setup_64.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/a.out.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/ioport.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/initrd.h>
  22. #include <linux/highmem.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <asm/processor.h>
  26. #include <linux/console.h>
  27. #include <linux/seq_file.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/pci.h>
  31. #include <linux/efi.h>
  32. #include <linux/acpi.h>
  33. #include <linux/kallsyms.h>
  34. #include <linux/edd.h>
  35. #include <linux/mmzone.h>
  36. #include <linux/kexec.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/dmi.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/ctype.h>
  41. #include <linux/uaccess.h>
  42. #include <asm/mtrr.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/system.h>
  45. #include <asm/io.h>
  46. #include <asm/smp.h>
  47. #include <asm/msr.h>
  48. #include <asm/desc.h>
  49. #include <video/edid.h>
  50. #include <asm/e820.h>
  51. #include <asm/dma.h>
  52. #include <asm/mpspec.h>
  53. #include <asm/mmu_context.h>
  54. #include <asm/proto.h>
  55. #include <asm/setup.h>
  56. #include <asm/mach_apic.h>
  57. #include <asm/numa.h>
  58. #include <asm/sections.h>
  59. #include <asm/dmi.h>
  60. #include <asm/cacheflush.h>
  61. #include <asm/mce.h>
  62. #include <asm/ds.h>
  63. #ifdef CONFIG_PARAVIRT
  64. #include <asm/paravirt.h>
  65. #else
  66. #define ARCH_SETUP
  67. #endif
  68. /*
  69. * Machine setup..
  70. */
  71. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  72. EXPORT_SYMBOL(boot_cpu_data);
  73. unsigned long mmu_cr4_features;
  74. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  75. int bootloader_type;
  76. unsigned long saved_video_mode;
  77. int force_mwait __cpuinitdata;
  78. /*
  79. * Early DMI memory
  80. */
  81. int dmi_alloc_index;
  82. char dmi_alloc_data[DMI_MAX_DATA];
  83. /*
  84. * Setup options
  85. */
  86. struct screen_info screen_info;
  87. EXPORT_SYMBOL(screen_info);
  88. struct sys_desc_table_struct {
  89. unsigned short length;
  90. unsigned char table[0];
  91. };
  92. struct edid_info edid_info;
  93. EXPORT_SYMBOL_GPL(edid_info);
  94. extern int root_mountflags;
  95. char __initdata command_line[COMMAND_LINE_SIZE];
  96. struct resource standard_io_resources[] = {
  97. { .name = "dma1", .start = 0x00, .end = 0x1f,
  98. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  99. { .name = "pic1", .start = 0x20, .end = 0x21,
  100. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  101. { .name = "timer0", .start = 0x40, .end = 0x43,
  102. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  103. { .name = "timer1", .start = 0x50, .end = 0x53,
  104. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  105. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  106. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  107. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  108. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  109. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  110. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  111. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  112. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  113. { .name = "fpu", .start = 0xf0, .end = 0xff,
  114. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  115. };
  116. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  117. static struct resource data_resource = {
  118. .name = "Kernel data",
  119. .start = 0,
  120. .end = 0,
  121. .flags = IORESOURCE_RAM,
  122. };
  123. static struct resource code_resource = {
  124. .name = "Kernel code",
  125. .start = 0,
  126. .end = 0,
  127. .flags = IORESOURCE_RAM,
  128. };
  129. static struct resource bss_resource = {
  130. .name = "Kernel bss",
  131. .start = 0,
  132. .end = 0,
  133. .flags = IORESOURCE_RAM,
  134. };
  135. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
  136. #ifdef CONFIG_PROC_VMCORE
  137. /* elfcorehdr= specifies the location of elf core header
  138. * stored by the crashed kernel. This option will be passed
  139. * by kexec loader to the capture kernel.
  140. */
  141. static int __init setup_elfcorehdr(char *arg)
  142. {
  143. char *end;
  144. if (!arg)
  145. return -EINVAL;
  146. elfcorehdr_addr = memparse(arg, &end);
  147. return end > arg ? 0 : -EINVAL;
  148. }
  149. early_param("elfcorehdr", setup_elfcorehdr);
  150. #endif
  151. #ifndef CONFIG_NUMA
  152. static void __init
  153. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  154. {
  155. unsigned long bootmap_size, bootmap;
  156. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  157. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  158. if (bootmap == -1L)
  159. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  160. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  161. e820_register_active_regions(0, start_pfn, end_pfn);
  162. free_bootmem_with_active_regions(0, end_pfn);
  163. reserve_bootmem(bootmap, bootmap_size);
  164. }
  165. #endif
  166. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  167. struct edd edd;
  168. #ifdef CONFIG_EDD_MODULE
  169. EXPORT_SYMBOL(edd);
  170. #endif
  171. /**
  172. * copy_edd() - Copy the BIOS EDD information
  173. * from boot_params into a safe place.
  174. *
  175. */
  176. static inline void copy_edd(void)
  177. {
  178. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  179. sizeof(edd.mbr_signature));
  180. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  181. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  182. edd.edd_info_nr = boot_params.eddbuf_entries;
  183. }
  184. #else
  185. static inline void copy_edd(void)
  186. {
  187. }
  188. #endif
  189. #ifdef CONFIG_KEXEC
  190. static void __init reserve_crashkernel(void)
  191. {
  192. unsigned long long free_mem;
  193. unsigned long long crash_size, crash_base;
  194. int ret;
  195. free_mem =
  196. ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  197. ret = parse_crashkernel(boot_command_line, free_mem,
  198. &crash_size, &crash_base);
  199. if (ret == 0 && crash_size) {
  200. if (crash_base > 0) {
  201. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  202. "for crashkernel (System RAM: %ldMB)\n",
  203. (unsigned long)(crash_size >> 20),
  204. (unsigned long)(crash_base >> 20),
  205. (unsigned long)(free_mem >> 20));
  206. crashk_res.start = crash_base;
  207. crashk_res.end = crash_base + crash_size - 1;
  208. reserve_bootmem(crash_base, crash_size);
  209. } else
  210. printk(KERN_INFO "crashkernel reservation failed - "
  211. "you have to specify a base address\n");
  212. }
  213. }
  214. #else
  215. static inline void __init reserve_crashkernel(void)
  216. {}
  217. #endif
  218. #define EBDA_ADDR_POINTER 0x40E
  219. unsigned __initdata ebda_addr;
  220. unsigned __initdata ebda_size;
  221. static void discover_ebda(void)
  222. {
  223. /*
  224. * there is a real-mode segmented pointer pointing to the
  225. * 4K EBDA area at 0x40E
  226. */
  227. ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
  228. /*
  229. * There can be some situations, like paravirtualized guests,
  230. * in which there is no available ebda information. In such
  231. * case, just skip it
  232. */
  233. if (!ebda_addr) {
  234. ebda_size = 0;
  235. return;
  236. }
  237. ebda_addr <<= 4;
  238. ebda_size = *(unsigned short *)__va(ebda_addr);
  239. /* Round EBDA up to pages */
  240. if (ebda_size == 0)
  241. ebda_size = 1;
  242. ebda_size <<= 10;
  243. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  244. if (ebda_size > 64*1024)
  245. ebda_size = 64*1024;
  246. }
  247. /* Overridden in paravirt.c if CONFIG_PARAVIRT */
  248. void __attribute__((weak)) memory_setup(void)
  249. {
  250. machine_specific_memory_setup();
  251. }
  252. void __init setup_arch(char **cmdline_p)
  253. {
  254. unsigned i;
  255. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  256. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  257. screen_info = boot_params.screen_info;
  258. edid_info = boot_params.edid_info;
  259. saved_video_mode = boot_params.hdr.vid_mode;
  260. bootloader_type = boot_params.hdr.type_of_loader;
  261. #ifdef CONFIG_BLK_DEV_RAM
  262. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  263. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  264. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  265. #endif
  266. #ifdef CONFIG_EFI
  267. if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
  268. "EL64", 4))
  269. efi_enabled = 1;
  270. #endif
  271. ARCH_SETUP
  272. memory_setup();
  273. copy_edd();
  274. if (!boot_params.hdr.root_flags)
  275. root_mountflags &= ~MS_RDONLY;
  276. init_mm.start_code = (unsigned long) &_text;
  277. init_mm.end_code = (unsigned long) &_etext;
  278. init_mm.end_data = (unsigned long) &_edata;
  279. init_mm.brk = (unsigned long) &_end;
  280. code_resource.start = virt_to_phys(&_text);
  281. code_resource.end = virt_to_phys(&_etext)-1;
  282. data_resource.start = virt_to_phys(&_etext);
  283. data_resource.end = virt_to_phys(&_edata)-1;
  284. bss_resource.start = virt_to_phys(&__bss_start);
  285. bss_resource.end = virt_to_phys(&__bss_stop)-1;
  286. early_identify_cpu(&boot_cpu_data);
  287. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  288. *cmdline_p = command_line;
  289. parse_early_param();
  290. finish_e820_parsing();
  291. e820_register_active_regions(0, 0, -1UL);
  292. /*
  293. * partially used pages are not usable - thus
  294. * we are rounding upwards:
  295. */
  296. end_pfn = e820_end_of_ram();
  297. num_physpages = end_pfn;
  298. check_efer();
  299. discover_ebda();
  300. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  301. if (efi_enabled)
  302. efi_init();
  303. dmi_scan_machine();
  304. io_delay_init();
  305. #ifdef CONFIG_SMP
  306. /* setup to use the static apicid table during kernel startup */
  307. x86_cpu_to_apicid_ptr = (void *)&x86_cpu_to_apicid_init;
  308. #endif
  309. #ifdef CONFIG_ACPI
  310. /*
  311. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  312. * Call this early for SRAT node setup.
  313. */
  314. acpi_boot_table_init();
  315. #endif
  316. /* How many end-of-memory variables you have, grandma! */
  317. max_low_pfn = end_pfn;
  318. max_pfn = end_pfn;
  319. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  320. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  321. remove_all_active_ranges();
  322. #ifdef CONFIG_ACPI_NUMA
  323. /*
  324. * Parse SRAT to discover nodes.
  325. */
  326. acpi_numa_init();
  327. #endif
  328. #ifdef CONFIG_NUMA
  329. numa_initmem_init(0, end_pfn);
  330. #else
  331. contig_initmem_init(0, end_pfn);
  332. #endif
  333. /* Reserve direct mapping */
  334. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  335. (table_end - table_start) << PAGE_SHIFT);
  336. /* reserve kernel */
  337. reserve_bootmem_generic(__pa_symbol(&_text),
  338. __pa_symbol(&_end) - __pa_symbol(&_text));
  339. /*
  340. * reserve physical page 0 - it's a special BIOS page on many boxes,
  341. * enabling clean reboots, SMP operation, laptop functions.
  342. */
  343. reserve_bootmem_generic(0, PAGE_SIZE);
  344. /* reserve ebda region */
  345. if (ebda_addr)
  346. reserve_bootmem_generic(ebda_addr, ebda_size);
  347. #ifdef CONFIG_NUMA
  348. /* reserve nodemap region */
  349. if (nodemap_addr)
  350. reserve_bootmem_generic(nodemap_addr, nodemap_size);
  351. #endif
  352. #ifdef CONFIG_SMP
  353. /* Reserve SMP trampoline */
  354. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
  355. #endif
  356. #ifdef CONFIG_ACPI_SLEEP
  357. /*
  358. * Reserve low memory region for sleep support.
  359. */
  360. acpi_reserve_bootmem();
  361. #endif
  362. if (efi_enabled) {
  363. efi_map_memmap();
  364. efi_reserve_bootmem();
  365. }
  366. /*
  367. * Find and reserve possible boot-time SMP configuration:
  368. */
  369. find_smp_config();
  370. #ifdef CONFIG_BLK_DEV_INITRD
  371. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  372. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  373. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  374. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  375. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  376. if (ramdisk_end <= end_of_mem) {
  377. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  378. initrd_start = ramdisk_image + PAGE_OFFSET;
  379. initrd_end = initrd_start+ramdisk_size;
  380. } else {
  381. printk(KERN_ERR "initrd extends beyond end of memory "
  382. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  383. ramdisk_end, end_of_mem);
  384. initrd_start = 0;
  385. }
  386. }
  387. #endif
  388. reserve_crashkernel();
  389. paging_init();
  390. early_quirks();
  391. /*
  392. * set this early, so we dont allocate cpu0
  393. * if MADT list doesnt list BSP first
  394. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  395. */
  396. cpu_set(0, cpu_present_map);
  397. #ifdef CONFIG_ACPI
  398. /*
  399. * Read APIC and some other early information from ACPI tables.
  400. */
  401. acpi_boot_init();
  402. #endif
  403. init_cpu_to_node();
  404. /*
  405. * get boot-time SMP configuration:
  406. */
  407. if (smp_found_config)
  408. get_smp_config();
  409. init_apic_mappings();
  410. ioapic_init_mappings();
  411. /*
  412. * We trust e820 completely. No explicit ROM probing in memory.
  413. */
  414. e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
  415. e820_mark_nosave_regions();
  416. /* request I/O space for devices used on all i[345]86 PCs */
  417. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  418. request_resource(&ioport_resource, &standard_io_resources[i]);
  419. e820_setup_gap();
  420. #ifdef CONFIG_VT
  421. #if defined(CONFIG_VGA_CONSOLE)
  422. if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
  423. conswitchp = &vga_con;
  424. #elif defined(CONFIG_DUMMY_CONSOLE)
  425. conswitchp = &dummy_con;
  426. #endif
  427. #endif
  428. }
  429. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  430. {
  431. unsigned int *v;
  432. if (c->extended_cpuid_level < 0x80000004)
  433. return 0;
  434. v = (unsigned int *) c->x86_model_id;
  435. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  436. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  437. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  438. c->x86_model_id[48] = 0;
  439. return 1;
  440. }
  441. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  442. {
  443. unsigned int n, dummy, eax, ebx, ecx, edx;
  444. n = c->extended_cpuid_level;
  445. if (n >= 0x80000005) {
  446. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  447. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
  448. "D cache %dK (%d bytes/line)\n",
  449. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  450. c->x86_cache_size = (ecx>>24) + (edx>>24);
  451. /* On K8 L1 TLB is inclusive, so don't count it */
  452. c->x86_tlbsize = 0;
  453. }
  454. if (n >= 0x80000006) {
  455. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  456. ecx = cpuid_ecx(0x80000006);
  457. c->x86_cache_size = ecx >> 16;
  458. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  459. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  460. c->x86_cache_size, ecx & 0xFF);
  461. }
  462. if (n >= 0x80000007)
  463. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  464. if (n >= 0x80000008) {
  465. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  466. c->x86_virt_bits = (eax >> 8) & 0xff;
  467. c->x86_phys_bits = eax & 0xff;
  468. }
  469. }
  470. #ifdef CONFIG_NUMA
  471. static int nearby_node(int apicid)
  472. {
  473. int i, node;
  474. for (i = apicid - 1; i >= 0; i--) {
  475. node = apicid_to_node[i];
  476. if (node != NUMA_NO_NODE && node_online(node))
  477. return node;
  478. }
  479. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  480. node = apicid_to_node[i];
  481. if (node != NUMA_NO_NODE && node_online(node))
  482. return node;
  483. }
  484. return first_node(node_online_map); /* Shouldn't happen */
  485. }
  486. #endif
  487. /*
  488. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  489. * Assumes number of cores is a power of two.
  490. */
  491. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  492. {
  493. #ifdef CONFIG_SMP
  494. unsigned bits;
  495. #ifdef CONFIG_NUMA
  496. int cpu = smp_processor_id();
  497. int node = 0;
  498. unsigned apicid = hard_smp_processor_id();
  499. #endif
  500. bits = c->x86_coreid_bits;
  501. /* Low order bits define the core id (index of core in socket) */
  502. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  503. /* Convert the APIC ID into the socket ID */
  504. c->phys_proc_id = phys_pkg_id(bits);
  505. #ifdef CONFIG_NUMA
  506. node = c->phys_proc_id;
  507. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  508. node = apicid_to_node[apicid];
  509. if (!node_online(node)) {
  510. /* Two possibilities here:
  511. - The CPU is missing memory and no node was created.
  512. In that case try picking one from a nearby CPU
  513. - The APIC IDs differ from the HyperTransport node IDs
  514. which the K8 northbridge parsing fills in.
  515. Assume they are all increased by a constant offset,
  516. but in the same order as the HT nodeids.
  517. If that doesn't result in a usable node fall back to the
  518. path for the previous case. */
  519. int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
  520. if (ht_nodeid >= 0 &&
  521. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  522. node = apicid_to_node[ht_nodeid];
  523. /* Pick a nearby node */
  524. if (!node_online(node))
  525. node = nearby_node(apicid);
  526. }
  527. numa_set_node(cpu, node);
  528. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  529. #endif
  530. #endif
  531. }
  532. static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
  533. {
  534. #ifdef CONFIG_SMP
  535. unsigned bits, ecx;
  536. /* Multi core CPU? */
  537. if (c->extended_cpuid_level < 0x80000008)
  538. return;
  539. ecx = cpuid_ecx(0x80000008);
  540. c->x86_max_cores = (ecx & 0xff) + 1;
  541. /* CPU telling us the core id bits shift? */
  542. bits = (ecx >> 12) & 0xF;
  543. /* Otherwise recompute */
  544. if (bits == 0) {
  545. while ((1 << bits) < c->x86_max_cores)
  546. bits++;
  547. }
  548. c->x86_coreid_bits = bits;
  549. #endif
  550. }
  551. #define ENABLE_C1E_MASK 0x18000000
  552. #define CPUID_PROCESSOR_SIGNATURE 1
  553. #define CPUID_XFAM 0x0ff00000
  554. #define CPUID_XFAM_K8 0x00000000
  555. #define CPUID_XFAM_10H 0x00100000
  556. #define CPUID_XFAM_11H 0x00200000
  557. #define CPUID_XMOD 0x000f0000
  558. #define CPUID_XMOD_REV_F 0x00040000
  559. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  560. static __cpuinit int amd_apic_timer_broken(void)
  561. {
  562. u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  563. switch (eax & CPUID_XFAM) {
  564. case CPUID_XFAM_K8:
  565. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  566. break;
  567. case CPUID_XFAM_10H:
  568. case CPUID_XFAM_11H:
  569. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  570. if (lo & ENABLE_C1E_MASK)
  571. return 1;
  572. break;
  573. default:
  574. /* err on the side of caution */
  575. return 1;
  576. }
  577. return 0;
  578. }
  579. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  580. {
  581. unsigned level;
  582. #ifdef CONFIG_SMP
  583. unsigned long value;
  584. /*
  585. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  586. * bit 6 of msr C001_0015
  587. *
  588. * Errata 63 for SH-B3 steppings
  589. * Errata 122 for all steppings (F+ have it disabled by default)
  590. */
  591. if (c->x86 == 15) {
  592. rdmsrl(MSR_K8_HWCR, value);
  593. value |= 1 << 6;
  594. wrmsrl(MSR_K8_HWCR, value);
  595. }
  596. #endif
  597. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  598. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  599. clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
  600. /* On C+ stepping K8 rep microcode works well for copy/memset */
  601. level = cpuid_eax(1);
  602. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
  603. level >= 0x0f58))
  604. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  605. if (c->x86 == 0x10 || c->x86 == 0x11)
  606. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  607. /* Enable workaround for FXSAVE leak */
  608. if (c->x86 >= 6)
  609. set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
  610. level = get_model_name(c);
  611. if (!level) {
  612. switch (c->x86) {
  613. case 15:
  614. /* Should distinguish Models here, but this is only
  615. a fallback anyways. */
  616. strcpy(c->x86_model_id, "Hammer");
  617. break;
  618. }
  619. }
  620. display_cacheinfo(c);
  621. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  622. if (c->x86_power & (1<<8))
  623. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  624. /* Multi core CPU? */
  625. if (c->extended_cpuid_level >= 0x80000008)
  626. amd_detect_cmp(c);
  627. if (c->extended_cpuid_level >= 0x80000006 &&
  628. (cpuid_edx(0x80000006) & 0xf000))
  629. num_cache_leaves = 4;
  630. else
  631. num_cache_leaves = 3;
  632. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  633. set_cpu_cap(c, X86_FEATURE_K8);
  634. /* RDTSC can be speculated around */
  635. clear_cpu_cap(c, X86_FEATURE_SYNC_RDTSC);
  636. /* Family 10 doesn't support C states in MWAIT so don't use it */
  637. if (c->x86 == 0x10 && !force_mwait)
  638. clear_cpu_cap(c, X86_FEATURE_MWAIT);
  639. if (amd_apic_timer_broken())
  640. disable_apic_timer = 1;
  641. }
  642. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  643. {
  644. #ifdef CONFIG_SMP
  645. u32 eax, ebx, ecx, edx;
  646. int index_msb, core_bits;
  647. cpuid(1, &eax, &ebx, &ecx, &edx);
  648. if (!cpu_has(c, X86_FEATURE_HT))
  649. return;
  650. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  651. goto out;
  652. smp_num_siblings = (ebx & 0xff0000) >> 16;
  653. if (smp_num_siblings == 1) {
  654. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  655. } else if (smp_num_siblings > 1) {
  656. if (smp_num_siblings > NR_CPUS) {
  657. printk(KERN_WARNING "CPU: Unsupported number of "
  658. "siblings %d", smp_num_siblings);
  659. smp_num_siblings = 1;
  660. return;
  661. }
  662. index_msb = get_count_order(smp_num_siblings);
  663. c->phys_proc_id = phys_pkg_id(index_msb);
  664. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  665. index_msb = get_count_order(smp_num_siblings);
  666. core_bits = get_count_order(c->x86_max_cores);
  667. c->cpu_core_id = phys_pkg_id(index_msb) &
  668. ((1 << core_bits) - 1);
  669. }
  670. out:
  671. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  672. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  673. c->phys_proc_id);
  674. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  675. c->cpu_core_id);
  676. }
  677. #endif
  678. }
  679. /*
  680. * find out the number of processor cores on the die
  681. */
  682. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  683. {
  684. unsigned int eax, t;
  685. if (c->cpuid_level < 4)
  686. return 1;
  687. cpuid_count(4, 0, &eax, &t, &t, &t);
  688. if (eax & 0x1f)
  689. return ((eax >> 26) + 1);
  690. else
  691. return 1;
  692. }
  693. static void srat_detect_node(void)
  694. {
  695. #ifdef CONFIG_NUMA
  696. unsigned node;
  697. int cpu = smp_processor_id();
  698. int apicid = hard_smp_processor_id();
  699. /* Don't do the funky fallback heuristics the AMD version employs
  700. for now. */
  701. node = apicid_to_node[apicid];
  702. if (node == NUMA_NO_NODE)
  703. node = first_node(node_online_map);
  704. numa_set_node(cpu, node);
  705. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  706. #endif
  707. }
  708. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  709. {
  710. /* Cache sizes */
  711. unsigned n;
  712. init_intel_cacheinfo(c);
  713. if (c->cpuid_level > 9) {
  714. unsigned eax = cpuid_eax(10);
  715. /* Check for version and the number of counters */
  716. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  717. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  718. }
  719. if (cpu_has_ds) {
  720. unsigned int l1, l2;
  721. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  722. if (!(l1 & (1<<11)))
  723. set_cpu_cap(c, X86_FEATURE_BTS);
  724. if (!(l1 & (1<<12)))
  725. set_cpu_cap(c, X86_FEATURE_PEBS);
  726. }
  727. if (cpu_has_bts)
  728. ds_init_intel(c);
  729. n = c->extended_cpuid_level;
  730. if (n >= 0x80000008) {
  731. unsigned eax = cpuid_eax(0x80000008);
  732. c->x86_virt_bits = (eax >> 8) & 0xff;
  733. c->x86_phys_bits = eax & 0xff;
  734. /* CPUID workaround for Intel 0F34 CPU */
  735. if (c->x86_vendor == X86_VENDOR_INTEL &&
  736. c->x86 == 0xF && c->x86_model == 0x3 &&
  737. c->x86_mask == 0x4)
  738. c->x86_phys_bits = 36;
  739. }
  740. if (c->x86 == 15)
  741. c->x86_cache_alignment = c->x86_clflush_size * 2;
  742. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  743. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  744. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  745. if (c->x86 == 6)
  746. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  747. if (c->x86 == 15)
  748. set_cpu_cap(c, X86_FEATURE_SYNC_RDTSC);
  749. else
  750. clear_cpu_cap(c, X86_FEATURE_SYNC_RDTSC);
  751. c->x86_max_cores = intel_num_cpu_cores(c);
  752. srat_detect_node();
  753. }
  754. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  755. {
  756. char *v = c->x86_vendor_id;
  757. if (!strcmp(v, "AuthenticAMD"))
  758. c->x86_vendor = X86_VENDOR_AMD;
  759. else if (!strcmp(v, "GenuineIntel"))
  760. c->x86_vendor = X86_VENDOR_INTEL;
  761. else
  762. c->x86_vendor = X86_VENDOR_UNKNOWN;
  763. }
  764. struct cpu_model_info {
  765. int vendor;
  766. int family;
  767. char *model_names[16];
  768. };
  769. /* Do some early cpuid on the boot CPU to get some parameter that are
  770. needed before check_bugs. Everything advanced is in identify_cpu
  771. below. */
  772. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  773. {
  774. u32 tfms, xlvl;
  775. c->loops_per_jiffy = loops_per_jiffy;
  776. c->x86_cache_size = -1;
  777. c->x86_vendor = X86_VENDOR_UNKNOWN;
  778. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  779. c->x86_vendor_id[0] = '\0'; /* Unset */
  780. c->x86_model_id[0] = '\0'; /* Unset */
  781. c->x86_clflush_size = 64;
  782. c->x86_cache_alignment = c->x86_clflush_size;
  783. c->x86_max_cores = 1;
  784. c->x86_coreid_bits = 0;
  785. c->extended_cpuid_level = 0;
  786. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  787. /* Get vendor name */
  788. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  789. (unsigned int *)&c->x86_vendor_id[0],
  790. (unsigned int *)&c->x86_vendor_id[8],
  791. (unsigned int *)&c->x86_vendor_id[4]);
  792. get_cpu_vendor(c);
  793. /* Initialize the standard set of capabilities */
  794. /* Note that the vendor-specific code below might override */
  795. /* Intel-defined flags: level 0x00000001 */
  796. if (c->cpuid_level >= 0x00000001) {
  797. __u32 misc;
  798. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  799. &c->x86_capability[0]);
  800. c->x86 = (tfms >> 8) & 0xf;
  801. c->x86_model = (tfms >> 4) & 0xf;
  802. c->x86_mask = tfms & 0xf;
  803. if (c->x86 == 0xf)
  804. c->x86 += (tfms >> 20) & 0xff;
  805. if (c->x86 >= 0x6)
  806. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  807. if (c->x86_capability[0] & (1<<19))
  808. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  809. } else {
  810. /* Have CPUID level 0 only - unheard of */
  811. c->x86 = 4;
  812. }
  813. #ifdef CONFIG_SMP
  814. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  815. #endif
  816. /* AMD-defined flags: level 0x80000001 */
  817. xlvl = cpuid_eax(0x80000000);
  818. c->extended_cpuid_level = xlvl;
  819. if ((xlvl & 0xffff0000) == 0x80000000) {
  820. if (xlvl >= 0x80000001) {
  821. c->x86_capability[1] = cpuid_edx(0x80000001);
  822. c->x86_capability[6] = cpuid_ecx(0x80000001);
  823. }
  824. if (xlvl >= 0x80000004)
  825. get_model_name(c); /* Default name */
  826. }
  827. /* Transmeta-defined flags: level 0x80860001 */
  828. xlvl = cpuid_eax(0x80860000);
  829. if ((xlvl & 0xffff0000) == 0x80860000) {
  830. /* Don't set x86_cpuid_level here for now to not confuse. */
  831. if (xlvl >= 0x80860001)
  832. c->x86_capability[2] = cpuid_edx(0x80860001);
  833. }
  834. switch (c->x86_vendor) {
  835. case X86_VENDOR_AMD:
  836. early_init_amd(c);
  837. break;
  838. }
  839. }
  840. /*
  841. * This does the hard work of actually picking apart the CPU stuff...
  842. */
  843. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  844. {
  845. int i;
  846. early_identify_cpu(c);
  847. init_scattered_cpuid_features(c);
  848. c->apicid = phys_pkg_id(0);
  849. /*
  850. * Vendor-specific initialization. In this section we
  851. * canonicalize the feature flags, meaning if there are
  852. * features a certain CPU supports which CPUID doesn't
  853. * tell us, CPUID claiming incorrect flags, or other bugs,
  854. * we handle them here.
  855. *
  856. * At the end of this section, c->x86_capability better
  857. * indicate the features this CPU genuinely supports!
  858. */
  859. switch (c->x86_vendor) {
  860. case X86_VENDOR_AMD:
  861. init_amd(c);
  862. break;
  863. case X86_VENDOR_INTEL:
  864. init_intel(c);
  865. break;
  866. case X86_VENDOR_UNKNOWN:
  867. default:
  868. display_cacheinfo(c);
  869. break;
  870. }
  871. select_idle_routine(c);
  872. detect_ht(c);
  873. /*
  874. * On SMP, boot_cpu_data holds the common feature set between
  875. * all CPUs; so make sure that we indicate which features are
  876. * common between the CPUs. The first time this routine gets
  877. * executed, c == &boot_cpu_data.
  878. */
  879. if (c != &boot_cpu_data) {
  880. /* AND the already accumulated flags with these */
  881. for (i = 0; i < NCAPINTS; i++)
  882. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  883. }
  884. #ifdef CONFIG_X86_MCE
  885. mcheck_init(c);
  886. #endif
  887. if (c != &boot_cpu_data)
  888. mtrr_ap_init();
  889. #ifdef CONFIG_NUMA
  890. numa_add_cpu(smp_processor_id());
  891. #endif
  892. }
  893. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  894. {
  895. if (c->x86_model_id[0])
  896. printk(KERN_INFO "%s", c->x86_model_id);
  897. if (c->x86_mask || c->cpuid_level >= 0)
  898. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  899. else
  900. printk(KERN_CONT "\n");
  901. }
  902. /*
  903. * Get CPU information for use by the procfs.
  904. */
  905. static int show_cpuinfo(struct seq_file *m, void *v)
  906. {
  907. struct cpuinfo_x86 *c = v;
  908. int cpu = 0, i;
  909. /*
  910. * These flag bits must match the definitions in <asm/cpufeature.h>.
  911. * NULL means this bit is undefined or reserved; either way it doesn't
  912. * have meaning as far as Linux is concerned. Note that it's important
  913. * to realize there is a difference between this table and CPUID -- if
  914. * applications want to get the raw CPUID data, they should access
  915. * /dev/cpu/<cpu_nr>/cpuid instead.
  916. */
  917. static const char *const x86_cap_flags[] = {
  918. /* Intel-defined */
  919. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  920. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  921. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  922. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
  923. /* AMD-defined */
  924. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  925. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  926. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  927. NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
  928. "3dnowext", "3dnow",
  929. /* Transmeta-defined */
  930. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  931. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  932. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  933. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  934. /* Other (Linux-defined) */
  935. "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
  936. NULL, NULL, NULL, NULL,
  937. "constant_tsc", "up", NULL, "arch_perfmon",
  938. "pebs", "bts", NULL, "sync_rdtsc",
  939. "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  940. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  941. /* Intel-defined (#2) */
  942. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  943. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  944. NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
  945. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  946. /* VIA/Cyrix/Centaur-defined */
  947. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  948. "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
  949. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  950. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  951. /* AMD-defined (#2) */
  952. "lahf_lm", "cmp_legacy", "svm", "extapic",
  953. "cr8_legacy", "abm", "sse4a", "misalignsse",
  954. "3dnowprefetch", "osvw", "ibs", "sse5",
  955. "skinit", "wdt", NULL, NULL,
  956. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  957. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  958. /* Auxiliary (Linux-defined) */
  959. "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  960. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  961. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  962. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  963. };
  964. static const char *const x86_power_flags[] = {
  965. "ts", /* temperature sensor */
  966. "fid", /* frequency id control */
  967. "vid", /* voltage id control */
  968. "ttp", /* thermal trip */
  969. "tm",
  970. "stc",
  971. "100mhzsteps",
  972. "hwpstate",
  973. "", /* tsc invariant mapped to constant_tsc */
  974. /* nothing */
  975. };
  976. #ifdef CONFIG_SMP
  977. cpu = c->cpu_index;
  978. #endif
  979. seq_printf(m, "processor\t: %u\n"
  980. "vendor_id\t: %s\n"
  981. "cpu family\t: %d\n"
  982. "model\t\t: %d\n"
  983. "model name\t: %s\n",
  984. (unsigned)cpu,
  985. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  986. c->x86,
  987. (int)c->x86_model,
  988. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  989. if (c->x86_mask || c->cpuid_level >= 0)
  990. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  991. else
  992. seq_printf(m, "stepping\t: unknown\n");
  993. if (cpu_has(c, X86_FEATURE_TSC)) {
  994. unsigned int freq = cpufreq_quick_get((unsigned)cpu);
  995. if (!freq)
  996. freq = cpu_khz;
  997. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  998. freq / 1000, (freq % 1000));
  999. }
  1000. /* Cache size */
  1001. if (c->x86_cache_size >= 0)
  1002. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  1003. #ifdef CONFIG_SMP
  1004. if (smp_num_siblings * c->x86_max_cores > 1) {
  1005. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  1006. seq_printf(m, "siblings\t: %d\n",
  1007. cpus_weight(per_cpu(cpu_core_map, cpu)));
  1008. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  1009. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  1010. }
  1011. #endif
  1012. seq_printf(m,
  1013. "fpu\t\t: yes\n"
  1014. "fpu_exception\t: yes\n"
  1015. "cpuid level\t: %d\n"
  1016. "wp\t\t: yes\n"
  1017. "flags\t\t:",
  1018. c->cpuid_level);
  1019. for (i = 0; i < 32*NCAPINTS; i++)
  1020. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  1021. seq_printf(m, " %s", x86_cap_flags[i]);
  1022. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  1023. c->loops_per_jiffy/(500000/HZ),
  1024. (c->loops_per_jiffy/(5000/HZ)) % 100);
  1025. if (c->x86_tlbsize > 0)
  1026. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  1027. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  1028. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  1029. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  1030. c->x86_phys_bits, c->x86_virt_bits);
  1031. seq_printf(m, "power management:");
  1032. for (i = 0; i < 32; i++) {
  1033. if (c->x86_power & (1 << i)) {
  1034. if (i < ARRAY_SIZE(x86_power_flags) &&
  1035. x86_power_flags[i])
  1036. seq_printf(m, "%s%s",
  1037. x86_power_flags[i][0]?" ":"",
  1038. x86_power_flags[i]);
  1039. else
  1040. seq_printf(m, " [%d]", i);
  1041. }
  1042. }
  1043. seq_printf(m, "\n\n");
  1044. return 0;
  1045. }
  1046. static void *c_start(struct seq_file *m, loff_t *pos)
  1047. {
  1048. if (*pos == 0) /* just in case, cpu 0 is not the first */
  1049. *pos = first_cpu(cpu_online_map);
  1050. if ((*pos) < NR_CPUS && cpu_online(*pos))
  1051. return &cpu_data(*pos);
  1052. return NULL;
  1053. }
  1054. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1055. {
  1056. *pos = next_cpu(*pos, cpu_online_map);
  1057. return c_start(m, pos);
  1058. }
  1059. static void c_stop(struct seq_file *m, void *v)
  1060. {
  1061. }
  1062. struct seq_operations cpuinfo_op = {
  1063. .start = c_start,
  1064. .next = c_next,
  1065. .stop = c_stop,
  1066. .show = show_cpuinfo,
  1067. };