mmu.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "x86.h"
  21. #include "kvm_cache_regs.h"
  22. #include <linux/kvm_host.h>
  23. #include <linux/types.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/module.h>
  28. #include <linux/swap.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/compiler.h>
  31. #include <linux/srcu.h>
  32. #include <linux/slab.h>
  33. #include <asm/page.h>
  34. #include <asm/cmpxchg.h>
  35. #include <asm/io.h>
  36. #include <asm/vmx.h>
  37. /*
  38. * When setting this variable to true it enables Two-Dimensional-Paging
  39. * where the hardware walks 2 page tables:
  40. * 1. the guest-virtual to guest-physical
  41. * 2. while doing 1. it walks guest-physical to host-physical
  42. * If the hardware supports that we don't need to do shadow paging.
  43. */
  44. bool tdp_enabled = false;
  45. #undef MMU_DEBUG
  46. #undef AUDIT
  47. #ifdef AUDIT
  48. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  49. #else
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  51. #endif
  52. #ifdef MMU_DEBUG
  53. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  54. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  55. #else
  56. #define pgprintk(x...) do { } while (0)
  57. #define rmap_printk(x...) do { } while (0)
  58. #endif
  59. #if defined(MMU_DEBUG) || defined(AUDIT)
  60. static int dbg = 0;
  61. module_param(dbg, bool, 0644);
  62. #endif
  63. static int oos_shadow = 1;
  64. module_param(oos_shadow, bool, 0644);
  65. #ifndef MMU_DEBUG
  66. #define ASSERT(x) do { } while (0)
  67. #else
  68. #define ASSERT(x) \
  69. if (!(x)) { \
  70. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  71. __FILE__, __LINE__, #x); \
  72. }
  73. #endif
  74. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  75. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  76. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  77. #define PT64_LEVEL_BITS 9
  78. #define PT64_LEVEL_SHIFT(level) \
  79. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  80. #define PT64_LEVEL_MASK(level) \
  81. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  82. #define PT64_INDEX(address, level)\
  83. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  84. #define PT32_LEVEL_BITS 10
  85. #define PT32_LEVEL_SHIFT(level) \
  86. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  87. #define PT32_LEVEL_MASK(level) \
  88. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  89. #define PT32_LVL_OFFSET_MASK(level) \
  90. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  91. * PT32_LEVEL_BITS))) - 1))
  92. #define PT32_INDEX(address, level)\
  93. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  94. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  95. #define PT64_DIR_BASE_ADDR_MASK \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  97. #define PT64_LVL_ADDR_MASK(level) \
  98. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT64_LEVEL_BITS))) - 1))
  100. #define PT64_LVL_OFFSET_MASK(level) \
  101. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  102. * PT64_LEVEL_BITS))) - 1))
  103. #define PT32_BASE_ADDR_MASK PAGE_MASK
  104. #define PT32_DIR_BASE_ADDR_MASK \
  105. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  106. #define PT32_LVL_ADDR_MASK(level) \
  107. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  108. * PT32_LEVEL_BITS))) - 1))
  109. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  110. | PT64_NX_MASK)
  111. #define RMAP_EXT 4
  112. #define ACC_EXEC_MASK 1
  113. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  114. #define ACC_USER_MASK PT_USER_MASK
  115. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  116. #include <trace/events/kvm.h>
  117. #define CREATE_TRACE_POINTS
  118. #include "mmutrace.h"
  119. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  120. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  121. struct kvm_rmap_desc {
  122. u64 *sptes[RMAP_EXT];
  123. struct kvm_rmap_desc *more;
  124. };
  125. struct kvm_shadow_walk_iterator {
  126. u64 addr;
  127. hpa_t shadow_addr;
  128. int level;
  129. u64 *sptep;
  130. unsigned index;
  131. };
  132. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  133. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  134. shadow_walk_okay(&(_walker)); \
  135. shadow_walk_next(&(_walker)))
  136. struct kvm_unsync_walk {
  137. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  138. };
  139. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  140. static struct kmem_cache *pte_chain_cache;
  141. static struct kmem_cache *rmap_desc_cache;
  142. static struct kmem_cache *mmu_page_header_cache;
  143. static u64 __read_mostly shadow_trap_nonpresent_pte;
  144. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  145. static u64 __read_mostly shadow_base_present_pte;
  146. static u64 __read_mostly shadow_nx_mask;
  147. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  148. static u64 __read_mostly shadow_user_mask;
  149. static u64 __read_mostly shadow_accessed_mask;
  150. static u64 __read_mostly shadow_dirty_mask;
  151. static inline u64 rsvd_bits(int s, int e)
  152. {
  153. return ((1ULL << (e - s + 1)) - 1) << s;
  154. }
  155. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  156. {
  157. shadow_trap_nonpresent_pte = trap_pte;
  158. shadow_notrap_nonpresent_pte = notrap_pte;
  159. }
  160. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  161. void kvm_mmu_set_base_ptes(u64 base_pte)
  162. {
  163. shadow_base_present_pte = base_pte;
  164. }
  165. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  166. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  167. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  168. {
  169. shadow_user_mask = user_mask;
  170. shadow_accessed_mask = accessed_mask;
  171. shadow_dirty_mask = dirty_mask;
  172. shadow_nx_mask = nx_mask;
  173. shadow_x_mask = x_mask;
  174. }
  175. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  176. static int is_write_protection(struct kvm_vcpu *vcpu)
  177. {
  178. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  179. }
  180. static int is_cpuid_PSE36(void)
  181. {
  182. return 1;
  183. }
  184. static int is_nx(struct kvm_vcpu *vcpu)
  185. {
  186. return vcpu->arch.efer & EFER_NX;
  187. }
  188. static int is_shadow_present_pte(u64 pte)
  189. {
  190. return pte != shadow_trap_nonpresent_pte
  191. && pte != shadow_notrap_nonpresent_pte;
  192. }
  193. static int is_large_pte(u64 pte)
  194. {
  195. return pte & PT_PAGE_SIZE_MASK;
  196. }
  197. static int is_writable_pte(unsigned long pte)
  198. {
  199. return pte & PT_WRITABLE_MASK;
  200. }
  201. static int is_dirty_gpte(unsigned long pte)
  202. {
  203. return pte & PT_DIRTY_MASK;
  204. }
  205. static int is_rmap_spte(u64 pte)
  206. {
  207. return is_shadow_present_pte(pte);
  208. }
  209. static int is_last_spte(u64 pte, int level)
  210. {
  211. if (level == PT_PAGE_TABLE_LEVEL)
  212. return 1;
  213. if (is_large_pte(pte))
  214. return 1;
  215. return 0;
  216. }
  217. static pfn_t spte_to_pfn(u64 pte)
  218. {
  219. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  220. }
  221. static gfn_t pse36_gfn_delta(u32 gpte)
  222. {
  223. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  224. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  225. }
  226. static void __set_spte(u64 *sptep, u64 spte)
  227. {
  228. #ifdef CONFIG_X86_64
  229. set_64bit((unsigned long *)sptep, spte);
  230. #else
  231. set_64bit((unsigned long long *)sptep, spte);
  232. #endif
  233. }
  234. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  235. struct kmem_cache *base_cache, int min)
  236. {
  237. void *obj;
  238. if (cache->nobjs >= min)
  239. return 0;
  240. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  241. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  242. if (!obj)
  243. return -ENOMEM;
  244. cache->objects[cache->nobjs++] = obj;
  245. }
  246. return 0;
  247. }
  248. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  249. {
  250. while (mc->nobjs)
  251. kfree(mc->objects[--mc->nobjs]);
  252. }
  253. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  254. int min)
  255. {
  256. struct page *page;
  257. if (cache->nobjs >= min)
  258. return 0;
  259. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  260. page = alloc_page(GFP_KERNEL);
  261. if (!page)
  262. return -ENOMEM;
  263. cache->objects[cache->nobjs++] = page_address(page);
  264. }
  265. return 0;
  266. }
  267. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  268. {
  269. while (mc->nobjs)
  270. free_page((unsigned long)mc->objects[--mc->nobjs]);
  271. }
  272. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  273. {
  274. int r;
  275. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  276. pte_chain_cache, 4);
  277. if (r)
  278. goto out;
  279. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  280. rmap_desc_cache, 4);
  281. if (r)
  282. goto out;
  283. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  284. if (r)
  285. goto out;
  286. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  287. mmu_page_header_cache, 4);
  288. out:
  289. return r;
  290. }
  291. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  292. {
  293. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  294. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  295. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  296. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  297. }
  298. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  299. size_t size)
  300. {
  301. void *p;
  302. BUG_ON(!mc->nobjs);
  303. p = mc->objects[--mc->nobjs];
  304. return p;
  305. }
  306. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  307. {
  308. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  309. sizeof(struct kvm_pte_chain));
  310. }
  311. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  312. {
  313. kfree(pc);
  314. }
  315. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  316. {
  317. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  318. sizeof(struct kvm_rmap_desc));
  319. }
  320. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  321. {
  322. kfree(rd);
  323. }
  324. /*
  325. * Return the pointer to the largepage write count for a given
  326. * gfn, handling slots that are not large page aligned.
  327. */
  328. static int *slot_largepage_idx(gfn_t gfn,
  329. struct kvm_memory_slot *slot,
  330. int level)
  331. {
  332. unsigned long idx;
  333. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  334. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  335. return &slot->lpage_info[level - 2][idx].write_count;
  336. }
  337. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  338. {
  339. struct kvm_memory_slot *slot;
  340. int *write_count;
  341. int i;
  342. gfn = unalias_gfn(kvm, gfn);
  343. slot = gfn_to_memslot_unaliased(kvm, gfn);
  344. for (i = PT_DIRECTORY_LEVEL;
  345. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  346. write_count = slot_largepage_idx(gfn, slot, i);
  347. *write_count += 1;
  348. }
  349. }
  350. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  351. {
  352. struct kvm_memory_slot *slot;
  353. int *write_count;
  354. int i;
  355. gfn = unalias_gfn(kvm, gfn);
  356. for (i = PT_DIRECTORY_LEVEL;
  357. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  358. slot = gfn_to_memslot_unaliased(kvm, gfn);
  359. write_count = slot_largepage_idx(gfn, slot, i);
  360. *write_count -= 1;
  361. WARN_ON(*write_count < 0);
  362. }
  363. }
  364. static int has_wrprotected_page(struct kvm *kvm,
  365. gfn_t gfn,
  366. int level)
  367. {
  368. struct kvm_memory_slot *slot;
  369. int *largepage_idx;
  370. gfn = unalias_gfn(kvm, gfn);
  371. slot = gfn_to_memslot_unaliased(kvm, gfn);
  372. if (slot) {
  373. largepage_idx = slot_largepage_idx(gfn, slot, level);
  374. return *largepage_idx;
  375. }
  376. return 1;
  377. }
  378. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  379. {
  380. unsigned long page_size;
  381. int i, ret = 0;
  382. page_size = kvm_host_page_size(kvm, gfn);
  383. for (i = PT_PAGE_TABLE_LEVEL;
  384. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  385. if (page_size >= KVM_HPAGE_SIZE(i))
  386. ret = i;
  387. else
  388. break;
  389. }
  390. return ret;
  391. }
  392. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  393. {
  394. struct kvm_memory_slot *slot;
  395. int host_level, level, max_level;
  396. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  397. if (slot && slot->dirty_bitmap)
  398. return PT_PAGE_TABLE_LEVEL;
  399. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  400. if (host_level == PT_PAGE_TABLE_LEVEL)
  401. return host_level;
  402. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  403. kvm_x86_ops->get_lpage_level() : host_level;
  404. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  405. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  406. break;
  407. return level - 1;
  408. }
  409. /*
  410. * Take gfn and return the reverse mapping to it.
  411. * Note: gfn must be unaliased before this function get called
  412. */
  413. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  414. {
  415. struct kvm_memory_slot *slot;
  416. unsigned long idx;
  417. slot = gfn_to_memslot(kvm, gfn);
  418. if (likely(level == PT_PAGE_TABLE_LEVEL))
  419. return &slot->rmap[gfn - slot->base_gfn];
  420. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  421. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  422. return &slot->lpage_info[level - 2][idx].rmap_pde;
  423. }
  424. /*
  425. * Reverse mapping data structures:
  426. *
  427. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  428. * that points to page_address(page).
  429. *
  430. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  431. * containing more mappings.
  432. *
  433. * Returns the number of rmap entries before the spte was added or zero if
  434. * the spte was not added.
  435. *
  436. */
  437. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  438. {
  439. struct kvm_mmu_page *sp;
  440. struct kvm_rmap_desc *desc;
  441. unsigned long *rmapp;
  442. int i, count = 0;
  443. if (!is_rmap_spte(*spte))
  444. return count;
  445. gfn = unalias_gfn(vcpu->kvm, gfn);
  446. sp = page_header(__pa(spte));
  447. sp->gfns[spte - sp->spt] = gfn;
  448. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  449. if (!*rmapp) {
  450. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  451. *rmapp = (unsigned long)spte;
  452. } else if (!(*rmapp & 1)) {
  453. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  454. desc = mmu_alloc_rmap_desc(vcpu);
  455. desc->sptes[0] = (u64 *)*rmapp;
  456. desc->sptes[1] = spte;
  457. *rmapp = (unsigned long)desc | 1;
  458. } else {
  459. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  460. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  461. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  462. desc = desc->more;
  463. count += RMAP_EXT;
  464. }
  465. if (desc->sptes[RMAP_EXT-1]) {
  466. desc->more = mmu_alloc_rmap_desc(vcpu);
  467. desc = desc->more;
  468. }
  469. for (i = 0; desc->sptes[i]; ++i)
  470. ;
  471. desc->sptes[i] = spte;
  472. }
  473. return count;
  474. }
  475. static void rmap_desc_remove_entry(unsigned long *rmapp,
  476. struct kvm_rmap_desc *desc,
  477. int i,
  478. struct kvm_rmap_desc *prev_desc)
  479. {
  480. int j;
  481. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  482. ;
  483. desc->sptes[i] = desc->sptes[j];
  484. desc->sptes[j] = NULL;
  485. if (j != 0)
  486. return;
  487. if (!prev_desc && !desc->more)
  488. *rmapp = (unsigned long)desc->sptes[0];
  489. else
  490. if (prev_desc)
  491. prev_desc->more = desc->more;
  492. else
  493. *rmapp = (unsigned long)desc->more | 1;
  494. mmu_free_rmap_desc(desc);
  495. }
  496. static void rmap_remove(struct kvm *kvm, u64 *spte)
  497. {
  498. struct kvm_rmap_desc *desc;
  499. struct kvm_rmap_desc *prev_desc;
  500. struct kvm_mmu_page *sp;
  501. pfn_t pfn;
  502. unsigned long *rmapp;
  503. int i;
  504. if (!is_rmap_spte(*spte))
  505. return;
  506. sp = page_header(__pa(spte));
  507. pfn = spte_to_pfn(*spte);
  508. if (*spte & shadow_accessed_mask)
  509. kvm_set_pfn_accessed(pfn);
  510. if (is_writable_pte(*spte))
  511. kvm_set_pfn_dirty(pfn);
  512. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  513. if (!*rmapp) {
  514. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  515. BUG();
  516. } else if (!(*rmapp & 1)) {
  517. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  518. if ((u64 *)*rmapp != spte) {
  519. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  520. spte, *spte);
  521. BUG();
  522. }
  523. *rmapp = 0;
  524. } else {
  525. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  526. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  527. prev_desc = NULL;
  528. while (desc) {
  529. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  530. if (desc->sptes[i] == spte) {
  531. rmap_desc_remove_entry(rmapp,
  532. desc, i,
  533. prev_desc);
  534. return;
  535. }
  536. prev_desc = desc;
  537. desc = desc->more;
  538. }
  539. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  540. BUG();
  541. }
  542. }
  543. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  544. {
  545. struct kvm_rmap_desc *desc;
  546. struct kvm_rmap_desc *prev_desc;
  547. u64 *prev_spte;
  548. int i;
  549. if (!*rmapp)
  550. return NULL;
  551. else if (!(*rmapp & 1)) {
  552. if (!spte)
  553. return (u64 *)*rmapp;
  554. return NULL;
  555. }
  556. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  557. prev_desc = NULL;
  558. prev_spte = NULL;
  559. while (desc) {
  560. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  561. if (prev_spte == spte)
  562. return desc->sptes[i];
  563. prev_spte = desc->sptes[i];
  564. }
  565. desc = desc->more;
  566. }
  567. return NULL;
  568. }
  569. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  570. {
  571. unsigned long *rmapp;
  572. u64 *spte;
  573. int i, write_protected = 0;
  574. gfn = unalias_gfn(kvm, gfn);
  575. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  576. spte = rmap_next(kvm, rmapp, NULL);
  577. while (spte) {
  578. BUG_ON(!spte);
  579. BUG_ON(!(*spte & PT_PRESENT_MASK));
  580. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  581. if (is_writable_pte(*spte)) {
  582. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  583. write_protected = 1;
  584. }
  585. spte = rmap_next(kvm, rmapp, spte);
  586. }
  587. if (write_protected) {
  588. pfn_t pfn;
  589. spte = rmap_next(kvm, rmapp, NULL);
  590. pfn = spte_to_pfn(*spte);
  591. kvm_set_pfn_dirty(pfn);
  592. }
  593. /* check for huge page mappings */
  594. for (i = PT_DIRECTORY_LEVEL;
  595. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  596. rmapp = gfn_to_rmap(kvm, gfn, i);
  597. spte = rmap_next(kvm, rmapp, NULL);
  598. while (spte) {
  599. BUG_ON(!spte);
  600. BUG_ON(!(*spte & PT_PRESENT_MASK));
  601. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  602. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  603. if (is_writable_pte(*spte)) {
  604. rmap_remove(kvm, spte);
  605. --kvm->stat.lpages;
  606. __set_spte(spte, shadow_trap_nonpresent_pte);
  607. spte = NULL;
  608. write_protected = 1;
  609. }
  610. spte = rmap_next(kvm, rmapp, spte);
  611. }
  612. }
  613. return write_protected;
  614. }
  615. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  616. unsigned long data)
  617. {
  618. u64 *spte;
  619. int need_tlb_flush = 0;
  620. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  621. BUG_ON(!(*spte & PT_PRESENT_MASK));
  622. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  623. rmap_remove(kvm, spte);
  624. __set_spte(spte, shadow_trap_nonpresent_pte);
  625. need_tlb_flush = 1;
  626. }
  627. return need_tlb_flush;
  628. }
  629. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  630. unsigned long data)
  631. {
  632. int need_flush = 0;
  633. u64 *spte, new_spte;
  634. pte_t *ptep = (pte_t *)data;
  635. pfn_t new_pfn;
  636. WARN_ON(pte_huge(*ptep));
  637. new_pfn = pte_pfn(*ptep);
  638. spte = rmap_next(kvm, rmapp, NULL);
  639. while (spte) {
  640. BUG_ON(!is_shadow_present_pte(*spte));
  641. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  642. need_flush = 1;
  643. if (pte_write(*ptep)) {
  644. rmap_remove(kvm, spte);
  645. __set_spte(spte, shadow_trap_nonpresent_pte);
  646. spte = rmap_next(kvm, rmapp, NULL);
  647. } else {
  648. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  649. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  650. new_spte &= ~PT_WRITABLE_MASK;
  651. new_spte &= ~SPTE_HOST_WRITEABLE;
  652. if (is_writable_pte(*spte))
  653. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  654. __set_spte(spte, new_spte);
  655. spte = rmap_next(kvm, rmapp, spte);
  656. }
  657. }
  658. if (need_flush)
  659. kvm_flush_remote_tlbs(kvm);
  660. return 0;
  661. }
  662. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  663. unsigned long data,
  664. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  665. unsigned long data))
  666. {
  667. int i, j;
  668. int ret;
  669. int retval = 0;
  670. struct kvm_memslots *slots;
  671. slots = rcu_dereference(kvm->memslots);
  672. for (i = 0; i < slots->nmemslots; i++) {
  673. struct kvm_memory_slot *memslot = &slots->memslots[i];
  674. unsigned long start = memslot->userspace_addr;
  675. unsigned long end;
  676. end = start + (memslot->npages << PAGE_SHIFT);
  677. if (hva >= start && hva < end) {
  678. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  679. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  680. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  681. int idx = gfn_offset;
  682. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  683. ret |= handler(kvm,
  684. &memslot->lpage_info[j][idx].rmap_pde,
  685. data);
  686. }
  687. trace_kvm_age_page(hva, memslot, ret);
  688. retval |= ret;
  689. }
  690. }
  691. return retval;
  692. }
  693. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  694. {
  695. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  696. }
  697. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  698. {
  699. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  700. }
  701. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  702. unsigned long data)
  703. {
  704. u64 *spte;
  705. int young = 0;
  706. /*
  707. * Emulate the accessed bit for EPT, by checking if this page has
  708. * an EPT mapping, and clearing it if it does. On the next access,
  709. * a new EPT mapping will be established.
  710. * This has some overhead, but not as much as the cost of swapping
  711. * out actively used pages or breaking up actively used hugepages.
  712. */
  713. if (!shadow_accessed_mask)
  714. return kvm_unmap_rmapp(kvm, rmapp, data);
  715. spte = rmap_next(kvm, rmapp, NULL);
  716. while (spte) {
  717. int _young;
  718. u64 _spte = *spte;
  719. BUG_ON(!(_spte & PT_PRESENT_MASK));
  720. _young = _spte & PT_ACCESSED_MASK;
  721. if (_young) {
  722. young = 1;
  723. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  724. }
  725. spte = rmap_next(kvm, rmapp, spte);
  726. }
  727. return young;
  728. }
  729. #define RMAP_RECYCLE_THRESHOLD 1000
  730. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  731. {
  732. unsigned long *rmapp;
  733. struct kvm_mmu_page *sp;
  734. sp = page_header(__pa(spte));
  735. gfn = unalias_gfn(vcpu->kvm, gfn);
  736. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  737. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  738. kvm_flush_remote_tlbs(vcpu->kvm);
  739. }
  740. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  741. {
  742. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  743. }
  744. #ifdef MMU_DEBUG
  745. static int is_empty_shadow_page(u64 *spt)
  746. {
  747. u64 *pos;
  748. u64 *end;
  749. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  750. if (is_shadow_present_pte(*pos)) {
  751. printk(KERN_ERR "%s: %p %llx\n", __func__,
  752. pos, *pos);
  753. return 0;
  754. }
  755. return 1;
  756. }
  757. #endif
  758. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  759. {
  760. ASSERT(is_empty_shadow_page(sp->spt));
  761. list_del(&sp->link);
  762. __free_page(virt_to_page(sp->spt));
  763. __free_page(virt_to_page(sp->gfns));
  764. kfree(sp);
  765. ++kvm->arch.n_free_mmu_pages;
  766. }
  767. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  768. {
  769. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  770. }
  771. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  772. u64 *parent_pte)
  773. {
  774. struct kvm_mmu_page *sp;
  775. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  776. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  777. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  778. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  779. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  780. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  781. sp->multimapped = 0;
  782. sp->parent_pte = parent_pte;
  783. --vcpu->kvm->arch.n_free_mmu_pages;
  784. return sp;
  785. }
  786. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  787. struct kvm_mmu_page *sp, u64 *parent_pte)
  788. {
  789. struct kvm_pte_chain *pte_chain;
  790. struct hlist_node *node;
  791. int i;
  792. if (!parent_pte)
  793. return;
  794. if (!sp->multimapped) {
  795. u64 *old = sp->parent_pte;
  796. if (!old) {
  797. sp->parent_pte = parent_pte;
  798. return;
  799. }
  800. sp->multimapped = 1;
  801. pte_chain = mmu_alloc_pte_chain(vcpu);
  802. INIT_HLIST_HEAD(&sp->parent_ptes);
  803. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  804. pte_chain->parent_ptes[0] = old;
  805. }
  806. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  807. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  808. continue;
  809. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  810. if (!pte_chain->parent_ptes[i]) {
  811. pte_chain->parent_ptes[i] = parent_pte;
  812. return;
  813. }
  814. }
  815. pte_chain = mmu_alloc_pte_chain(vcpu);
  816. BUG_ON(!pte_chain);
  817. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  818. pte_chain->parent_ptes[0] = parent_pte;
  819. }
  820. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  821. u64 *parent_pte)
  822. {
  823. struct kvm_pte_chain *pte_chain;
  824. struct hlist_node *node;
  825. int i;
  826. if (!sp->multimapped) {
  827. BUG_ON(sp->parent_pte != parent_pte);
  828. sp->parent_pte = NULL;
  829. return;
  830. }
  831. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  832. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  833. if (!pte_chain->parent_ptes[i])
  834. break;
  835. if (pte_chain->parent_ptes[i] != parent_pte)
  836. continue;
  837. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  838. && pte_chain->parent_ptes[i + 1]) {
  839. pte_chain->parent_ptes[i]
  840. = pte_chain->parent_ptes[i + 1];
  841. ++i;
  842. }
  843. pte_chain->parent_ptes[i] = NULL;
  844. if (i == 0) {
  845. hlist_del(&pte_chain->link);
  846. mmu_free_pte_chain(pte_chain);
  847. if (hlist_empty(&sp->parent_ptes)) {
  848. sp->multimapped = 0;
  849. sp->parent_pte = NULL;
  850. }
  851. }
  852. return;
  853. }
  854. BUG();
  855. }
  856. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  857. mmu_parent_walk_fn fn)
  858. {
  859. struct kvm_pte_chain *pte_chain;
  860. struct hlist_node *node;
  861. struct kvm_mmu_page *parent_sp;
  862. int i;
  863. if (!sp->multimapped && sp->parent_pte) {
  864. parent_sp = page_header(__pa(sp->parent_pte));
  865. fn(vcpu, parent_sp);
  866. mmu_parent_walk(vcpu, parent_sp, fn);
  867. return;
  868. }
  869. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  870. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  871. if (!pte_chain->parent_ptes[i])
  872. break;
  873. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  874. fn(vcpu, parent_sp);
  875. mmu_parent_walk(vcpu, parent_sp, fn);
  876. }
  877. }
  878. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  879. {
  880. unsigned int index;
  881. struct kvm_mmu_page *sp = page_header(__pa(spte));
  882. index = spte - sp->spt;
  883. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  884. sp->unsync_children++;
  885. WARN_ON(!sp->unsync_children);
  886. }
  887. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  888. {
  889. struct kvm_pte_chain *pte_chain;
  890. struct hlist_node *node;
  891. int i;
  892. if (!sp->parent_pte)
  893. return;
  894. if (!sp->multimapped) {
  895. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  896. return;
  897. }
  898. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  899. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  900. if (!pte_chain->parent_ptes[i])
  901. break;
  902. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  903. }
  904. }
  905. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  906. {
  907. kvm_mmu_update_parents_unsync(sp);
  908. return 1;
  909. }
  910. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  911. struct kvm_mmu_page *sp)
  912. {
  913. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  914. kvm_mmu_update_parents_unsync(sp);
  915. }
  916. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  917. struct kvm_mmu_page *sp)
  918. {
  919. int i;
  920. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  921. sp->spt[i] = shadow_trap_nonpresent_pte;
  922. }
  923. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  924. struct kvm_mmu_page *sp)
  925. {
  926. return 1;
  927. }
  928. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  929. {
  930. }
  931. #define KVM_PAGE_ARRAY_NR 16
  932. struct kvm_mmu_pages {
  933. struct mmu_page_and_offset {
  934. struct kvm_mmu_page *sp;
  935. unsigned int idx;
  936. } page[KVM_PAGE_ARRAY_NR];
  937. unsigned int nr;
  938. };
  939. #define for_each_unsync_children(bitmap, idx) \
  940. for (idx = find_first_bit(bitmap, 512); \
  941. idx < 512; \
  942. idx = find_next_bit(bitmap, 512, idx+1))
  943. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  944. int idx)
  945. {
  946. int i;
  947. if (sp->unsync)
  948. for (i=0; i < pvec->nr; i++)
  949. if (pvec->page[i].sp == sp)
  950. return 0;
  951. pvec->page[pvec->nr].sp = sp;
  952. pvec->page[pvec->nr].idx = idx;
  953. pvec->nr++;
  954. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  955. }
  956. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  957. struct kvm_mmu_pages *pvec)
  958. {
  959. int i, ret, nr_unsync_leaf = 0;
  960. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  961. u64 ent = sp->spt[i];
  962. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  963. struct kvm_mmu_page *child;
  964. child = page_header(ent & PT64_BASE_ADDR_MASK);
  965. if (child->unsync_children) {
  966. if (mmu_pages_add(pvec, child, i))
  967. return -ENOSPC;
  968. ret = __mmu_unsync_walk(child, pvec);
  969. if (!ret)
  970. __clear_bit(i, sp->unsync_child_bitmap);
  971. else if (ret > 0)
  972. nr_unsync_leaf += ret;
  973. else
  974. return ret;
  975. }
  976. if (child->unsync) {
  977. nr_unsync_leaf++;
  978. if (mmu_pages_add(pvec, child, i))
  979. return -ENOSPC;
  980. }
  981. }
  982. }
  983. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  984. sp->unsync_children = 0;
  985. return nr_unsync_leaf;
  986. }
  987. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  988. struct kvm_mmu_pages *pvec)
  989. {
  990. if (!sp->unsync_children)
  991. return 0;
  992. mmu_pages_add(pvec, sp, 0);
  993. return __mmu_unsync_walk(sp, pvec);
  994. }
  995. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  996. {
  997. unsigned index;
  998. struct hlist_head *bucket;
  999. struct kvm_mmu_page *sp;
  1000. struct hlist_node *node;
  1001. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1002. index = kvm_page_table_hashfn(gfn);
  1003. bucket = &kvm->arch.mmu_page_hash[index];
  1004. hlist_for_each_entry(sp, node, bucket, hash_link)
  1005. if (sp->gfn == gfn && !sp->role.direct
  1006. && !sp->role.invalid) {
  1007. pgprintk("%s: found role %x\n",
  1008. __func__, sp->role.word);
  1009. return sp;
  1010. }
  1011. return NULL;
  1012. }
  1013. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1014. {
  1015. WARN_ON(!sp->unsync);
  1016. sp->unsync = 0;
  1017. --kvm->stat.mmu_unsync;
  1018. }
  1019. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1020. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1021. {
  1022. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1023. kvm_mmu_zap_page(vcpu->kvm, sp);
  1024. return 1;
  1025. }
  1026. trace_kvm_mmu_sync_page(sp);
  1027. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1028. kvm_flush_remote_tlbs(vcpu->kvm);
  1029. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1030. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1031. kvm_mmu_zap_page(vcpu->kvm, sp);
  1032. return 1;
  1033. }
  1034. kvm_mmu_flush_tlb(vcpu);
  1035. return 0;
  1036. }
  1037. struct mmu_page_path {
  1038. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1039. unsigned int idx[PT64_ROOT_LEVEL-1];
  1040. };
  1041. #define for_each_sp(pvec, sp, parents, i) \
  1042. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1043. sp = pvec.page[i].sp; \
  1044. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1045. i = mmu_pages_next(&pvec, &parents, i))
  1046. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1047. struct mmu_page_path *parents,
  1048. int i)
  1049. {
  1050. int n;
  1051. for (n = i+1; n < pvec->nr; n++) {
  1052. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1053. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1054. parents->idx[0] = pvec->page[n].idx;
  1055. return n;
  1056. }
  1057. parents->parent[sp->role.level-2] = sp;
  1058. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1059. }
  1060. return n;
  1061. }
  1062. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1063. {
  1064. struct kvm_mmu_page *sp;
  1065. unsigned int level = 0;
  1066. do {
  1067. unsigned int idx = parents->idx[level];
  1068. sp = parents->parent[level];
  1069. if (!sp)
  1070. return;
  1071. --sp->unsync_children;
  1072. WARN_ON((int)sp->unsync_children < 0);
  1073. __clear_bit(idx, sp->unsync_child_bitmap);
  1074. level++;
  1075. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1076. }
  1077. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1078. struct mmu_page_path *parents,
  1079. struct kvm_mmu_pages *pvec)
  1080. {
  1081. parents->parent[parent->role.level-1] = NULL;
  1082. pvec->nr = 0;
  1083. }
  1084. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1085. struct kvm_mmu_page *parent)
  1086. {
  1087. int i;
  1088. struct kvm_mmu_page *sp;
  1089. struct mmu_page_path parents;
  1090. struct kvm_mmu_pages pages;
  1091. kvm_mmu_pages_init(parent, &parents, &pages);
  1092. while (mmu_unsync_walk(parent, &pages)) {
  1093. int protected = 0;
  1094. for_each_sp(pages, sp, parents, i)
  1095. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1096. if (protected)
  1097. kvm_flush_remote_tlbs(vcpu->kvm);
  1098. for_each_sp(pages, sp, parents, i) {
  1099. kvm_sync_page(vcpu, sp);
  1100. mmu_pages_clear_parents(&parents);
  1101. }
  1102. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1103. kvm_mmu_pages_init(parent, &parents, &pages);
  1104. }
  1105. }
  1106. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1107. gfn_t gfn,
  1108. gva_t gaddr,
  1109. unsigned level,
  1110. int direct,
  1111. unsigned access,
  1112. u64 *parent_pte)
  1113. {
  1114. union kvm_mmu_page_role role;
  1115. unsigned index;
  1116. unsigned quadrant;
  1117. struct hlist_head *bucket;
  1118. struct kvm_mmu_page *sp;
  1119. struct hlist_node *node, *tmp;
  1120. role = vcpu->arch.mmu.base_role;
  1121. role.level = level;
  1122. role.direct = direct;
  1123. if (role.direct)
  1124. role.cr4_pae = 0;
  1125. role.access = access;
  1126. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1127. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1128. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1129. role.quadrant = quadrant;
  1130. }
  1131. index = kvm_page_table_hashfn(gfn);
  1132. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1133. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1134. if (sp->gfn == gfn) {
  1135. if (sp->unsync)
  1136. if (kvm_sync_page(vcpu, sp))
  1137. continue;
  1138. if (sp->role.word != role.word)
  1139. continue;
  1140. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1141. if (sp->unsync_children) {
  1142. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1143. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1144. }
  1145. trace_kvm_mmu_get_page(sp, false);
  1146. return sp;
  1147. }
  1148. ++vcpu->kvm->stat.mmu_cache_miss;
  1149. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1150. if (!sp)
  1151. return sp;
  1152. sp->gfn = gfn;
  1153. sp->role = role;
  1154. hlist_add_head(&sp->hash_link, bucket);
  1155. if (!direct) {
  1156. if (rmap_write_protect(vcpu->kvm, gfn))
  1157. kvm_flush_remote_tlbs(vcpu->kvm);
  1158. account_shadowed(vcpu->kvm, gfn);
  1159. }
  1160. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1161. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1162. else
  1163. nonpaging_prefetch_page(vcpu, sp);
  1164. trace_kvm_mmu_get_page(sp, true);
  1165. return sp;
  1166. }
  1167. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1168. struct kvm_vcpu *vcpu, u64 addr)
  1169. {
  1170. iterator->addr = addr;
  1171. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1172. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1173. if (iterator->level == PT32E_ROOT_LEVEL) {
  1174. iterator->shadow_addr
  1175. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1176. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1177. --iterator->level;
  1178. if (!iterator->shadow_addr)
  1179. iterator->level = 0;
  1180. }
  1181. }
  1182. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1183. {
  1184. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1185. return false;
  1186. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1187. if (is_large_pte(*iterator->sptep))
  1188. return false;
  1189. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1190. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1191. return true;
  1192. }
  1193. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1194. {
  1195. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1196. --iterator->level;
  1197. }
  1198. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1199. struct kvm_mmu_page *sp)
  1200. {
  1201. unsigned i;
  1202. u64 *pt;
  1203. u64 ent;
  1204. pt = sp->spt;
  1205. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1206. ent = pt[i];
  1207. if (is_shadow_present_pte(ent)) {
  1208. if (!is_last_spte(ent, sp->role.level)) {
  1209. ent &= PT64_BASE_ADDR_MASK;
  1210. mmu_page_remove_parent_pte(page_header(ent),
  1211. &pt[i]);
  1212. } else {
  1213. if (is_large_pte(ent))
  1214. --kvm->stat.lpages;
  1215. rmap_remove(kvm, &pt[i]);
  1216. }
  1217. }
  1218. pt[i] = shadow_trap_nonpresent_pte;
  1219. }
  1220. }
  1221. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1222. {
  1223. mmu_page_remove_parent_pte(sp, parent_pte);
  1224. }
  1225. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1226. {
  1227. int i;
  1228. struct kvm_vcpu *vcpu;
  1229. kvm_for_each_vcpu(i, vcpu, kvm)
  1230. vcpu->arch.last_pte_updated = NULL;
  1231. }
  1232. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1233. {
  1234. u64 *parent_pte;
  1235. while (sp->multimapped || sp->parent_pte) {
  1236. if (!sp->multimapped)
  1237. parent_pte = sp->parent_pte;
  1238. else {
  1239. struct kvm_pte_chain *chain;
  1240. chain = container_of(sp->parent_ptes.first,
  1241. struct kvm_pte_chain, link);
  1242. parent_pte = chain->parent_ptes[0];
  1243. }
  1244. BUG_ON(!parent_pte);
  1245. kvm_mmu_put_page(sp, parent_pte);
  1246. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1247. }
  1248. }
  1249. static int mmu_zap_unsync_children(struct kvm *kvm,
  1250. struct kvm_mmu_page *parent)
  1251. {
  1252. int i, zapped = 0;
  1253. struct mmu_page_path parents;
  1254. struct kvm_mmu_pages pages;
  1255. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1256. return 0;
  1257. kvm_mmu_pages_init(parent, &parents, &pages);
  1258. while (mmu_unsync_walk(parent, &pages)) {
  1259. struct kvm_mmu_page *sp;
  1260. for_each_sp(pages, sp, parents, i) {
  1261. kvm_mmu_zap_page(kvm, sp);
  1262. mmu_pages_clear_parents(&parents);
  1263. zapped++;
  1264. }
  1265. kvm_mmu_pages_init(parent, &parents, &pages);
  1266. }
  1267. return zapped;
  1268. }
  1269. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1270. {
  1271. int ret;
  1272. trace_kvm_mmu_zap_page(sp);
  1273. ++kvm->stat.mmu_shadow_zapped;
  1274. ret = mmu_zap_unsync_children(kvm, sp);
  1275. kvm_mmu_page_unlink_children(kvm, sp);
  1276. kvm_mmu_unlink_parents(kvm, sp);
  1277. kvm_flush_remote_tlbs(kvm);
  1278. if (!sp->role.invalid && !sp->role.direct)
  1279. unaccount_shadowed(kvm, sp->gfn);
  1280. if (sp->unsync)
  1281. kvm_unlink_unsync_page(kvm, sp);
  1282. if (!sp->root_count) {
  1283. hlist_del(&sp->hash_link);
  1284. kvm_mmu_free_page(kvm, sp);
  1285. } else {
  1286. sp->role.invalid = 1;
  1287. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1288. kvm_reload_remote_mmus(kvm);
  1289. }
  1290. kvm_mmu_reset_last_pte_updated(kvm);
  1291. return ret;
  1292. }
  1293. /*
  1294. * Changing the number of mmu pages allocated to the vm
  1295. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1296. */
  1297. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1298. {
  1299. int used_pages;
  1300. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1301. used_pages = max(0, used_pages);
  1302. /*
  1303. * If we set the number of mmu pages to be smaller be than the
  1304. * number of actived pages , we must to free some mmu pages before we
  1305. * change the value
  1306. */
  1307. if (used_pages > kvm_nr_mmu_pages) {
  1308. while (used_pages > kvm_nr_mmu_pages &&
  1309. !list_empty(&kvm->arch.active_mmu_pages)) {
  1310. struct kvm_mmu_page *page;
  1311. page = container_of(kvm->arch.active_mmu_pages.prev,
  1312. struct kvm_mmu_page, link);
  1313. used_pages -= kvm_mmu_zap_page(kvm, page);
  1314. used_pages--;
  1315. }
  1316. kvm_nr_mmu_pages = used_pages;
  1317. kvm->arch.n_free_mmu_pages = 0;
  1318. }
  1319. else
  1320. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1321. - kvm->arch.n_alloc_mmu_pages;
  1322. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1323. }
  1324. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1325. {
  1326. unsigned index;
  1327. struct hlist_head *bucket;
  1328. struct kvm_mmu_page *sp;
  1329. struct hlist_node *node, *n;
  1330. int r;
  1331. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1332. r = 0;
  1333. index = kvm_page_table_hashfn(gfn);
  1334. bucket = &kvm->arch.mmu_page_hash[index];
  1335. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1336. if (sp->gfn == gfn && !sp->role.direct) {
  1337. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1338. sp->role.word);
  1339. r = 1;
  1340. if (kvm_mmu_zap_page(kvm, sp))
  1341. n = bucket->first;
  1342. }
  1343. return r;
  1344. }
  1345. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1346. {
  1347. unsigned index;
  1348. struct hlist_head *bucket;
  1349. struct kvm_mmu_page *sp;
  1350. struct hlist_node *node, *nn;
  1351. index = kvm_page_table_hashfn(gfn);
  1352. bucket = &kvm->arch.mmu_page_hash[index];
  1353. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1354. if (sp->gfn == gfn && !sp->role.direct
  1355. && !sp->role.invalid) {
  1356. pgprintk("%s: zap %lx %x\n",
  1357. __func__, gfn, sp->role.word);
  1358. if (kvm_mmu_zap_page(kvm, sp))
  1359. nn = bucket->first;
  1360. }
  1361. }
  1362. }
  1363. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1364. {
  1365. int slot = memslot_id(kvm, gfn);
  1366. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1367. __set_bit(slot, sp->slot_bitmap);
  1368. }
  1369. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1370. {
  1371. int i;
  1372. u64 *pt = sp->spt;
  1373. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1374. return;
  1375. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1376. if (pt[i] == shadow_notrap_nonpresent_pte)
  1377. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1378. }
  1379. }
  1380. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1381. {
  1382. struct page *page;
  1383. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  1384. if (gpa == UNMAPPED_GVA)
  1385. return NULL;
  1386. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1387. return page;
  1388. }
  1389. /*
  1390. * The function is based on mtrr_type_lookup() in
  1391. * arch/x86/kernel/cpu/mtrr/generic.c
  1392. */
  1393. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1394. u64 start, u64 end)
  1395. {
  1396. int i;
  1397. u64 base, mask;
  1398. u8 prev_match, curr_match;
  1399. int num_var_ranges = KVM_NR_VAR_MTRR;
  1400. if (!mtrr_state->enabled)
  1401. return 0xFF;
  1402. /* Make end inclusive end, instead of exclusive */
  1403. end--;
  1404. /* Look in fixed ranges. Just return the type as per start */
  1405. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1406. int idx;
  1407. if (start < 0x80000) {
  1408. idx = 0;
  1409. idx += (start >> 16);
  1410. return mtrr_state->fixed_ranges[idx];
  1411. } else if (start < 0xC0000) {
  1412. idx = 1 * 8;
  1413. idx += ((start - 0x80000) >> 14);
  1414. return mtrr_state->fixed_ranges[idx];
  1415. } else if (start < 0x1000000) {
  1416. idx = 3 * 8;
  1417. idx += ((start - 0xC0000) >> 12);
  1418. return mtrr_state->fixed_ranges[idx];
  1419. }
  1420. }
  1421. /*
  1422. * Look in variable ranges
  1423. * Look of multiple ranges matching this address and pick type
  1424. * as per MTRR precedence
  1425. */
  1426. if (!(mtrr_state->enabled & 2))
  1427. return mtrr_state->def_type;
  1428. prev_match = 0xFF;
  1429. for (i = 0; i < num_var_ranges; ++i) {
  1430. unsigned short start_state, end_state;
  1431. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1432. continue;
  1433. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1434. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1435. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1436. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1437. start_state = ((start & mask) == (base & mask));
  1438. end_state = ((end & mask) == (base & mask));
  1439. if (start_state != end_state)
  1440. return 0xFE;
  1441. if ((start & mask) != (base & mask))
  1442. continue;
  1443. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1444. if (prev_match == 0xFF) {
  1445. prev_match = curr_match;
  1446. continue;
  1447. }
  1448. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1449. curr_match == MTRR_TYPE_UNCACHABLE)
  1450. return MTRR_TYPE_UNCACHABLE;
  1451. if ((prev_match == MTRR_TYPE_WRBACK &&
  1452. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1453. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1454. curr_match == MTRR_TYPE_WRBACK)) {
  1455. prev_match = MTRR_TYPE_WRTHROUGH;
  1456. curr_match = MTRR_TYPE_WRTHROUGH;
  1457. }
  1458. if (prev_match != curr_match)
  1459. return MTRR_TYPE_UNCACHABLE;
  1460. }
  1461. if (prev_match != 0xFF)
  1462. return prev_match;
  1463. return mtrr_state->def_type;
  1464. }
  1465. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1466. {
  1467. u8 mtrr;
  1468. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1469. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1470. if (mtrr == 0xfe || mtrr == 0xff)
  1471. mtrr = MTRR_TYPE_WRBACK;
  1472. return mtrr;
  1473. }
  1474. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1475. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1476. {
  1477. unsigned index;
  1478. struct hlist_head *bucket;
  1479. struct kvm_mmu_page *s;
  1480. struct hlist_node *node, *n;
  1481. trace_kvm_mmu_unsync_page(sp);
  1482. index = kvm_page_table_hashfn(sp->gfn);
  1483. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1484. /* don't unsync if pagetable is shadowed with multiple roles */
  1485. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1486. if (s->gfn != sp->gfn || s->role.direct)
  1487. continue;
  1488. if (s->role.word != sp->role.word)
  1489. return 1;
  1490. }
  1491. ++vcpu->kvm->stat.mmu_unsync;
  1492. sp->unsync = 1;
  1493. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1494. mmu_convert_notrap(sp);
  1495. return 0;
  1496. }
  1497. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1498. bool can_unsync)
  1499. {
  1500. struct kvm_mmu_page *shadow;
  1501. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1502. if (shadow) {
  1503. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1504. return 1;
  1505. if (shadow->unsync)
  1506. return 0;
  1507. if (can_unsync && oos_shadow)
  1508. return kvm_unsync_page(vcpu, shadow);
  1509. return 1;
  1510. }
  1511. return 0;
  1512. }
  1513. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1514. unsigned pte_access, int user_fault,
  1515. int write_fault, int dirty, int level,
  1516. gfn_t gfn, pfn_t pfn, bool speculative,
  1517. bool can_unsync, bool reset_host_protection)
  1518. {
  1519. u64 spte;
  1520. int ret = 0;
  1521. /*
  1522. * We don't set the accessed bit, since we sometimes want to see
  1523. * whether the guest actually used the pte (in order to detect
  1524. * demand paging).
  1525. */
  1526. spte = shadow_base_present_pte | shadow_dirty_mask;
  1527. if (!speculative)
  1528. spte |= shadow_accessed_mask;
  1529. if (!dirty)
  1530. pte_access &= ~ACC_WRITE_MASK;
  1531. if (pte_access & ACC_EXEC_MASK)
  1532. spte |= shadow_x_mask;
  1533. else
  1534. spte |= shadow_nx_mask;
  1535. if (pte_access & ACC_USER_MASK)
  1536. spte |= shadow_user_mask;
  1537. if (level > PT_PAGE_TABLE_LEVEL)
  1538. spte |= PT_PAGE_SIZE_MASK;
  1539. if (tdp_enabled)
  1540. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1541. kvm_is_mmio_pfn(pfn));
  1542. if (reset_host_protection)
  1543. spte |= SPTE_HOST_WRITEABLE;
  1544. spte |= (u64)pfn << PAGE_SHIFT;
  1545. if ((pte_access & ACC_WRITE_MASK)
  1546. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1547. if (level > PT_PAGE_TABLE_LEVEL &&
  1548. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1549. ret = 1;
  1550. spte = shadow_trap_nonpresent_pte;
  1551. goto set_pte;
  1552. }
  1553. spte |= PT_WRITABLE_MASK;
  1554. /*
  1555. * Optimization: for pte sync, if spte was writable the hash
  1556. * lookup is unnecessary (and expensive). Write protection
  1557. * is responsibility of mmu_get_page / kvm_sync_page.
  1558. * Same reasoning can be applied to dirty page accounting.
  1559. */
  1560. if (!can_unsync && is_writable_pte(*sptep))
  1561. goto set_pte;
  1562. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1563. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1564. __func__, gfn);
  1565. ret = 1;
  1566. pte_access &= ~ACC_WRITE_MASK;
  1567. if (is_writable_pte(spte))
  1568. spte &= ~PT_WRITABLE_MASK;
  1569. }
  1570. }
  1571. if (pte_access & ACC_WRITE_MASK)
  1572. mark_page_dirty(vcpu->kvm, gfn);
  1573. set_pte:
  1574. __set_spte(sptep, spte);
  1575. return ret;
  1576. }
  1577. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1578. unsigned pt_access, unsigned pte_access,
  1579. int user_fault, int write_fault, int dirty,
  1580. int *ptwrite, int level, gfn_t gfn,
  1581. pfn_t pfn, bool speculative,
  1582. bool reset_host_protection)
  1583. {
  1584. int was_rmapped = 0;
  1585. int was_writable = is_writable_pte(*sptep);
  1586. int rmap_count;
  1587. pgprintk("%s: spte %llx access %x write_fault %d"
  1588. " user_fault %d gfn %lx\n",
  1589. __func__, *sptep, pt_access,
  1590. write_fault, user_fault, gfn);
  1591. if (is_rmap_spte(*sptep)) {
  1592. /*
  1593. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1594. * the parent of the now unreachable PTE.
  1595. */
  1596. if (level > PT_PAGE_TABLE_LEVEL &&
  1597. !is_large_pte(*sptep)) {
  1598. struct kvm_mmu_page *child;
  1599. u64 pte = *sptep;
  1600. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1601. mmu_page_remove_parent_pte(child, sptep);
  1602. } else if (pfn != spte_to_pfn(*sptep)) {
  1603. pgprintk("hfn old %lx new %lx\n",
  1604. spte_to_pfn(*sptep), pfn);
  1605. rmap_remove(vcpu->kvm, sptep);
  1606. } else
  1607. was_rmapped = 1;
  1608. }
  1609. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1610. dirty, level, gfn, pfn, speculative, true,
  1611. reset_host_protection)) {
  1612. if (write_fault)
  1613. *ptwrite = 1;
  1614. kvm_x86_ops->tlb_flush(vcpu);
  1615. }
  1616. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1617. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1618. is_large_pte(*sptep)? "2MB" : "4kB",
  1619. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1620. *sptep, sptep);
  1621. if (!was_rmapped && is_large_pte(*sptep))
  1622. ++vcpu->kvm->stat.lpages;
  1623. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1624. if (!was_rmapped) {
  1625. rmap_count = rmap_add(vcpu, sptep, gfn);
  1626. kvm_release_pfn_clean(pfn);
  1627. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1628. rmap_recycle(vcpu, sptep, gfn);
  1629. } else {
  1630. if (was_writable)
  1631. kvm_release_pfn_dirty(pfn);
  1632. else
  1633. kvm_release_pfn_clean(pfn);
  1634. }
  1635. if (speculative) {
  1636. vcpu->arch.last_pte_updated = sptep;
  1637. vcpu->arch.last_pte_gfn = gfn;
  1638. }
  1639. }
  1640. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1641. {
  1642. }
  1643. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1644. int level, gfn_t gfn, pfn_t pfn)
  1645. {
  1646. struct kvm_shadow_walk_iterator iterator;
  1647. struct kvm_mmu_page *sp;
  1648. int pt_write = 0;
  1649. gfn_t pseudo_gfn;
  1650. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1651. if (iterator.level == level) {
  1652. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1653. 0, write, 1, &pt_write,
  1654. level, gfn, pfn, false, true);
  1655. ++vcpu->stat.pf_fixed;
  1656. break;
  1657. }
  1658. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1659. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1660. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1661. iterator.level - 1,
  1662. 1, ACC_ALL, iterator.sptep);
  1663. if (!sp) {
  1664. pgprintk("nonpaging_map: ENOMEM\n");
  1665. kvm_release_pfn_clean(pfn);
  1666. return -ENOMEM;
  1667. }
  1668. __set_spte(iterator.sptep,
  1669. __pa(sp->spt)
  1670. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1671. | shadow_user_mask | shadow_x_mask);
  1672. }
  1673. }
  1674. return pt_write;
  1675. }
  1676. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1677. {
  1678. int r;
  1679. int level;
  1680. pfn_t pfn;
  1681. unsigned long mmu_seq;
  1682. level = mapping_level(vcpu, gfn);
  1683. /*
  1684. * This path builds a PAE pagetable - so we can map 2mb pages at
  1685. * maximum. Therefore check if the level is larger than that.
  1686. */
  1687. if (level > PT_DIRECTORY_LEVEL)
  1688. level = PT_DIRECTORY_LEVEL;
  1689. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1690. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1691. smp_rmb();
  1692. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1693. /* mmio */
  1694. if (is_error_pfn(pfn)) {
  1695. kvm_release_pfn_clean(pfn);
  1696. return 1;
  1697. }
  1698. spin_lock(&vcpu->kvm->mmu_lock);
  1699. if (mmu_notifier_retry(vcpu, mmu_seq))
  1700. goto out_unlock;
  1701. kvm_mmu_free_some_pages(vcpu);
  1702. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1703. spin_unlock(&vcpu->kvm->mmu_lock);
  1704. return r;
  1705. out_unlock:
  1706. spin_unlock(&vcpu->kvm->mmu_lock);
  1707. kvm_release_pfn_clean(pfn);
  1708. return 0;
  1709. }
  1710. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1711. {
  1712. int i;
  1713. struct kvm_mmu_page *sp;
  1714. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1715. return;
  1716. spin_lock(&vcpu->kvm->mmu_lock);
  1717. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1718. hpa_t root = vcpu->arch.mmu.root_hpa;
  1719. sp = page_header(root);
  1720. --sp->root_count;
  1721. if (!sp->root_count && sp->role.invalid)
  1722. kvm_mmu_zap_page(vcpu->kvm, sp);
  1723. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1724. spin_unlock(&vcpu->kvm->mmu_lock);
  1725. return;
  1726. }
  1727. for (i = 0; i < 4; ++i) {
  1728. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1729. if (root) {
  1730. root &= PT64_BASE_ADDR_MASK;
  1731. sp = page_header(root);
  1732. --sp->root_count;
  1733. if (!sp->root_count && sp->role.invalid)
  1734. kvm_mmu_zap_page(vcpu->kvm, sp);
  1735. }
  1736. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1737. }
  1738. spin_unlock(&vcpu->kvm->mmu_lock);
  1739. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1740. }
  1741. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1742. {
  1743. int ret = 0;
  1744. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1745. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1746. ret = 1;
  1747. }
  1748. return ret;
  1749. }
  1750. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1751. {
  1752. int i;
  1753. gfn_t root_gfn;
  1754. struct kvm_mmu_page *sp;
  1755. int direct = 0;
  1756. u64 pdptr;
  1757. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1758. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1759. hpa_t root = vcpu->arch.mmu.root_hpa;
  1760. ASSERT(!VALID_PAGE(root));
  1761. if (tdp_enabled)
  1762. direct = 1;
  1763. if (mmu_check_root(vcpu, root_gfn))
  1764. return 1;
  1765. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1766. PT64_ROOT_LEVEL, direct,
  1767. ACC_ALL, NULL);
  1768. root = __pa(sp->spt);
  1769. ++sp->root_count;
  1770. vcpu->arch.mmu.root_hpa = root;
  1771. return 0;
  1772. }
  1773. direct = !is_paging(vcpu);
  1774. if (tdp_enabled)
  1775. direct = 1;
  1776. for (i = 0; i < 4; ++i) {
  1777. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1778. ASSERT(!VALID_PAGE(root));
  1779. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1780. pdptr = kvm_pdptr_read(vcpu, i);
  1781. if (!is_present_gpte(pdptr)) {
  1782. vcpu->arch.mmu.pae_root[i] = 0;
  1783. continue;
  1784. }
  1785. root_gfn = pdptr >> PAGE_SHIFT;
  1786. } else if (vcpu->arch.mmu.root_level == 0)
  1787. root_gfn = 0;
  1788. if (mmu_check_root(vcpu, root_gfn))
  1789. return 1;
  1790. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1791. PT32_ROOT_LEVEL, direct,
  1792. ACC_ALL, NULL);
  1793. root = __pa(sp->spt);
  1794. ++sp->root_count;
  1795. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1796. }
  1797. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1798. return 0;
  1799. }
  1800. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1801. {
  1802. int i;
  1803. struct kvm_mmu_page *sp;
  1804. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1805. return;
  1806. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1807. hpa_t root = vcpu->arch.mmu.root_hpa;
  1808. sp = page_header(root);
  1809. mmu_sync_children(vcpu, sp);
  1810. return;
  1811. }
  1812. for (i = 0; i < 4; ++i) {
  1813. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1814. if (root && VALID_PAGE(root)) {
  1815. root &= PT64_BASE_ADDR_MASK;
  1816. sp = page_header(root);
  1817. mmu_sync_children(vcpu, sp);
  1818. }
  1819. }
  1820. }
  1821. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1822. {
  1823. spin_lock(&vcpu->kvm->mmu_lock);
  1824. mmu_sync_roots(vcpu);
  1825. spin_unlock(&vcpu->kvm->mmu_lock);
  1826. }
  1827. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1828. u32 access, u32 *error)
  1829. {
  1830. if (error)
  1831. *error = 0;
  1832. return vaddr;
  1833. }
  1834. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1835. u32 error_code)
  1836. {
  1837. gfn_t gfn;
  1838. int r;
  1839. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1840. r = mmu_topup_memory_caches(vcpu);
  1841. if (r)
  1842. return r;
  1843. ASSERT(vcpu);
  1844. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1845. gfn = gva >> PAGE_SHIFT;
  1846. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1847. error_code & PFERR_WRITE_MASK, gfn);
  1848. }
  1849. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1850. u32 error_code)
  1851. {
  1852. pfn_t pfn;
  1853. int r;
  1854. int level;
  1855. gfn_t gfn = gpa >> PAGE_SHIFT;
  1856. unsigned long mmu_seq;
  1857. ASSERT(vcpu);
  1858. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1859. r = mmu_topup_memory_caches(vcpu);
  1860. if (r)
  1861. return r;
  1862. level = mapping_level(vcpu, gfn);
  1863. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1864. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1865. smp_rmb();
  1866. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1867. if (is_error_pfn(pfn)) {
  1868. kvm_release_pfn_clean(pfn);
  1869. return 1;
  1870. }
  1871. spin_lock(&vcpu->kvm->mmu_lock);
  1872. if (mmu_notifier_retry(vcpu, mmu_seq))
  1873. goto out_unlock;
  1874. kvm_mmu_free_some_pages(vcpu);
  1875. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1876. level, gfn, pfn);
  1877. spin_unlock(&vcpu->kvm->mmu_lock);
  1878. return r;
  1879. out_unlock:
  1880. spin_unlock(&vcpu->kvm->mmu_lock);
  1881. kvm_release_pfn_clean(pfn);
  1882. return 0;
  1883. }
  1884. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1885. {
  1886. mmu_free_roots(vcpu);
  1887. }
  1888. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1889. {
  1890. struct kvm_mmu *context = &vcpu->arch.mmu;
  1891. context->new_cr3 = nonpaging_new_cr3;
  1892. context->page_fault = nonpaging_page_fault;
  1893. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1894. context->free = nonpaging_free;
  1895. context->prefetch_page = nonpaging_prefetch_page;
  1896. context->sync_page = nonpaging_sync_page;
  1897. context->invlpg = nonpaging_invlpg;
  1898. context->root_level = 0;
  1899. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1900. context->root_hpa = INVALID_PAGE;
  1901. return 0;
  1902. }
  1903. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1904. {
  1905. ++vcpu->stat.tlb_flush;
  1906. kvm_x86_ops->tlb_flush(vcpu);
  1907. }
  1908. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1909. {
  1910. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1911. mmu_free_roots(vcpu);
  1912. }
  1913. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1914. u64 addr,
  1915. u32 err_code)
  1916. {
  1917. kvm_inject_page_fault(vcpu, addr, err_code);
  1918. }
  1919. static void paging_free(struct kvm_vcpu *vcpu)
  1920. {
  1921. nonpaging_free(vcpu);
  1922. }
  1923. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1924. {
  1925. int bit7;
  1926. bit7 = (gpte >> 7) & 1;
  1927. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1928. }
  1929. #define PTTYPE 64
  1930. #include "paging_tmpl.h"
  1931. #undef PTTYPE
  1932. #define PTTYPE 32
  1933. #include "paging_tmpl.h"
  1934. #undef PTTYPE
  1935. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1936. {
  1937. struct kvm_mmu *context = &vcpu->arch.mmu;
  1938. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1939. u64 exb_bit_rsvd = 0;
  1940. if (!is_nx(vcpu))
  1941. exb_bit_rsvd = rsvd_bits(63, 63);
  1942. switch (level) {
  1943. case PT32_ROOT_LEVEL:
  1944. /* no rsvd bits for 2 level 4K page table entries */
  1945. context->rsvd_bits_mask[0][1] = 0;
  1946. context->rsvd_bits_mask[0][0] = 0;
  1947. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1948. if (!is_pse(vcpu)) {
  1949. context->rsvd_bits_mask[1][1] = 0;
  1950. break;
  1951. }
  1952. if (is_cpuid_PSE36())
  1953. /* 36bits PSE 4MB page */
  1954. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1955. else
  1956. /* 32 bits PSE 4MB page */
  1957. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1958. break;
  1959. case PT32E_ROOT_LEVEL:
  1960. context->rsvd_bits_mask[0][2] =
  1961. rsvd_bits(maxphyaddr, 63) |
  1962. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1963. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1964. rsvd_bits(maxphyaddr, 62); /* PDE */
  1965. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1966. rsvd_bits(maxphyaddr, 62); /* PTE */
  1967. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1968. rsvd_bits(maxphyaddr, 62) |
  1969. rsvd_bits(13, 20); /* large page */
  1970. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1971. break;
  1972. case PT64_ROOT_LEVEL:
  1973. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1974. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1975. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1976. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1977. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1978. rsvd_bits(maxphyaddr, 51);
  1979. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1980. rsvd_bits(maxphyaddr, 51);
  1981. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1982. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  1983. rsvd_bits(maxphyaddr, 51) |
  1984. rsvd_bits(13, 29);
  1985. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1986. rsvd_bits(maxphyaddr, 51) |
  1987. rsvd_bits(13, 20); /* large page */
  1988. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1989. break;
  1990. }
  1991. }
  1992. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1993. {
  1994. struct kvm_mmu *context = &vcpu->arch.mmu;
  1995. ASSERT(is_pae(vcpu));
  1996. context->new_cr3 = paging_new_cr3;
  1997. context->page_fault = paging64_page_fault;
  1998. context->gva_to_gpa = paging64_gva_to_gpa;
  1999. context->prefetch_page = paging64_prefetch_page;
  2000. context->sync_page = paging64_sync_page;
  2001. context->invlpg = paging64_invlpg;
  2002. context->free = paging_free;
  2003. context->root_level = level;
  2004. context->shadow_root_level = level;
  2005. context->root_hpa = INVALID_PAGE;
  2006. return 0;
  2007. }
  2008. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2009. {
  2010. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2011. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2012. }
  2013. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2014. {
  2015. struct kvm_mmu *context = &vcpu->arch.mmu;
  2016. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2017. context->new_cr3 = paging_new_cr3;
  2018. context->page_fault = paging32_page_fault;
  2019. context->gva_to_gpa = paging32_gva_to_gpa;
  2020. context->free = paging_free;
  2021. context->prefetch_page = paging32_prefetch_page;
  2022. context->sync_page = paging32_sync_page;
  2023. context->invlpg = paging32_invlpg;
  2024. context->root_level = PT32_ROOT_LEVEL;
  2025. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2026. context->root_hpa = INVALID_PAGE;
  2027. return 0;
  2028. }
  2029. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2030. {
  2031. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2032. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2033. }
  2034. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2035. {
  2036. struct kvm_mmu *context = &vcpu->arch.mmu;
  2037. context->new_cr3 = nonpaging_new_cr3;
  2038. context->page_fault = tdp_page_fault;
  2039. context->free = nonpaging_free;
  2040. context->prefetch_page = nonpaging_prefetch_page;
  2041. context->sync_page = nonpaging_sync_page;
  2042. context->invlpg = nonpaging_invlpg;
  2043. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2044. context->root_hpa = INVALID_PAGE;
  2045. if (!is_paging(vcpu)) {
  2046. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2047. context->root_level = 0;
  2048. } else if (is_long_mode(vcpu)) {
  2049. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2050. context->gva_to_gpa = paging64_gva_to_gpa;
  2051. context->root_level = PT64_ROOT_LEVEL;
  2052. } else if (is_pae(vcpu)) {
  2053. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2054. context->gva_to_gpa = paging64_gva_to_gpa;
  2055. context->root_level = PT32E_ROOT_LEVEL;
  2056. } else {
  2057. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2058. context->gva_to_gpa = paging32_gva_to_gpa;
  2059. context->root_level = PT32_ROOT_LEVEL;
  2060. }
  2061. return 0;
  2062. }
  2063. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2064. {
  2065. int r;
  2066. ASSERT(vcpu);
  2067. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2068. if (!is_paging(vcpu))
  2069. r = nonpaging_init_context(vcpu);
  2070. else if (is_long_mode(vcpu))
  2071. r = paging64_init_context(vcpu);
  2072. else if (is_pae(vcpu))
  2073. r = paging32E_init_context(vcpu);
  2074. else
  2075. r = paging32_init_context(vcpu);
  2076. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2077. return r;
  2078. }
  2079. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2080. {
  2081. vcpu->arch.update_pte.pfn = bad_pfn;
  2082. if (tdp_enabled)
  2083. return init_kvm_tdp_mmu(vcpu);
  2084. else
  2085. return init_kvm_softmmu(vcpu);
  2086. }
  2087. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2088. {
  2089. ASSERT(vcpu);
  2090. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2091. vcpu->arch.mmu.free(vcpu);
  2092. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2093. }
  2094. }
  2095. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2096. {
  2097. destroy_kvm_mmu(vcpu);
  2098. return init_kvm_mmu(vcpu);
  2099. }
  2100. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2101. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2102. {
  2103. int r;
  2104. r = mmu_topup_memory_caches(vcpu);
  2105. if (r)
  2106. goto out;
  2107. spin_lock(&vcpu->kvm->mmu_lock);
  2108. kvm_mmu_free_some_pages(vcpu);
  2109. r = mmu_alloc_roots(vcpu);
  2110. mmu_sync_roots(vcpu);
  2111. spin_unlock(&vcpu->kvm->mmu_lock);
  2112. if (r)
  2113. goto out;
  2114. /* set_cr3() should ensure TLB has been flushed */
  2115. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2116. out:
  2117. return r;
  2118. }
  2119. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2120. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2121. {
  2122. mmu_free_roots(vcpu);
  2123. }
  2124. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2125. struct kvm_mmu_page *sp,
  2126. u64 *spte)
  2127. {
  2128. u64 pte;
  2129. struct kvm_mmu_page *child;
  2130. pte = *spte;
  2131. if (is_shadow_present_pte(pte)) {
  2132. if (is_last_spte(pte, sp->role.level))
  2133. rmap_remove(vcpu->kvm, spte);
  2134. else {
  2135. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2136. mmu_page_remove_parent_pte(child, spte);
  2137. }
  2138. }
  2139. __set_spte(spte, shadow_trap_nonpresent_pte);
  2140. if (is_large_pte(pte))
  2141. --vcpu->kvm->stat.lpages;
  2142. }
  2143. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2144. struct kvm_mmu_page *sp,
  2145. u64 *spte,
  2146. const void *new)
  2147. {
  2148. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2149. ++vcpu->kvm->stat.mmu_pde_zapped;
  2150. return;
  2151. }
  2152. ++vcpu->kvm->stat.mmu_pte_updated;
  2153. if (!sp->role.cr4_pae)
  2154. paging32_update_pte(vcpu, sp, spte, new);
  2155. else
  2156. paging64_update_pte(vcpu, sp, spte, new);
  2157. }
  2158. static bool need_remote_flush(u64 old, u64 new)
  2159. {
  2160. if (!is_shadow_present_pte(old))
  2161. return false;
  2162. if (!is_shadow_present_pte(new))
  2163. return true;
  2164. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2165. return true;
  2166. old ^= PT64_NX_MASK;
  2167. new ^= PT64_NX_MASK;
  2168. return (old & ~new & PT64_PERM_MASK) != 0;
  2169. }
  2170. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2171. {
  2172. if (need_remote_flush(old, new))
  2173. kvm_flush_remote_tlbs(vcpu->kvm);
  2174. else
  2175. kvm_mmu_flush_tlb(vcpu);
  2176. }
  2177. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2178. {
  2179. u64 *spte = vcpu->arch.last_pte_updated;
  2180. return !!(spte && (*spte & shadow_accessed_mask));
  2181. }
  2182. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2183. u64 gpte)
  2184. {
  2185. gfn_t gfn;
  2186. pfn_t pfn;
  2187. if (!is_present_gpte(gpte))
  2188. return;
  2189. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2190. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2191. smp_rmb();
  2192. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2193. if (is_error_pfn(pfn)) {
  2194. kvm_release_pfn_clean(pfn);
  2195. return;
  2196. }
  2197. vcpu->arch.update_pte.gfn = gfn;
  2198. vcpu->arch.update_pte.pfn = pfn;
  2199. }
  2200. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2201. {
  2202. u64 *spte = vcpu->arch.last_pte_updated;
  2203. if (spte
  2204. && vcpu->arch.last_pte_gfn == gfn
  2205. && shadow_accessed_mask
  2206. && !(*spte & shadow_accessed_mask)
  2207. && is_shadow_present_pte(*spte))
  2208. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2209. }
  2210. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2211. const u8 *new, int bytes,
  2212. bool guest_initiated)
  2213. {
  2214. gfn_t gfn = gpa >> PAGE_SHIFT;
  2215. struct kvm_mmu_page *sp;
  2216. struct hlist_node *node, *n;
  2217. struct hlist_head *bucket;
  2218. unsigned index;
  2219. u64 entry, gentry;
  2220. u64 *spte;
  2221. unsigned offset = offset_in_page(gpa);
  2222. unsigned pte_size;
  2223. unsigned page_offset;
  2224. unsigned misaligned;
  2225. unsigned quadrant;
  2226. int level;
  2227. int flooded = 0;
  2228. int npte;
  2229. int r;
  2230. int invlpg_counter;
  2231. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2232. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2233. /*
  2234. * Assume that the pte write on a page table of the same type
  2235. * as the current vcpu paging mode. This is nearly always true
  2236. * (might be false while changing modes). Note it is verified later
  2237. * by update_pte().
  2238. */
  2239. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2240. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2241. if (is_pae(vcpu)) {
  2242. gpa &= ~(gpa_t)7;
  2243. bytes = 8;
  2244. }
  2245. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2246. if (r)
  2247. gentry = 0;
  2248. new = (const u8 *)&gentry;
  2249. }
  2250. switch (bytes) {
  2251. case 4:
  2252. gentry = *(const u32 *)new;
  2253. break;
  2254. case 8:
  2255. gentry = *(const u64 *)new;
  2256. break;
  2257. default:
  2258. gentry = 0;
  2259. break;
  2260. }
  2261. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2262. spin_lock(&vcpu->kvm->mmu_lock);
  2263. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2264. gentry = 0;
  2265. kvm_mmu_access_page(vcpu, gfn);
  2266. kvm_mmu_free_some_pages(vcpu);
  2267. ++vcpu->kvm->stat.mmu_pte_write;
  2268. kvm_mmu_audit(vcpu, "pre pte write");
  2269. if (guest_initiated) {
  2270. if (gfn == vcpu->arch.last_pt_write_gfn
  2271. && !last_updated_pte_accessed(vcpu)) {
  2272. ++vcpu->arch.last_pt_write_count;
  2273. if (vcpu->arch.last_pt_write_count >= 3)
  2274. flooded = 1;
  2275. } else {
  2276. vcpu->arch.last_pt_write_gfn = gfn;
  2277. vcpu->arch.last_pt_write_count = 1;
  2278. vcpu->arch.last_pte_updated = NULL;
  2279. }
  2280. }
  2281. index = kvm_page_table_hashfn(gfn);
  2282. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2283. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2284. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2285. continue;
  2286. pte_size = sp->role.cr4_pae ? 8 : 4;
  2287. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2288. misaligned |= bytes < 4;
  2289. if (misaligned || flooded) {
  2290. /*
  2291. * Misaligned accesses are too much trouble to fix
  2292. * up; also, they usually indicate a page is not used
  2293. * as a page table.
  2294. *
  2295. * If we're seeing too many writes to a page,
  2296. * it may no longer be a page table, or we may be
  2297. * forking, in which case it is better to unmap the
  2298. * page.
  2299. */
  2300. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2301. gpa, bytes, sp->role.word);
  2302. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2303. n = bucket->first;
  2304. ++vcpu->kvm->stat.mmu_flooded;
  2305. continue;
  2306. }
  2307. page_offset = offset;
  2308. level = sp->role.level;
  2309. npte = 1;
  2310. if (!sp->role.cr4_pae) {
  2311. page_offset <<= 1; /* 32->64 */
  2312. /*
  2313. * A 32-bit pde maps 4MB while the shadow pdes map
  2314. * only 2MB. So we need to double the offset again
  2315. * and zap two pdes instead of one.
  2316. */
  2317. if (level == PT32_ROOT_LEVEL) {
  2318. page_offset &= ~7; /* kill rounding error */
  2319. page_offset <<= 1;
  2320. npte = 2;
  2321. }
  2322. quadrant = page_offset >> PAGE_SHIFT;
  2323. page_offset &= ~PAGE_MASK;
  2324. if (quadrant != sp->role.quadrant)
  2325. continue;
  2326. }
  2327. spte = &sp->spt[page_offset / sizeof(*spte)];
  2328. while (npte--) {
  2329. entry = *spte;
  2330. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2331. if (gentry)
  2332. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2333. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2334. ++spte;
  2335. }
  2336. }
  2337. kvm_mmu_audit(vcpu, "post pte write");
  2338. spin_unlock(&vcpu->kvm->mmu_lock);
  2339. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2340. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2341. vcpu->arch.update_pte.pfn = bad_pfn;
  2342. }
  2343. }
  2344. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2345. {
  2346. gpa_t gpa;
  2347. int r;
  2348. if (tdp_enabled)
  2349. return 0;
  2350. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2351. spin_lock(&vcpu->kvm->mmu_lock);
  2352. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2353. spin_unlock(&vcpu->kvm->mmu_lock);
  2354. return r;
  2355. }
  2356. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2357. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2358. {
  2359. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2360. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2361. struct kvm_mmu_page *sp;
  2362. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2363. struct kvm_mmu_page, link);
  2364. kvm_mmu_zap_page(vcpu->kvm, sp);
  2365. ++vcpu->kvm->stat.mmu_recycled;
  2366. }
  2367. }
  2368. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2369. {
  2370. int r;
  2371. enum emulation_result er;
  2372. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2373. if (r < 0)
  2374. goto out;
  2375. if (!r) {
  2376. r = 1;
  2377. goto out;
  2378. }
  2379. r = mmu_topup_memory_caches(vcpu);
  2380. if (r)
  2381. goto out;
  2382. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2383. switch (er) {
  2384. case EMULATE_DONE:
  2385. return 1;
  2386. case EMULATE_DO_MMIO:
  2387. ++vcpu->stat.mmio_exits;
  2388. return 0;
  2389. case EMULATE_FAIL:
  2390. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2391. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2392. vcpu->run->internal.ndata = 0;
  2393. return 0;
  2394. default:
  2395. BUG();
  2396. }
  2397. out:
  2398. return r;
  2399. }
  2400. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2401. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2402. {
  2403. vcpu->arch.mmu.invlpg(vcpu, gva);
  2404. kvm_mmu_flush_tlb(vcpu);
  2405. ++vcpu->stat.invlpg;
  2406. }
  2407. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2408. void kvm_enable_tdp(void)
  2409. {
  2410. tdp_enabled = true;
  2411. }
  2412. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2413. void kvm_disable_tdp(void)
  2414. {
  2415. tdp_enabled = false;
  2416. }
  2417. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2418. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2419. {
  2420. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2421. }
  2422. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2423. {
  2424. struct page *page;
  2425. int i;
  2426. ASSERT(vcpu);
  2427. /*
  2428. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2429. * Therefore we need to allocate shadow page tables in the first
  2430. * 4GB of memory, which happens to fit the DMA32 zone.
  2431. */
  2432. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2433. if (!page)
  2434. return -ENOMEM;
  2435. vcpu->arch.mmu.pae_root = page_address(page);
  2436. for (i = 0; i < 4; ++i)
  2437. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2438. return 0;
  2439. }
  2440. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2441. {
  2442. ASSERT(vcpu);
  2443. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2444. return alloc_mmu_pages(vcpu);
  2445. }
  2446. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2447. {
  2448. ASSERT(vcpu);
  2449. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2450. return init_kvm_mmu(vcpu);
  2451. }
  2452. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2453. {
  2454. ASSERT(vcpu);
  2455. destroy_kvm_mmu(vcpu);
  2456. free_mmu_pages(vcpu);
  2457. mmu_free_memory_caches(vcpu);
  2458. }
  2459. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2460. {
  2461. struct kvm_mmu_page *sp;
  2462. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2463. int i;
  2464. u64 *pt;
  2465. if (!test_bit(slot, sp->slot_bitmap))
  2466. continue;
  2467. pt = sp->spt;
  2468. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2469. /* avoid RMW */
  2470. if (pt[i] & PT_WRITABLE_MASK)
  2471. pt[i] &= ~PT_WRITABLE_MASK;
  2472. }
  2473. kvm_flush_remote_tlbs(kvm);
  2474. }
  2475. void kvm_mmu_zap_all(struct kvm *kvm)
  2476. {
  2477. struct kvm_mmu_page *sp, *node;
  2478. spin_lock(&kvm->mmu_lock);
  2479. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2480. if (kvm_mmu_zap_page(kvm, sp))
  2481. node = container_of(kvm->arch.active_mmu_pages.next,
  2482. struct kvm_mmu_page, link);
  2483. spin_unlock(&kvm->mmu_lock);
  2484. kvm_flush_remote_tlbs(kvm);
  2485. }
  2486. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2487. {
  2488. struct kvm_mmu_page *page;
  2489. page = container_of(kvm->arch.active_mmu_pages.prev,
  2490. struct kvm_mmu_page, link);
  2491. kvm_mmu_zap_page(kvm, page);
  2492. }
  2493. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2494. {
  2495. struct kvm *kvm;
  2496. struct kvm *kvm_freed = NULL;
  2497. int cache_count = 0;
  2498. spin_lock(&kvm_lock);
  2499. list_for_each_entry(kvm, &vm_list, vm_list) {
  2500. int npages, idx;
  2501. idx = srcu_read_lock(&kvm->srcu);
  2502. spin_lock(&kvm->mmu_lock);
  2503. npages = kvm->arch.n_alloc_mmu_pages -
  2504. kvm->arch.n_free_mmu_pages;
  2505. cache_count += npages;
  2506. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2507. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2508. cache_count--;
  2509. kvm_freed = kvm;
  2510. }
  2511. nr_to_scan--;
  2512. spin_unlock(&kvm->mmu_lock);
  2513. srcu_read_unlock(&kvm->srcu, idx);
  2514. }
  2515. if (kvm_freed)
  2516. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2517. spin_unlock(&kvm_lock);
  2518. return cache_count;
  2519. }
  2520. static struct shrinker mmu_shrinker = {
  2521. .shrink = mmu_shrink,
  2522. .seeks = DEFAULT_SEEKS * 10,
  2523. };
  2524. static void mmu_destroy_caches(void)
  2525. {
  2526. if (pte_chain_cache)
  2527. kmem_cache_destroy(pte_chain_cache);
  2528. if (rmap_desc_cache)
  2529. kmem_cache_destroy(rmap_desc_cache);
  2530. if (mmu_page_header_cache)
  2531. kmem_cache_destroy(mmu_page_header_cache);
  2532. }
  2533. void kvm_mmu_module_exit(void)
  2534. {
  2535. mmu_destroy_caches();
  2536. unregister_shrinker(&mmu_shrinker);
  2537. }
  2538. int kvm_mmu_module_init(void)
  2539. {
  2540. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2541. sizeof(struct kvm_pte_chain),
  2542. 0, 0, NULL);
  2543. if (!pte_chain_cache)
  2544. goto nomem;
  2545. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2546. sizeof(struct kvm_rmap_desc),
  2547. 0, 0, NULL);
  2548. if (!rmap_desc_cache)
  2549. goto nomem;
  2550. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2551. sizeof(struct kvm_mmu_page),
  2552. 0, 0, NULL);
  2553. if (!mmu_page_header_cache)
  2554. goto nomem;
  2555. register_shrinker(&mmu_shrinker);
  2556. return 0;
  2557. nomem:
  2558. mmu_destroy_caches();
  2559. return -ENOMEM;
  2560. }
  2561. /*
  2562. * Caculate mmu pages needed for kvm.
  2563. */
  2564. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2565. {
  2566. int i;
  2567. unsigned int nr_mmu_pages;
  2568. unsigned int nr_pages = 0;
  2569. struct kvm_memslots *slots;
  2570. slots = rcu_dereference(kvm->memslots);
  2571. for (i = 0; i < slots->nmemslots; i++)
  2572. nr_pages += slots->memslots[i].npages;
  2573. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2574. nr_mmu_pages = max(nr_mmu_pages,
  2575. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2576. return nr_mmu_pages;
  2577. }
  2578. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2579. unsigned len)
  2580. {
  2581. if (len > buffer->len)
  2582. return NULL;
  2583. return buffer->ptr;
  2584. }
  2585. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2586. unsigned len)
  2587. {
  2588. void *ret;
  2589. ret = pv_mmu_peek_buffer(buffer, len);
  2590. if (!ret)
  2591. return ret;
  2592. buffer->ptr += len;
  2593. buffer->len -= len;
  2594. buffer->processed += len;
  2595. return ret;
  2596. }
  2597. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2598. gpa_t addr, gpa_t value)
  2599. {
  2600. int bytes = 8;
  2601. int r;
  2602. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2603. bytes = 4;
  2604. r = mmu_topup_memory_caches(vcpu);
  2605. if (r)
  2606. return r;
  2607. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2608. return -EFAULT;
  2609. return 1;
  2610. }
  2611. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2612. {
  2613. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2614. return 1;
  2615. }
  2616. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2617. {
  2618. spin_lock(&vcpu->kvm->mmu_lock);
  2619. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2620. spin_unlock(&vcpu->kvm->mmu_lock);
  2621. return 1;
  2622. }
  2623. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2624. struct kvm_pv_mmu_op_buffer *buffer)
  2625. {
  2626. struct kvm_mmu_op_header *header;
  2627. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2628. if (!header)
  2629. return 0;
  2630. switch (header->op) {
  2631. case KVM_MMU_OP_WRITE_PTE: {
  2632. struct kvm_mmu_op_write_pte *wpte;
  2633. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2634. if (!wpte)
  2635. return 0;
  2636. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2637. wpte->pte_val);
  2638. }
  2639. case KVM_MMU_OP_FLUSH_TLB: {
  2640. struct kvm_mmu_op_flush_tlb *ftlb;
  2641. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2642. if (!ftlb)
  2643. return 0;
  2644. return kvm_pv_mmu_flush_tlb(vcpu);
  2645. }
  2646. case KVM_MMU_OP_RELEASE_PT: {
  2647. struct kvm_mmu_op_release_pt *rpt;
  2648. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2649. if (!rpt)
  2650. return 0;
  2651. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2652. }
  2653. default: return 0;
  2654. }
  2655. }
  2656. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2657. gpa_t addr, unsigned long *ret)
  2658. {
  2659. int r;
  2660. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2661. buffer->ptr = buffer->buf;
  2662. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2663. buffer->processed = 0;
  2664. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2665. if (r)
  2666. goto out;
  2667. while (buffer->len) {
  2668. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2669. if (r < 0)
  2670. goto out;
  2671. if (r == 0)
  2672. break;
  2673. }
  2674. r = 1;
  2675. out:
  2676. *ret = buffer->processed;
  2677. return r;
  2678. }
  2679. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2680. {
  2681. struct kvm_shadow_walk_iterator iterator;
  2682. int nr_sptes = 0;
  2683. spin_lock(&vcpu->kvm->mmu_lock);
  2684. for_each_shadow_entry(vcpu, addr, iterator) {
  2685. sptes[iterator.level-1] = *iterator.sptep;
  2686. nr_sptes++;
  2687. if (!is_shadow_present_pte(*iterator.sptep))
  2688. break;
  2689. }
  2690. spin_unlock(&vcpu->kvm->mmu_lock);
  2691. return nr_sptes;
  2692. }
  2693. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2694. #ifdef AUDIT
  2695. static const char *audit_msg;
  2696. static gva_t canonicalize(gva_t gva)
  2697. {
  2698. #ifdef CONFIG_X86_64
  2699. gva = (long long)(gva << 16) >> 16;
  2700. #endif
  2701. return gva;
  2702. }
  2703. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2704. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2705. inspect_spte_fn fn)
  2706. {
  2707. int i;
  2708. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2709. u64 ent = sp->spt[i];
  2710. if (is_shadow_present_pte(ent)) {
  2711. if (!is_last_spte(ent, sp->role.level)) {
  2712. struct kvm_mmu_page *child;
  2713. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2714. __mmu_spte_walk(kvm, child, fn);
  2715. } else
  2716. fn(kvm, &sp->spt[i]);
  2717. }
  2718. }
  2719. }
  2720. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2721. {
  2722. int i;
  2723. struct kvm_mmu_page *sp;
  2724. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2725. return;
  2726. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2727. hpa_t root = vcpu->arch.mmu.root_hpa;
  2728. sp = page_header(root);
  2729. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2730. return;
  2731. }
  2732. for (i = 0; i < 4; ++i) {
  2733. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2734. if (root && VALID_PAGE(root)) {
  2735. root &= PT64_BASE_ADDR_MASK;
  2736. sp = page_header(root);
  2737. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2738. }
  2739. }
  2740. return;
  2741. }
  2742. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2743. gva_t va, int level)
  2744. {
  2745. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2746. int i;
  2747. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2748. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2749. u64 ent = pt[i];
  2750. if (ent == shadow_trap_nonpresent_pte)
  2751. continue;
  2752. va = canonicalize(va);
  2753. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2754. audit_mappings_page(vcpu, ent, va, level - 1);
  2755. else {
  2756. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2757. gfn_t gfn = gpa >> PAGE_SHIFT;
  2758. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2759. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2760. if (is_error_pfn(pfn)) {
  2761. kvm_release_pfn_clean(pfn);
  2762. continue;
  2763. }
  2764. if (is_shadow_present_pte(ent)
  2765. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2766. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2767. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2768. audit_msg, vcpu->arch.mmu.root_level,
  2769. va, gpa, hpa, ent,
  2770. is_shadow_present_pte(ent));
  2771. else if (ent == shadow_notrap_nonpresent_pte
  2772. && !is_error_hpa(hpa))
  2773. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2774. " valid guest gva %lx\n", audit_msg, va);
  2775. kvm_release_pfn_clean(pfn);
  2776. }
  2777. }
  2778. }
  2779. static void audit_mappings(struct kvm_vcpu *vcpu)
  2780. {
  2781. unsigned i;
  2782. if (vcpu->arch.mmu.root_level == 4)
  2783. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2784. else
  2785. for (i = 0; i < 4; ++i)
  2786. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2787. audit_mappings_page(vcpu,
  2788. vcpu->arch.mmu.pae_root[i],
  2789. i << 30,
  2790. 2);
  2791. }
  2792. static int count_rmaps(struct kvm_vcpu *vcpu)
  2793. {
  2794. struct kvm *kvm = vcpu->kvm;
  2795. struct kvm_memslots *slots;
  2796. int nmaps = 0;
  2797. int i, j, k, idx;
  2798. idx = srcu_read_lock(&kvm->srcu);
  2799. slots = rcu_dereference(kvm->memslots);
  2800. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2801. struct kvm_memory_slot *m = &slots->memslots[i];
  2802. struct kvm_rmap_desc *d;
  2803. for (j = 0; j < m->npages; ++j) {
  2804. unsigned long *rmapp = &m->rmap[j];
  2805. if (!*rmapp)
  2806. continue;
  2807. if (!(*rmapp & 1)) {
  2808. ++nmaps;
  2809. continue;
  2810. }
  2811. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2812. while (d) {
  2813. for (k = 0; k < RMAP_EXT; ++k)
  2814. if (d->sptes[k])
  2815. ++nmaps;
  2816. else
  2817. break;
  2818. d = d->more;
  2819. }
  2820. }
  2821. }
  2822. srcu_read_unlock(&kvm->srcu, idx);
  2823. return nmaps;
  2824. }
  2825. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2826. {
  2827. unsigned long *rmapp;
  2828. struct kvm_mmu_page *rev_sp;
  2829. gfn_t gfn;
  2830. if (*sptep & PT_WRITABLE_MASK) {
  2831. rev_sp = page_header(__pa(sptep));
  2832. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2833. if (!gfn_to_memslot(kvm, gfn)) {
  2834. if (!printk_ratelimit())
  2835. return;
  2836. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2837. audit_msg, gfn);
  2838. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2839. audit_msg, (long int)(sptep - rev_sp->spt),
  2840. rev_sp->gfn);
  2841. dump_stack();
  2842. return;
  2843. }
  2844. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2845. rev_sp->role.level);
  2846. if (!*rmapp) {
  2847. if (!printk_ratelimit())
  2848. return;
  2849. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2850. audit_msg, *sptep);
  2851. dump_stack();
  2852. }
  2853. }
  2854. }
  2855. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2856. {
  2857. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2858. }
  2859. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2860. {
  2861. struct kvm_mmu_page *sp;
  2862. int i;
  2863. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2864. u64 *pt = sp->spt;
  2865. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2866. continue;
  2867. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2868. u64 ent = pt[i];
  2869. if (!(ent & PT_PRESENT_MASK))
  2870. continue;
  2871. if (!(ent & PT_WRITABLE_MASK))
  2872. continue;
  2873. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  2874. }
  2875. }
  2876. return;
  2877. }
  2878. static void audit_rmap(struct kvm_vcpu *vcpu)
  2879. {
  2880. check_writable_mappings_rmap(vcpu);
  2881. count_rmaps(vcpu);
  2882. }
  2883. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2884. {
  2885. struct kvm_mmu_page *sp;
  2886. struct kvm_memory_slot *slot;
  2887. unsigned long *rmapp;
  2888. u64 *spte;
  2889. gfn_t gfn;
  2890. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2891. if (sp->role.direct)
  2892. continue;
  2893. if (sp->unsync)
  2894. continue;
  2895. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2896. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2897. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2898. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2899. while (spte) {
  2900. if (*spte & PT_WRITABLE_MASK)
  2901. printk(KERN_ERR "%s: (%s) shadow page has "
  2902. "writable mappings: gfn %lx role %x\n",
  2903. __func__, audit_msg, sp->gfn,
  2904. sp->role.word);
  2905. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2906. }
  2907. }
  2908. }
  2909. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2910. {
  2911. int olddbg = dbg;
  2912. dbg = 0;
  2913. audit_msg = msg;
  2914. audit_rmap(vcpu);
  2915. audit_write_protection(vcpu);
  2916. if (strcmp("pre pte write", audit_msg) != 0)
  2917. audit_mappings(vcpu);
  2918. audit_writable_sptes_have_rmaps(vcpu);
  2919. dbg = olddbg;
  2920. }
  2921. #endif