserted.
  164. */
  165. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  166. u64 start, u64 len, u64 disk_len,
  167. int type, int dio, int compress_type)
  168. {
  169. struct btrfs_ordered_inode_tree *tree;
  170. struct rb_node *node;
  171. struct btrfs_ordered_extent *entry;
  172. tree = &BTRFS_I(inode)->ordered_tree;
  173. entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
  174. if (!entry)
  175. return -ENOMEM;
  176. entry->file_offset = file_offset;
  177. entry->start = start;
  178. entry->len = len;
  179. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
  180. !(type == BTRFS_ORDERED_NOCOW))
  181. entry->csum_bytes_left = disk_len;
  182. entry->disk_len = disk_len;
  183. entry->bytes_left = len;
  184. entry->inode = igrab(inode);
  185. entry->compress_type = compress_type;
  186. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  187. set_bit(type, &entry->flags);
  188. if (dio)
  189. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  190. /* one ref for the tree */
  191. atomic_set(&entry->refs, 1);
  192. init_waitqueue_head(&entry->wait);
  193. INIT_LIST_HEAD(&entry->list);
  194. INIT_LIST_HEAD(&entry->root_extent_list);
  195. INIT_LIST_HEAD(&entry->work_list);
  196. init_completion(&entry->completion);
  197. INIT_LIST_HEAD(&entry->log_list);
  198. trace_btrfs_ordered_extent_add(inode, entry);
  199. spin_lock_irq(&tree->lock);
  200. node = tree_insert(&tree->tree, file_offset,
  201. &entry->rb_node);
  202. if (node)
  203. ordered_data_tree_panic(inode, -EEXIST, file_offset);
  204. spin_unlock_irq(&tree->lock);
  205. spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  206. list_add_tail(&entry->root_extent_list,
  207. &BTRFS_I(inode)->root->fs_info->ordered_extents);
  208. spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  209. return 0;
  210. }
  211. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  212. u64 start, u64 len, u64 disk_len, int type)
  213. {
  214. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  215. disk_len, type, 0,
  216. BTRFS_COMPRESS_NONE);
  217. }
  218. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  219. u64 start, u64 len, u64 disk_len, int type)
  220. {
  221. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  222. disk_len, type, 1,
  223. BTRFS_COMPRESS_NONE);
  224. }
  225. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  226. u64 start, u64 len, u64 disk_len,
  227. int type, int compress_type)
  228. {
  229. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  230. disk_len, type, 0,
  231. compress_type);
  232. }
  233. /*
  234. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  235. * when an ordered extent is finished. If the list covers more than one
  236. * ordered extent, it is split across multiples.
  237. */
  238. void btrfs_add_ordered_sum(struct inode *inode,
  239. struct btrfs_ordered_extent *entry,
  240. struct btrfs_ordered_sum *sum)
  241. {
  242. struct btrfs_ordered_inode_tree *tree;
  243. tree = &BTRFS_I(inode)->ordered_tree;
  244. spin_lock_irq(&tree->lock);
  245. list_add_tail(&sum->list, &entry->list);
  246. WARN_ON(entry->csum_bytes_left < sum->len);
  247. entry->csum_bytes_left -= sum->len;
  248. if (entry->csum_bytes_left == 0)
  249. wake_up(&entry->wait);
  250. spin_unlock_irq(&tree->lock);
  251. }
  252. /*
  253. * this is used to account for finished IO across a given range
  254. * of the file. The IO may span ordered extents. If
  255. * a given ordered_extent is completely done, 1 is returned, otherwise
  256. * 0.
  257. *
  258. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  259. * to make sure this function only returns 1 once for a given ordered extent.
  260. *
  261. * file_offset is updated to one byte past the range that is recorded as
  262. * complete. This allows you to walk forward in the file.
  263. */
  264. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  265. struct btrfs_ordered_extent **cached,
  266. u64 *file_offset, u64 io_size, int uptodate)
  267. {
  268. struct btrfs_ordered_inode_tree *tree;
  269. struct rb_node *node;
  270. struct btrfs_ordered_extent *entry = NULL;
  271. int ret;
  272. unsigned long flags;
  273. u64 dec_end;
  274. u64 dec_start;
  275. u64 to_dec;
  276. tree = &BTRFS_I(inode)->ordered_tree;
  277. spin_lock_irqsave(&tree->lock, flags);
  278. node = tree_search(tree, *file_offset);
  279. if (!node) {
  280. ret = 1;
  281. goto out;
  282. }
  283. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  284. if (!offset_in_entry(entry, *file_offset)) {
  285. ret = 1;
  286. goto out;
  287. }
  288. dec_start = max(*file_offset, entry->file_offset);
  289. dec_end = min(*file_offset + io_size, entry->file_offset +
  290. entry->len);
  291. *file_offset = dec_end;
  292. if (dec_start > dec_end) {
  293. printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
  294. (unsigned long long)dec_start,
  295. (unsigned long long)dec_end);
  296. }
  297. to_dec = dec_end - dec_start;
  298. if (to_dec > entry->bytes_left) {
  299. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  300. (unsigned long long)entry->bytes_left,
  301. (unsigned long long)to_dec);
  302. }
  303. entry->bytes_left -= to_dec;
  304. if (!uptodate)
  305. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  306. if (entry->bytes_left == 0)
  307. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  308. else
  309. ret = 1;
  310. out:
  311. if (!ret && cached && entry) {
  312. *cached = entry;
  313. atomic_inc(&entry->refs);
  314. }
  315. spin_unlock_irqrestore(&tree->lock, flags);
  316. return ret == 0;
  317. }
  318. /*
  319. * this is used to account for finished IO across a given range
  320. * of the file. The IO should not span ordered extents. If
  321. * a given ordered_extent is completely done, 1 is returned, otherwise
  322. * 0.
  323. *
  324. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  325. * to make sure this function only returns 1 once for a given ordered extent.
  326. */
  327. int btrfs_dec_test_ordered_pending(struct inode *inode,
  328. struct btrfs_ordered_extent **cached,
  329. u64 file_offset, u64 io_size, int uptodate)
  330. {
  331. struct btrfs_ordered_inode_tree *tree;
  332. struct rb_node *node;
  333. struct btrfs_ordered_extent *entry = NULL;
  334. unsigned long flags;
  335. int ret;
  336. tree = &BTRFS_I(inode)->ordered_tree;
  337. spin_lock_irqsave(&tree->lock, flags);
  338. if (cached && *cached) {
  339. entry = *cached;
  340. goto have_entry;
  341. }
  342. node = tree_search(tree, file_offset);
  343. if (!node) {
  344. ret = 1;
  345. goto out;
  346. }
  347. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  348. have_entry:
  349. if (!offset_in_entry(entry, file_offset)) {
  350. ret = 1;
  351. goto out;
  352. }
  353. if (io_size > entry->bytes_left) {
  354. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  355. (unsigned long long)entry->bytes_left,
  356. (unsigned long long)io_size);
  357. }
  358. entry->bytes_left -= io_size;
  359. if (!uptodate)
  360. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  361. if (entry->bytes_left == 0)
  362. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  363. else
  364. ret = 1;
  365. out:
  366. if (!ret && cached && entry) {
  367. *cached = entry;
  368. atomic_inc(&entry->refs);
  369. }
  370. spin_unlock_irqrestore(&tree->lock, flags);
  371. return ret == 0;
  372. }
  373. /* Needs to either be called under a log transaction or the log_mutex */
  374. void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
  375. {
  376. struct btrfs_ordered_inode_tree *tree;
  377. struct btrfs_ordered_extent *ordered;
  378. struct rb_node *n;
  379. int index = log->log_transid % 2;
  380. tree = &BTRFS_I(inode)->ordered_tree;
  381. spin_lock_irq(&tree->lock);
  382. for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
  383. ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  384. spin_lock(&log->log_extents_lock[index]);
  385. if (list_empty(&ordered->log_list)) {
  386. list_add_tail(&ordered->log_list, &log->logged_list[index]);
  387. atomic_inc(&ordered->refs);
  388. }
  389. spin_unlock(&log->log_extents_lock[index]);
  390. }
  391. spin_unlock_irq(&tree->lock);
  392. }
  393. void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
  394. {
  395. struct btrfs_ordered_extent *ordered;
  396. int index = transid % 2;
  397. spin_lock_irq(&log->log_extents_lock[index]);
  398. while (!list_empty(&log->logged_list[index])) {
  399. ordered = list_first_entry(&log->logged_list[index],
  400. struct btrfs_ordered_extent,
  401. log_list);
  402. list_del_init(&ordered->log_list);
  403. spin_unlock_irq(&log->log_extents_lock[index]);
  404. wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
  405. &ordered->flags));
  406. btrfs_put_ordered_extent(ordered);
  407. spin_lock_irq(&log->log_extents_lock[index]);
  408. }
  409. spin_unlock_irq(&log->log_extents_lock[index]);
  410. }
  411. void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
  412. {
  413. struct btrfs_ordered_extent *ordered;
  414. int index = transid % 2;
  415. spin_lock_irq(&log->log_extents_lock[index]);
  416. while (!list_empty(&log->logged_list[index])) {
  417. ordered = list_first_entry(&log->logged_list[index],
  418. struct btrfs_ordered_extent,
  419. log_list);
  420. list_del_init(&ordered->log_list);
  421. spin_unlock_irq(&log->log_extents_lock[index]);
  422. btrfs_put_ordered_extent(ordered);
  423. spin_lock_irq(&log->log_extents_lock[index]);
  424. }
  425. spin_unlock_irq(&log->log_extents_lock[index]);
  426. }
  427. /*
  428. * used to drop a reference on an ordered extent. This will free
  429. * the extent if the last reference is dropped
  430. */
  431. void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  432. {
  433. struct list_head *cur;
  434. struct btrfs_ordered_sum *sum;
  435. trace_btrfs_ordered_extent_put(entry->inode, entry);
  436. if (atomic_dec_and_test(&entry->refs)) {
  437. if (entry->inode)
  438. btrfs_add_delayed_iput(entry->inode);
  439. while (!list_empty(&entry->list)) {
  440. cur = entry->list.next;
  441. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  442. list_del(&sum->list);
  443. kfree(sum);
  444. }
  445. kmem_cache_free(btrfs_ordered_extent_cache, entry);
  446. }
  447. }
  448. /*
  449. * remove an ordered extent from the tree. No references are dropped
  450. * and waiters are woken up.
  451. */
  452. void btrfs_remove_ordered_extent(struct inode *inode,
  453. struct btrfs_ordered_extent *entry)
  454. {
  455. struct btrfs_ordered_inode_tree *tree;
  456. struct btrfs_root *root = BTRFS_I(inode)->root;
  457. struct rb_node *node;
  458. tree = &BTRFS_I(inode)->ordered_tree;
  459. spin_lock_irq(&tree->lock);
  460. node = &entry->rb_node;
  461. rb_erase(node, &tree->tree);
  462. tree->last = NULL;
  463. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  464. spin_unlock_irq(&tree->lock);
  465. spin_lock(&root->fs_info->ordered_extent_lock);
  466. list_del_init(&entry->root_extent_list);
  467. trace_btrfs_ordered_extent_remove(inode, entry);
  468. /*
  469. * we have no more ordered extents for this inode and
  470. * no dirty pages. We can safely remove it from the
  471. * list of ordered extents
  472. */
  473. if (RB_EMPTY_ROOT(&tree->tree) &&
  474. !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
  475. list_del_init(&BTRFS_I(inode)->ordered_operations);
  476. }
  477. spin_unlock(&root->fs_info->ordered_extent_lock);
  478. wake_up(&entry->wait);
  479. }
  480. static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
  481. {
  482. struct btrfs_ordered_extent *ordered;
  483. ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
  484. btrfs_start_ordered_extent(ordered->inode, ordered, 1);
  485. complete(&ordered->completion);
  486. }
  487. /*
  488. * wait for all the ordered extents in a root. This is done when balancing
  489. * space between drives.
  490. */
  491. void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
  492. {
  493. struct list_head splice, works;
  494. struct list_head *cur;
  495. struct btrfs_ordered_extent *ordered, *next;
  496. struct inode *inode;
  497. INIT_LIST_HEAD(&splice);
  498. INIT_LIST_HEAD(&works);
  499. spin_lock(&root->fs_info->ordered_extent_lock);
  500. list_splice_init(&root->fs_info->ordered_extents, &splice);
  501. while (!list_empty(&splice)) {
  502. cur = splice.next;
  503. ordered = list_entry(cur, struct btrfs_ordered_extent,
  504. root_extent_list);
  505. list_del_init(&ordered->root_extent_list);
  506. atomic_inc(&ordered->refs);
  507. /*
  508. * the inode may be getting freed (in sys_unlink path).
  509. */
  510. inode = igrab(ordered->inode);
  511. spin_unlock(&root->fs_info->ordered_extent_lock);
  512. if (inode) {
  513. ordered->flush_work.func = btrfs_run_ordered_extent_work;
  514. list_add_tail(&ordered->work_list, &works);
  515. btrfs_queue_worker(&root->fs_info->flush_workers,
  516. &ordered->flush_work);
  517. } else {
  518. btrfs_put_ordered_extent(ordered);
  519. }
  520. cond_resched();
  521. spin_lock(&root->fs_info->ordered_extent_lock);
  522. }
  523. spin_unlock(&root->fs_info->ordered_extent_lock);
  524. list_for_each_entry_safe(ordered, next, &works, work_list) {
  525. list_del_init(&ordered->work_list);
  526. wait_for_completion(&ordered->completion);
  527. inode = ordered->inode;
  528. btrfs_put_ordered_extent(ordered);
  529. if (delay_iput)
  530. btrfs_add_delayed_iput(inode);
  531. else
  532. iput(inode);
  533. cond_resched();
  534. }
  535. }
  536. /*
  537. * this is used during transaction commit to write all the inodes
  538. * added to the ordered operation list. These files must be fully on
  539. * disk before the transaction commits.
  540. *
  541. * we have two modes here, one is to just start the IO via filemap_flush
  542. * and the other is to wait for all the io. When we wait, we have an
  543. * extra check to make sure the ordered operation list really is empty
  544. * before we return
  545. */
  546. int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
  547. {
  548. struct btrfs_inode *btrfs_inode;
  549. struct inode *inode;
  550. struct list_head splice;
  551. struct list_head works;
  552. struct btrfs_delalloc_work *work, *next;
  553. int ret = 0;
  554. INIT_LIST_HEAD(&splice);
  555. INIT_LIST_HEAD(&works);
  556. mutex_lock(&root->fs_info->ordered_operations_mutex);
  557. spin_lock(&root->fs_info->ordered_extent_lock);
  558. list_splice_init(&root->fs_info->ordered_operations, &splice);
  559. while (!list_empty(&splice)) {
  560. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  561. ordered_operations);
  562. inode = &btrfs_inode->vfs_inode;
  563. list_del_init(&btrfs_inode->ordered_operations);
  564. /*
  565. * the inode may be getting freed (in sys_unlink path).
  566. */
  567. inode = igrab(inode);
  568. if (!inode)
  569. continue;
  570. if (!wait)
  571. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  572. &root->fs_info->ordered_operations);
  573. spin_unlock(&root->fs_info->ordered_extent_lock);
  574. work = btrfs_alloc_delalloc_work(inode, wait, 1);
  575. if (!work) {
  576. spin_lock(&root->fs_info->ordered_extent_lock);
  577. if (list_empty(&BTRFS_I(inode)->ordered_operations))
  578. list_add_tail(&btrfs_inode->ordered_operations,
  579. &splice);
  580. list_splice_tail(&splice,
  581. &root->fs_info->ordered_operations);
  582. spin_unlock(&root->fs_info->ordered_extent_lock);
  583. ret = -ENOMEM;
  584. goto out;
  585. }
  586. list_add_tail(&work->list, &works);
  587. btrfs_queue_worker(&root->fs_info->flush_workers,
  588. &work->work);
  589. cond_resched();
  590. spin_lock(&root->fs_info->ordered_extent_lock);
  591. }
  592. spin_unlock(&root->fs_info->ordered_extent_lock);
  593. out:
  594. list_for_each_entry_safe(work, next, &works, list) {
  595. list_del_init(&work->list);
  596. btrfs_wait_and_free_delalloc_work(work);
  597. }
  598. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  599. return ret;
  600. }
  601. /*
  602. * Used to start IO or wait for a given ordered extent to finish.
  603. *
  604. * If wait is one, this effectively waits on page writeback for all the pages
  605. * in the extent, and it waits on the io completion code to insert
  606. * metadata into the btree corresponding to the extent
  607. */
  608. void btrfs_start_ordered_extent(struct inode *inode,
  609. struct btrfs_ordered_extent *entry,
  610. int wait)
  611. {
  612. u64 start = entry->file_offset;
  613. u64 end = start + entry->len - 1;
  614. trace_btrfs_ordered_extent_start(inode, entry);
  615. /*
  616. * pages in the range can be dirty, clean or writeback. We
  617. * start IO on any dirty ones so the wait doesn't stall waiting
  618. * for the flusher thread to find them
  619. */
  620. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  621. filemap_fdatawrite_range(inode->i_mapping, start, end);
  622. if (wait) {
  623. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  624. &entry->flags));
  625. }
  626. }
  627. /*
  628. * Used to wait on ordered extents across a large range of bytes.
  629. */
  630. void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  631. {
  632. u64 end;
  633. u64 orig_end;
  634. struct btrfs_ordered_extent *ordered;
  635. if (start + len < start) {
  636. orig_end = INT_LIMIT(loff_t);
  637. } else {
  638. orig_end = start + len - 1;
  639. if (orig_end > INT_LIMIT(loff_t))
  640. orig_end = INT_LIMIT(loff_t);
  641. }
  642. /* start IO across the range first to instantiate any delalloc
  643. * extents
  644. */
  645. filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  646. /*
  647. * So with compression we will find and lock a dirty page and clear the
  648. * first one as dirty, setup an async extent, and immediately return
  649. * with the entire range locked but with nobody actually marked with
  650. * writeback. So we can't just filemap_write_and_wait_range() and
  651. * expect it to work since it will just kick off a thread to do the
  652. * actual work. So we need to call filemap_fdatawrite_range _again_
  653. * since it will wait on the page lock, which won't be unlocked until
  654. * after the pages have been marked as writeback and so we're good to go
  655. * from there. We have to do this otherwise we'll miss the ordered
  656. * extents and that results in badness. Please Josef, do not think you
  657. * know better and pull this out at some point in the future, it is
  658. * right and you are wrong.
  659. */
  660. if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  661. &BTRFS_I(inode)->runtime_flags))
  662. filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  663. filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  664. end = orig_end;
  665. while (1) {
  666. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  667. if (!ordered)
  668. break;
  669. if (ordered->file_offset > orig_end) {
  670. btrfs_put_ordered_extent(ordered);
  671. break;
  672. }
  673. if (ordered->file_offset + ordered->len < start) {
  674. btrfs_put_ordered_extent(ordered);
  675. break;
  676. }
  677. btrfs_start_ordered_extent(inode, ordered, 1);
  678. end = ordered->file_offset;
  679. btrfs_put_ordered_extent(ordered);
  680. if (end == 0 || end == start)
  681. break;
  682. end--;
  683. }
  684. }
  685. /*
  686. * find an ordered extent corresponding to file_offset. return NULL if
  687. * nothing is found, otherwise take a reference on the extent and return it
  688. */
  689. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  690. u64 file_offset)
  691. {
  692. struct btrfs_ordered_inode_tree *tree;
  693. struct rb_node *node;
  694. struct btrfs_ordered_extent *entry = NULL;
  695. tree = &BTRFS_I(inode)->ordered_tree;
  696. spin_lock_irq(&tree->lock);
  697. node = tree_search(tree, file_offset);
  698. if (!node)
  699. goto out;
  700. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  701. if (!offset_in_entry(entry, file_offset))
  702. entry = NULL;
  703. if (entry)
  704. atomic_inc(&entry->refs);
  705. out:
  706. spin_unlock_irq(&tree->lock);
  707. return entry;
  708. }
  709. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  710. * extents that exist in the range, rather than just the start of the range.
  711. */
  712. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
  713. u64 file_offset,
  714. u64 len)
  715. {
  716. struct btrfs_ordered_inode_tree *tree;
  717. struct rb_node *node;
  718. struct btrfs_ordered_extent *entry = NULL;
  719. tree = &BTRFS_I(inode)->ordered_tree;
  720. spin_lock_irq(&tree->lock);
  721. node = tree_search(tree, file_offset);
  722. if (!node) {
  723. node = tree_search(tree, file_offset + len);
  724. if (!node)
  725. goto out;
  726. }
  727. while (1) {
  728. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  729. if (range_overlaps(entry, file_offset, len))
  730. break;
  731. if (entry->file_offset >= file_offset + len) {
  732. entry = NULL;
  733. break;
  734. }
  735. entry = NULL;
  736. node = rb_next(node);
  737. if (!node)
  738. break;
  739. }
  740. out:
  741. if (entry)
  742. atomic_inc(&entry->refs);
  743. spin_unlock_irq(&tree->lock);
  744. return entry;
  745. }
  746. /*
  747. * lookup and return any extent before 'file_offset'. NULL is returned
  748. * if none is found
  749. */
  750. struct btrfs_ordered_extent *
  751. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  752. {
  753. struct btrfs_ordered_inode_tree *tree;
  754. struct rb_node *node;
  755. struct btrfs_ordered_extent *entry = NULL;
  756. tree = &BTRFS_I(inode)->ordered_tree;
  757. spin_lock_irq(&tree->lock);
  758. node = tree_search(tree, file_offset);
  759. if (!node)
  760. goto out;
  761. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  762. atomic_inc(&entry->refs);
  763. out:
  764. spin_unlock_irq(&tree->lock);
  765. return entry;
  766. }
  767. /*
  768. * After an extent is done, call this to conditionally update the on disk
  769. * i_size. i_size is updated to cover any fully written part of the file.
  770. */
  771. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  772. struct btrfs_ordered_extent *ordered)
  773. {
  774. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  775. u64 disk_i_size;
  776. u64 new_i_size;
  777. u64 i_size = i_size_read(inode);
  778. struct rb_node *node;
  779. struct rb_node *prev = NULL;
  780. struct btrfs_ordered_extent *test;
  781. int ret = 1;
  782. if (ordered)
  783. offset = entry_end(ordered);
  784. else
  785. offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
  786. spin_lock_irq(&tree->lock);
  787. disk_i_size = BTRFS_I(inode)->disk_i_size;
  788. /* truncate file */
  789. if (disk_i_size > i_size) {
  790. BTRFS_I(inode)->disk_i_size = i_size;
  791. ret = 0;
  792. goto out;
  793. }
  794. /*
  795. * if the disk i_size is already at the inode->i_size, or
  796. * this ordered extent is inside the disk i_size, we're done
  797. */
  798. if (disk_i_size == i_size)
  799. goto out;
  800. /*
  801. * We still need to update disk_i_size if outstanding_isize is greater
  802. * than disk_i_size.
  803. */
  804. if (offset <= disk_i_size &&
  805. (!ordered || ordered->outstanding_isize <= disk_i_size))
  806. goto out;
  807. /*
  808. * walk backward from this ordered extent to disk_i_size.
  809. * if we find an ordered extent then we can't update disk i_size
  810. * yet
  811. */
  812. if (ordered) {
  813. node = rb_prev(&ordered->rb_node);
  814. } else {
  815. prev = tree_search(tree, offset);
  816. /*
  817. * we insert file extents without involving ordered struct,
  818. * so there should be no ordered struct cover this offset
  819. */
  820. if (prev) {
  821. test = rb_entry(prev, struct btrfs_ordered_extent,
  822. rb_node);
  823. BUG_ON(offset_in_entry(test, offset));
  824. }
  825. node = prev;
  826. }
  827. for (; node; node = rb_prev(node)) {
  828. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  829. /* We treat this entry as if it doesnt exist */
  830. if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
  831. continue;
  832. if (test->file_offset + test->len <= disk_i_size)
  833. break;
  834. if (test->file_offset >= i_size)
  835. break;
  836. if (entry_end(test) > disk_i_size) {
  837. /*
  838. * we don't update disk_i_size now, so record this
  839. * undealt i_size. Or we will not know the real
  840. * i_size.
  841. */
  842. if (test->outstanding_isize < offset)
  843. test->outstanding_isize = offset;
  844. if (ordered &&
  845. ordered->outstanding_isize >
  846. test->outstanding_isize)
  847. test->outstanding_isize =
  848. ordered->outstanding_isize;
  849. goto out;
  850. }
  851. }
  852. new_i_size = min_t(u64, offset, i_size);
  853. /*
  854. * Some ordered extents may completed before the current one, and
  855. * we hold the real i_size in ->outstanding_isize.
  856. */
  857. if (ordered && ordered->outstanding_isize > new_i_size)
  858. new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
  859. BTRFS_I(inode)->disk_i_size = new_i_size;
  860. ret = 0;
  861. out:
  862. /*
  863. * We need to do this because we can't remove ordered extents until
  864. * after the i_disk_size has been updated and then the inode has been
  865. * updated to reflect the change, so we need to tell anybody who finds
  866. * this ordered extent that we've already done all the real work, we
  867. * just haven't completed all the other work.
  868. */
  869. if (ordered)
  870. set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
  871. spin_unlock_irq(&tree->lock);
  872. return ret;
  873. }
  874. /*
  875. * search the ordered extents for one corresponding to 'offset' and
  876. * try to find a checksum. This is used because we allow pages to
  877. * be reclaimed before their checksum is actually put into the btree
  878. */
  879. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  880. u32 *sum)
  881. {
  882. struct btrfs_ordered_sum *ordered_sum;
  883. struct btrfs_sector_sum *sector_sums;
  884. struct btrfs_ordered_extent *ordered;
  885. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  886. unsigned long num_sectors;
  887. unsigned long i;
  888. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  889. int ret = 1;
  890. ordered = btrfs_lookup_ordered_extent(inode, offset);
  891. if (!ordered)
  892. return 1;
  893. spin_lock_irq(&tree->lock);
  894. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  895. if (disk_bytenr >= ordered_sum->bytenr) {
  896. num_sectors = ordered_sum->len / sectorsize;
  897. sector_sums = ordered_sum->sums;
  898. for (i = 0; i < num_sectors; i++) {
  899. if (sector_sums[i].bytenr == disk_bytenr) {
  900. *sum = sector_sums[i].sum;
  901. ret = 0;
  902. goto out;
  903. }
  904. }
  905. }
  906. }
  907. out:
  908. spin_unlock_irq(&tree->lock);
  909. btrfs_put_ordered_extent(ordered);
  910. return ret;
  911. }
  912. /*
  913. * add a given inode to the list of inodes that must be fully on
  914. * disk before a transaction commit finishes.
  915. *
  916. * This basically gives us the ext3 style data=ordered mode, and it is mostly
  917. * used to make sure renamed files are fully on disk.
  918. *
  919. * It is a noop if the inode is already fully on disk.
  920. *
  921. * If trans is not null, we'll do a friendly check for a transaction that
  922. * is already flushing things and force the IO down ourselves.
  923. */
  924. void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
  925. struct btrfs_root *root, struct inode *inode)
  926. {
  927. u64 last_mod;
  928. last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
  929. /*
  930. * if this file hasn't been changed since the last transaction
  931. * commit, we can safely return without doing anything
  932. */
  933. if (last_mod < root->fs_info->last_trans_committed)
  934. return;
  935. spin_lock(&root->fs_info->ordered_extent_lock);
  936. if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
  937. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  938. &root->fs_info->ordered_operations);
  939. }
  940. spin_unlock(&root->fs_info->ordered_extent_lock);
  941. }
  942. int __init ordered_data_init(void)
  943. {
  944. btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
  945. sizeof(struct btrfs_ordered_extent), 0,
  946. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  947. NULL);
  948. if (!btrfs_ordered_extent_cache)
  949. return -ENOMEM;
  950. return 0;
  951. }
  952. void ordered_data_exit(void)
  953. {
  954. if (btrfs_ordered_extent_cache)
  955. kmem_cache_destroy(btrfs_ordered_extent_cache);
  956. }