sched_clock.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. /*
  2. * sched_clock for unstable cpu clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. * Create a semi stable clock from a mixture of other events, including:
  14. * - gtod
  15. * - sched_clock()
  16. * - explicit idle events
  17. *
  18. * We use gtod as base and the unstable clock deltas. The deltas are filtered,
  19. * making it monotonic and keeping it within an expected window.
  20. *
  21. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  22. * that is otherwise invisible (TSC gets stopped).
  23. *
  24. * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
  25. * consistent between cpus (never more than 2 jiffies difference).
  26. */
  27. #include <linux/sched.h>
  28. #include <linux/percpu.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/ktime.h>
  31. #include <linux/module.h>
  32. /*
  33. * Scheduler clock - returns current time in nanosec units.
  34. * This is default implementation.
  35. * Architectures and sub-architectures can override this.
  36. */
  37. unsigned long long __attribute__((weak)) sched_clock(void)
  38. {
  39. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  40. }
  41. static __read_mostly int sched_clock_running;
  42. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  43. struct sched_clock_data {
  44. /*
  45. * Raw spinlock - this is a special case: this might be called
  46. * from within instrumentation code so we dont want to do any
  47. * instrumentation ourselves.
  48. */
  49. raw_spinlock_t lock;
  50. u64 tick_raw;
  51. u64 tick_gtod;
  52. u64 clock;
  53. };
  54. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  55. static inline struct sched_clock_data *this_scd(void)
  56. {
  57. return &__get_cpu_var(sched_clock_data);
  58. }
  59. static inline struct sched_clock_data *cpu_sdc(int cpu)
  60. {
  61. return &per_cpu(sched_clock_data, cpu);
  62. }
  63. void sched_clock_init(void)
  64. {
  65. u64 ktime_now = ktime_to_ns(ktime_get());
  66. int cpu;
  67. for_each_possible_cpu(cpu) {
  68. struct sched_clock_data *scd = cpu_sdc(cpu);
  69. scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  70. scd->tick_raw = 0;
  71. scd->tick_gtod = ktime_now;
  72. scd->clock = ktime_now;
  73. }
  74. sched_clock_running = 1;
  75. }
  76. /*
  77. * min,max except they take wrapping into account
  78. */
  79. static inline u64 wrap_min(u64 x, u64 y)
  80. {
  81. return (s64)(x - y) < 0 ? x : y;
  82. }
  83. static inline u64 wrap_max(u64 x, u64 y)
  84. {
  85. return (s64)(x - y) > 0 ? x : y;
  86. }
  87. /*
  88. * update the percpu scd from the raw @now value
  89. *
  90. * - filter out backward motion
  91. * - use the GTOD tick value to create a window to filter crazy TSC values
  92. */
  93. static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now)
  94. {
  95. s64 delta = now - scd->tick_raw;
  96. u64 clock, min_clock, max_clock;
  97. WARN_ON_ONCE(!irqs_disabled());
  98. if (unlikely(delta < 0))
  99. delta = 0;
  100. /*
  101. * scd->clock = clamp(scd->tick_gtod + delta,
  102. * max(scd->tick_gtod, scd->clock),
  103. * max(scd->clock, scd->tick_gtod + TICK_NSEC));
  104. */
  105. clock = scd->tick_gtod + delta;
  106. min_clock = wrap_max(scd->tick_gtod, scd->clock);
  107. max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC);
  108. clock = wrap_max(clock, min_clock);
  109. clock = wrap_min(clock, max_clock);
  110. scd->clock = clock;
  111. return scd->clock;
  112. }
  113. static void lock_double_clock(struct sched_clock_data *data1,
  114. struct sched_clock_data *data2)
  115. {
  116. if (data1 < data2) {
  117. __raw_spin_lock(&data1->lock);
  118. __raw_spin_lock(&data2->lock);
  119. } else {
  120. __raw_spin_lock(&data2->lock);
  121. __raw_spin_lock(&data1->lock);
  122. }
  123. }
  124. u64 sched_clock_cpu(int cpu)
  125. {
  126. struct sched_clock_data *scd = cpu_sdc(cpu);
  127. u64 now, clock, this_clock, remote_clock;
  128. if (unlikely(!sched_clock_running))
  129. return 0ull;
  130. WARN_ON_ONCE(!irqs_disabled());
  131. now = sched_clock();
  132. if (cpu != raw_smp_processor_id()) {
  133. struct sched_clock_data *my_scd = this_scd();
  134. lock_double_clock(scd, my_scd);
  135. this_clock = __update_sched_clock(my_scd, now);
  136. remote_clock = scd->clock;
  137. /*
  138. * Use the opportunity that we have both locks
  139. * taken to couple the two clocks: we take the
  140. * larger time as the latest time for both
  141. * runqueues. (this creates monotonic movement)
  142. */
  143. if (likely((s64)(remote_clock - this_clock) < 0)) {
  144. clock = this_clock;
  145. scd->clock = clock;
  146. } else {
  147. /*
  148. * Should be rare, but possible:
  149. */
  150. clock = remote_clock;
  151. my_scd->clock = remote_clock;
  152. }
  153. __raw_spin_unlock(&my_scd->lock);
  154. } else {
  155. __raw_spin_lock(&scd->lock);
  156. clock = __update_sched_clock(scd, now);
  157. }
  158. __raw_spin_unlock(&scd->lock);
  159. return clock;
  160. }
  161. void sched_clock_tick(void)
  162. {
  163. struct sched_clock_data *scd = this_scd();
  164. u64 now, now_gtod;
  165. if (unlikely(!sched_clock_running))
  166. return;
  167. WARN_ON_ONCE(!irqs_disabled());
  168. now_gtod = ktime_to_ns(ktime_get());
  169. now = sched_clock();
  170. __raw_spin_lock(&scd->lock);
  171. scd->tick_raw = now;
  172. scd->tick_gtod = now_gtod;
  173. __update_sched_clock(scd, now);
  174. __raw_spin_unlock(&scd->lock);
  175. }
  176. /*
  177. * We are going deep-idle (irqs are disabled):
  178. */
  179. void sched_clock_idle_sleep_event(void)
  180. {
  181. sched_clock_cpu(smp_processor_id());
  182. }
  183. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  184. /*
  185. * We just idled delta nanoseconds (called with irqs disabled):
  186. */
  187. void sched_clock_idle_wakeup_event(u64 delta_ns)
  188. {
  189. sched_clock_tick();
  190. touch_softlockup_watchdog();
  191. }
  192. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  193. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  194. void sched_clock_init(void)
  195. {
  196. sched_clock_running = 1;
  197. }
  198. u64 sched_clock_cpu(int cpu)
  199. {
  200. if (unlikely(!sched_clock_running))
  201. return 0;
  202. return sched_clock();
  203. }
  204. #endif
  205. unsigned long long cpu_clock(int cpu)
  206. {
  207. unsigned long long clock;
  208. unsigned long flags;
  209. local_irq_save(flags);
  210. clock = sched_clock_cpu(cpu);
  211. local_irq_restore(flags);
  212. return clock;
  213. }
  214. EXPORT_SYMBOL_GPL(cpu_clock);