core.c 194 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <asm/switch_to.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include <asm/mutex.h>
  78. #ifdef CONFIG_PARAVIRT
  79. #include <asm/paravirt.h>
  80. #endif
  81. #include "sched.h"
  82. #include "../workqueue_sched.h"
  83. #include "../smpboot.h"
  84. #define CREATE_TRACE_POINTS
  85. #include <trace/events/sched.h>
  86. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  87. {
  88. unsigned long delta;
  89. ktime_t soft, hard, now;
  90. for (;;) {
  91. if (hrtimer_active(period_timer))
  92. break;
  93. now = hrtimer_cb_get_time(period_timer);
  94. hrtimer_forward(period_timer, now, period);
  95. soft = hrtimer_get_softexpires(period_timer);
  96. hard = hrtimer_get_expires(period_timer);
  97. delta = ktime_to_ns(ktime_sub(hard, soft));
  98. __hrtimer_start_range_ns(period_timer, soft, delta,
  99. HRTIMER_MODE_ABS_PINNED, 0);
  100. }
  101. }
  102. DEFINE_MUTEX(sched_domains_mutex);
  103. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  104. static void update_rq_clock_task(struct rq *rq, s64 delta);
  105. void update_rq_clock(struct rq *rq)
  106. {
  107. s64 delta;
  108. if (rq->skip_clock_update > 0)
  109. return;
  110. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  111. rq->clock += delta;
  112. update_rq_clock_task(rq, delta);
  113. }
  114. /*
  115. * Debugging: various feature bits
  116. */
  117. #define SCHED_FEAT(name, enabled) \
  118. (1UL << __SCHED_FEAT_##name) * enabled |
  119. const_debug unsigned int sysctl_sched_features =
  120. #include "features.h"
  121. 0;
  122. #undef SCHED_FEAT
  123. #ifdef CONFIG_SCHED_DEBUG
  124. #define SCHED_FEAT(name, enabled) \
  125. #name ,
  126. static const char * const sched_feat_names[] = {
  127. #include "features.h"
  128. };
  129. #undef SCHED_FEAT
  130. static int sched_feat_show(struct seq_file *m, void *v)
  131. {
  132. int i;
  133. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  134. if (!(sysctl_sched_features & (1UL << i)))
  135. seq_puts(m, "NO_");
  136. seq_printf(m, "%s ", sched_feat_names[i]);
  137. }
  138. seq_puts(m, "\n");
  139. return 0;
  140. }
  141. #ifdef HAVE_JUMP_LABEL
  142. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  143. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  144. #define SCHED_FEAT(name, enabled) \
  145. jump_label_key__##enabled ,
  146. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  147. #include "features.h"
  148. };
  149. #undef SCHED_FEAT
  150. static void sched_feat_disable(int i)
  151. {
  152. if (static_key_enabled(&sched_feat_keys[i]))
  153. static_key_slow_dec(&sched_feat_keys[i]);
  154. }
  155. static void sched_feat_enable(int i)
  156. {
  157. if (!static_key_enabled(&sched_feat_keys[i]))
  158. static_key_slow_inc(&sched_feat_keys[i]);
  159. }
  160. #else
  161. static void sched_feat_disable(int i) { };
  162. static void sched_feat_enable(int i) { };
  163. #endif /* HAVE_JUMP_LABEL */
  164. static ssize_t
  165. sched_feat_write(struct file *filp, const char __user *ubuf,
  166. size_t cnt, loff_t *ppos)
  167. {
  168. char buf[64];
  169. char *cmp;
  170. int neg = 0;
  171. int i;
  172. if (cnt > 63)
  173. cnt = 63;
  174. if (copy_from_user(&buf, ubuf, cnt))
  175. return -EFAULT;
  176. buf[cnt] = 0;
  177. cmp = strstrip(buf);
  178. if (strncmp(cmp, "NO_", 3) == 0) {
  179. neg = 1;
  180. cmp += 3;
  181. }
  182. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  183. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  184. if (neg) {
  185. sysctl_sched_features &= ~(1UL << i);
  186. sched_feat_disable(i);
  187. } else {
  188. sysctl_sched_features |= (1UL << i);
  189. sched_feat_enable(i);
  190. }
  191. break;
  192. }
  193. }
  194. if (i == __SCHED_FEAT_NR)
  195. return -EINVAL;
  196. *ppos += cnt;
  197. return cnt;
  198. }
  199. static int sched_feat_open(struct inode *inode, struct file *filp)
  200. {
  201. return single_open(filp, sched_feat_show, NULL);
  202. }
  203. static const struct file_operations sched_feat_fops = {
  204. .open = sched_feat_open,
  205. .write = sched_feat_write,
  206. .read = seq_read,
  207. .llseek = seq_lseek,
  208. .release = single_release,
  209. };
  210. static __init int sched_init_debug(void)
  211. {
  212. debugfs_create_file("sched_features", 0644, NULL, NULL,
  213. &sched_feat_fops);
  214. return 0;
  215. }
  216. late_initcall(sched_init_debug);
  217. #endif /* CONFIG_SCHED_DEBUG */
  218. /*
  219. * Number of tasks to iterate in a single balance run.
  220. * Limited because this is done with IRQs disabled.
  221. */
  222. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  223. /*
  224. * period over which we average the RT time consumption, measured
  225. * in ms.
  226. *
  227. * default: 1s
  228. */
  229. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  230. /*
  231. * period over which we measure -rt task cpu usage in us.
  232. * default: 1s
  233. */
  234. unsigned int sysctl_sched_rt_period = 1000000;
  235. __read_mostly int scheduler_running;
  236. /*
  237. * part of the period that we allow rt tasks to run in us.
  238. * default: 0.95s
  239. */
  240. int sysctl_sched_rt_runtime = 950000;
  241. /*
  242. * __task_rq_lock - lock the rq @p resides on.
  243. */
  244. static inline struct rq *__task_rq_lock(struct task_struct *p)
  245. __acquires(rq->lock)
  246. {
  247. struct rq *rq;
  248. lockdep_assert_held(&p->pi_lock);
  249. for (;;) {
  250. rq = task_rq(p);
  251. raw_spin_lock(&rq->lock);
  252. if (likely(rq == task_rq(p)))
  253. return rq;
  254. raw_spin_unlock(&rq->lock);
  255. }
  256. }
  257. /*
  258. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  259. */
  260. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  261. __acquires(p->pi_lock)
  262. __acquires(rq->lock)
  263. {
  264. struct rq *rq;
  265. for (;;) {
  266. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  267. rq = task_rq(p);
  268. raw_spin_lock(&rq->lock);
  269. if (likely(rq == task_rq(p)))
  270. return rq;
  271. raw_spin_unlock(&rq->lock);
  272. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  273. }
  274. }
  275. static void __task_rq_unlock(struct rq *rq)
  276. __releases(rq->lock)
  277. {
  278. raw_spin_unlock(&rq->lock);
  279. }
  280. static inline void
  281. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  282. __releases(rq->lock)
  283. __releases(p->pi_lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  287. }
  288. /*
  289. * this_rq_lock - lock this runqueue and disable interrupts.
  290. */
  291. static struct rq *this_rq_lock(void)
  292. __acquires(rq->lock)
  293. {
  294. struct rq *rq;
  295. local_irq_disable();
  296. rq = this_rq();
  297. raw_spin_lock(&rq->lock);
  298. return rq;
  299. }
  300. #ifdef CONFIG_SCHED_HRTICK
  301. /*
  302. * Use HR-timers to deliver accurate preemption points.
  303. *
  304. * Its all a bit involved since we cannot program an hrt while holding the
  305. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  306. * reschedule event.
  307. *
  308. * When we get rescheduled we reprogram the hrtick_timer outside of the
  309. * rq->lock.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. /*
  332. * called from hardirq (IPI) context
  333. */
  334. static void __hrtick_start(void *arg)
  335. {
  336. struct rq *rq = arg;
  337. raw_spin_lock(&rq->lock);
  338. hrtimer_restart(&rq->hrtick_timer);
  339. rq->hrtick_csd_pending = 0;
  340. raw_spin_unlock(&rq->lock);
  341. }
  342. /*
  343. * Called to set the hrtick timer state.
  344. *
  345. * called with rq->lock held and irqs disabled
  346. */
  347. void hrtick_start(struct rq *rq, u64 delay)
  348. {
  349. struct hrtimer *timer = &rq->hrtick_timer;
  350. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  351. hrtimer_set_expires(timer, time);
  352. if (rq == this_rq()) {
  353. hrtimer_restart(timer);
  354. } else if (!rq->hrtick_csd_pending) {
  355. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  356. rq->hrtick_csd_pending = 1;
  357. }
  358. }
  359. static int
  360. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  361. {
  362. int cpu = (int)(long)hcpu;
  363. switch (action) {
  364. case CPU_UP_CANCELED:
  365. case CPU_UP_CANCELED_FROZEN:
  366. case CPU_DOWN_PREPARE:
  367. case CPU_DOWN_PREPARE_FROZEN:
  368. case CPU_DEAD:
  369. case CPU_DEAD_FROZEN:
  370. hrtick_clear(cpu_rq(cpu));
  371. return NOTIFY_OK;
  372. }
  373. return NOTIFY_DONE;
  374. }
  375. static __init void init_hrtick(void)
  376. {
  377. hotcpu_notifier(hotplug_hrtick, 0);
  378. }
  379. #else
  380. /*
  381. * Called to set the hrtick timer state.
  382. *
  383. * called with rq->lock held and irqs disabled
  384. */
  385. void hrtick_start(struct rq *rq, u64 delay)
  386. {
  387. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  388. HRTIMER_MODE_REL_PINNED, 0);
  389. }
  390. static inline void init_hrtick(void)
  391. {
  392. }
  393. #endif /* CONFIG_SMP */
  394. static void init_rq_hrtick(struct rq *rq)
  395. {
  396. #ifdef CONFIG_SMP
  397. rq->hrtick_csd_pending = 0;
  398. rq->hrtick_csd.flags = 0;
  399. rq->hrtick_csd.func = __hrtick_start;
  400. rq->hrtick_csd.info = rq;
  401. #endif
  402. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  403. rq->hrtick_timer.function = hrtick;
  404. }
  405. #else /* CONFIG_SCHED_HRTICK */
  406. static inline void hrtick_clear(struct rq *rq)
  407. {
  408. }
  409. static inline void init_rq_hrtick(struct rq *rq)
  410. {
  411. }
  412. static inline void init_hrtick(void)
  413. {
  414. }
  415. #endif /* CONFIG_SCHED_HRTICK */
  416. /*
  417. * resched_task - mark a task 'to be rescheduled now'.
  418. *
  419. * On UP this means the setting of the need_resched flag, on SMP it
  420. * might also involve a cross-CPU call to trigger the scheduler on
  421. * the target CPU.
  422. */
  423. #ifdef CONFIG_SMP
  424. #ifndef tsk_is_polling
  425. #define tsk_is_polling(t) 0
  426. #endif
  427. void resched_task(struct task_struct *p)
  428. {
  429. int cpu;
  430. assert_raw_spin_locked(&task_rq(p)->lock);
  431. if (test_tsk_need_resched(p))
  432. return;
  433. set_tsk_need_resched(p);
  434. cpu = task_cpu(p);
  435. if (cpu == smp_processor_id())
  436. return;
  437. /* NEED_RESCHED must be visible before we test polling */
  438. smp_mb();
  439. if (!tsk_is_polling(p))
  440. smp_send_reschedule(cpu);
  441. }
  442. void resched_cpu(int cpu)
  443. {
  444. struct rq *rq = cpu_rq(cpu);
  445. unsigned long flags;
  446. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  447. return;
  448. resched_task(cpu_curr(cpu));
  449. raw_spin_unlock_irqrestore(&rq->lock, flags);
  450. }
  451. #ifdef CONFIG_NO_HZ
  452. /*
  453. * In the semi idle case, use the nearest busy cpu for migrating timers
  454. * from an idle cpu. This is good for power-savings.
  455. *
  456. * We don't do similar optimization for completely idle system, as
  457. * selecting an idle cpu will add more delays to the timers than intended
  458. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  459. */
  460. int get_nohz_timer_target(void)
  461. {
  462. int cpu = smp_processor_id();
  463. int i;
  464. struct sched_domain *sd;
  465. rcu_read_lock();
  466. for_each_domain(cpu, sd) {
  467. for_each_cpu(i, sched_domain_span(sd)) {
  468. if (!idle_cpu(i)) {
  469. cpu = i;
  470. goto unlock;
  471. }
  472. }
  473. }
  474. unlock:
  475. rcu_read_unlock();
  476. return cpu;
  477. }
  478. /*
  479. * When add_timer_on() enqueues a timer into the timer wheel of an
  480. * idle CPU then this timer might expire before the next timer event
  481. * which is scheduled to wake up that CPU. In case of a completely
  482. * idle system the next event might even be infinite time into the
  483. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  484. * leaves the inner idle loop so the newly added timer is taken into
  485. * account when the CPU goes back to idle and evaluates the timer
  486. * wheel for the next timer event.
  487. */
  488. void wake_up_idle_cpu(int cpu)
  489. {
  490. struct rq *rq = cpu_rq(cpu);
  491. if (cpu == smp_processor_id())
  492. return;
  493. /*
  494. * This is safe, as this function is called with the timer
  495. * wheel base lock of (cpu) held. When the CPU is on the way
  496. * to idle and has not yet set rq->curr to idle then it will
  497. * be serialized on the timer wheel base lock and take the new
  498. * timer into account automatically.
  499. */
  500. if (rq->curr != rq->idle)
  501. return;
  502. /*
  503. * We can set TIF_RESCHED on the idle task of the other CPU
  504. * lockless. The worst case is that the other CPU runs the
  505. * idle task through an additional NOOP schedule()
  506. */
  507. set_tsk_need_resched(rq->idle);
  508. /* NEED_RESCHED must be visible before we test polling */
  509. smp_mb();
  510. if (!tsk_is_polling(rq->idle))
  511. smp_send_reschedule(cpu);
  512. }
  513. static inline bool got_nohz_idle_kick(void)
  514. {
  515. int cpu = smp_processor_id();
  516. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  517. }
  518. #else /* CONFIG_NO_HZ */
  519. static inline bool got_nohz_idle_kick(void)
  520. {
  521. return false;
  522. }
  523. #endif /* CONFIG_NO_HZ */
  524. void sched_avg_update(struct rq *rq)
  525. {
  526. s64 period = sched_avg_period();
  527. while ((s64)(rq->clock - rq->age_stamp) > period) {
  528. /*
  529. * Inline assembly required to prevent the compiler
  530. * optimising this loop into a divmod call.
  531. * See __iter_div_u64_rem() for another example of this.
  532. */
  533. asm("" : "+rm" (rq->age_stamp));
  534. rq->age_stamp += period;
  535. rq->rt_avg /= 2;
  536. }
  537. }
  538. #else /* !CONFIG_SMP */
  539. void resched_task(struct task_struct *p)
  540. {
  541. assert_raw_spin_locked(&task_rq(p)->lock);
  542. set_tsk_need_resched(p);
  543. }
  544. #endif /* CONFIG_SMP */
  545. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  546. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  547. /*
  548. * Iterate task_group tree rooted at *from, calling @down when first entering a
  549. * node and @up when leaving it for the final time.
  550. *
  551. * Caller must hold rcu_lock or sufficient equivalent.
  552. */
  553. int walk_tg_tree_from(struct task_group *from,
  554. tg_visitor down, tg_visitor up, void *data)
  555. {
  556. struct task_group *parent, *child;
  557. int ret;
  558. parent = from;
  559. down:
  560. ret = (*down)(parent, data);
  561. if (ret)
  562. goto out;
  563. list_for_each_entry_rcu(child, &parent->children, siblings) {
  564. parent = child;
  565. goto down;
  566. up:
  567. continue;
  568. }
  569. ret = (*up)(parent, data);
  570. if (ret || parent == from)
  571. goto out;
  572. child = parent;
  573. parent = parent->parent;
  574. if (parent)
  575. goto up;
  576. out:
  577. return ret;
  578. }
  579. int tg_nop(struct task_group *tg, void *data)
  580. {
  581. return 0;
  582. }
  583. #endif
  584. static void set_load_weight(struct task_struct *p)
  585. {
  586. int prio = p->static_prio - MAX_RT_PRIO;
  587. struct load_weight *load = &p->se.load;
  588. /*
  589. * SCHED_IDLE tasks get minimal weight:
  590. */
  591. if (p->policy == SCHED_IDLE) {
  592. load->weight = scale_load(WEIGHT_IDLEPRIO);
  593. load->inv_weight = WMULT_IDLEPRIO;
  594. return;
  595. }
  596. load->weight = scale_load(prio_to_weight[prio]);
  597. load->inv_weight = prio_to_wmult[prio];
  598. }
  599. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  600. {
  601. update_rq_clock(rq);
  602. sched_info_queued(p);
  603. p->sched_class->enqueue_task(rq, p, flags);
  604. }
  605. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  606. {
  607. update_rq_clock(rq);
  608. sched_info_dequeued(p);
  609. p->sched_class->dequeue_task(rq, p, flags);
  610. }
  611. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  612. {
  613. if (task_contributes_to_load(p))
  614. rq->nr_uninterruptible--;
  615. enqueue_task(rq, p, flags);
  616. }
  617. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  618. {
  619. if (task_contributes_to_load(p))
  620. rq->nr_uninterruptible++;
  621. dequeue_task(rq, p, flags);
  622. }
  623. static void update_rq_clock_task(struct rq *rq, s64 delta)
  624. {
  625. /*
  626. * In theory, the compile should just see 0 here, and optimize out the call
  627. * to sched_rt_avg_update. But I don't trust it...
  628. */
  629. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  630. s64 steal = 0, irq_delta = 0;
  631. #endif
  632. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  633. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  634. /*
  635. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  636. * this case when a previous update_rq_clock() happened inside a
  637. * {soft,}irq region.
  638. *
  639. * When this happens, we stop ->clock_task and only update the
  640. * prev_irq_time stamp to account for the part that fit, so that a next
  641. * update will consume the rest. This ensures ->clock_task is
  642. * monotonic.
  643. *
  644. * It does however cause some slight miss-attribution of {soft,}irq
  645. * time, a more accurate solution would be to update the irq_time using
  646. * the current rq->clock timestamp, except that would require using
  647. * atomic ops.
  648. */
  649. if (irq_delta > delta)
  650. irq_delta = delta;
  651. rq->prev_irq_time += irq_delta;
  652. delta -= irq_delta;
  653. #endif
  654. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  655. if (static_key_false((&paravirt_steal_rq_enabled))) {
  656. u64 st;
  657. steal = paravirt_steal_clock(cpu_of(rq));
  658. steal -= rq->prev_steal_time_rq;
  659. if (unlikely(steal > delta))
  660. steal = delta;
  661. st = steal_ticks(steal);
  662. steal = st * TICK_NSEC;
  663. rq->prev_steal_time_rq += steal;
  664. delta -= steal;
  665. }
  666. #endif
  667. rq->clock_task += delta;
  668. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  669. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  670. sched_rt_avg_update(rq, irq_delta + steal);
  671. #endif
  672. }
  673. void sched_set_stop_task(int cpu, struct task_struct *stop)
  674. {
  675. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  676. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  677. if (stop) {
  678. /*
  679. * Make it appear like a SCHED_FIFO task, its something
  680. * userspace knows about and won't get confused about.
  681. *
  682. * Also, it will make PI more or less work without too
  683. * much confusion -- but then, stop work should not
  684. * rely on PI working anyway.
  685. */
  686. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  687. stop->sched_class = &stop_sched_class;
  688. }
  689. cpu_rq(cpu)->stop = stop;
  690. if (old_stop) {
  691. /*
  692. * Reset it back to a normal scheduling class so that
  693. * it can die in pieces.
  694. */
  695. old_stop->sched_class = &rt_sched_class;
  696. }
  697. }
  698. /*
  699. * __normal_prio - return the priority that is based on the static prio
  700. */
  701. static inline int __normal_prio(struct task_struct *p)
  702. {
  703. return p->static_prio;
  704. }
  705. /*
  706. * Calculate the expected normal priority: i.e. priority
  707. * without taking RT-inheritance into account. Might be
  708. * boosted by interactivity modifiers. Changes upon fork,
  709. * setprio syscalls, and whenever the interactivity
  710. * estimator recalculates.
  711. */
  712. static inline int normal_prio(struct task_struct *p)
  713. {
  714. int prio;
  715. if (task_has_rt_policy(p))
  716. prio = MAX_RT_PRIO-1 - p->rt_priority;
  717. else
  718. prio = __normal_prio(p);
  719. return prio;
  720. }
  721. /*
  722. * Calculate the current priority, i.e. the priority
  723. * taken into account by the scheduler. This value might
  724. * be boosted by RT tasks, or might be boosted by
  725. * interactivity modifiers. Will be RT if the task got
  726. * RT-boosted. If not then it returns p->normal_prio.
  727. */
  728. static int effective_prio(struct task_struct *p)
  729. {
  730. p->normal_prio = normal_prio(p);
  731. /*
  732. * If we are RT tasks or we were boosted to RT priority,
  733. * keep the priority unchanged. Otherwise, update priority
  734. * to the normal priority:
  735. */
  736. if (!rt_prio(p->prio))
  737. return p->normal_prio;
  738. return p->prio;
  739. }
  740. /**
  741. * task_curr - is this task currently executing on a CPU?
  742. * @p: the task in question.
  743. */
  744. inline int task_curr(const struct task_struct *p)
  745. {
  746. return cpu_curr(task_cpu(p)) == p;
  747. }
  748. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  749. const struct sched_class *prev_class,
  750. int oldprio)
  751. {
  752. if (prev_class != p->sched_class) {
  753. if (prev_class->switched_from)
  754. prev_class->switched_from(rq, p);
  755. p->sched_class->switched_to(rq, p);
  756. } else if (oldprio != p->prio)
  757. p->sched_class->prio_changed(rq, p, oldprio);
  758. }
  759. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  760. {
  761. const struct sched_class *class;
  762. if (p->sched_class == rq->curr->sched_class) {
  763. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  764. } else {
  765. for_each_class(class) {
  766. if (class == rq->curr->sched_class)
  767. break;
  768. if (class == p->sched_class) {
  769. resched_task(rq->curr);
  770. break;
  771. }
  772. }
  773. }
  774. /*
  775. * A queue event has occurred, and we're going to schedule. In
  776. * this case, we can save a useless back to back clock update.
  777. */
  778. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  779. rq->skip_clock_update = 1;
  780. }
  781. #ifdef CONFIG_SMP
  782. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  783. {
  784. #ifdef CONFIG_SCHED_DEBUG
  785. /*
  786. * We should never call set_task_cpu() on a blocked task,
  787. * ttwu() will sort out the placement.
  788. */
  789. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  790. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  791. #ifdef CONFIG_LOCKDEP
  792. /*
  793. * The caller should hold either p->pi_lock or rq->lock, when changing
  794. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  795. *
  796. * sched_move_task() holds both and thus holding either pins the cgroup,
  797. * see task_group().
  798. *
  799. * Furthermore, all task_rq users should acquire both locks, see
  800. * task_rq_lock().
  801. */
  802. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  803. lockdep_is_held(&task_rq(p)->lock)));
  804. #endif
  805. #endif
  806. trace_sched_migrate_task(p, new_cpu);
  807. if (task_cpu(p) != new_cpu) {
  808. if (p->sched_class->migrate_task_rq)
  809. p->sched_class->migrate_task_rq(p, new_cpu);
  810. p->se.nr_migrations++;
  811. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  812. }
  813. __set_task_cpu(p, new_cpu);
  814. }
  815. struct migration_arg {
  816. struct task_struct *task;
  817. int dest_cpu;
  818. };
  819. static int migration_cpu_stop(void *data);
  820. /*
  821. * wait_task_inactive - wait for a thread to unschedule.
  822. *
  823. * If @match_state is nonzero, it's the @p->state value just checked and
  824. * not expected to change. If it changes, i.e. @p might have woken up,
  825. * then return zero. When we succeed in waiting for @p to be off its CPU,
  826. * we return a positive number (its total switch count). If a second call
  827. * a short while later returns the same number, the caller can be sure that
  828. * @p has remained unscheduled the whole time.
  829. *
  830. * The caller must ensure that the task *will* unschedule sometime soon,
  831. * else this function might spin for a *long* time. This function can't
  832. * be called with interrupts off, or it may introduce deadlock with
  833. * smp_call_function() if an IPI is sent by the same process we are
  834. * waiting to become inactive.
  835. */
  836. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  837. {
  838. unsigned long flags;
  839. int running, on_rq;
  840. unsigned long ncsw;
  841. struct rq *rq;
  842. for (;;) {
  843. /*
  844. * We do the initial early heuristics without holding
  845. * any task-queue locks at all. We'll only try to get
  846. * the runqueue lock when things look like they will
  847. * work out!
  848. */
  849. rq = task_rq(p);
  850. /*
  851. * If the task is actively running on another CPU
  852. * still, just relax and busy-wait without holding
  853. * any locks.
  854. *
  855. * NOTE! Since we don't hold any locks, it's not
  856. * even sure that "rq" stays as the right runqueue!
  857. * But we don't care, since "task_running()" will
  858. * return false if the runqueue has changed and p
  859. * is actually now running somewhere else!
  860. */
  861. while (task_running(rq, p)) {
  862. if (match_state && unlikely(p->state != match_state))
  863. return 0;
  864. cpu_relax();
  865. }
  866. /*
  867. * Ok, time to look more closely! We need the rq
  868. * lock now, to be *sure*. If we're wrong, we'll
  869. * just go back and repeat.
  870. */
  871. rq = task_rq_lock(p, &flags);
  872. trace_sched_wait_task(p);
  873. running = task_running(rq, p);
  874. on_rq = p->on_rq;
  875. ncsw = 0;
  876. if (!match_state || p->state == match_state)
  877. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  878. task_rq_unlock(rq, p, &flags);
  879. /*
  880. * If it changed from the expected state, bail out now.
  881. */
  882. if (unlikely(!ncsw))
  883. break;
  884. /*
  885. * Was it really running after all now that we
  886. * checked with the proper locks actually held?
  887. *
  888. * Oops. Go back and try again..
  889. */
  890. if (unlikely(running)) {
  891. cpu_relax();
  892. continue;
  893. }
  894. /*
  895. * It's not enough that it's not actively running,
  896. * it must be off the runqueue _entirely_, and not
  897. * preempted!
  898. *
  899. * So if it was still runnable (but just not actively
  900. * running right now), it's preempted, and we should
  901. * yield - it could be a while.
  902. */
  903. if (unlikely(on_rq)) {
  904. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  905. set_current_state(TASK_UNINTERRUPTIBLE);
  906. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  907. continue;
  908. }
  909. /*
  910. * Ahh, all good. It wasn't running, and it wasn't
  911. * runnable, which means that it will never become
  912. * running in the future either. We're all done!
  913. */
  914. break;
  915. }
  916. return ncsw;
  917. }
  918. /***
  919. * kick_process - kick a running thread to enter/exit the kernel
  920. * @p: the to-be-kicked thread
  921. *
  922. * Cause a process which is running on another CPU to enter
  923. * kernel-mode, without any delay. (to get signals handled.)
  924. *
  925. * NOTE: this function doesn't have to take the runqueue lock,
  926. * because all it wants to ensure is that the remote task enters
  927. * the kernel. If the IPI races and the task has been migrated
  928. * to another CPU then no harm is done and the purpose has been
  929. * achieved as well.
  930. */
  931. void kick_process(struct task_struct *p)
  932. {
  933. int cpu;
  934. preempt_disable();
  935. cpu = task_cpu(p);
  936. if ((cpu != smp_processor_id()) && task_curr(p))
  937. smp_send_reschedule(cpu);
  938. preempt_enable();
  939. }
  940. EXPORT_SYMBOL_GPL(kick_process);
  941. #endif /* CONFIG_SMP */
  942. #ifdef CONFIG_SMP
  943. /*
  944. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  945. */
  946. static int select_fallback_rq(int cpu, struct task_struct *p)
  947. {
  948. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  949. enum { cpuset, possible, fail } state = cpuset;
  950. int dest_cpu;
  951. /* Look for allowed, online CPU in same node. */
  952. for_each_cpu(dest_cpu, nodemask) {
  953. if (!cpu_online(dest_cpu))
  954. continue;
  955. if (!cpu_active(dest_cpu))
  956. continue;
  957. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  958. return dest_cpu;
  959. }
  960. for (;;) {
  961. /* Any allowed, online CPU? */
  962. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  963. if (!cpu_online(dest_cpu))
  964. continue;
  965. if (!cpu_active(dest_cpu))
  966. continue;
  967. goto out;
  968. }
  969. switch (state) {
  970. case cpuset:
  971. /* No more Mr. Nice Guy. */
  972. cpuset_cpus_allowed_fallback(p);
  973. state = possible;
  974. break;
  975. case possible:
  976. do_set_cpus_allowed(p, cpu_possible_mask);
  977. state = fail;
  978. break;
  979. case fail:
  980. BUG();
  981. break;
  982. }
  983. }
  984. out:
  985. if (state != cpuset) {
  986. /*
  987. * Don't tell them about moving exiting tasks or
  988. * kernel threads (both mm NULL), since they never
  989. * leave kernel.
  990. */
  991. if (p->mm && printk_ratelimit()) {
  992. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  993. task_pid_nr(p), p->comm, cpu);
  994. }
  995. }
  996. return dest_cpu;
  997. }
  998. /*
  999. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1000. */
  1001. static inline
  1002. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1003. {
  1004. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1005. /*
  1006. * In order not to call set_task_cpu() on a blocking task we need
  1007. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1008. * cpu.
  1009. *
  1010. * Since this is common to all placement strategies, this lives here.
  1011. *
  1012. * [ this allows ->select_task() to simply return task_cpu(p) and
  1013. * not worry about this generic constraint ]
  1014. */
  1015. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1016. !cpu_online(cpu)))
  1017. cpu = select_fallback_rq(task_cpu(p), p);
  1018. return cpu;
  1019. }
  1020. static void update_avg(u64 *avg, u64 sample)
  1021. {
  1022. s64 diff = sample - *avg;
  1023. *avg += diff >> 3;
  1024. }
  1025. #endif
  1026. static void
  1027. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1028. {
  1029. #ifdef CONFIG_SCHEDSTATS
  1030. struct rq *rq = this_rq();
  1031. #ifdef CONFIG_SMP
  1032. int this_cpu = smp_processor_id();
  1033. if (cpu == this_cpu) {
  1034. schedstat_inc(rq, ttwu_local);
  1035. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1036. } else {
  1037. struct sched_domain *sd;
  1038. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1039. rcu_read_lock();
  1040. for_each_domain(this_cpu, sd) {
  1041. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1042. schedstat_inc(sd, ttwu_wake_remote);
  1043. break;
  1044. }
  1045. }
  1046. rcu_read_unlock();
  1047. }
  1048. if (wake_flags & WF_MIGRATED)
  1049. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1050. #endif /* CONFIG_SMP */
  1051. schedstat_inc(rq, ttwu_count);
  1052. schedstat_inc(p, se.statistics.nr_wakeups);
  1053. if (wake_flags & WF_SYNC)
  1054. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1055. #endif /* CONFIG_SCHEDSTATS */
  1056. }
  1057. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1058. {
  1059. activate_task(rq, p, en_flags);
  1060. p->on_rq = 1;
  1061. /* if a worker is waking up, notify workqueue */
  1062. if (p->flags & PF_WQ_WORKER)
  1063. wq_worker_waking_up(p, cpu_of(rq));
  1064. }
  1065. /*
  1066. * Mark the task runnable and perform wakeup-preemption.
  1067. */
  1068. static void
  1069. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1070. {
  1071. trace_sched_wakeup(p, true);
  1072. check_preempt_curr(rq, p, wake_flags);
  1073. p->state = TASK_RUNNING;
  1074. #ifdef CONFIG_SMP
  1075. if (p->sched_class->task_woken)
  1076. p->sched_class->task_woken(rq, p);
  1077. if (rq->idle_stamp) {
  1078. u64 delta = rq->clock - rq->idle_stamp;
  1079. u64 max = 2*sysctl_sched_migration_cost;
  1080. if (delta > max)
  1081. rq->avg_idle = max;
  1082. else
  1083. update_avg(&rq->avg_idle, delta);
  1084. rq->idle_stamp = 0;
  1085. }
  1086. #endif
  1087. }
  1088. static void
  1089. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1090. {
  1091. #ifdef CONFIG_SMP
  1092. if (p->sched_contributes_to_load)
  1093. rq->nr_uninterruptible--;
  1094. #endif
  1095. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1096. ttwu_do_wakeup(rq, p, wake_flags);
  1097. }
  1098. /*
  1099. * Called in case the task @p isn't fully descheduled from its runqueue,
  1100. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1101. * since all we need to do is flip p->state to TASK_RUNNING, since
  1102. * the task is still ->on_rq.
  1103. */
  1104. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1105. {
  1106. struct rq *rq;
  1107. int ret = 0;
  1108. rq = __task_rq_lock(p);
  1109. if (p->on_rq) {
  1110. ttwu_do_wakeup(rq, p, wake_flags);
  1111. ret = 1;
  1112. }
  1113. __task_rq_unlock(rq);
  1114. return ret;
  1115. }
  1116. #ifdef CONFIG_SMP
  1117. static void sched_ttwu_pending(void)
  1118. {
  1119. struct rq *rq = this_rq();
  1120. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1121. struct task_struct *p;
  1122. raw_spin_lock(&rq->lock);
  1123. while (llist) {
  1124. p = llist_entry(llist, struct task_struct, wake_entry);
  1125. llist = llist_next(llist);
  1126. ttwu_do_activate(rq, p, 0);
  1127. }
  1128. raw_spin_unlock(&rq->lock);
  1129. }
  1130. void scheduler_ipi(void)
  1131. {
  1132. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1133. return;
  1134. /*
  1135. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1136. * traditionally all their work was done from the interrupt return
  1137. * path. Now that we actually do some work, we need to make sure
  1138. * we do call them.
  1139. *
  1140. * Some archs already do call them, luckily irq_enter/exit nest
  1141. * properly.
  1142. *
  1143. * Arguably we should visit all archs and update all handlers,
  1144. * however a fair share of IPIs are still resched only so this would
  1145. * somewhat pessimize the simple resched case.
  1146. */
  1147. irq_enter();
  1148. sched_ttwu_pending();
  1149. /*
  1150. * Check if someone kicked us for doing the nohz idle load balance.
  1151. */
  1152. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1153. this_rq()->idle_balance = 1;
  1154. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1155. }
  1156. irq_exit();
  1157. }
  1158. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1159. {
  1160. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1161. smp_send_reschedule(cpu);
  1162. }
  1163. bool cpus_share_cache(int this_cpu, int that_cpu)
  1164. {
  1165. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1166. }
  1167. #endif /* CONFIG_SMP */
  1168. static void ttwu_queue(struct task_struct *p, int cpu)
  1169. {
  1170. struct rq *rq = cpu_rq(cpu);
  1171. #if defined(CONFIG_SMP)
  1172. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1173. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1174. ttwu_queue_remote(p, cpu);
  1175. return;
  1176. }
  1177. #endif
  1178. raw_spin_lock(&rq->lock);
  1179. ttwu_do_activate(rq, p, 0);
  1180. raw_spin_unlock(&rq->lock);
  1181. }
  1182. /**
  1183. * try_to_wake_up - wake up a thread
  1184. * @p: the thread to be awakened
  1185. * @state: the mask of task states that can be woken
  1186. * @wake_flags: wake modifier flags (WF_*)
  1187. *
  1188. * Put it on the run-queue if it's not already there. The "current"
  1189. * thread is always on the run-queue (except when the actual
  1190. * re-schedule is in progress), and as such you're allowed to do
  1191. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1192. * runnable without the overhead of this.
  1193. *
  1194. * Returns %true if @p was woken up, %false if it was already running
  1195. * or @state didn't match @p's state.
  1196. */
  1197. static int
  1198. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1199. {
  1200. unsigned long flags;
  1201. int cpu, success = 0;
  1202. smp_wmb();
  1203. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1204. if (!(p->state & state))
  1205. goto out;
  1206. success = 1; /* we're going to change ->state */
  1207. cpu = task_cpu(p);
  1208. if (p->on_rq && ttwu_remote(p, wake_flags))
  1209. goto stat;
  1210. #ifdef CONFIG_SMP
  1211. /*
  1212. * If the owning (remote) cpu is still in the middle of schedule() with
  1213. * this task as prev, wait until its done referencing the task.
  1214. */
  1215. while (p->on_cpu)
  1216. cpu_relax();
  1217. /*
  1218. * Pairs with the smp_wmb() in finish_lock_switch().
  1219. */
  1220. smp_rmb();
  1221. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1222. p->state = TASK_WAKING;
  1223. if (p->sched_class->task_waking)
  1224. p->sched_class->task_waking(p);
  1225. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1226. if (task_cpu(p) != cpu) {
  1227. wake_flags |= WF_MIGRATED;
  1228. set_task_cpu(p, cpu);
  1229. }
  1230. #endif /* CONFIG_SMP */
  1231. ttwu_queue(p, cpu);
  1232. stat:
  1233. ttwu_stat(p, cpu, wake_flags);
  1234. out:
  1235. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1236. return success;
  1237. }
  1238. /**
  1239. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1240. * @p: the thread to be awakened
  1241. *
  1242. * Put @p on the run-queue if it's not already there. The caller must
  1243. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1244. * the current task.
  1245. */
  1246. static void try_to_wake_up_local(struct task_struct *p)
  1247. {
  1248. struct rq *rq = task_rq(p);
  1249. BUG_ON(rq != this_rq());
  1250. BUG_ON(p == current);
  1251. lockdep_assert_held(&rq->lock);
  1252. if (!raw_spin_trylock(&p->pi_lock)) {
  1253. raw_spin_unlock(&rq->lock);
  1254. raw_spin_lock(&p->pi_lock);
  1255. raw_spin_lock(&rq->lock);
  1256. }
  1257. if (!(p->state & TASK_NORMAL))
  1258. goto out;
  1259. if (!p->on_rq)
  1260. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1261. ttwu_do_wakeup(rq, p, 0);
  1262. ttwu_stat(p, smp_processor_id(), 0);
  1263. out:
  1264. raw_spin_unlock(&p->pi_lock);
  1265. }
  1266. /**
  1267. * wake_up_process - Wake up a specific process
  1268. * @p: The process to be woken up.
  1269. *
  1270. * Attempt to wake up the nominated process and move it to the set of runnable
  1271. * processes. Returns 1 if the process was woken up, 0 if it was already
  1272. * running.
  1273. *
  1274. * It may be assumed that this function implies a write memory barrier before
  1275. * changing the task state if and only if any tasks are woken up.
  1276. */
  1277. int wake_up_process(struct task_struct *p)
  1278. {
  1279. return try_to_wake_up(p, TASK_ALL, 0);
  1280. }
  1281. EXPORT_SYMBOL(wake_up_process);
  1282. int wake_up_state(struct task_struct *p, unsigned int state)
  1283. {
  1284. return try_to_wake_up(p, state, 0);
  1285. }
  1286. /*
  1287. * Perform scheduler related setup for a newly forked process p.
  1288. * p is forked by current.
  1289. *
  1290. * __sched_fork() is basic setup used by init_idle() too:
  1291. */
  1292. static void __sched_fork(struct task_struct *p)
  1293. {
  1294. p->on_rq = 0;
  1295. p->se.on_rq = 0;
  1296. p->se.exec_start = 0;
  1297. p->se.sum_exec_runtime = 0;
  1298. p->se.prev_sum_exec_runtime = 0;
  1299. p->se.nr_migrations = 0;
  1300. p->se.vruntime = 0;
  1301. INIT_LIST_HEAD(&p->se.group_node);
  1302. #ifdef CONFIG_SMP
  1303. p->se.avg.runnable_avg_period = 0;
  1304. p->se.avg.runnable_avg_sum = 0;
  1305. #endif
  1306. #ifdef CONFIG_SCHEDSTATS
  1307. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1308. #endif
  1309. INIT_LIST_HEAD(&p->rt.run_list);
  1310. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1311. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1312. #endif
  1313. }
  1314. /*
  1315. * fork()/clone()-time setup:
  1316. */
  1317. void sched_fork(struct task_struct *p)
  1318. {
  1319. unsigned long flags;
  1320. int cpu = get_cpu();
  1321. __sched_fork(p);
  1322. /*
  1323. * We mark the process as running here. This guarantees that
  1324. * nobody will actually run it, and a signal or other external
  1325. * event cannot wake it up and insert it on the runqueue either.
  1326. */
  1327. p->state = TASK_RUNNING;
  1328. /*
  1329. * Make sure we do not leak PI boosting priority to the child.
  1330. */
  1331. p->prio = current->normal_prio;
  1332. /*
  1333. * Revert to default priority/policy on fork if requested.
  1334. */
  1335. if (unlikely(p->sched_reset_on_fork)) {
  1336. if (task_has_rt_policy(p)) {
  1337. p->policy = SCHED_NORMAL;
  1338. p->static_prio = NICE_TO_PRIO(0);
  1339. p->rt_priority = 0;
  1340. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1341. p->static_prio = NICE_TO_PRIO(0);
  1342. p->prio = p->normal_prio = __normal_prio(p);
  1343. set_load_weight(p);
  1344. /*
  1345. * We don't need the reset flag anymore after the fork. It has
  1346. * fulfilled its duty:
  1347. */
  1348. p->sched_reset_on_fork = 0;
  1349. }
  1350. if (!rt_prio(p->prio))
  1351. p->sched_class = &fair_sched_class;
  1352. if (p->sched_class->task_fork)
  1353. p->sched_class->task_fork(p);
  1354. /*
  1355. * The child is not yet in the pid-hash so no cgroup attach races,
  1356. * and the cgroup is pinned to this child due to cgroup_fork()
  1357. * is ran before sched_fork().
  1358. *
  1359. * Silence PROVE_RCU.
  1360. */
  1361. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1362. set_task_cpu(p, cpu);
  1363. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1364. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1365. if (likely(sched_info_on()))
  1366. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1367. #endif
  1368. #if defined(CONFIG_SMP)
  1369. p->on_cpu = 0;
  1370. #endif
  1371. #ifdef CONFIG_PREEMPT_COUNT
  1372. /* Want to start with kernel preemption disabled. */
  1373. task_thread_info(p)->preempt_count = 1;
  1374. #endif
  1375. #ifdef CONFIG_SMP
  1376. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1377. #endif
  1378. put_cpu();
  1379. }
  1380. /*
  1381. * wake_up_new_task - wake up a newly created task for the first time.
  1382. *
  1383. * This function will do some initial scheduler statistics housekeeping
  1384. * that must be done for every newly created context, then puts the task
  1385. * on the runqueue and wakes it.
  1386. */
  1387. void wake_up_new_task(struct task_struct *p)
  1388. {
  1389. unsigned long flags;
  1390. struct rq *rq;
  1391. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1392. #ifdef CONFIG_SMP
  1393. /*
  1394. * Fork balancing, do it here and not earlier because:
  1395. * - cpus_allowed can change in the fork path
  1396. * - any previously selected cpu might disappear through hotplug
  1397. */
  1398. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1399. #endif
  1400. rq = __task_rq_lock(p);
  1401. activate_task(rq, p, 0);
  1402. p->on_rq = 1;
  1403. trace_sched_wakeup_new(p, true);
  1404. check_preempt_curr(rq, p, WF_FORK);
  1405. #ifdef CONFIG_SMP
  1406. if (p->sched_class->task_woken)
  1407. p->sched_class->task_woken(rq, p);
  1408. #endif
  1409. task_rq_unlock(rq, p, &flags);
  1410. }
  1411. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1412. /**
  1413. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1414. * @notifier: notifier struct to register
  1415. */
  1416. void preempt_notifier_register(struct preempt_notifier *notifier)
  1417. {
  1418. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1419. }
  1420. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1421. /**
  1422. * preempt_notifier_unregister - no longer interested in preemption notifications
  1423. * @notifier: notifier struct to unregister
  1424. *
  1425. * This is safe to call from within a preemption notifier.
  1426. */
  1427. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1428. {
  1429. hlist_del(&notifier->link);
  1430. }
  1431. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1432. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1433. {
  1434. struct preempt_notifier *notifier;
  1435. struct hlist_node *node;
  1436. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1437. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1438. }
  1439. static void
  1440. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1441. struct task_struct *next)
  1442. {
  1443. struct preempt_notifier *notifier;
  1444. struct hlist_node *node;
  1445. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1446. notifier->ops->sched_out(notifier, next);
  1447. }
  1448. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1449. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1450. {
  1451. }
  1452. static void
  1453. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1454. struct task_struct *next)
  1455. {
  1456. }
  1457. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1458. /**
  1459. * prepare_task_switch - prepare to switch tasks
  1460. * @rq: the runqueue preparing to switch
  1461. * @prev: the current task that is being switched out
  1462. * @next: the task we are going to switch to.
  1463. *
  1464. * This is called with the rq lock held and interrupts off. It must
  1465. * be paired with a subsequent finish_task_switch after the context
  1466. * switch.
  1467. *
  1468. * prepare_task_switch sets up locking and calls architecture specific
  1469. * hooks.
  1470. */
  1471. static inline void
  1472. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1473. struct task_struct *next)
  1474. {
  1475. trace_sched_switch(prev, next);
  1476. sched_info_switch(prev, next);
  1477. perf_event_task_sched_out(prev, next);
  1478. fire_sched_out_preempt_notifiers(prev, next);
  1479. prepare_lock_switch(rq, next);
  1480. prepare_arch_switch(next);
  1481. }
  1482. /**
  1483. * finish_task_switch - clean up after a task-switch
  1484. * @rq: runqueue associated with task-switch
  1485. * @prev: the thread we just switched away from.
  1486. *
  1487. * finish_task_switch must be called after the context switch, paired
  1488. * with a prepare_task_switch call before the context switch.
  1489. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1490. * and do any other architecture-specific cleanup actions.
  1491. *
  1492. * Note that we may have delayed dropping an mm in context_switch(). If
  1493. * so, we finish that here outside of the runqueue lock. (Doing it
  1494. * with the lock held can cause deadlocks; see schedule() for
  1495. * details.)
  1496. */
  1497. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1498. __releases(rq->lock)
  1499. {
  1500. struct mm_struct *mm = rq->prev_mm;
  1501. long prev_state;
  1502. rq->prev_mm = NULL;
  1503. /*
  1504. * A task struct has one reference for the use as "current".
  1505. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1506. * schedule one last time. The schedule call will never return, and
  1507. * the scheduled task must drop that reference.
  1508. * The test for TASK_DEAD must occur while the runqueue locks are
  1509. * still held, otherwise prev could be scheduled on another cpu, die
  1510. * there before we look at prev->state, and then the reference would
  1511. * be dropped twice.
  1512. * Manfred Spraul <manfred@colorfullife.com>
  1513. */
  1514. prev_state = prev->state;
  1515. vtime_task_switch(prev);
  1516. finish_arch_switch(prev);
  1517. perf_event_task_sched_in(prev, current);
  1518. finish_lock_switch(rq, prev);
  1519. finish_arch_post_lock_switch();
  1520. fire_sched_in_preempt_notifiers(current);
  1521. if (mm)
  1522. mmdrop(mm);
  1523. if (unlikely(prev_state == TASK_DEAD)) {
  1524. /*
  1525. * Remove function-return probe instances associated with this
  1526. * task and put them back on the free list.
  1527. */
  1528. kprobe_flush_task(prev);
  1529. put_task_struct(prev);
  1530. }
  1531. }
  1532. #ifdef CONFIG_SMP
  1533. /* assumes rq->lock is held */
  1534. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1535. {
  1536. if (prev->sched_class->pre_schedule)
  1537. prev->sched_class->pre_schedule(rq, prev);
  1538. }
  1539. /* rq->lock is NOT held, but preemption is disabled */
  1540. static inline void post_schedule(struct rq *rq)
  1541. {
  1542. if (rq->post_schedule) {
  1543. unsigned long flags;
  1544. raw_spin_lock_irqsave(&rq->lock, flags);
  1545. if (rq->curr->sched_class->post_schedule)
  1546. rq->curr->sched_class->post_schedule(rq);
  1547. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1548. rq->post_schedule = 0;
  1549. }
  1550. }
  1551. #else
  1552. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1553. {
  1554. }
  1555. static inline void post_schedule(struct rq *rq)
  1556. {
  1557. }
  1558. #endif
  1559. /**
  1560. * schedule_tail - first thing a freshly forked thread must call.
  1561. * @prev: the thread we just switched away from.
  1562. */
  1563. asmlinkage void schedule_tail(struct task_struct *prev)
  1564. __releases(rq->lock)
  1565. {
  1566. struct rq *rq = this_rq();
  1567. finish_task_switch(rq, prev);
  1568. /*
  1569. * FIXME: do we need to worry about rq being invalidated by the
  1570. * task_switch?
  1571. */
  1572. post_schedule(rq);
  1573. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1574. /* In this case, finish_task_switch does not reenable preemption */
  1575. preempt_enable();
  1576. #endif
  1577. if (current->set_child_tid)
  1578. put_user(task_pid_vnr(current), current->set_child_tid);
  1579. }
  1580. /*
  1581. * context_switch - switch to the new MM and the new
  1582. * thread's register state.
  1583. */
  1584. static inline void
  1585. context_switch(struct rq *rq, struct task_struct *prev,
  1586. struct task_struct *next)
  1587. {
  1588. struct mm_struct *mm, *oldmm;
  1589. prepare_task_switch(rq, prev, next);
  1590. mm = next->mm;
  1591. oldmm = prev->active_mm;
  1592. /*
  1593. * For paravirt, this is coupled with an exit in switch_to to
  1594. * combine the page table reload and the switch backend into
  1595. * one hypercall.
  1596. */
  1597. arch_start_context_switch(prev);
  1598. if (!mm) {
  1599. next->active_mm = oldmm;
  1600. atomic_inc(&oldmm->mm_count);
  1601. enter_lazy_tlb(oldmm, next);
  1602. } else
  1603. switch_mm(oldmm, mm, next);
  1604. if (!prev->mm) {
  1605. prev->active_mm = NULL;
  1606. rq->prev_mm = oldmm;
  1607. }
  1608. /*
  1609. * Since the runqueue lock will be released by the next
  1610. * task (which is an invalid locking op but in the case
  1611. * of the scheduler it's an obvious special-case), so we
  1612. * do an early lockdep release here:
  1613. */
  1614. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1615. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1616. #endif
  1617. /* Here we just switch the register state and the stack. */
  1618. rcu_switch(prev, next);
  1619. switch_to(prev, next, prev);
  1620. barrier();
  1621. /*
  1622. * this_rq must be evaluated again because prev may have moved
  1623. * CPUs since it called schedule(), thus the 'rq' on its stack
  1624. * frame will be invalid.
  1625. */
  1626. finish_task_switch(this_rq(), prev);
  1627. }
  1628. /*
  1629. * nr_running, nr_uninterruptible and nr_context_switches:
  1630. *
  1631. * externally visible scheduler statistics: current number of runnable
  1632. * threads, current number of uninterruptible-sleeping threads, total
  1633. * number of context switches performed since bootup.
  1634. */
  1635. unsigned long nr_running(void)
  1636. {
  1637. unsigned long i, sum = 0;
  1638. for_each_online_cpu(i)
  1639. sum += cpu_rq(i)->nr_running;
  1640. return sum;
  1641. }
  1642. unsigned long nr_uninterruptible(void)
  1643. {
  1644. unsigned long i, sum = 0;
  1645. for_each_possible_cpu(i)
  1646. sum += cpu_rq(i)->nr_uninterruptible;
  1647. /*
  1648. * Since we read the counters lockless, it might be slightly
  1649. * inaccurate. Do not allow it to go below zero though:
  1650. */
  1651. if (unlikely((long)sum < 0))
  1652. sum = 0;
  1653. return sum;
  1654. }
  1655. unsigned long long nr_context_switches(void)
  1656. {
  1657. int i;
  1658. unsigned long long sum = 0;
  1659. for_each_possible_cpu(i)
  1660. sum += cpu_rq(i)->nr_switches;
  1661. return sum;
  1662. }
  1663. unsigned long nr_iowait(void)
  1664. {
  1665. unsigned long i, sum = 0;
  1666. for_each_possible_cpu(i)
  1667. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1668. return sum;
  1669. }
  1670. unsigned long nr_iowait_cpu(int cpu)
  1671. {
  1672. struct rq *this = cpu_rq(cpu);
  1673. return atomic_read(&this->nr_iowait);
  1674. }
  1675. unsigned long this_cpu_load(void)
  1676. {
  1677. struct rq *this = this_rq();
  1678. return this->cpu_load[0];
  1679. }
  1680. /*
  1681. * Global load-average calculations
  1682. *
  1683. * We take a distributed and async approach to calculating the global load-avg
  1684. * in order to minimize overhead.
  1685. *
  1686. * The global load average is an exponentially decaying average of nr_running +
  1687. * nr_uninterruptible.
  1688. *
  1689. * Once every LOAD_FREQ:
  1690. *
  1691. * nr_active = 0;
  1692. * for_each_possible_cpu(cpu)
  1693. * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  1694. *
  1695. * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  1696. *
  1697. * Due to a number of reasons the above turns in the mess below:
  1698. *
  1699. * - for_each_possible_cpu() is prohibitively expensive on machines with
  1700. * serious number of cpus, therefore we need to take a distributed approach
  1701. * to calculating nr_active.
  1702. *
  1703. * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  1704. * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  1705. *
  1706. * So assuming nr_active := 0 when we start out -- true per definition, we
  1707. * can simply take per-cpu deltas and fold those into a global accumulate
  1708. * to obtain the same result. See calc_load_fold_active().
  1709. *
  1710. * Furthermore, in order to avoid synchronizing all per-cpu delta folding
  1711. * across the machine, we assume 10 ticks is sufficient time for every
  1712. * cpu to have completed this task.
  1713. *
  1714. * This places an upper-bound on the IRQ-off latency of the machine. Then
  1715. * again, being late doesn't loose the delta, just wrecks the sample.
  1716. *
  1717. * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  1718. * this would add another cross-cpu cacheline miss and atomic operation
  1719. * to the wakeup path. Instead we increment on whatever cpu the task ran
  1720. * when it went into uninterruptible state and decrement on whatever cpu
  1721. * did the wakeup. This means that only the sum of nr_uninterruptible over
  1722. * all cpus yields the correct result.
  1723. *
  1724. * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  1725. */
  1726. /* Variables and functions for calc_load */
  1727. static atomic_long_t calc_load_tasks;
  1728. static unsigned long calc_load_update;
  1729. unsigned long avenrun[3];
  1730. EXPORT_SYMBOL(avenrun); /* should be removed */
  1731. /**
  1732. * get_avenrun - get the load average array
  1733. * @loads: pointer to dest load array
  1734. * @offset: offset to add
  1735. * @shift: shift count to shift the result left
  1736. *
  1737. * These values are estimates at best, so no need for locking.
  1738. */
  1739. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1740. {
  1741. loads[0] = (avenrun[0] + offset) << shift;
  1742. loads[1] = (avenrun[1] + offset) << shift;
  1743. loads[2] = (avenrun[2] + offset) << shift;
  1744. }
  1745. static long calc_load_fold_active(struct rq *this_rq)
  1746. {
  1747. long nr_active, delta = 0;
  1748. nr_active = this_rq->nr_running;
  1749. nr_active += (long) this_rq->nr_uninterruptible;
  1750. if (nr_active != this_rq->calc_load_active) {
  1751. delta = nr_active - this_rq->calc_load_active;
  1752. this_rq->calc_load_active = nr_active;
  1753. }
  1754. return delta;
  1755. }
  1756. /*
  1757. * a1 = a0 * e + a * (1 - e)
  1758. */
  1759. static unsigned long
  1760. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1761. {
  1762. load *= exp;
  1763. load += active * (FIXED_1 - exp);
  1764. load += 1UL << (FSHIFT - 1);
  1765. return load >> FSHIFT;
  1766. }
  1767. #ifdef CONFIG_NO_HZ
  1768. /*
  1769. * Handle NO_HZ for the global load-average.
  1770. *
  1771. * Since the above described distributed algorithm to compute the global
  1772. * load-average relies on per-cpu sampling from the tick, it is affected by
  1773. * NO_HZ.
  1774. *
  1775. * The basic idea is to fold the nr_active delta into a global idle-delta upon
  1776. * entering NO_HZ state such that we can include this as an 'extra' cpu delta
  1777. * when we read the global state.
  1778. *
  1779. * Obviously reality has to ruin such a delightfully simple scheme:
  1780. *
  1781. * - When we go NO_HZ idle during the window, we can negate our sample
  1782. * contribution, causing under-accounting.
  1783. *
  1784. * We avoid this by keeping two idle-delta counters and flipping them
  1785. * when the window starts, thus separating old and new NO_HZ load.
  1786. *
  1787. * The only trick is the slight shift in index flip for read vs write.
  1788. *
  1789. * 0s 5s 10s 15s
  1790. * +10 +10 +10 +10
  1791. * |-|-----------|-|-----------|-|-----------|-|
  1792. * r:0 0 1 1 0 0 1 1 0
  1793. * w:0 1 1 0 0 1 1 0 0
  1794. *
  1795. * This ensures we'll fold the old idle contribution in this window while
  1796. * accumlating the new one.
  1797. *
  1798. * - When we wake up from NO_HZ idle during the window, we push up our
  1799. * contribution, since we effectively move our sample point to a known
  1800. * busy state.
  1801. *
  1802. * This is solved by pushing the window forward, and thus skipping the
  1803. * sample, for this cpu (effectively using the idle-delta for this cpu which
  1804. * was in effect at the time the window opened). This also solves the issue
  1805. * of having to deal with a cpu having been in NOHZ idle for multiple
  1806. * LOAD_FREQ intervals.
  1807. *
  1808. * When making the ILB scale, we should try to pull this in as well.
  1809. */
  1810. static atomic_long_t calc_load_idle[2];
  1811. static int calc_load_idx;
  1812. static inline int calc_load_write_idx(void)
  1813. {
  1814. int idx = calc_load_idx;
  1815. /*
  1816. * See calc_global_nohz(), if we observe the new index, we also
  1817. * need to observe the new update time.
  1818. */
  1819. smp_rmb();
  1820. /*
  1821. * If the folding window started, make sure we start writing in the
  1822. * next idle-delta.
  1823. */
  1824. if (!time_before(jiffies, calc_load_update))
  1825. idx++;
  1826. return idx & 1;
  1827. }
  1828. static inline int calc_load_read_idx(void)
  1829. {
  1830. return calc_load_idx & 1;
  1831. }
  1832. void calc_load_enter_idle(void)
  1833. {
  1834. struct rq *this_rq = this_rq();
  1835. long delta;
  1836. /*
  1837. * We're going into NOHZ mode, if there's any pending delta, fold it
  1838. * into the pending idle delta.
  1839. */
  1840. delta = calc_load_fold_active(this_rq);
  1841. if (delta) {
  1842. int idx = calc_load_write_idx();
  1843. atomic_long_add(delta, &calc_load_idle[idx]);
  1844. }
  1845. }
  1846. void calc_load_exit_idle(void)
  1847. {
  1848. struct rq *this_rq = this_rq();
  1849. /*
  1850. * If we're still before the sample window, we're done.
  1851. */
  1852. if (time_before(jiffies, this_rq->calc_load_update))
  1853. return;
  1854. /*
  1855. * We woke inside or after the sample window, this means we're already
  1856. * accounted through the nohz accounting, so skip the entire deal and
  1857. * sync up for the next window.
  1858. */
  1859. this_rq->calc_load_update = calc_load_update;
  1860. if (time_before(jiffies, this_rq->calc_load_update + 10))
  1861. this_rq->calc_load_update += LOAD_FREQ;
  1862. }
  1863. static long calc_load_fold_idle(void)
  1864. {
  1865. int idx = calc_load_read_idx();
  1866. long delta = 0;
  1867. if (atomic_long_read(&calc_load_idle[idx]))
  1868. delta = atomic_long_xchg(&calc_load_idle[idx], 0);
  1869. return delta;
  1870. }
  1871. /**
  1872. * fixed_power_int - compute: x^n, in O(log n) time
  1873. *
  1874. * @x: base of the power
  1875. * @frac_bits: fractional bits of @x
  1876. * @n: power to raise @x to.
  1877. *
  1878. * By exploiting the relation between the definition of the natural power
  1879. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1880. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1881. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1882. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1883. * of course trivially computable in O(log_2 n), the length of our binary
  1884. * vector.
  1885. */
  1886. static unsigned long
  1887. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1888. {
  1889. unsigned long result = 1UL << frac_bits;
  1890. if (n) for (;;) {
  1891. if (n & 1) {
  1892. result *= x;
  1893. result += 1UL << (frac_bits - 1);
  1894. result >>= frac_bits;
  1895. }
  1896. n >>= 1;
  1897. if (!n)
  1898. break;
  1899. x *= x;
  1900. x += 1UL << (frac_bits - 1);
  1901. x >>= frac_bits;
  1902. }
  1903. return result;
  1904. }
  1905. /*
  1906. * a1 = a0 * e + a * (1 - e)
  1907. *
  1908. * a2 = a1 * e + a * (1 - e)
  1909. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1910. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1911. *
  1912. * a3 = a2 * e + a * (1 - e)
  1913. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1914. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1915. *
  1916. * ...
  1917. *
  1918. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1919. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1920. * = a0 * e^n + a * (1 - e^n)
  1921. *
  1922. * [1] application of the geometric series:
  1923. *
  1924. * n 1 - x^(n+1)
  1925. * S_n := \Sum x^i = -------------
  1926. * i=0 1 - x
  1927. */
  1928. static unsigned long
  1929. calc_load_n(unsigned long load, unsigned long exp,
  1930. unsigned long active, unsigned int n)
  1931. {
  1932. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1933. }
  1934. /*
  1935. * NO_HZ can leave us missing all per-cpu ticks calling
  1936. * calc_load_account_active(), but since an idle CPU folds its delta into
  1937. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1938. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1939. *
  1940. * Once we've updated the global active value, we need to apply the exponential
  1941. * weights adjusted to the number of cycles missed.
  1942. */
  1943. static void calc_global_nohz(void)
  1944. {
  1945. long delta, active, n;
  1946. if (!time_before(jiffies, calc_load_update + 10)) {
  1947. /*
  1948. * Catch-up, fold however many we are behind still
  1949. */
  1950. delta = jiffies - calc_load_update - 10;
  1951. n = 1 + (delta / LOAD_FREQ);
  1952. active = atomic_long_read(&calc_load_tasks);
  1953. active = active > 0 ? active * FIXED_1 : 0;
  1954. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1955. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1956. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1957. calc_load_update += n * LOAD_FREQ;
  1958. }
  1959. /*
  1960. * Flip the idle index...
  1961. *
  1962. * Make sure we first write the new time then flip the index, so that
  1963. * calc_load_write_idx() will see the new time when it reads the new
  1964. * index, this avoids a double flip messing things up.
  1965. */
  1966. smp_wmb();
  1967. calc_load_idx++;
  1968. }
  1969. #else /* !CONFIG_NO_HZ */
  1970. static inline long calc_load_fold_idle(void) { return 0; }
  1971. static inline void calc_global_nohz(void) { }
  1972. #endif /* CONFIG_NO_HZ */
  1973. /*
  1974. * calc_load - update the avenrun load estimates 10 ticks after the
  1975. * CPUs have updated calc_load_tasks.
  1976. */
  1977. void calc_global_load(unsigned long ticks)
  1978. {
  1979. long active, delta;
  1980. if (time_before(jiffies, calc_load_update + 10))
  1981. return;
  1982. /*
  1983. * Fold the 'old' idle-delta to include all NO_HZ cpus.
  1984. */
  1985. delta = calc_load_fold_idle();
  1986. if (delta)
  1987. atomic_long_add(delta, &calc_load_tasks);
  1988. active = atomic_long_read(&calc_load_tasks);
  1989. active = active > 0 ? active * FIXED_1 : 0;
  1990. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  1991. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  1992. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  1993. calc_load_update += LOAD_FREQ;
  1994. /*
  1995. * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
  1996. */
  1997. calc_global_nohz();
  1998. }
  1999. /*
  2000. * Called from update_cpu_load() to periodically update this CPU's
  2001. * active count.
  2002. */
  2003. static void calc_load_account_active(struct rq *this_rq)
  2004. {
  2005. long delta;
  2006. if (time_before(jiffies, this_rq->calc_load_update))
  2007. return;
  2008. delta = calc_load_fold_active(this_rq);
  2009. if (delta)
  2010. atomic_long_add(delta, &calc_load_tasks);
  2011. this_rq->calc_load_update += LOAD_FREQ;
  2012. }
  2013. /*
  2014. * End of global load-average stuff
  2015. */
  2016. /*
  2017. * The exact cpuload at various idx values, calculated at every tick would be
  2018. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2019. *
  2020. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2021. * on nth tick when cpu may be busy, then we have:
  2022. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2023. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2024. *
  2025. * decay_load_missed() below does efficient calculation of
  2026. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2027. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2028. *
  2029. * The calculation is approximated on a 128 point scale.
  2030. * degrade_zero_ticks is the number of ticks after which load at any
  2031. * particular idx is approximated to be zero.
  2032. * degrade_factor is a precomputed table, a row for each load idx.
  2033. * Each column corresponds to degradation factor for a power of two ticks,
  2034. * based on 128 point scale.
  2035. * Example:
  2036. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2037. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2038. *
  2039. * With this power of 2 load factors, we can degrade the load n times
  2040. * by looking at 1 bits in n and doing as many mult/shift instead of
  2041. * n mult/shifts needed by the exact degradation.
  2042. */
  2043. #define DEGRADE_SHIFT 7
  2044. static const unsigned char
  2045. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2046. static const unsigned char
  2047. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2048. {0, 0, 0, 0, 0, 0, 0, 0},
  2049. {64, 32, 8, 0, 0, 0, 0, 0},
  2050. {96, 72, 40, 12, 1, 0, 0},
  2051. {112, 98, 75, 43, 15, 1, 0},
  2052. {120, 112, 98, 76, 45, 16, 2} };
  2053. /*
  2054. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2055. * would be when CPU is idle and so we just decay the old load without
  2056. * adding any new load.
  2057. */
  2058. static unsigned long
  2059. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2060. {
  2061. int j = 0;
  2062. if (!missed_updates)
  2063. return load;
  2064. if (missed_updates >= degrade_zero_ticks[idx])
  2065. return 0;
  2066. if (idx == 1)
  2067. return load >> missed_updates;
  2068. while (missed_updates) {
  2069. if (missed_updates % 2)
  2070. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2071. missed_updates >>= 1;
  2072. j++;
  2073. }
  2074. return load;
  2075. }
  2076. /*
  2077. * Update rq->cpu_load[] statistics. This function is usually called every
  2078. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2079. * every tick. We fix it up based on jiffies.
  2080. */
  2081. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2082. unsigned long pending_updates)
  2083. {
  2084. int i, scale;
  2085. this_rq->nr_load_updates++;
  2086. /* Update our load: */
  2087. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2088. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2089. unsigned long old_load, new_load;
  2090. /* scale is effectively 1 << i now, and >> i divides by scale */
  2091. old_load = this_rq->cpu_load[i];
  2092. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2093. new_load = this_load;
  2094. /*
  2095. * Round up the averaging division if load is increasing. This
  2096. * prevents us from getting stuck on 9 if the load is 10, for
  2097. * example.
  2098. */
  2099. if (new_load > old_load)
  2100. new_load += scale - 1;
  2101. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2102. }
  2103. sched_avg_update(this_rq);
  2104. }
  2105. #ifdef CONFIG_NO_HZ
  2106. /*
  2107. * There is no sane way to deal with nohz on smp when using jiffies because the
  2108. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  2109. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  2110. *
  2111. * Therefore we cannot use the delta approach from the regular tick since that
  2112. * would seriously skew the load calculation. However we'll make do for those
  2113. * updates happening while idle (nohz_idle_balance) or coming out of idle
  2114. * (tick_nohz_idle_exit).
  2115. *
  2116. * This means we might still be one tick off for nohz periods.
  2117. */
  2118. /*
  2119. * Called from nohz_idle_balance() to update the load ratings before doing the
  2120. * idle balance.
  2121. */
  2122. void update_idle_cpu_load(struct rq *this_rq)
  2123. {
  2124. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2125. unsigned long load = this_rq->load.weight;
  2126. unsigned long pending_updates;
  2127. /*
  2128. * bail if there's load or we're actually up-to-date.
  2129. */
  2130. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2131. return;
  2132. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2133. this_rq->last_load_update_tick = curr_jiffies;
  2134. __update_cpu_load(this_rq, load, pending_updates);
  2135. }
  2136. /*
  2137. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  2138. */
  2139. void update_cpu_load_nohz(void)
  2140. {
  2141. struct rq *this_rq = this_rq();
  2142. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2143. unsigned long pending_updates;
  2144. if (curr_jiffies == this_rq->last_load_update_tick)
  2145. return;
  2146. raw_spin_lock(&this_rq->lock);
  2147. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2148. if (pending_updates) {
  2149. this_rq->last_load_update_tick = curr_jiffies;
  2150. /*
  2151. * We were idle, this means load 0, the current load might be
  2152. * !0 due to remote wakeups and the sort.
  2153. */
  2154. __update_cpu_load(this_rq, 0, pending_updates);
  2155. }
  2156. raw_spin_unlock(&this_rq->lock);
  2157. }
  2158. #endif /* CONFIG_NO_HZ */
  2159. /*
  2160. * Called from scheduler_tick()
  2161. */
  2162. static void update_cpu_load_active(struct rq *this_rq)
  2163. {
  2164. /*
  2165. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  2166. */
  2167. this_rq->last_load_update_tick = jiffies;
  2168. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2169. calc_load_account_active(this_rq);
  2170. }
  2171. #ifdef CONFIG_SMP
  2172. /*
  2173. * sched_exec - execve() is a valuable balancing opportunity, because at
  2174. * this point the task has the smallest effective memory and cache footprint.
  2175. */
  2176. void sched_exec(void)
  2177. {
  2178. struct task_struct *p = current;
  2179. unsigned long flags;
  2180. int dest_cpu;
  2181. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2182. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2183. if (dest_cpu == smp_processor_id())
  2184. goto unlock;
  2185. if (likely(cpu_active(dest_cpu))) {
  2186. struct migration_arg arg = { p, dest_cpu };
  2187. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2188. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2189. return;
  2190. }
  2191. unlock:
  2192. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2193. }
  2194. #endif
  2195. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2196. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2197. EXPORT_PER_CPU_SYMBOL(kstat);
  2198. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2199. /*
  2200. * Return any ns on the sched_clock that have not yet been accounted in
  2201. * @p in case that task is currently running.
  2202. *
  2203. * Called with task_rq_lock() held on @rq.
  2204. */
  2205. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2206. {
  2207. u64 ns = 0;
  2208. if (task_current(rq, p)) {
  2209. update_rq_clock(rq);
  2210. ns = rq->clock_task - p->se.exec_start;
  2211. if ((s64)ns < 0)
  2212. ns = 0;
  2213. }
  2214. return ns;
  2215. }
  2216. unsigned long long task_delta_exec(struct task_struct *p)
  2217. {
  2218. unsigned long flags;
  2219. struct rq *rq;
  2220. u64 ns = 0;
  2221. rq = task_rq_lock(p, &flags);
  2222. ns = do_task_delta_exec(p, rq);
  2223. task_rq_unlock(rq, p, &flags);
  2224. return ns;
  2225. }
  2226. /*
  2227. * Return accounted runtime for the task.
  2228. * In case the task is currently running, return the runtime plus current's
  2229. * pending runtime that have not been accounted yet.
  2230. */
  2231. unsigned long long task_sched_runtime(struct task_struct *p)
  2232. {
  2233. unsigned long flags;
  2234. struct rq *rq;
  2235. u64 ns = 0;
  2236. rq = task_rq_lock(p, &flags);
  2237. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2238. task_rq_unlock(rq, p, &flags);
  2239. return ns;
  2240. }
  2241. /*
  2242. * This function gets called by the timer code, with HZ frequency.
  2243. * We call it with interrupts disabled.
  2244. */
  2245. void scheduler_tick(void)
  2246. {
  2247. int cpu = smp_processor_id();
  2248. struct rq *rq = cpu_rq(cpu);
  2249. struct task_struct *curr = rq->curr;
  2250. sched_clock_tick();
  2251. raw_spin_lock(&rq->lock);
  2252. update_rq_clock(rq);
  2253. update_cpu_load_active(rq);
  2254. curr->sched_class->task_tick(rq, curr, 0);
  2255. raw_spin_unlock(&rq->lock);
  2256. perf_event_task_tick();
  2257. #ifdef CONFIG_SMP
  2258. rq->idle_balance = idle_cpu(cpu);
  2259. trigger_load_balance(rq, cpu);
  2260. #endif
  2261. }
  2262. notrace unsigned long get_parent_ip(unsigned long addr)
  2263. {
  2264. if (in_lock_functions(addr)) {
  2265. addr = CALLER_ADDR2;
  2266. if (in_lock_functions(addr))
  2267. addr = CALLER_ADDR3;
  2268. }
  2269. return addr;
  2270. }
  2271. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2272. defined(CONFIG_PREEMPT_TRACER))
  2273. void __kprobes add_preempt_count(int val)
  2274. {
  2275. #ifdef CONFIG_DEBUG_PREEMPT
  2276. /*
  2277. * Underflow?
  2278. */
  2279. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2280. return;
  2281. #endif
  2282. preempt_count() += val;
  2283. #ifdef CONFIG_DEBUG_PREEMPT
  2284. /*
  2285. * Spinlock count overflowing soon?
  2286. */
  2287. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2288. PREEMPT_MASK - 10);
  2289. #endif
  2290. if (preempt_count() == val)
  2291. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2292. }
  2293. EXPORT_SYMBOL(add_preempt_count);
  2294. void __kprobes sub_preempt_count(int val)
  2295. {
  2296. #ifdef CONFIG_DEBUG_PREEMPT
  2297. /*
  2298. * Underflow?
  2299. */
  2300. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2301. return;
  2302. /*
  2303. * Is the spinlock portion underflowing?
  2304. */
  2305. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2306. !(preempt_count() & PREEMPT_MASK)))
  2307. return;
  2308. #endif
  2309. if (preempt_count() == val)
  2310. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2311. preempt_count() -= val;
  2312. }
  2313. EXPORT_SYMBOL(sub_preempt_count);
  2314. #endif
  2315. /*
  2316. * Print scheduling while atomic bug:
  2317. */
  2318. static noinline void __schedule_bug(struct task_struct *prev)
  2319. {
  2320. if (oops_in_progress)
  2321. return;
  2322. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2323. prev->comm, prev->pid, preempt_count());
  2324. debug_show_held_locks(prev);
  2325. print_modules();
  2326. if (irqs_disabled())
  2327. print_irqtrace_events(prev);
  2328. dump_stack();
  2329. add_taint(TAINT_WARN);
  2330. }
  2331. /*
  2332. * Various schedule()-time debugging checks and statistics:
  2333. */
  2334. static inline void schedule_debug(struct task_struct *prev)
  2335. {
  2336. /*
  2337. * Test if we are atomic. Since do_exit() needs to call into
  2338. * schedule() atomically, we ignore that path for now.
  2339. * Otherwise, whine if we are scheduling when we should not be.
  2340. */
  2341. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2342. __schedule_bug(prev);
  2343. rcu_sleep_check();
  2344. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2345. schedstat_inc(this_rq(), sched_count);
  2346. }
  2347. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2348. {
  2349. if (prev->on_rq || rq->skip_clock_update < 0)
  2350. update_rq_clock(rq);
  2351. prev->sched_class->put_prev_task(rq, prev);
  2352. }
  2353. /*
  2354. * Pick up the highest-prio task:
  2355. */
  2356. static inline struct task_struct *
  2357. pick_next_task(struct rq *rq)
  2358. {
  2359. const struct sched_class *class;
  2360. struct task_struct *p;
  2361. /*
  2362. * Optimization: we know that if all tasks are in
  2363. * the fair class we can call that function directly:
  2364. */
  2365. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2366. p = fair_sched_class.pick_next_task(rq);
  2367. if (likely(p))
  2368. return p;
  2369. }
  2370. for_each_class(class) {
  2371. p = class->pick_next_task(rq);
  2372. if (p)
  2373. return p;
  2374. }
  2375. BUG(); /* the idle class will always have a runnable task */
  2376. }
  2377. /*
  2378. * __schedule() is the main scheduler function.
  2379. *
  2380. * The main means of driving the scheduler and thus entering this function are:
  2381. *
  2382. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2383. *
  2384. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2385. * paths. For example, see arch/x86/entry_64.S.
  2386. *
  2387. * To drive preemption between tasks, the scheduler sets the flag in timer
  2388. * interrupt handler scheduler_tick().
  2389. *
  2390. * 3. Wakeups don't really cause entry into schedule(). They add a
  2391. * task to the run-queue and that's it.
  2392. *
  2393. * Now, if the new task added to the run-queue preempts the current
  2394. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2395. * called on the nearest possible occasion:
  2396. *
  2397. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2398. *
  2399. * - in syscall or exception context, at the next outmost
  2400. * preempt_enable(). (this might be as soon as the wake_up()'s
  2401. * spin_unlock()!)
  2402. *
  2403. * - in IRQ context, return from interrupt-handler to
  2404. * preemptible context
  2405. *
  2406. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2407. * then at the next:
  2408. *
  2409. * - cond_resched() call
  2410. * - explicit schedule() call
  2411. * - return from syscall or exception to user-space
  2412. * - return from interrupt-handler to user-space
  2413. */
  2414. static void __sched __schedule(void)
  2415. {
  2416. struct task_struct *prev, *next;
  2417. unsigned long *switch_count;
  2418. struct rq *rq;
  2419. int cpu;
  2420. need_resched:
  2421. preempt_disable();
  2422. cpu = smp_processor_id();
  2423. rq = cpu_rq(cpu);
  2424. rcu_note_context_switch(cpu);
  2425. prev = rq->curr;
  2426. schedule_debug(prev);
  2427. if (sched_feat(HRTICK))
  2428. hrtick_clear(rq);
  2429. raw_spin_lock_irq(&rq->lock);
  2430. switch_count = &prev->nivcsw;
  2431. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2432. if (unlikely(signal_pending_state(prev->state, prev))) {
  2433. prev->state = TASK_RUNNING;
  2434. } else {
  2435. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2436. prev->on_rq = 0;
  2437. /*
  2438. * If a worker went to sleep, notify and ask workqueue
  2439. * whether it wants to wake up a task to maintain
  2440. * concurrency.
  2441. */
  2442. if (prev->flags & PF_WQ_WORKER) {
  2443. struct task_struct *to_wakeup;
  2444. to_wakeup = wq_worker_sleeping(prev, cpu);
  2445. if (to_wakeup)
  2446. try_to_wake_up_local(to_wakeup);
  2447. }
  2448. }
  2449. switch_count = &prev->nvcsw;
  2450. }
  2451. pre_schedule(rq, prev);
  2452. if (unlikely(!rq->nr_running))
  2453. idle_balance(cpu, rq);
  2454. put_prev_task(rq, prev);
  2455. next = pick_next_task(rq);
  2456. clear_tsk_need_resched(prev);
  2457. rq->skip_clock_update = 0;
  2458. if (likely(prev != next)) {
  2459. rq->nr_switches++;
  2460. rq->curr = next;
  2461. ++*switch_count;
  2462. context_switch(rq, prev, next); /* unlocks the rq */
  2463. /*
  2464. * The context switch have flipped the stack from under us
  2465. * and restored the local variables which were saved when
  2466. * this task called schedule() in the past. prev == current
  2467. * is still correct, but it can be moved to another cpu/rq.
  2468. */
  2469. cpu = smp_processor_id();
  2470. rq = cpu_rq(cpu);
  2471. } else
  2472. raw_spin_unlock_irq(&rq->lock);
  2473. post_schedule(rq);
  2474. sched_preempt_enable_no_resched();
  2475. if (need_resched())
  2476. goto need_resched;
  2477. }
  2478. static inline void sched_submit_work(struct task_struct *tsk)
  2479. {
  2480. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2481. return;
  2482. /*
  2483. * If we are going to sleep and we have plugged IO queued,
  2484. * make sure to submit it to avoid deadlocks.
  2485. */
  2486. if (blk_needs_flush_plug(tsk))
  2487. blk_schedule_flush_plug(tsk);
  2488. }
  2489. asmlinkage void __sched schedule(void)
  2490. {
  2491. struct task_struct *tsk = current;
  2492. sched_submit_work(tsk);
  2493. __schedule();
  2494. }
  2495. EXPORT_SYMBOL(schedule);
  2496. #ifdef CONFIG_RCU_USER_QS
  2497. asmlinkage void __sched schedule_user(void)
  2498. {
  2499. /*
  2500. * If we come here after a random call to set_need_resched(),
  2501. * or we have been woken up remotely but the IPI has not yet arrived,
  2502. * we haven't yet exited the RCU idle mode. Do it here manually until
  2503. * we find a better solution.
  2504. */
  2505. rcu_user_exit();
  2506. schedule();
  2507. rcu_user_enter();
  2508. }
  2509. #endif
  2510. /**
  2511. * schedule_preempt_disabled - called with preemption disabled
  2512. *
  2513. * Returns with preemption disabled. Note: preempt_count must be 1
  2514. */
  2515. void __sched schedule_preempt_disabled(void)
  2516. {
  2517. sched_preempt_enable_no_resched();
  2518. schedule();
  2519. preempt_disable();
  2520. }
  2521. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2522. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2523. {
  2524. if (lock->owner != owner)
  2525. return false;
  2526. /*
  2527. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2528. * lock->owner still matches owner, if that fails, owner might
  2529. * point to free()d memory, if it still matches, the rcu_read_lock()
  2530. * ensures the memory stays valid.
  2531. */
  2532. barrier();
  2533. return owner->on_cpu;
  2534. }
  2535. /*
  2536. * Look out! "owner" is an entirely speculative pointer
  2537. * access and not reliable.
  2538. */
  2539. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2540. {
  2541. if (!sched_feat(OWNER_SPIN))
  2542. return 0;
  2543. rcu_read_lock();
  2544. while (owner_running(lock, owner)) {
  2545. if (need_resched())
  2546. break;
  2547. arch_mutex_cpu_relax();
  2548. }
  2549. rcu_read_unlock();
  2550. /*
  2551. * We break out the loop above on need_resched() and when the
  2552. * owner changed, which is a sign for heavy contention. Return
  2553. * success only when lock->owner is NULL.
  2554. */
  2555. return lock->owner == NULL;
  2556. }
  2557. #endif
  2558. #ifdef CONFIG_PREEMPT
  2559. /*
  2560. * this is the entry point to schedule() from in-kernel preemption
  2561. * off of preempt_enable. Kernel preemptions off return from interrupt
  2562. * occur there and call schedule directly.
  2563. */
  2564. asmlinkage void __sched notrace preempt_schedule(void)
  2565. {
  2566. struct thread_info *ti = current_thread_info();
  2567. /*
  2568. * If there is a non-zero preempt_count or interrupts are disabled,
  2569. * we do not want to preempt the current task. Just return..
  2570. */
  2571. if (likely(ti->preempt_count || irqs_disabled()))
  2572. return;
  2573. do {
  2574. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2575. __schedule();
  2576. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2577. /*
  2578. * Check again in case we missed a preemption opportunity
  2579. * between schedule and now.
  2580. */
  2581. barrier();
  2582. } while (need_resched());
  2583. }
  2584. EXPORT_SYMBOL(preempt_schedule);
  2585. /*
  2586. * this is the entry point to schedule() from kernel preemption
  2587. * off of irq context.
  2588. * Note, that this is called and return with irqs disabled. This will
  2589. * protect us against recursive calling from irq.
  2590. */
  2591. asmlinkage void __sched preempt_schedule_irq(void)
  2592. {
  2593. struct thread_info *ti = current_thread_info();
  2594. /* Catch callers which need to be fixed */
  2595. BUG_ON(ti->preempt_count || !irqs_disabled());
  2596. rcu_user_exit();
  2597. do {
  2598. add_preempt_count(PREEMPT_ACTIVE);
  2599. local_irq_enable();
  2600. __schedule();
  2601. local_irq_disable();
  2602. sub_preempt_count(PREEMPT_ACTIVE);
  2603. /*
  2604. * Check again in case we missed a preemption opportunity
  2605. * between schedule and now.
  2606. */
  2607. barrier();
  2608. } while (need_resched());
  2609. }
  2610. #endif /* CONFIG_PREEMPT */
  2611. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2612. void *key)
  2613. {
  2614. return try_to_wake_up(curr->private, mode, wake_flags);
  2615. }
  2616. EXPORT_SYMBOL(default_wake_function);
  2617. /*
  2618. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2619. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2620. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2621. *
  2622. * There are circumstances in which we can try to wake a task which has already
  2623. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2624. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2625. */
  2626. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2627. int nr_exclusive, int wake_flags, void *key)
  2628. {
  2629. wait_queue_t *curr, *next;
  2630. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2631. unsigned flags = curr->flags;
  2632. if (curr->func(curr, mode, wake_flags, key) &&
  2633. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2634. break;
  2635. }
  2636. }
  2637. /**
  2638. * __wake_up - wake up threads blocked on a waitqueue.
  2639. * @q: the waitqueue
  2640. * @mode: which threads
  2641. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2642. * @key: is directly passed to the wakeup function
  2643. *
  2644. * It may be assumed that this function implies a write memory barrier before
  2645. * changing the task state if and only if any tasks are woken up.
  2646. */
  2647. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2648. int nr_exclusive, void *key)
  2649. {
  2650. unsigned long flags;
  2651. spin_lock_irqsave(&q->lock, flags);
  2652. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2653. spin_unlock_irqrestore(&q->lock, flags);
  2654. }
  2655. EXPORT_SYMBOL(__wake_up);
  2656. /*
  2657. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2658. */
  2659. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2660. {
  2661. __wake_up_common(q, mode, nr, 0, NULL);
  2662. }
  2663. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2664. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2665. {
  2666. __wake_up_common(q, mode, 1, 0, key);
  2667. }
  2668. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2669. /**
  2670. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2671. * @q: the waitqueue
  2672. * @mode: which threads
  2673. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2674. * @key: opaque value to be passed to wakeup targets
  2675. *
  2676. * The sync wakeup differs that the waker knows that it will schedule
  2677. * away soon, so while the target thread will be woken up, it will not
  2678. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2679. * with each other. This can prevent needless bouncing between CPUs.
  2680. *
  2681. * On UP it can prevent extra preemption.
  2682. *
  2683. * It may be assumed that this function implies a write memory barrier before
  2684. * changing the task state if and only if any tasks are woken up.
  2685. */
  2686. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2687. int nr_exclusive, void *key)
  2688. {
  2689. unsigned long flags;
  2690. int wake_flags = WF_SYNC;
  2691. if (unlikely(!q))
  2692. return;
  2693. if (unlikely(!nr_exclusive))
  2694. wake_flags = 0;
  2695. spin_lock_irqsave(&q->lock, flags);
  2696. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2697. spin_unlock_irqrestore(&q->lock, flags);
  2698. }
  2699. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2700. /*
  2701. * __wake_up_sync - see __wake_up_sync_key()
  2702. */
  2703. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2704. {
  2705. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2706. }
  2707. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2708. /**
  2709. * complete: - signals a single thread waiting on this completion
  2710. * @x: holds the state of this particular completion
  2711. *
  2712. * This will wake up a single thread waiting on this completion. Threads will be
  2713. * awakened in the same order in which they were queued.
  2714. *
  2715. * See also complete_all(), wait_for_completion() and related routines.
  2716. *
  2717. * It may be assumed that this function implies a write memory barrier before
  2718. * changing the task state if and only if any tasks are woken up.
  2719. */
  2720. void complete(struct completion *x)
  2721. {
  2722. unsigned long flags;
  2723. spin_lock_irqsave(&x->wait.lock, flags);
  2724. x->done++;
  2725. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2726. spin_unlock_irqrestore(&x->wait.lock, flags);
  2727. }
  2728. EXPORT_SYMBOL(complete);
  2729. /**
  2730. * complete_all: - signals all threads waiting on this completion
  2731. * @x: holds the state of this particular completion
  2732. *
  2733. * This will wake up all threads waiting on this particular completion event.
  2734. *
  2735. * It may be assumed that this function implies a write memory barrier before
  2736. * changing the task state if and only if any tasks are woken up.
  2737. */
  2738. void complete_all(struct completion *x)
  2739. {
  2740. unsigned long flags;
  2741. spin_lock_irqsave(&x->wait.lock, flags);
  2742. x->done += UINT_MAX/2;
  2743. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2744. spin_unlock_irqrestore(&x->wait.lock, flags);
  2745. }
  2746. EXPORT_SYMBOL(complete_all);
  2747. static inline long __sched
  2748. do_wait_for_common(struct completion *x, long timeout, int state)
  2749. {
  2750. if (!x->done) {
  2751. DECLARE_WAITQUEUE(wait, current);
  2752. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2753. do {
  2754. if (signal_pending_state(state, current)) {
  2755. timeout = -ERESTARTSYS;
  2756. break;
  2757. }
  2758. __set_current_state(state);
  2759. spin_unlock_irq(&x->wait.lock);
  2760. timeout = schedule_timeout(timeout);
  2761. spin_lock_irq(&x->wait.lock);
  2762. } while (!x->done && timeout);
  2763. __remove_wait_queue(&x->wait, &wait);
  2764. if (!x->done)
  2765. return timeout;
  2766. }
  2767. x->done--;
  2768. return timeout ?: 1;
  2769. }
  2770. static long __sched
  2771. wait_for_common(struct completion *x, long timeout, int state)
  2772. {
  2773. might_sleep();
  2774. spin_lock_irq(&x->wait.lock);
  2775. timeout = do_wait_for_common(x, timeout, state);
  2776. spin_unlock_irq(&x->wait.lock);
  2777. return timeout;
  2778. }
  2779. /**
  2780. * wait_for_completion: - waits for completion of a task
  2781. * @x: holds the state of this particular completion
  2782. *
  2783. * This waits to be signaled for completion of a specific task. It is NOT
  2784. * interruptible and there is no timeout.
  2785. *
  2786. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2787. * and interrupt capability. Also see complete().
  2788. */
  2789. void __sched wait_for_completion(struct completion *x)
  2790. {
  2791. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2792. }
  2793. EXPORT_SYMBOL(wait_for_completion);
  2794. /**
  2795. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2796. * @x: holds the state of this particular completion
  2797. * @timeout: timeout value in jiffies
  2798. *
  2799. * This waits for either a completion of a specific task to be signaled or for a
  2800. * specified timeout to expire. The timeout is in jiffies. It is not
  2801. * interruptible.
  2802. *
  2803. * The return value is 0 if timed out, and positive (at least 1, or number of
  2804. * jiffies left till timeout) if completed.
  2805. */
  2806. unsigned long __sched
  2807. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2808. {
  2809. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2810. }
  2811. EXPORT_SYMBOL(wait_for_completion_timeout);
  2812. /**
  2813. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2814. * @x: holds the state of this particular completion
  2815. *
  2816. * This waits for completion of a specific task to be signaled. It is
  2817. * interruptible.
  2818. *
  2819. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2820. */
  2821. int __sched wait_for_completion_interruptible(struct completion *x)
  2822. {
  2823. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2824. if (t == -ERESTARTSYS)
  2825. return t;
  2826. return 0;
  2827. }
  2828. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2829. /**
  2830. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2831. * @x: holds the state of this particular completion
  2832. * @timeout: timeout value in jiffies
  2833. *
  2834. * This waits for either a completion of a specific task to be signaled or for a
  2835. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2836. *
  2837. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2838. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2839. */
  2840. long __sched
  2841. wait_for_completion_interruptible_timeout(struct completion *x,
  2842. unsigned long timeout)
  2843. {
  2844. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2845. }
  2846. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2847. /**
  2848. * wait_for_completion_killable: - waits for completion of a task (killable)
  2849. * @x: holds the state of this particular completion
  2850. *
  2851. * This waits to be signaled for completion of a specific task. It can be
  2852. * interrupted by a kill signal.
  2853. *
  2854. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2855. */
  2856. int __sched wait_for_completion_killable(struct completion *x)
  2857. {
  2858. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2859. if (t == -ERESTARTSYS)
  2860. return t;
  2861. return 0;
  2862. }
  2863. EXPORT_SYMBOL(wait_for_completion_killable);
  2864. /**
  2865. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2866. * @x: holds the state of this particular completion
  2867. * @timeout: timeout value in jiffies
  2868. *
  2869. * This waits for either a completion of a specific task to be
  2870. * signaled or for a specified timeout to expire. It can be
  2871. * interrupted by a kill signal. The timeout is in jiffies.
  2872. *
  2873. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2874. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2875. */
  2876. long __sched
  2877. wait_for_completion_killable_timeout(struct completion *x,
  2878. unsigned long timeout)
  2879. {
  2880. return wait_for_common(x, timeout, TASK_KILLABLE);
  2881. }
  2882. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2883. /**
  2884. * try_wait_for_completion - try to decrement a completion without blocking
  2885. * @x: completion structure
  2886. *
  2887. * Returns: 0 if a decrement cannot be done without blocking
  2888. * 1 if a decrement succeeded.
  2889. *
  2890. * If a completion is being used as a counting completion,
  2891. * attempt to decrement the counter without blocking. This
  2892. * enables us to avoid waiting if the resource the completion
  2893. * is protecting is not available.
  2894. */
  2895. bool try_wait_for_completion(struct completion *x)
  2896. {
  2897. unsigned long flags;
  2898. int ret = 1;
  2899. spin_lock_irqsave(&x->wait.lock, flags);
  2900. if (!x->done)
  2901. ret = 0;
  2902. else
  2903. x->done--;
  2904. spin_unlock_irqrestore(&x->wait.lock, flags);
  2905. return ret;
  2906. }
  2907. EXPORT_SYMBOL(try_wait_for_completion);
  2908. /**
  2909. * completion_done - Test to see if a completion has any waiters
  2910. * @x: completion structure
  2911. *
  2912. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  2913. * 1 if there are no waiters.
  2914. *
  2915. */
  2916. bool completion_done(struct completion *x)
  2917. {
  2918. unsigned long flags;
  2919. int ret = 1;
  2920. spin_lock_irqsave(&x->wait.lock, flags);
  2921. if (!x->done)
  2922. ret = 0;
  2923. spin_unlock_irqrestore(&x->wait.lock, flags);
  2924. return ret;
  2925. }
  2926. EXPORT_SYMBOL(completion_done);
  2927. static long __sched
  2928. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2929. {
  2930. unsigned long flags;
  2931. wait_queue_t wait;
  2932. init_waitqueue_entry(&wait, current);
  2933. __set_current_state(state);
  2934. spin_lock_irqsave(&q->lock, flags);
  2935. __add_wait_queue(q, &wait);
  2936. spin_unlock(&q->lock);
  2937. timeout = schedule_timeout(timeout);
  2938. spin_lock_irq(&q->lock);
  2939. __remove_wait_queue(q, &wait);
  2940. spin_unlock_irqrestore(&q->lock, flags);
  2941. return timeout;
  2942. }
  2943. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2944. {
  2945. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2946. }
  2947. EXPORT_SYMBOL(interruptible_sleep_on);
  2948. long __sched
  2949. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2950. {
  2951. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2952. }
  2953. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2954. void __sched sleep_on(wait_queue_head_t *q)
  2955. {
  2956. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2957. }
  2958. EXPORT_SYMBOL(sleep_on);
  2959. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2960. {
  2961. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2962. }
  2963. EXPORT_SYMBOL(sleep_on_timeout);
  2964. #ifdef CONFIG_RT_MUTEXES
  2965. /*
  2966. * rt_mutex_setprio - set the current priority of a task
  2967. * @p: task
  2968. * @prio: prio value (kernel-internal form)
  2969. *
  2970. * This function changes the 'effective' priority of a task. It does
  2971. * not touch ->normal_prio like __setscheduler().
  2972. *
  2973. * Used by the rt_mutex code to implement priority inheritance logic.
  2974. */
  2975. void rt_mutex_setprio(struct task_struct *p, int prio)
  2976. {
  2977. int oldprio, on_rq, running;
  2978. struct rq *rq;
  2979. const struct sched_class *prev_class;
  2980. BUG_ON(prio < 0 || prio > MAX_PRIO);
  2981. rq = __task_rq_lock(p);
  2982. /*
  2983. * Idle task boosting is a nono in general. There is one
  2984. * exception, when PREEMPT_RT and NOHZ is active:
  2985. *
  2986. * The idle task calls get_next_timer_interrupt() and holds
  2987. * the timer wheel base->lock on the CPU and another CPU wants
  2988. * to access the timer (probably to cancel it). We can safely
  2989. * ignore the boosting request, as the idle CPU runs this code
  2990. * with interrupts disabled and will complete the lock
  2991. * protected section without being interrupted. So there is no
  2992. * real need to boost.
  2993. */
  2994. if (unlikely(p == rq->idle)) {
  2995. WARN_ON(p != rq->curr);
  2996. WARN_ON(p->pi_blocked_on);
  2997. goto out_unlock;
  2998. }
  2999. trace_sched_pi_setprio(p, prio);
  3000. oldprio = p->prio;
  3001. prev_class = p->sched_class;
  3002. on_rq = p->on_rq;
  3003. running = task_current(rq, p);
  3004. if (on_rq)
  3005. dequeue_task(rq, p, 0);
  3006. if (running)
  3007. p->sched_class->put_prev_task(rq, p);
  3008. if (rt_prio(prio))
  3009. p->sched_class = &rt_sched_class;
  3010. else
  3011. p->sched_class = &fair_sched_class;
  3012. p->prio = prio;
  3013. if (running)
  3014. p->sched_class->set_curr_task(rq);
  3015. if (on_rq)
  3016. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3017. check_class_changed(rq, p, prev_class, oldprio);
  3018. out_unlock:
  3019. __task_rq_unlock(rq);
  3020. }
  3021. #endif
  3022. void set_user_nice(struct task_struct *p, long nice)
  3023. {
  3024. int old_prio, delta, on_rq;
  3025. unsigned long flags;
  3026. struct rq *rq;
  3027. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3028. return;
  3029. /*
  3030. * We have to be careful, if called from sys_setpriority(),
  3031. * the task might be in the middle of scheduling on another CPU.
  3032. */
  3033. rq = task_rq_lock(p, &flags);
  3034. /*
  3035. * The RT priorities are set via sched_setscheduler(), but we still
  3036. * allow the 'normal' nice value to be set - but as expected
  3037. * it wont have any effect on scheduling until the task is
  3038. * SCHED_FIFO/SCHED_RR:
  3039. */
  3040. if (task_has_rt_policy(p)) {
  3041. p->static_prio = NICE_TO_PRIO(nice);
  3042. goto out_unlock;
  3043. }
  3044. on_rq = p->on_rq;
  3045. if (on_rq)
  3046. dequeue_task(rq, p, 0);
  3047. p->static_prio = NICE_TO_PRIO(nice);
  3048. set_load_weight(p);
  3049. old_prio = p->prio;
  3050. p->prio = effective_prio(p);
  3051. delta = p->prio - old_prio;
  3052. if (on_rq) {
  3053. enqueue_task(rq, p, 0);
  3054. /*
  3055. * If the task increased its priority or is running and
  3056. * lowered its priority, then reschedule its CPU:
  3057. */
  3058. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3059. resched_task(rq->curr);
  3060. }
  3061. out_unlock:
  3062. task_rq_unlock(rq, p, &flags);
  3063. }
  3064. EXPORT_SYMBOL(set_user_nice);
  3065. /*
  3066. * can_nice - check if a task can reduce its nice value
  3067. * @p: task
  3068. * @nice: nice value
  3069. */
  3070. int can_nice(const struct task_struct *p, const int nice)
  3071. {
  3072. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3073. int nice_rlim = 20 - nice;
  3074. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3075. capable(CAP_SYS_NICE));
  3076. }
  3077. #ifdef __ARCH_WANT_SYS_NICE
  3078. /*
  3079. * sys_nice - change the priority of the current process.
  3080. * @increment: priority increment
  3081. *
  3082. * sys_setpriority is a more generic, but much slower function that
  3083. * does similar things.
  3084. */
  3085. SYSCALL_DEFINE1(nice, int, increment)
  3086. {
  3087. long nice, retval;
  3088. /*
  3089. * Setpriority might change our priority at the same moment.
  3090. * We don't have to worry. Conceptually one call occurs first
  3091. * and we have a single winner.
  3092. */
  3093. if (increment < -40)
  3094. increment = -40;
  3095. if (increment > 40)
  3096. increment = 40;
  3097. nice = TASK_NICE(current) + increment;
  3098. if (nice < -20)
  3099. nice = -20;
  3100. if (nice > 19)
  3101. nice = 19;
  3102. if (increment < 0 && !can_nice(current, nice))
  3103. return -EPERM;
  3104. retval = security_task_setnice(current, nice);
  3105. if (retval)
  3106. return retval;
  3107. set_user_nice(current, nice);
  3108. return 0;
  3109. }
  3110. #endif
  3111. /**
  3112. * task_prio - return the priority value of a given task.
  3113. * @p: the task in question.
  3114. *
  3115. * This is the priority value as seen by users in /proc.
  3116. * RT tasks are offset by -200. Normal tasks are centered
  3117. * around 0, value goes from -16 to +15.
  3118. */
  3119. int task_prio(const struct task_struct *p)
  3120. {
  3121. return p->prio - MAX_RT_PRIO;
  3122. }
  3123. /**
  3124. * task_nice - return the nice value of a given task.
  3125. * @p: the task in question.
  3126. */
  3127. int task_nice(const struct task_struct *p)
  3128. {
  3129. return TASK_NICE(p);
  3130. }
  3131. EXPORT_SYMBOL(task_nice);
  3132. /**
  3133. * idle_cpu - is a given cpu idle currently?
  3134. * @cpu: the processor in question.
  3135. */
  3136. int idle_cpu(int cpu)
  3137. {
  3138. struct rq *rq = cpu_rq(cpu);
  3139. if (rq->curr != rq->idle)
  3140. return 0;
  3141. if (rq->nr_running)
  3142. return 0;
  3143. #ifdef CONFIG_SMP
  3144. if (!llist_empty(&rq->wake_list))
  3145. return 0;
  3146. #endif
  3147. return 1;
  3148. }
  3149. /**
  3150. * idle_task - return the idle task for a given cpu.
  3151. * @cpu: the processor in question.
  3152. */
  3153. struct task_struct *idle_task(int cpu)
  3154. {
  3155. return cpu_rq(cpu)->idle;
  3156. }
  3157. /**
  3158. * find_process_by_pid - find a process with a matching PID value.
  3159. * @pid: the pid in question.
  3160. */
  3161. static struct task_struct *find_process_by_pid(pid_t pid)
  3162. {
  3163. return pid ? find_task_by_vpid(pid) : current;
  3164. }
  3165. /* Actually do priority change: must hold rq lock. */
  3166. static void
  3167. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3168. {
  3169. p->policy = policy;
  3170. p->rt_priority = prio;
  3171. p->normal_prio = normal_prio(p);
  3172. /* we are holding p->pi_lock already */
  3173. p->prio = rt_mutex_getprio(p);
  3174. if (rt_prio(p->prio))
  3175. p->sched_class = &rt_sched_class;
  3176. else
  3177. p->sched_class = &fair_sched_class;
  3178. set_load_weight(p);
  3179. }
  3180. /*
  3181. * check the target process has a UID that matches the current process's
  3182. */
  3183. static bool check_same_owner(struct task_struct *p)
  3184. {
  3185. const struct cred *cred = current_cred(), *pcred;
  3186. bool match;
  3187. rcu_read_lock();
  3188. pcred = __task_cred(p);
  3189. match = (uid_eq(cred->euid, pcred->euid) ||
  3190. uid_eq(cred->euid, pcred->uid));
  3191. rcu_read_unlock();
  3192. return match;
  3193. }
  3194. static int __sched_setscheduler(struct task_struct *p, int policy,
  3195. const struct sched_param *param, bool user)
  3196. {
  3197. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3198. unsigned long flags;
  3199. const struct sched_class *prev_class;
  3200. struct rq *rq;
  3201. int reset_on_fork;
  3202. /* may grab non-irq protected spin_locks */
  3203. BUG_ON(in_interrupt());
  3204. recheck:
  3205. /* double check policy once rq lock held */
  3206. if (policy < 0) {
  3207. reset_on_fork = p->sched_reset_on_fork;
  3208. policy = oldpolicy = p->policy;
  3209. } else {
  3210. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3211. policy &= ~SCHED_RESET_ON_FORK;
  3212. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3213. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3214. policy != SCHED_IDLE)
  3215. return -EINVAL;
  3216. }
  3217. /*
  3218. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3219. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3220. * SCHED_BATCH and SCHED_IDLE is 0.
  3221. */
  3222. if (param->sched_priority < 0 ||
  3223. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3224. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3225. return -EINVAL;
  3226. if (rt_policy(policy) != (param->sched_priority != 0))
  3227. return -EINVAL;
  3228. /*
  3229. * Allow unprivileged RT tasks to decrease priority:
  3230. */
  3231. if (user && !capable(CAP_SYS_NICE)) {
  3232. if (rt_policy(policy)) {
  3233. unsigned long rlim_rtprio =
  3234. task_rlimit(p, RLIMIT_RTPRIO);
  3235. /* can't set/change the rt policy */
  3236. if (policy != p->policy && !rlim_rtprio)
  3237. return -EPERM;
  3238. /* can't increase priority */
  3239. if (param->sched_priority > p->rt_priority &&
  3240. param->sched_priority > rlim_rtprio)
  3241. return -EPERM;
  3242. }
  3243. /*
  3244. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3245. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3246. */
  3247. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3248. if (!can_nice(p, TASK_NICE(p)))
  3249. return -EPERM;
  3250. }
  3251. /* can't change other user's priorities */
  3252. if (!check_same_owner(p))
  3253. return -EPERM;
  3254. /* Normal users shall not reset the sched_reset_on_fork flag */
  3255. if (p->sched_reset_on_fork && !reset_on_fork)
  3256. return -EPERM;
  3257. }
  3258. if (user) {
  3259. retval = security_task_setscheduler(p);
  3260. if (retval)
  3261. return retval;
  3262. }
  3263. /*
  3264. * make sure no PI-waiters arrive (or leave) while we are
  3265. * changing the priority of the task:
  3266. *
  3267. * To be able to change p->policy safely, the appropriate
  3268. * runqueue lock must be held.
  3269. */
  3270. rq = task_rq_lock(p, &flags);
  3271. /*
  3272. * Changing the policy of the stop threads its a very bad idea
  3273. */
  3274. if (p == rq->stop) {
  3275. task_rq_unlock(rq, p, &flags);
  3276. return -EINVAL;
  3277. }
  3278. /*
  3279. * If not changing anything there's no need to proceed further:
  3280. */
  3281. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3282. param->sched_priority == p->rt_priority))) {
  3283. task_rq_unlock(rq, p, &flags);
  3284. return 0;
  3285. }
  3286. #ifdef CONFIG_RT_GROUP_SCHED
  3287. if (user) {
  3288. /*
  3289. * Do not allow realtime tasks into groups that have no runtime
  3290. * assigned.
  3291. */
  3292. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3293. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3294. !task_group_is_autogroup(task_group(p))) {
  3295. task_rq_unlock(rq, p, &flags);
  3296. return -EPERM;
  3297. }
  3298. }
  3299. #endif
  3300. /* recheck policy now with rq lock held */
  3301. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3302. policy = oldpolicy = -1;
  3303. task_rq_unlock(rq, p, &flags);
  3304. goto recheck;
  3305. }
  3306. on_rq = p->on_rq;
  3307. running = task_current(rq, p);
  3308. if (on_rq)
  3309. dequeue_task(rq, p, 0);
  3310. if (running)
  3311. p->sched_class->put_prev_task(rq, p);
  3312. p->sched_reset_on_fork = reset_on_fork;
  3313. oldprio = p->prio;
  3314. prev_class = p->sched_class;
  3315. __setscheduler(rq, p, policy, param->sched_priority);
  3316. if (running)
  3317. p->sched_class->set_curr_task(rq);
  3318. if (on_rq)
  3319. enqueue_task(rq, p, 0);
  3320. check_class_changed(rq, p, prev_class, oldprio);
  3321. task_rq_unlock(rq, p, &flags);
  3322. rt_mutex_adjust_pi(p);
  3323. return 0;
  3324. }
  3325. /**
  3326. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3327. * @p: the task in question.
  3328. * @policy: new policy.
  3329. * @param: structure containing the new RT priority.
  3330. *
  3331. * NOTE that the task may be already dead.
  3332. */
  3333. int sched_setscheduler(struct task_struct *p, int policy,
  3334. const struct sched_param *param)
  3335. {
  3336. return __sched_setscheduler(p, policy, param, true);
  3337. }
  3338. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3339. /**
  3340. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3341. * @p: the task in question.
  3342. * @policy: new policy.
  3343. * @param: structure containing the new RT priority.
  3344. *
  3345. * Just like sched_setscheduler, only don't bother checking if the
  3346. * current context has permission. For example, this is needed in
  3347. * stop_machine(): we create temporary high priority worker threads,
  3348. * but our caller might not have that capability.
  3349. */
  3350. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3351. const struct sched_param *param)
  3352. {
  3353. return __sched_setscheduler(p, policy, param, false);
  3354. }
  3355. static int
  3356. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3357. {
  3358. struct sched_param lparam;
  3359. struct task_struct *p;
  3360. int retval;
  3361. if (!param || pid < 0)
  3362. return -EINVAL;
  3363. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3364. return -EFAULT;
  3365. rcu_read_lock();
  3366. retval = -ESRCH;
  3367. p = find_process_by_pid(pid);
  3368. if (p != NULL)
  3369. retval = sched_setscheduler(p, policy, &lparam);
  3370. rcu_read_unlock();
  3371. return retval;
  3372. }
  3373. /**
  3374. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3375. * @pid: the pid in question.
  3376. * @policy: new policy.
  3377. * @param: structure containing the new RT priority.
  3378. */
  3379. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3380. struct sched_param __user *, param)
  3381. {
  3382. /* negative values for policy are not valid */
  3383. if (policy < 0)
  3384. return -EINVAL;
  3385. return do_sched_setscheduler(pid, policy, param);
  3386. }
  3387. /**
  3388. * sys_sched_setparam - set/change the RT priority of a thread
  3389. * @pid: the pid in question.
  3390. * @param: structure containing the new RT priority.
  3391. */
  3392. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3393. {
  3394. return do_sched_setscheduler(pid, -1, param);
  3395. }
  3396. /**
  3397. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3398. * @pid: the pid in question.
  3399. */
  3400. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3401. {
  3402. struct task_struct *p;
  3403. int retval;
  3404. if (pid < 0)
  3405. return -EINVAL;
  3406. retval = -ESRCH;
  3407. rcu_read_lock();
  3408. p = find_process_by_pid(pid);
  3409. if (p) {
  3410. retval = security_task_getscheduler(p);
  3411. if (!retval)
  3412. retval = p->policy
  3413. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3414. }
  3415. rcu_read_unlock();
  3416. return retval;
  3417. }
  3418. /**
  3419. * sys_sched_getparam - get the RT priority of a thread
  3420. * @pid: the pid in question.
  3421. * @param: structure containing the RT priority.
  3422. */
  3423. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3424. {
  3425. struct sched_param lp;
  3426. struct task_struct *p;
  3427. int retval;
  3428. if (!param || pid < 0)
  3429. return -EINVAL;
  3430. rcu_read_lock();
  3431. p = find_process_by_pid(pid);
  3432. retval = -ESRCH;
  3433. if (!p)
  3434. goto out_unlock;
  3435. retval = security_task_getscheduler(p);
  3436. if (retval)
  3437. goto out_unlock;
  3438. lp.sched_priority = p->rt_priority;
  3439. rcu_read_unlock();
  3440. /*
  3441. * This one might sleep, we cannot do it with a spinlock held ...
  3442. */
  3443. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3444. return retval;
  3445. out_unlock:
  3446. rcu_read_unlock();
  3447. return retval;
  3448. }
  3449. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3450. {
  3451. cpumask_var_t cpus_allowed, new_mask;
  3452. struct task_struct *p;
  3453. int retval;
  3454. get_online_cpus();
  3455. rcu_read_lock();
  3456. p = find_process_by_pid(pid);
  3457. if (!p) {
  3458. rcu_read_unlock();
  3459. put_online_cpus();
  3460. return -ESRCH;
  3461. }
  3462. /* Prevent p going away */
  3463. get_task_struct(p);
  3464. rcu_read_unlock();
  3465. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3466. retval = -ENOMEM;
  3467. goto out_put_task;
  3468. }
  3469. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3470. retval = -ENOMEM;
  3471. goto out_free_cpus_allowed;
  3472. }
  3473. retval = -EPERM;
  3474. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3475. goto out_unlock;
  3476. retval = security_task_setscheduler(p);
  3477. if (retval)
  3478. goto out_unlock;
  3479. cpuset_cpus_allowed(p, cpus_allowed);
  3480. cpumask_and(new_mask, in_mask, cpus_allowed);
  3481. again:
  3482. retval = set_cpus_allowed_ptr(p, new_mask);
  3483. if (!retval) {
  3484. cpuset_cpus_allowed(p, cpus_allowed);
  3485. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3486. /*
  3487. * We must have raced with a concurrent cpuset
  3488. * update. Just reset the cpus_allowed to the
  3489. * cpuset's cpus_allowed
  3490. */
  3491. cpumask_copy(new_mask, cpus_allowed);
  3492. goto again;
  3493. }
  3494. }
  3495. out_unlock:
  3496. free_cpumask_var(new_mask);
  3497. out_free_cpus_allowed:
  3498. free_cpumask_var(cpus_allowed);
  3499. out_put_task:
  3500. put_task_struct(p);
  3501. put_online_cpus();
  3502. return retval;
  3503. }
  3504. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3505. struct cpumask *new_mask)
  3506. {
  3507. if (len < cpumask_size())
  3508. cpumask_clear(new_mask);
  3509. else if (len > cpumask_size())
  3510. len = cpumask_size();
  3511. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3512. }
  3513. /**
  3514. * sys_sched_setaffinity - set the cpu affinity of a process
  3515. * @pid: pid of the process
  3516. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3517. * @user_mask_ptr: user-space pointer to the new cpu mask
  3518. */
  3519. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3520. unsigned long __user *, user_mask_ptr)
  3521. {
  3522. cpumask_var_t new_mask;
  3523. int retval;
  3524. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3525. return -ENOMEM;
  3526. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3527. if (retval == 0)
  3528. retval = sched_setaffinity(pid, new_mask);
  3529. free_cpumask_var(new_mask);
  3530. return retval;
  3531. }
  3532. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3533. {
  3534. struct task_struct *p;
  3535. unsigned long flags;
  3536. int retval;
  3537. get_online_cpus();
  3538. rcu_read_lock();
  3539. retval = -ESRCH;
  3540. p = find_process_by_pid(pid);
  3541. if (!p)
  3542. goto out_unlock;
  3543. retval = security_task_getscheduler(p);
  3544. if (retval)
  3545. goto out_unlock;
  3546. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3547. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3548. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3549. out_unlock:
  3550. rcu_read_unlock();
  3551. put_online_cpus();
  3552. return retval;
  3553. }
  3554. /**
  3555. * sys_sched_getaffinity - get the cpu affinity of a process
  3556. * @pid: pid of the process
  3557. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3558. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3559. */
  3560. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3561. unsigned long __user *, user_mask_ptr)
  3562. {
  3563. int ret;
  3564. cpumask_var_t mask;
  3565. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3566. return -EINVAL;
  3567. if (len & (sizeof(unsigned long)-1))
  3568. return -EINVAL;
  3569. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3570. return -ENOMEM;
  3571. ret = sched_getaffinity(pid, mask);
  3572. if (ret == 0) {
  3573. size_t retlen = min_t(size_t, len, cpumask_size());
  3574. if (copy_to_user(user_mask_ptr, mask, retlen))
  3575. ret = -EFAULT;
  3576. else
  3577. ret = retlen;
  3578. }
  3579. free_cpumask_var(mask);
  3580. return ret;
  3581. }
  3582. /**
  3583. * sys_sched_yield - yield the current processor to other threads.
  3584. *
  3585. * This function yields the current CPU to other tasks. If there are no
  3586. * other threads running on this CPU then this function will return.
  3587. */
  3588. SYSCALL_DEFINE0(sched_yield)
  3589. {
  3590. struct rq *rq = this_rq_lock();
  3591. schedstat_inc(rq, yld_count);
  3592. current->sched_class->yield_task(rq);
  3593. /*
  3594. * Since we are going to call schedule() anyway, there's
  3595. * no need to preempt or enable interrupts:
  3596. */
  3597. __release(rq->lock);
  3598. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3599. do_raw_spin_unlock(&rq->lock);
  3600. sched_preempt_enable_no_resched();
  3601. schedule();
  3602. return 0;
  3603. }
  3604. static inline int should_resched(void)
  3605. {
  3606. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3607. }
  3608. static void __cond_resched(void)
  3609. {
  3610. add_preempt_count(PREEMPT_ACTIVE);
  3611. __schedule();
  3612. sub_preempt_count(PREEMPT_ACTIVE);
  3613. }
  3614. int __sched _cond_resched(void)
  3615. {
  3616. if (should_resched()) {
  3617. __cond_resched();
  3618. return 1;
  3619. }
  3620. return 0;
  3621. }
  3622. EXPORT_SYMBOL(_cond_resched);
  3623. /*
  3624. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3625. * call schedule, and on return reacquire the lock.
  3626. *
  3627. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3628. * operations here to prevent schedule() from being called twice (once via
  3629. * spin_unlock(), once by hand).
  3630. */
  3631. int __cond_resched_lock(spinlock_t *lock)
  3632. {
  3633. int resched = should_resched();
  3634. int ret = 0;
  3635. lockdep_assert_held(lock);
  3636. if (spin_needbreak(lock) || resched) {
  3637. spin_unlock(lock);
  3638. if (resched)
  3639. __cond_resched();
  3640. else
  3641. cpu_relax();
  3642. ret = 1;
  3643. spin_lock(lock);
  3644. }
  3645. return ret;
  3646. }
  3647. EXPORT_SYMBOL(__cond_resched_lock);
  3648. int __sched __cond_resched_softirq(void)
  3649. {
  3650. BUG_ON(!in_softirq());
  3651. if (should_resched()) {
  3652. local_bh_enable();
  3653. __cond_resched();
  3654. local_bh_disable();
  3655. return 1;
  3656. }
  3657. return 0;
  3658. }
  3659. EXPORT_SYMBOL(__cond_resched_softirq);
  3660. /**
  3661. * yield - yield the current processor to other threads.
  3662. *
  3663. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3664. *
  3665. * The scheduler is at all times free to pick the calling task as the most
  3666. * eligible task to run, if removing the yield() call from your code breaks
  3667. * it, its already broken.
  3668. *
  3669. * Typical broken usage is:
  3670. *
  3671. * while (!event)
  3672. * yield();
  3673. *
  3674. * where one assumes that yield() will let 'the other' process run that will
  3675. * make event true. If the current task is a SCHED_FIFO task that will never
  3676. * happen. Never use yield() as a progress guarantee!!
  3677. *
  3678. * If you want to use yield() to wait for something, use wait_event().
  3679. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3680. * If you still want to use yield(), do not!
  3681. */
  3682. void __sched yield(void)
  3683. {
  3684. set_current_state(TASK_RUNNING);
  3685. sys_sched_yield();
  3686. }
  3687. EXPORT_SYMBOL(yield);
  3688. /**
  3689. * yield_to - yield the current processor to another thread in
  3690. * your thread group, or accelerate that thread toward the
  3691. * processor it's on.
  3692. * @p: target task
  3693. * @preempt: whether task preemption is allowed or not
  3694. *
  3695. * It's the caller's job to ensure that the target task struct
  3696. * can't go away on us before we can do any checks.
  3697. *
  3698. * Returns true if we indeed boosted the target task.
  3699. */
  3700. bool __sched yield_to(struct task_struct *p, bool preempt)
  3701. {
  3702. struct task_struct *curr = current;
  3703. struct rq *rq, *p_rq;
  3704. unsigned long flags;
  3705. bool yielded = 0;
  3706. local_irq_save(flags);
  3707. rq = this_rq();
  3708. again:
  3709. p_rq = task_rq(p);
  3710. double_rq_lock(rq, p_rq);
  3711. while (task_rq(p) != p_rq) {
  3712. double_rq_unlock(rq, p_rq);
  3713. goto again;
  3714. }
  3715. if (!curr->sched_class->yield_to_task)
  3716. goto out;
  3717. if (curr->sched_class != p->sched_class)
  3718. goto out;
  3719. if (task_running(p_rq, p) || p->state)
  3720. goto out;
  3721. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3722. if (yielded) {
  3723. schedstat_inc(rq, yld_count);
  3724. /*
  3725. * Make p's CPU reschedule; pick_next_entity takes care of
  3726. * fairness.
  3727. */
  3728. if (preempt && rq != p_rq)
  3729. resched_task(p_rq->curr);
  3730. }
  3731. out:
  3732. double_rq_unlock(rq, p_rq);
  3733. local_irq_restore(flags);
  3734. if (yielded)
  3735. schedule();
  3736. return yielded;
  3737. }
  3738. EXPORT_SYMBOL_GPL(yield_to);
  3739. /*
  3740. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3741. * that process accounting knows that this is a task in IO wait state.
  3742. */
  3743. void __sched io_schedule(void)
  3744. {
  3745. struct rq *rq = raw_rq();
  3746. delayacct_blkio_start();
  3747. atomic_inc(&rq->nr_iowait);
  3748. blk_flush_plug(current);
  3749. current->in_iowait = 1;
  3750. schedule();
  3751. current->in_iowait = 0;
  3752. atomic_dec(&rq->nr_iowait);
  3753. delayacct_blkio_end();
  3754. }
  3755. EXPORT_SYMBOL(io_schedule);
  3756. long __sched io_schedule_timeout(long timeout)
  3757. {
  3758. struct rq *rq = raw_rq();
  3759. long ret;
  3760. delayacct_blkio_start();
  3761. atomic_inc(&rq->nr_iowait);
  3762. blk_flush_plug(current);
  3763. current->in_iowait = 1;
  3764. ret = schedule_timeout(timeout);
  3765. current->in_iowait = 0;
  3766. atomic_dec(&rq->nr_iowait);
  3767. delayacct_blkio_end();
  3768. return ret;
  3769. }
  3770. /**
  3771. * sys_sched_get_priority_max - return maximum RT priority.
  3772. * @policy: scheduling class.
  3773. *
  3774. * this syscall returns the maximum rt_priority that can be used
  3775. * by a given scheduling class.
  3776. */
  3777. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3778. {
  3779. int ret = -EINVAL;
  3780. switch (policy) {
  3781. case SCHED_FIFO:
  3782. case SCHED_RR:
  3783. ret = MAX_USER_RT_PRIO-1;
  3784. break;
  3785. case SCHED_NORMAL:
  3786. case SCHED_BATCH:
  3787. case SCHED_IDLE:
  3788. ret = 0;
  3789. break;
  3790. }
  3791. return ret;
  3792. }
  3793. /**
  3794. * sys_sched_get_priority_min - return minimum RT priority.
  3795. * @policy: scheduling class.
  3796. *
  3797. * this syscall returns the minimum rt_priority that can be used
  3798. * by a given scheduling class.
  3799. */
  3800. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3801. {
  3802. int ret = -EINVAL;
  3803. switch (policy) {
  3804. case SCHED_FIFO:
  3805. case SCHED_RR:
  3806. ret = 1;
  3807. break;
  3808. case SCHED_NORMAL:
  3809. case SCHED_BATCH:
  3810. case SCHED_IDLE:
  3811. ret = 0;
  3812. }
  3813. return ret;
  3814. }
  3815. /**
  3816. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3817. * @pid: pid of the process.
  3818. * @interval: userspace pointer to the timeslice value.
  3819. *
  3820. * this syscall writes the default timeslice value of a given process
  3821. * into the user-space timespec buffer. A value of '0' means infinity.
  3822. */
  3823. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3824. struct timespec __user *, interval)
  3825. {
  3826. struct task_struct *p;
  3827. unsigned int time_slice;
  3828. unsigned long flags;
  3829. struct rq *rq;
  3830. int retval;
  3831. struct timespec t;
  3832. if (pid < 0)
  3833. return -EINVAL;
  3834. retval = -ESRCH;
  3835. rcu_read_lock();
  3836. p = find_process_by_pid(pid);
  3837. if (!p)
  3838. goto out_unlock;
  3839. retval = security_task_getscheduler(p);
  3840. if (retval)
  3841. goto out_unlock;
  3842. rq = task_rq_lock(p, &flags);
  3843. time_slice = p->sched_class->get_rr_interval(rq, p);
  3844. task_rq_unlock(rq, p, &flags);
  3845. rcu_read_unlock();
  3846. jiffies_to_timespec(time_slice, &t);
  3847. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3848. return retval;
  3849. out_unlock:
  3850. rcu_read_unlock();
  3851. return retval;
  3852. }
  3853. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3854. void sched_show_task(struct task_struct *p)
  3855. {
  3856. unsigned long free = 0;
  3857. unsigned state;
  3858. state = p->state ? __ffs(p->state) + 1 : 0;
  3859. printk(KERN_INFO "%-15.15s %c", p->comm,
  3860. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3861. #if BITS_PER_LONG == 32
  3862. if (state == TASK_RUNNING)
  3863. printk(KERN_CONT " running ");
  3864. else
  3865. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3866. #else
  3867. if (state == TASK_RUNNING)
  3868. printk(KERN_CONT " running task ");
  3869. else
  3870. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3871. #endif
  3872. #ifdef CONFIG_DEBUG_STACK_USAGE
  3873. free = stack_not_used(p);
  3874. #endif
  3875. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3876. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  3877. (unsigned long)task_thread_info(p)->flags);
  3878. show_stack(p, NULL);
  3879. }
  3880. void show_state_filter(unsigned long state_filter)
  3881. {
  3882. struct task_struct *g, *p;
  3883. #if BITS_PER_LONG == 32
  3884. printk(KERN_INFO
  3885. " task PC stack pid father\n");
  3886. #else
  3887. printk(KERN_INFO
  3888. " task PC stack pid father\n");
  3889. #endif
  3890. rcu_read_lock();
  3891. do_each_thread(g, p) {
  3892. /*
  3893. * reset the NMI-timeout, listing all files on a slow
  3894. * console might take a lot of time:
  3895. */
  3896. touch_nmi_watchdog();
  3897. if (!state_filter || (p->state & state_filter))
  3898. sched_show_task(p);
  3899. } while_each_thread(g, p);
  3900. touch_all_softlockup_watchdogs();
  3901. #ifdef CONFIG_SCHED_DEBUG
  3902. sysrq_sched_debug_show();
  3903. #endif
  3904. rcu_read_unlock();
  3905. /*
  3906. * Only show locks if all tasks are dumped:
  3907. */
  3908. if (!state_filter)
  3909. debug_show_all_locks();
  3910. }
  3911. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  3912. {
  3913. idle->sched_class = &idle_sched_class;
  3914. }
  3915. /**
  3916. * init_idle - set up an idle thread for a given CPU
  3917. * @idle: task in question
  3918. * @cpu: cpu the idle task belongs to
  3919. *
  3920. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3921. * flag, to make booting more robust.
  3922. */
  3923. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  3924. {
  3925. struct rq *rq = cpu_rq(cpu);
  3926. unsigned long flags;
  3927. raw_spin_lock_irqsave(&rq->lock, flags);
  3928. __sched_fork(idle);
  3929. idle->state = TASK_RUNNING;
  3930. idle->se.exec_start = sched_clock();
  3931. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3932. /*
  3933. * We're having a chicken and egg problem, even though we are
  3934. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3935. * lockdep check in task_group() will fail.
  3936. *
  3937. * Similar case to sched_fork(). / Alternatively we could
  3938. * use task_rq_lock() here and obtain the other rq->lock.
  3939. *
  3940. * Silence PROVE_RCU
  3941. */
  3942. rcu_read_lock();
  3943. __set_task_cpu(idle, cpu);
  3944. rcu_read_unlock();
  3945. rq->curr = rq->idle = idle;
  3946. #if defined(CONFIG_SMP)
  3947. idle->on_cpu = 1;
  3948. #endif
  3949. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3950. /* Set the preempt count _outside_ the spinlocks! */
  3951. task_thread_info(idle)->preempt_count = 0;
  3952. /*
  3953. * The idle tasks have their own, simple scheduling class:
  3954. */
  3955. idle->sched_class = &idle_sched_class;
  3956. ftrace_graph_init_idle_task(idle, cpu);
  3957. #if defined(CONFIG_SMP)
  3958. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3959. #endif
  3960. }
  3961. #ifdef CONFIG_SMP
  3962. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3963. {
  3964. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3965. p->sched_class->set_cpus_allowed(p, new_mask);
  3966. cpumask_copy(&p->cpus_allowed, new_mask);
  3967. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3968. }
  3969. /*
  3970. * This is how migration works:
  3971. *
  3972. * 1) we invoke migration_cpu_stop() on the target CPU using
  3973. * stop_one_cpu().
  3974. * 2) stopper starts to run (implicitly forcing the migrated thread
  3975. * off the CPU)
  3976. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3977. * 4) if it's in the wrong runqueue then the migration thread removes
  3978. * it and puts it into the right queue.
  3979. * 5) stopper completes and stop_one_cpu() returns and the migration
  3980. * is done.
  3981. */
  3982. /*
  3983. * Change a given task's CPU affinity. Migrate the thread to a
  3984. * proper CPU and schedule it away if the CPU it's executing on
  3985. * is removed from the allowed bitmask.
  3986. *
  3987. * NOTE: the caller must have a valid reference to the task, the
  3988. * task must not exit() & deallocate itself prematurely. The
  3989. * call is not atomic; no spinlocks may be held.
  3990. */
  3991. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3992. {
  3993. unsigned long flags;
  3994. struct rq *rq;
  3995. unsigned int dest_cpu;
  3996. int ret = 0;
  3997. rq = task_rq_lock(p, &flags);
  3998. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3999. goto out;
  4000. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4001. ret = -EINVAL;
  4002. goto out;
  4003. }
  4004. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4005. ret = -EINVAL;
  4006. goto out;
  4007. }
  4008. do_set_cpus_allowed(p, new_mask);
  4009. /* Can the task run on the task's current CPU? If so, we're done */
  4010. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4011. goto out;
  4012. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4013. if (p->on_rq) {
  4014. struct migration_arg arg = { p, dest_cpu };
  4015. /* Need help from migration thread: drop lock and wait. */
  4016. task_rq_unlock(rq, p, &flags);
  4017. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4018. tlb_migrate_finish(p->mm);
  4019. return 0;
  4020. }
  4021. out:
  4022. task_rq_unlock(rq, p, &flags);
  4023. return ret;
  4024. }
  4025. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4026. /*
  4027. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4028. * this because either it can't run here any more (set_cpus_allowed()
  4029. * away from this CPU, or CPU going down), or because we're
  4030. * attempting to rebalance this task on exec (sched_exec).
  4031. *
  4032. * So we race with normal scheduler movements, but that's OK, as long
  4033. * as the task is no longer on this CPU.
  4034. *
  4035. * Returns non-zero if task was successfully migrated.
  4036. */
  4037. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4038. {
  4039. struct rq *rq_dest, *rq_src;
  4040. int ret = 0;
  4041. if (unlikely(!cpu_active(dest_cpu)))
  4042. return ret;
  4043. rq_src = cpu_rq(src_cpu);
  4044. rq_dest = cpu_rq(dest_cpu);
  4045. raw_spin_lock(&p->pi_lock);
  4046. double_rq_lock(rq_src, rq_dest);
  4047. /* Already moved. */
  4048. if (task_cpu(p) != src_cpu)
  4049. goto done;
  4050. /* Affinity changed (again). */
  4051. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4052. goto fail;
  4053. /*
  4054. * If we're not on a rq, the next wake-up will ensure we're
  4055. * placed properly.
  4056. */
  4057. if (p->on_rq) {
  4058. dequeue_task(rq_src, p, 0);
  4059. set_task_cpu(p, dest_cpu);
  4060. enqueue_task(rq_dest, p, 0);
  4061. check_preempt_curr(rq_dest, p, 0);
  4062. }
  4063. done:
  4064. ret = 1;
  4065. fail:
  4066. double_rq_unlock(rq_src, rq_dest);
  4067. raw_spin_unlock(&p->pi_lock);
  4068. return ret;
  4069. }
  4070. /*
  4071. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4072. * and performs thread migration by bumping thread off CPU then
  4073. * 'pushing' onto another runqueue.
  4074. */
  4075. static int migration_cpu_stop(void *data)
  4076. {
  4077. struct migration_arg *arg = data;
  4078. /*
  4079. * The original target cpu might have gone down and we might
  4080. * be on another cpu but it doesn't matter.
  4081. */
  4082. local_irq_disable();
  4083. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4084. local_irq_enable();
  4085. return 0;
  4086. }
  4087. #ifdef CONFIG_HOTPLUG_CPU
  4088. /*
  4089. * Ensures that the idle task is using init_mm right before its cpu goes
  4090. * offline.
  4091. */
  4092. void idle_task_exit(void)
  4093. {
  4094. struct mm_struct *mm = current->active_mm;
  4095. BUG_ON(cpu_online(smp_processor_id()));
  4096. if (mm != &init_mm)
  4097. switch_mm(mm, &init_mm, current);
  4098. mmdrop(mm);
  4099. }
  4100. /*
  4101. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4102. * we might have. Assumes we're called after migrate_tasks() so that the
  4103. * nr_active count is stable.
  4104. *
  4105. * Also see the comment "Global load-average calculations".
  4106. */
  4107. static void calc_load_migrate(struct rq *rq)
  4108. {
  4109. long delta = calc_load_fold_active(rq);
  4110. if (delta)
  4111. atomic_long_add(delta, &calc_load_tasks);
  4112. }
  4113. /*
  4114. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4115. * try_to_wake_up()->select_task_rq().
  4116. *
  4117. * Called with rq->lock held even though we'er in stop_machine() and
  4118. * there's no concurrency possible, we hold the required locks anyway
  4119. * because of lock validation efforts.
  4120. */
  4121. static void migrate_tasks(unsigned int dead_cpu)
  4122. {
  4123. struct rq *rq = cpu_rq(dead_cpu);
  4124. struct task_struct *next, *stop = rq->stop;
  4125. int dest_cpu;
  4126. /*
  4127. * Fudge the rq selection such that the below task selection loop
  4128. * doesn't get stuck on the currently eligible stop task.
  4129. *
  4130. * We're currently inside stop_machine() and the rq is either stuck
  4131. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4132. * either way we should never end up calling schedule() until we're
  4133. * done here.
  4134. */
  4135. rq->stop = NULL;
  4136. for ( ; ; ) {
  4137. /*
  4138. * There's this thread running, bail when that's the only
  4139. * remaining thread.
  4140. */
  4141. if (rq->nr_running == 1)
  4142. break;
  4143. next = pick_next_task(rq);
  4144. BUG_ON(!next);
  4145. next->sched_class->put_prev_task(rq, next);
  4146. /* Find suitable destination for @next, with force if needed. */
  4147. dest_cpu = select_fallback_rq(dead_cpu, next);
  4148. raw_spin_unlock(&rq->lock);
  4149. __migrate_task(next, dead_cpu, dest_cpu);
  4150. raw_spin_lock(&rq->lock);
  4151. }
  4152. rq->stop = stop;
  4153. }
  4154. #endif /* CONFIG_HOTPLUG_CPU */
  4155. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4156. static struct ctl_table sd_ctl_dir[] = {
  4157. {
  4158. .procname = "sched_domain",
  4159. .mode = 0555,
  4160. },
  4161. {}
  4162. };
  4163. static struct ctl_table sd_ctl_root[] = {
  4164. {
  4165. .procname = "kernel",
  4166. .mode = 0555,
  4167. .child = sd_ctl_dir,
  4168. },
  4169. {}
  4170. };
  4171. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4172. {
  4173. struct ctl_table *entry =
  4174. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4175. return entry;
  4176. }
  4177. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4178. {
  4179. struct ctl_table *entry;
  4180. /*
  4181. * In the intermediate directories, both the child directory and
  4182. * procname are dynamically allocated and could fail but the mode
  4183. * will always be set. In the lowest directory the names are
  4184. * static strings and all have proc handlers.
  4185. */
  4186. for (entry = *tablep; entry->mode; entry++) {
  4187. if (entry->child)
  4188. sd_free_ctl_entry(&entry->child);
  4189. if (entry->proc_handler == NULL)
  4190. kfree(entry->procname);
  4191. }
  4192. kfree(*tablep);
  4193. *tablep = NULL;
  4194. }
  4195. static int min_load_idx = 0;
  4196. static int max_load_idx = CPU_LOAD_IDX_MAX;
  4197. static void
  4198. set_table_entry(struct ctl_table *entry,
  4199. const char *procname, void *data, int maxlen,
  4200. umode_t mode, proc_handler *proc_handler,
  4201. bool load_idx)
  4202. {
  4203. entry->procname = procname;
  4204. entry->data = data;
  4205. entry->maxlen = maxlen;
  4206. entry->mode = mode;
  4207. entry->proc_handler = proc_handler;
  4208. if (load_idx) {
  4209. entry->extra1 = &min_load_idx;
  4210. entry->extra2 = &max_load_idx;
  4211. }
  4212. }
  4213. static struct ctl_table *
  4214. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4215. {
  4216. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4217. if (table == NULL)
  4218. return NULL;
  4219. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4220. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4221. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4222. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4223. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4224. sizeof(int), 0644, proc_dointvec_minmax, true);
  4225. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4226. sizeof(int), 0644, proc_dointvec_minmax, true);
  4227. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4228. sizeof(int), 0644, proc_dointvec_minmax, true);
  4229. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4230. sizeof(int), 0644, proc_dointvec_minmax, true);
  4231. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4232. sizeof(int), 0644, proc_dointvec_minmax, true);
  4233. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4234. sizeof(int), 0644, proc_dointvec_minmax, false);
  4235. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4236. sizeof(int), 0644, proc_dointvec_minmax, false);
  4237. set_table_entry(&table[9], "cache_nice_tries",
  4238. &sd->cache_nice_tries,
  4239. sizeof(int), 0644, proc_dointvec_minmax, false);
  4240. set_table_entry(&table[10], "flags", &sd->flags,
  4241. sizeof(int), 0644, proc_dointvec_minmax, false);
  4242. set_table_entry(&table[11], "name", sd->name,
  4243. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4244. /* &table[12] is terminator */
  4245. return table;
  4246. }
  4247. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4248. {
  4249. struct ctl_table *entry, *table;
  4250. struct sched_domain *sd;
  4251. int domain_num = 0, i;
  4252. char buf[32];
  4253. for_each_domain(cpu, sd)
  4254. domain_num++;
  4255. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4256. if (table == NULL)
  4257. return NULL;
  4258. i = 0;
  4259. for_each_domain(cpu, sd) {
  4260. snprintf(buf, 32, "domain%d", i);
  4261. entry->procname = kstrdup(buf, GFP_KERNEL);
  4262. entry->mode = 0555;
  4263. entry->child = sd_alloc_ctl_domain_table(sd);
  4264. entry++;
  4265. i++;
  4266. }
  4267. return table;
  4268. }
  4269. static struct ctl_table_header *sd_sysctl_header;
  4270. static void register_sched_domain_sysctl(void)
  4271. {
  4272. int i, cpu_num = num_possible_cpus();
  4273. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4274. char buf[32];
  4275. WARN_ON(sd_ctl_dir[0].child);
  4276. sd_ctl_dir[0].child = entry;
  4277. if (entry == NULL)
  4278. return;
  4279. for_each_possible_cpu(i) {
  4280. snprintf(buf, 32, "cpu%d", i);
  4281. entry->procname = kstrdup(buf, GFP_KERNEL);
  4282. entry->mode = 0555;
  4283. entry->child = sd_alloc_ctl_cpu_table(i);
  4284. entry++;
  4285. }
  4286. WARN_ON(sd_sysctl_header);
  4287. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4288. }
  4289. /* may be called multiple times per register */
  4290. static void unregister_sched_domain_sysctl(void)
  4291. {
  4292. if (sd_sysctl_header)
  4293. unregister_sysctl_table(sd_sysctl_header);
  4294. sd_sysctl_header = NULL;
  4295. if (sd_ctl_dir[0].child)
  4296. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4297. }
  4298. #else
  4299. static void register_sched_domain_sysctl(void)
  4300. {
  4301. }
  4302. static void unregister_sched_domain_sysctl(void)
  4303. {
  4304. }
  4305. #endif
  4306. static void set_rq_online(struct rq *rq)
  4307. {
  4308. if (!rq->online) {
  4309. const struct sched_class *class;
  4310. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4311. rq->online = 1;
  4312. for_each_class(class) {
  4313. if (class->rq_online)
  4314. class->rq_online(rq);
  4315. }
  4316. }
  4317. }
  4318. static void set_rq_offline(struct rq *rq)
  4319. {
  4320. if (rq->online) {
  4321. const struct sched_class *class;
  4322. for_each_class(class) {
  4323. if (class->rq_offline)
  4324. class->rq_offline(rq);
  4325. }
  4326. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4327. rq->online = 0;
  4328. }
  4329. }
  4330. /*
  4331. * migration_call - callback that gets triggered when a CPU is added.
  4332. * Here we can start up the necessary migration thread for the new CPU.
  4333. */
  4334. static int __cpuinit
  4335. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4336. {
  4337. int cpu = (long)hcpu;
  4338. unsigned long flags;
  4339. struct rq *rq = cpu_rq(cpu);
  4340. switch (action & ~CPU_TASKS_FROZEN) {
  4341. case CPU_UP_PREPARE:
  4342. rq->calc_load_update = calc_load_update;
  4343. break;
  4344. case CPU_ONLINE:
  4345. /* Update our root-domain */
  4346. raw_spin_lock_irqsave(&rq->lock, flags);
  4347. if (rq->rd) {
  4348. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4349. set_rq_online(rq);
  4350. }
  4351. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4352. break;
  4353. #ifdef CONFIG_HOTPLUG_CPU
  4354. case CPU_DYING:
  4355. sched_ttwu_pending();
  4356. /* Update our root-domain */
  4357. raw_spin_lock_irqsave(&rq->lock, flags);
  4358. if (rq->rd) {
  4359. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4360. set_rq_offline(rq);
  4361. }
  4362. migrate_tasks(cpu);
  4363. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4364. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4365. break;
  4366. case CPU_DEAD:
  4367. calc_load_migrate(rq);
  4368. break;
  4369. #endif
  4370. }
  4371. update_max_interval();
  4372. return NOTIFY_OK;
  4373. }
  4374. /*
  4375. * Register at high priority so that task migration (migrate_all_tasks)
  4376. * happens before everything else. This has to be lower priority than
  4377. * the notifier in the perf_event subsystem, though.
  4378. */
  4379. static struct notifier_block __cpuinitdata migration_notifier = {
  4380. .notifier_call = migration_call,
  4381. .priority = CPU_PRI_MIGRATION,
  4382. };
  4383. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4384. unsigned long action, void *hcpu)
  4385. {
  4386. switch (action & ~CPU_TASKS_FROZEN) {
  4387. case CPU_STARTING:
  4388. case CPU_DOWN_FAILED:
  4389. set_cpu_active((long)hcpu, true);
  4390. return NOTIFY_OK;
  4391. default:
  4392. return NOTIFY_DONE;
  4393. }
  4394. }
  4395. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4396. unsigned long action, void *hcpu)
  4397. {
  4398. switch (action & ~CPU_TASKS_FROZEN) {
  4399. case CPU_DOWN_PREPARE:
  4400. set_cpu_active((long)hcpu, false);
  4401. return NOTIFY_OK;
  4402. default:
  4403. return NOTIFY_DONE;
  4404. }
  4405. }
  4406. static int __init migration_init(void)
  4407. {
  4408. void *cpu = (void *)(long)smp_processor_id();
  4409. int err;
  4410. /* Initialize migration for the boot CPU */
  4411. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4412. BUG_ON(err == NOTIFY_BAD);
  4413. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4414. register_cpu_notifier(&migration_notifier);
  4415. /* Register cpu active notifiers */
  4416. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4417. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4418. return 0;
  4419. }
  4420. early_initcall(migration_init);
  4421. #endif
  4422. #ifdef CONFIG_SMP
  4423. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4424. #ifdef CONFIG_SCHED_DEBUG
  4425. static __read_mostly int sched_debug_enabled;
  4426. static int __init sched_debug_setup(char *str)
  4427. {
  4428. sched_debug_enabled = 1;
  4429. return 0;
  4430. }
  4431. early_param("sched_debug", sched_debug_setup);
  4432. static inline bool sched_debug(void)
  4433. {
  4434. return sched_debug_enabled;
  4435. }
  4436. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4437. struct cpumask *groupmask)
  4438. {
  4439. struct sched_group *group = sd->groups;
  4440. char str[256];
  4441. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4442. cpumask_clear(groupmask);
  4443. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4444. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4445. printk("does not load-balance\n");
  4446. if (sd->parent)
  4447. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4448. " has parent");
  4449. return -1;
  4450. }
  4451. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4452. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4453. printk(KERN_ERR "ERROR: domain->span does not contain "
  4454. "CPU%d\n", cpu);
  4455. }
  4456. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4457. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4458. " CPU%d\n", cpu);
  4459. }
  4460. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4461. do {
  4462. if (!group) {
  4463. printk("\n");
  4464. printk(KERN_ERR "ERROR: group is NULL\n");
  4465. break;
  4466. }
  4467. /*
  4468. * Even though we initialize ->power to something semi-sane,
  4469. * we leave power_orig unset. This allows us to detect if
  4470. * domain iteration is still funny without causing /0 traps.
  4471. */
  4472. if (!group->sgp->power_orig) {
  4473. printk(KERN_CONT "\n");
  4474. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4475. "set\n");
  4476. break;
  4477. }
  4478. if (!cpumask_weight(sched_group_cpus(group))) {
  4479. printk(KERN_CONT "\n");
  4480. printk(KERN_ERR "ERROR: empty group\n");
  4481. break;
  4482. }
  4483. if (!(sd->flags & SD_OVERLAP) &&
  4484. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4485. printk(KERN_CONT "\n");
  4486. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4487. break;
  4488. }
  4489. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4490. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4491. printk(KERN_CONT " %s", str);
  4492. if (group->sgp->power != SCHED_POWER_SCALE) {
  4493. printk(KERN_CONT " (cpu_power = %d)",
  4494. group->sgp->power);
  4495. }
  4496. group = group->next;
  4497. } while (group != sd->groups);
  4498. printk(KERN_CONT "\n");
  4499. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4500. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4501. if (sd->parent &&
  4502. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4503. printk(KERN_ERR "ERROR: parent span is not a superset "
  4504. "of domain->span\n");
  4505. return 0;
  4506. }
  4507. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4508. {
  4509. int level = 0;
  4510. if (!sched_debug_enabled)
  4511. return;
  4512. if (!sd) {
  4513. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4514. return;
  4515. }
  4516. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4517. for (;;) {
  4518. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4519. break;
  4520. level++;
  4521. sd = sd->parent;
  4522. if (!sd)
  4523. break;
  4524. }
  4525. }
  4526. #else /* !CONFIG_SCHED_DEBUG */
  4527. # define sched_domain_debug(sd, cpu) do { } while (0)
  4528. static inline bool sched_debug(void)
  4529. {
  4530. return false;
  4531. }
  4532. #endif /* CONFIG_SCHED_DEBUG */
  4533. static int sd_degenerate(struct sched_domain *sd)
  4534. {
  4535. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4536. return 1;
  4537. /* Following flags need at least 2 groups */
  4538. if (sd->flags & (SD_LOAD_BALANCE |
  4539. SD_BALANCE_NEWIDLE |
  4540. SD_BALANCE_FORK |
  4541. SD_BALANCE_EXEC |
  4542. SD_SHARE_CPUPOWER |
  4543. SD_SHARE_PKG_RESOURCES)) {
  4544. if (sd->groups != sd->groups->next)
  4545. return 0;
  4546. }
  4547. /* Following flags don't use groups */
  4548. if (sd->flags & (SD_WAKE_AFFINE))
  4549. return 0;
  4550. return 1;
  4551. }
  4552. static int
  4553. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4554. {
  4555. unsigned long cflags = sd->flags, pflags = parent->flags;
  4556. if (sd_degenerate(parent))
  4557. return 1;
  4558. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4559. return 0;
  4560. /* Flags needing groups don't count if only 1 group in parent */
  4561. if (parent->groups == parent->groups->next) {
  4562. pflags &= ~(SD_LOAD_BALANCE |
  4563. SD_BALANCE_NEWIDLE |
  4564. SD_BALANCE_FORK |
  4565. SD_BALANCE_EXEC |
  4566. SD_SHARE_CPUPOWER |
  4567. SD_SHARE_PKG_RESOURCES);
  4568. if (nr_node_ids == 1)
  4569. pflags &= ~SD_SERIALIZE;
  4570. }
  4571. if (~cflags & pflags)
  4572. return 0;
  4573. return 1;
  4574. }
  4575. static void free_rootdomain(struct rcu_head *rcu)
  4576. {
  4577. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4578. cpupri_cleanup(&rd->cpupri);
  4579. free_cpumask_var(rd->rto_mask);
  4580. free_cpumask_var(rd->online);
  4581. free_cpumask_var(rd->span);
  4582. kfree(rd);
  4583. }
  4584. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4585. {
  4586. struct root_domain *old_rd = NULL;
  4587. unsigned long flags;
  4588. raw_spin_lock_irqsave(&rq->lock, flags);
  4589. if (rq->rd) {
  4590. old_rd = rq->rd;
  4591. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4592. set_rq_offline(rq);
  4593. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4594. /*
  4595. * If we dont want to free the old_rt yet then
  4596. * set old_rd to NULL to skip the freeing later
  4597. * in this function:
  4598. */
  4599. if (!atomic_dec_and_test(&old_rd->refcount))
  4600. old_rd = NULL;
  4601. }
  4602. atomic_inc(&rd->refcount);
  4603. rq->rd = rd;
  4604. cpumask_set_cpu(rq->cpu, rd->span);
  4605. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4606. set_rq_online(rq);
  4607. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4608. if (old_rd)
  4609. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4610. }
  4611. static int init_rootdomain(struct root_domain *rd)
  4612. {
  4613. memset(rd, 0, sizeof(*rd));
  4614. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4615. goto out;
  4616. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4617. goto free_span;
  4618. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4619. goto free_online;
  4620. if (cpupri_init(&rd->cpupri) != 0)
  4621. goto free_rto_mask;
  4622. return 0;
  4623. free_rto_mask:
  4624. free_cpumask_var(rd->rto_mask);
  4625. free_online:
  4626. free_cpumask_var(rd->online);
  4627. free_span:
  4628. free_cpumask_var(rd->span);
  4629. out:
  4630. return -ENOMEM;
  4631. }
  4632. /*
  4633. * By default the system creates a single root-domain with all cpus as
  4634. * members (mimicking the global state we have today).
  4635. */
  4636. struct root_domain def_root_domain;
  4637. static void init_defrootdomain(void)
  4638. {
  4639. init_rootdomain(&def_root_domain);
  4640. atomic_set(&def_root_domain.refcount, 1);
  4641. }
  4642. static struct root_domain *alloc_rootdomain(void)
  4643. {
  4644. struct root_domain *rd;
  4645. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4646. if (!rd)
  4647. return NULL;
  4648. if (init_rootdomain(rd) != 0) {
  4649. kfree(rd);
  4650. return NULL;
  4651. }
  4652. return rd;
  4653. }
  4654. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4655. {
  4656. struct sched_group *tmp, *first;
  4657. if (!sg)
  4658. return;
  4659. first = sg;
  4660. do {
  4661. tmp = sg->next;
  4662. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4663. kfree(sg->sgp);
  4664. kfree(sg);
  4665. sg = tmp;
  4666. } while (sg != first);
  4667. }
  4668. static void free_sched_domain(struct rcu_head *rcu)
  4669. {
  4670. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4671. /*
  4672. * If its an overlapping domain it has private groups, iterate and
  4673. * nuke them all.
  4674. */
  4675. if (sd->flags & SD_OVERLAP) {
  4676. free_sched_groups(sd->groups, 1);
  4677. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4678. kfree(sd->groups->sgp);
  4679. kfree(sd->groups);
  4680. }
  4681. kfree(sd);
  4682. }
  4683. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4684. {
  4685. call_rcu(&sd->rcu, free_sched_domain);
  4686. }
  4687. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4688. {
  4689. for (; sd; sd = sd->parent)
  4690. destroy_sched_domain(sd, cpu);
  4691. }
  4692. /*
  4693. * Keep a special pointer to the highest sched_domain that has
  4694. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4695. * allows us to avoid some pointer chasing select_idle_sibling().
  4696. *
  4697. * Also keep a unique ID per domain (we use the first cpu number in
  4698. * the cpumask of the domain), this allows us to quickly tell if
  4699. * two cpus are in the same cache domain, see cpus_share_cache().
  4700. */
  4701. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4702. DEFINE_PER_CPU(int, sd_llc_id);
  4703. static void update_top_cache_domain(int cpu)
  4704. {
  4705. struct sched_domain *sd;
  4706. int id = cpu;
  4707. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4708. if (sd)
  4709. id = cpumask_first(sched_domain_span(sd));
  4710. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4711. per_cpu(sd_llc_id, cpu) = id;
  4712. }
  4713. /*
  4714. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4715. * hold the hotplug lock.
  4716. */
  4717. static void
  4718. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4719. {
  4720. struct rq *rq = cpu_rq(cpu);
  4721. struct sched_domain *tmp;
  4722. /* Remove the sched domains which do not contribute to scheduling. */
  4723. for (tmp = sd; tmp; ) {
  4724. struct sched_domain *parent = tmp->parent;
  4725. if (!parent)
  4726. break;
  4727. if (sd_parent_degenerate(tmp, parent)) {
  4728. tmp->parent = parent->parent;
  4729. if (parent->parent)
  4730. parent->parent->child = tmp;
  4731. destroy_sched_domain(parent, cpu);
  4732. } else
  4733. tmp = tmp->parent;
  4734. }
  4735. if (sd && sd_degenerate(sd)) {
  4736. tmp = sd;
  4737. sd = sd->parent;
  4738. destroy_sched_domain(tmp, cpu);
  4739. if (sd)
  4740. sd->child = NULL;
  4741. }
  4742. sched_domain_debug(sd, cpu);
  4743. rq_attach_root(rq, rd);
  4744. tmp = rq->sd;
  4745. rcu_assign_pointer(rq->sd, sd);
  4746. destroy_sched_domains(tmp, cpu);
  4747. update_top_cache_domain(cpu);
  4748. }
  4749. /* cpus with isolated domains */
  4750. static cpumask_var_t cpu_isolated_map;
  4751. /* Setup the mask of cpus configured for isolated domains */
  4752. static int __init isolated_cpu_setup(char *str)
  4753. {
  4754. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4755. cpulist_parse(str, cpu_isolated_map);
  4756. return 1;
  4757. }
  4758. __setup("isolcpus=", isolated_cpu_setup);
  4759. static const struct cpumask *cpu_cpu_mask(int cpu)
  4760. {
  4761. return cpumask_of_node(cpu_to_node(cpu));
  4762. }
  4763. struct sd_data {
  4764. struct sched_domain **__percpu sd;
  4765. struct sched_group **__percpu sg;
  4766. struct sched_group_power **__percpu sgp;
  4767. };
  4768. struct s_data {
  4769. struct sched_domain ** __percpu sd;
  4770. struct root_domain *rd;
  4771. };
  4772. enum s_alloc {
  4773. sa_rootdomain,
  4774. sa_sd,
  4775. sa_sd_storage,
  4776. sa_none,
  4777. };
  4778. struct sched_domain_topology_level;
  4779. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4780. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4781. #define SDTL_OVERLAP 0x01
  4782. struct sched_domain_topology_level {
  4783. sched_domain_init_f init;
  4784. sched_domain_mask_f mask;
  4785. int flags;
  4786. int numa_level;
  4787. struct sd_data data;
  4788. };
  4789. /*
  4790. * Build an iteration mask that can exclude certain CPUs from the upwards
  4791. * domain traversal.
  4792. *
  4793. * Asymmetric node setups can result in situations where the domain tree is of
  4794. * unequal depth, make sure to skip domains that already cover the entire
  4795. * range.
  4796. *
  4797. * In that case build_sched_domains() will have terminated the iteration early
  4798. * and our sibling sd spans will be empty. Domains should always include the
  4799. * cpu they're built on, so check that.
  4800. *
  4801. */
  4802. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4803. {
  4804. const struct cpumask *span = sched_domain_span(sd);
  4805. struct sd_data *sdd = sd->private;
  4806. struct sched_domain *sibling;
  4807. int i;
  4808. for_each_cpu(i, span) {
  4809. sibling = *per_cpu_ptr(sdd->sd, i);
  4810. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4811. continue;
  4812. cpumask_set_cpu(i, sched_group_mask(sg));
  4813. }
  4814. }
  4815. /*
  4816. * Return the canonical balance cpu for this group, this is the first cpu
  4817. * of this group that's also in the iteration mask.
  4818. */
  4819. int group_balance_cpu(struct sched_group *sg)
  4820. {
  4821. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4822. }
  4823. static int
  4824. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4825. {
  4826. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4827. const struct cpumask *span = sched_domain_span(sd);
  4828. struct cpumask *covered = sched_domains_tmpmask;
  4829. struct sd_data *sdd = sd->private;
  4830. struct sched_domain *child;
  4831. int i;
  4832. cpumask_clear(covered);
  4833. for_each_cpu(i, span) {
  4834. struct cpumask *sg_span;
  4835. if (cpumask_test_cpu(i, covered))
  4836. continue;
  4837. child = *per_cpu_ptr(sdd->sd, i);
  4838. /* See the comment near build_group_mask(). */
  4839. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4840. continue;
  4841. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4842. GFP_KERNEL, cpu_to_node(cpu));
  4843. if (!sg)
  4844. goto fail;
  4845. sg_span = sched_group_cpus(sg);
  4846. if (child->child) {
  4847. child = child->child;
  4848. cpumask_copy(sg_span, sched_domain_span(child));
  4849. } else
  4850. cpumask_set_cpu(i, sg_span);
  4851. cpumask_or(covered, covered, sg_span);
  4852. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4853. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4854. build_group_mask(sd, sg);
  4855. /*
  4856. * Initialize sgp->power such that even if we mess up the
  4857. * domains and no possible iteration will get us here, we won't
  4858. * die on a /0 trap.
  4859. */
  4860. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4861. /*
  4862. * Make sure the first group of this domain contains the
  4863. * canonical balance cpu. Otherwise the sched_domain iteration
  4864. * breaks. See update_sg_lb_stats().
  4865. */
  4866. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4867. group_balance_cpu(sg) == cpu)
  4868. groups = sg;
  4869. if (!first)
  4870. first = sg;
  4871. if (last)
  4872. last->next = sg;
  4873. last = sg;
  4874. last->next = first;
  4875. }
  4876. sd->groups = groups;
  4877. return 0;
  4878. fail:
  4879. free_sched_groups(first, 0);
  4880. return -ENOMEM;
  4881. }
  4882. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4883. {
  4884. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4885. struct sched_domain *child = sd->child;
  4886. if (child)
  4887. cpu = cpumask_first(sched_domain_span(child));
  4888. if (sg) {
  4889. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4890. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4891. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4892. }
  4893. return cpu;
  4894. }
  4895. /*
  4896. * build_sched_groups will build a circular linked list of the groups
  4897. * covered by the given span, and will set each group's ->cpumask correctly,
  4898. * and ->cpu_power to 0.
  4899. *
  4900. * Assumes the sched_domain tree is fully constructed
  4901. */
  4902. static int
  4903. build_sched_groups(struct sched_domain *sd, int cpu)
  4904. {
  4905. struct sched_group *first = NULL, *last = NULL;
  4906. struct sd_data *sdd = sd->private;
  4907. const struct cpumask *span = sched_domain_span(sd);
  4908. struct cpumask *covered;
  4909. int i;
  4910. get_group(cpu, sdd, &sd->groups);
  4911. atomic_inc(&sd->groups->ref);
  4912. if (cpu != cpumask_first(sched_domain_span(sd)))
  4913. return 0;
  4914. lockdep_assert_held(&sched_domains_mutex);
  4915. covered = sched_domains_tmpmask;
  4916. cpumask_clear(covered);
  4917. for_each_cpu(i, span) {
  4918. struct sched_group *sg;
  4919. int group = get_group(i, sdd, &sg);
  4920. int j;
  4921. if (cpumask_test_cpu(i, covered))
  4922. continue;
  4923. cpumask_clear(sched_group_cpus(sg));
  4924. sg->sgp->power = 0;
  4925. cpumask_setall(sched_group_mask(sg));
  4926. for_each_cpu(j, span) {
  4927. if (get_group(j, sdd, NULL) != group)
  4928. continue;
  4929. cpumask_set_cpu(j, covered);
  4930. cpumask_set_cpu(j, sched_group_cpus(sg));
  4931. }
  4932. if (!first)
  4933. first = sg;
  4934. if (last)
  4935. last->next = sg;
  4936. last = sg;
  4937. }
  4938. last->next = first;
  4939. return 0;
  4940. }
  4941. /*
  4942. * Initialize sched groups cpu_power.
  4943. *
  4944. * cpu_power indicates the capacity of sched group, which is used while
  4945. * distributing the load between different sched groups in a sched domain.
  4946. * Typically cpu_power for all the groups in a sched domain will be same unless
  4947. * there are asymmetries in the topology. If there are asymmetries, group
  4948. * having more cpu_power will pickup more load compared to the group having
  4949. * less cpu_power.
  4950. */
  4951. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4952. {
  4953. struct sched_group *sg = sd->groups;
  4954. WARN_ON(!sd || !sg);
  4955. do {
  4956. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4957. sg = sg->next;
  4958. } while (sg != sd->groups);
  4959. if (cpu != group_balance_cpu(sg))
  4960. return;
  4961. update_group_power(sd, cpu);
  4962. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4963. }
  4964. int __weak arch_sd_sibling_asym_packing(void)
  4965. {
  4966. return 0*SD_ASYM_PACKING;
  4967. }
  4968. /*
  4969. * Initializers for schedule domains
  4970. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4971. */
  4972. #ifdef CONFIG_SCHED_DEBUG
  4973. # define SD_INIT_NAME(sd, type) sd->name = #type
  4974. #else
  4975. # define SD_INIT_NAME(sd, type) do { } while (0)
  4976. #endif
  4977. #define SD_INIT_FUNC(type) \
  4978. static noinline struct sched_domain * \
  4979. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4980. { \
  4981. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4982. *sd = SD_##type##_INIT; \
  4983. SD_INIT_NAME(sd, type); \
  4984. sd->private = &tl->data; \
  4985. return sd; \
  4986. }
  4987. SD_INIT_FUNC(CPU)
  4988. #ifdef CONFIG_SCHED_SMT
  4989. SD_INIT_FUNC(SIBLING)
  4990. #endif
  4991. #ifdef CONFIG_SCHED_MC
  4992. SD_INIT_FUNC(MC)
  4993. #endif
  4994. #ifdef CONFIG_SCHED_BOOK
  4995. SD_INIT_FUNC(BOOK)
  4996. #endif
  4997. static int default_relax_domain_level = -1;
  4998. int sched_domain_level_max;
  4999. static int __init setup_relax_domain_level(char *str)
  5000. {
  5001. if (kstrtoint(str, 0, &default_relax_domain_level))
  5002. pr_warn("Unable to set relax_domain_level\n");
  5003. return 1;
  5004. }
  5005. __setup("relax_domain_level=", setup_relax_domain_level);
  5006. static void set_domain_attribute(struct sched_domain *sd,
  5007. struct sched_domain_attr *attr)
  5008. {
  5009. int request;
  5010. if (!attr || attr->relax_domain_level < 0) {
  5011. if (default_relax_domain_level < 0)
  5012. return;
  5013. else
  5014. request = default_relax_domain_level;
  5015. } else
  5016. request = attr->relax_domain_level;
  5017. if (request < sd->level) {
  5018. /* turn off idle balance on this domain */
  5019. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5020. } else {
  5021. /* turn on idle balance on this domain */
  5022. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5023. }
  5024. }
  5025. static void __sdt_free(const struct cpumask *cpu_map);
  5026. static int __sdt_alloc(const struct cpumask *cpu_map);
  5027. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5028. const struct cpumask *cpu_map)
  5029. {
  5030. switch (what) {
  5031. case sa_rootdomain:
  5032. if (!atomic_read(&d->rd->refcount))
  5033. free_rootdomain(&d->rd->rcu); /* fall through */
  5034. case sa_sd:
  5035. free_percpu(d->sd); /* fall through */
  5036. case sa_sd_storage:
  5037. __sdt_free(cpu_map); /* fall through */
  5038. case sa_none:
  5039. break;
  5040. }
  5041. }
  5042. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5043. const struct cpumask *cpu_map)
  5044. {
  5045. memset(d, 0, sizeof(*d));
  5046. if (__sdt_alloc(cpu_map))
  5047. return sa_sd_storage;
  5048. d->sd = alloc_percpu(struct sched_domain *);
  5049. if (!d->sd)
  5050. return sa_sd_storage;
  5051. d->rd = alloc_rootdomain();
  5052. if (!d->rd)
  5053. return sa_sd;
  5054. return sa_rootdomain;
  5055. }
  5056. /*
  5057. * NULL the sd_data elements we've used to build the sched_domain and
  5058. * sched_group structure so that the subsequent __free_domain_allocs()
  5059. * will not free the data we're using.
  5060. */
  5061. static void claim_allocations(int cpu, struct sched_domain *sd)
  5062. {
  5063. struct sd_data *sdd = sd->private;
  5064. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5065. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5066. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5067. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5068. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5069. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5070. }
  5071. #ifdef CONFIG_SCHED_SMT
  5072. static const struct cpumask *cpu_smt_mask(int cpu)
  5073. {
  5074. return topology_thread_cpumask(cpu);
  5075. }
  5076. #endif
  5077. /*
  5078. * Topology list, bottom-up.
  5079. */
  5080. static struct sched_domain_topology_level default_topology[] = {
  5081. #ifdef CONFIG_SCHED_SMT
  5082. { sd_init_SIBLING, cpu_smt_mask, },
  5083. #endif
  5084. #ifdef CONFIG_SCHED_MC
  5085. { sd_init_MC, cpu_coregroup_mask, },
  5086. #endif
  5087. #ifdef CONFIG_SCHED_BOOK
  5088. { sd_init_BOOK, cpu_book_mask, },
  5089. #endif
  5090. { sd_init_CPU, cpu_cpu_mask, },
  5091. { NULL, },
  5092. };
  5093. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5094. #ifdef CONFIG_NUMA
  5095. static int sched_domains_numa_levels;
  5096. static int *sched_domains_numa_distance;
  5097. static struct cpumask ***sched_domains_numa_masks;
  5098. static int sched_domains_curr_level;
  5099. static inline int sd_local_flags(int level)
  5100. {
  5101. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5102. return 0;
  5103. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5104. }
  5105. static struct sched_domain *
  5106. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5107. {
  5108. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5109. int level = tl->numa_level;
  5110. int sd_weight = cpumask_weight(
  5111. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5112. *sd = (struct sched_domain){
  5113. .min_interval = sd_weight,
  5114. .max_interval = 2*sd_weight,
  5115. .busy_factor = 32,
  5116. .imbalance_pct = 125,
  5117. .cache_nice_tries = 2,
  5118. .busy_idx = 3,
  5119. .idle_idx = 2,
  5120. .newidle_idx = 0,
  5121. .wake_idx = 0,
  5122. .forkexec_idx = 0,
  5123. .flags = 1*SD_LOAD_BALANCE
  5124. | 1*SD_BALANCE_NEWIDLE
  5125. | 0*SD_BALANCE_EXEC
  5126. | 0*SD_BALANCE_FORK
  5127. | 0*SD_BALANCE_WAKE
  5128. | 0*SD_WAKE_AFFINE
  5129. | 0*SD_SHARE_CPUPOWER
  5130. | 0*SD_SHARE_PKG_RESOURCES
  5131. | 1*SD_SERIALIZE
  5132. | 0*SD_PREFER_SIBLING
  5133. | sd_local_flags(level)
  5134. ,
  5135. .last_balance = jiffies,
  5136. .balance_interval = sd_weight,
  5137. };
  5138. SD_INIT_NAME(sd, NUMA);
  5139. sd->private = &tl->data;
  5140. /*
  5141. * Ugly hack to pass state to sd_numa_mask()...
  5142. */
  5143. sched_domains_curr_level = tl->numa_level;
  5144. return sd;
  5145. }
  5146. static const struct cpumask *sd_numa_mask(int cpu)
  5147. {
  5148. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5149. }
  5150. static void sched_numa_warn(const char *str)
  5151. {
  5152. static int done = false;
  5153. int i,j;
  5154. if (done)
  5155. return;
  5156. done = true;
  5157. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5158. for (i = 0; i < nr_node_ids; i++) {
  5159. printk(KERN_WARNING " ");
  5160. for (j = 0; j < nr_node_ids; j++)
  5161. printk(KERN_CONT "%02d ", node_distance(i,j));
  5162. printk(KERN_CONT "\n");
  5163. }
  5164. printk(KERN_WARNING "\n");
  5165. }
  5166. static bool find_numa_distance(int distance)
  5167. {
  5168. int i;
  5169. if (distance == node_distance(0, 0))
  5170. return true;
  5171. for (i = 0; i < sched_domains_numa_levels; i++) {
  5172. if (sched_domains_numa_distance[i] == distance)
  5173. return true;
  5174. }
  5175. return false;
  5176. }
  5177. static void sched_init_numa(void)
  5178. {
  5179. int next_distance, curr_distance = node_distance(0, 0);
  5180. struct sched_domain_topology_level *tl;
  5181. int level = 0;
  5182. int i, j, k;
  5183. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5184. if (!sched_domains_numa_distance)
  5185. return;
  5186. /*
  5187. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5188. * unique distances in the node_distance() table.
  5189. *
  5190. * Assumes node_distance(0,j) includes all distances in
  5191. * node_distance(i,j) in order to avoid cubic time.
  5192. */
  5193. next_distance = curr_distance;
  5194. for (i = 0; i < nr_node_ids; i++) {
  5195. for (j = 0; j < nr_node_ids; j++) {
  5196. for (k = 0; k < nr_node_ids; k++) {
  5197. int distance = node_distance(i, k);
  5198. if (distance > curr_distance &&
  5199. (distance < next_distance ||
  5200. next_distance == curr_distance))
  5201. next_distance = distance;
  5202. /*
  5203. * While not a strong assumption it would be nice to know
  5204. * about cases where if node A is connected to B, B is not
  5205. * equally connected to A.
  5206. */
  5207. if (sched_debug() && node_distance(k, i) != distance)
  5208. sched_numa_warn("Node-distance not symmetric");
  5209. if (sched_debug() && i && !find_numa_distance(distance))
  5210. sched_numa_warn("Node-0 not representative");
  5211. }
  5212. if (next_distance != curr_distance) {
  5213. sched_domains_numa_distance[level++] = next_distance;
  5214. sched_domains_numa_levels = level;
  5215. curr_distance = next_distance;
  5216. } else break;
  5217. }
  5218. /*
  5219. * In case of sched_debug() we verify the above assumption.
  5220. */
  5221. if (!sched_debug())
  5222. break;
  5223. }
  5224. /*
  5225. * 'level' contains the number of unique distances, excluding the
  5226. * identity distance node_distance(i,i).
  5227. *
  5228. * The sched_domains_nume_distance[] array includes the actual distance
  5229. * numbers.
  5230. */
  5231. /*
  5232. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5233. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5234. * the array will contain less then 'level' members. This could be
  5235. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5236. * in other functions.
  5237. *
  5238. * We reset it to 'level' at the end of this function.
  5239. */
  5240. sched_domains_numa_levels = 0;
  5241. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5242. if (!sched_domains_numa_masks)
  5243. return;
  5244. /*
  5245. * Now for each level, construct a mask per node which contains all
  5246. * cpus of nodes that are that many hops away from us.
  5247. */
  5248. for (i = 0; i < level; i++) {
  5249. sched_domains_numa_masks[i] =
  5250. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5251. if (!sched_domains_numa_masks[i])
  5252. return;
  5253. for (j = 0; j < nr_node_ids; j++) {
  5254. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5255. if (!mask)
  5256. return;
  5257. sched_domains_numa_masks[i][j] = mask;
  5258. for (k = 0; k < nr_node_ids; k++) {
  5259. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5260. continue;
  5261. cpumask_or(mask, mask, cpumask_of_node(k));
  5262. }
  5263. }
  5264. }
  5265. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5266. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5267. if (!tl)
  5268. return;
  5269. /*
  5270. * Copy the default topology bits..
  5271. */
  5272. for (i = 0; default_topology[i].init; i++)
  5273. tl[i] = default_topology[i];
  5274. /*
  5275. * .. and append 'j' levels of NUMA goodness.
  5276. */
  5277. for (j = 0; j < level; i++, j++) {
  5278. tl[i] = (struct sched_domain_topology_level){
  5279. .init = sd_numa_init,
  5280. .mask = sd_numa_mask,
  5281. .flags = SDTL_OVERLAP,
  5282. .numa_level = j,
  5283. };
  5284. }
  5285. sched_domain_topology = tl;
  5286. sched_domains_numa_levels = level;
  5287. }
  5288. static void sched_domains_numa_masks_set(int cpu)
  5289. {
  5290. int i, j;
  5291. int node = cpu_to_node(cpu);
  5292. for (i = 0; i < sched_domains_numa_levels; i++) {
  5293. for (j = 0; j < nr_node_ids; j++) {
  5294. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5295. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5296. }
  5297. }
  5298. }
  5299. static void sched_domains_numa_masks_clear(int cpu)
  5300. {
  5301. int i, j;
  5302. for (i = 0; i < sched_domains_numa_levels; i++) {
  5303. for (j = 0; j < nr_node_ids; j++)
  5304. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5305. }
  5306. }
  5307. /*
  5308. * Update sched_domains_numa_masks[level][node] array when new cpus
  5309. * are onlined.
  5310. */
  5311. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5312. unsigned long action,
  5313. void *hcpu)
  5314. {
  5315. int cpu = (long)hcpu;
  5316. switch (action & ~CPU_TASKS_FROZEN) {
  5317. case CPU_ONLINE:
  5318. sched_domains_numa_masks_set(cpu);
  5319. break;
  5320. case CPU_DEAD:
  5321. sched_domains_numa_masks_clear(cpu);
  5322. break;
  5323. default:
  5324. return NOTIFY_DONE;
  5325. }
  5326. return NOTIFY_OK;
  5327. }
  5328. #else
  5329. static inline void sched_init_numa(void)
  5330. {
  5331. }
  5332. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5333. unsigned long action,
  5334. void *hcpu)
  5335. {
  5336. return 0;
  5337. }
  5338. #endif /* CONFIG_NUMA */
  5339. static int __sdt_alloc(const struct cpumask *cpu_map)
  5340. {
  5341. struct sched_domain_topology_level *tl;
  5342. int j;
  5343. for (tl = sched_domain_topology; tl->init; tl++) {
  5344. struct sd_data *sdd = &tl->data;
  5345. sdd->sd = alloc_percpu(struct sched_domain *);
  5346. if (!sdd->sd)
  5347. return -ENOMEM;
  5348. sdd->sg = alloc_percpu(struct sched_group *);
  5349. if (!sdd->sg)
  5350. return -ENOMEM;
  5351. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5352. if (!sdd->sgp)
  5353. return -ENOMEM;
  5354. for_each_cpu(j, cpu_map) {
  5355. struct sched_domain *sd;
  5356. struct sched_group *sg;
  5357. struct sched_group_power *sgp;
  5358. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5359. GFP_KERNEL, cpu_to_node(j));
  5360. if (!sd)
  5361. return -ENOMEM;
  5362. *per_cpu_ptr(sdd->sd, j) = sd;
  5363. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5364. GFP_KERNEL, cpu_to_node(j));
  5365. if (!sg)
  5366. return -ENOMEM;
  5367. sg->next = sg;
  5368. *per_cpu_ptr(sdd->sg, j) = sg;
  5369. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5370. GFP_KERNEL, cpu_to_node(j));
  5371. if (!sgp)
  5372. return -ENOMEM;
  5373. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5374. }
  5375. }
  5376. return 0;
  5377. }
  5378. static void __sdt_free(const struct cpumask *cpu_map)
  5379. {
  5380. struct sched_domain_topology_level *tl;
  5381. int j;
  5382. for (tl = sched_domain_topology; tl->init; tl++) {
  5383. struct sd_data *sdd = &tl->data;
  5384. for_each_cpu(j, cpu_map) {
  5385. struct sched_domain *sd;
  5386. if (sdd->sd) {
  5387. sd = *per_cpu_ptr(sdd->sd, j);
  5388. if (sd && (sd->flags & SD_OVERLAP))
  5389. free_sched_groups(sd->groups, 0);
  5390. kfree(*per_cpu_ptr(sdd->sd, j));
  5391. }
  5392. if (sdd->sg)
  5393. kfree(*per_cpu_ptr(sdd->sg, j));
  5394. if (sdd->sgp)
  5395. kfree(*per_cpu_ptr(sdd->sgp, j));
  5396. }
  5397. free_percpu(sdd->sd);
  5398. sdd->sd = NULL;
  5399. free_percpu(sdd->sg);
  5400. sdd->sg = NULL;
  5401. free_percpu(sdd->sgp);
  5402. sdd->sgp = NULL;
  5403. }
  5404. }
  5405. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5406. struct s_data *d, const struct cpumask *cpu_map,
  5407. struct sched_domain_attr *attr, struct sched_domain *child,
  5408. int cpu)
  5409. {
  5410. struct sched_domain *sd = tl->init(tl, cpu);
  5411. if (!sd)
  5412. return child;
  5413. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5414. if (child) {
  5415. sd->level = child->level + 1;
  5416. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5417. child->parent = sd;
  5418. }
  5419. sd->child = child;
  5420. set_domain_attribute(sd, attr);
  5421. return sd;
  5422. }
  5423. /*
  5424. * Build sched domains for a given set of cpus and attach the sched domains
  5425. * to the individual cpus
  5426. */
  5427. static int build_sched_domains(const struct cpumask *cpu_map,
  5428. struct sched_domain_attr *attr)
  5429. {
  5430. enum s_alloc alloc_state = sa_none;
  5431. struct sched_domain *sd;
  5432. struct s_data d;
  5433. int i, ret = -ENOMEM;
  5434. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5435. if (alloc_state != sa_rootdomain)
  5436. goto error;
  5437. /* Set up domains for cpus specified by the cpu_map. */
  5438. for_each_cpu(i, cpu_map) {
  5439. struct sched_domain_topology_level *tl;
  5440. sd = NULL;
  5441. for (tl = sched_domain_topology; tl->init; tl++) {
  5442. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5443. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5444. sd->flags |= SD_OVERLAP;
  5445. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5446. break;
  5447. }
  5448. while (sd->child)
  5449. sd = sd->child;
  5450. *per_cpu_ptr(d.sd, i) = sd;
  5451. }
  5452. /* Build the groups for the domains */
  5453. for_each_cpu(i, cpu_map) {
  5454. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5455. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5456. if (sd->flags & SD_OVERLAP) {
  5457. if (build_overlap_sched_groups(sd, i))
  5458. goto error;
  5459. } else {
  5460. if (build_sched_groups(sd, i))
  5461. goto error;
  5462. }
  5463. }
  5464. }
  5465. /* Calculate CPU power for physical packages and nodes */
  5466. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5467. if (!cpumask_test_cpu(i, cpu_map))
  5468. continue;
  5469. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5470. claim_allocations(i, sd);
  5471. init_sched_groups_power(i, sd);
  5472. }
  5473. }
  5474. /* Attach the domains */
  5475. rcu_read_lock();
  5476. for_each_cpu(i, cpu_map) {
  5477. sd = *per_cpu_ptr(d.sd, i);
  5478. cpu_attach_domain(sd, d.rd, i);
  5479. }
  5480. rcu_read_unlock();
  5481. ret = 0;
  5482. error:
  5483. __free_domain_allocs(&d, alloc_state, cpu_map);
  5484. return ret;
  5485. }
  5486. static cpumask_var_t *doms_cur; /* current sched domains */
  5487. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5488. static struct sched_domain_attr *dattr_cur;
  5489. /* attribues of custom domains in 'doms_cur' */
  5490. /*
  5491. * Special case: If a kmalloc of a doms_cur partition (array of
  5492. * cpumask) fails, then fallback to a single sched domain,
  5493. * as determined by the single cpumask fallback_doms.
  5494. */
  5495. static cpumask_var_t fallback_doms;
  5496. /*
  5497. * arch_update_cpu_topology lets virtualized architectures update the
  5498. * cpu core maps. It is supposed to return 1 if the topology changed
  5499. * or 0 if it stayed the same.
  5500. */
  5501. int __attribute__((weak)) arch_update_cpu_topology(void)
  5502. {
  5503. return 0;
  5504. }
  5505. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5506. {
  5507. int i;
  5508. cpumask_var_t *doms;
  5509. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5510. if (!doms)
  5511. return NULL;
  5512. for (i = 0; i < ndoms; i++) {
  5513. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5514. free_sched_domains(doms, i);
  5515. return NULL;
  5516. }
  5517. }
  5518. return doms;
  5519. }
  5520. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5521. {
  5522. unsigned int i;
  5523. for (i = 0; i < ndoms; i++)
  5524. free_cpumask_var(doms[i]);
  5525. kfree(doms);
  5526. }
  5527. /*
  5528. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5529. * For now this just excludes isolated cpus, but could be used to
  5530. * exclude other special cases in the future.
  5531. */
  5532. static int init_sched_domains(const struct cpumask *cpu_map)
  5533. {
  5534. int err;
  5535. arch_update_cpu_topology();
  5536. ndoms_cur = 1;
  5537. doms_cur = alloc_sched_domains(ndoms_cur);
  5538. if (!doms_cur)
  5539. doms_cur = &fallback_doms;
  5540. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5541. err = build_sched_domains(doms_cur[0], NULL);
  5542. register_sched_domain_sysctl();
  5543. return err;
  5544. }
  5545. /*
  5546. * Detach sched domains from a group of cpus specified in cpu_map
  5547. * These cpus will now be attached to the NULL domain
  5548. */
  5549. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5550. {
  5551. int i;
  5552. rcu_read_lock();
  5553. for_each_cpu(i, cpu_map)
  5554. cpu_attach_domain(NULL, &def_root_domain, i);
  5555. rcu_read_unlock();
  5556. }
  5557. /* handle null as "default" */
  5558. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5559. struct sched_domain_attr *new, int idx_new)
  5560. {
  5561. struct sched_domain_attr tmp;
  5562. /* fast path */
  5563. if (!new && !cur)
  5564. return 1;
  5565. tmp = SD_ATTR_INIT;
  5566. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5567. new ? (new + idx_new) : &tmp,
  5568. sizeof(struct sched_domain_attr));
  5569. }
  5570. /*
  5571. * Partition sched domains as specified by the 'ndoms_new'
  5572. * cpumasks in the array doms_new[] of cpumasks. This compares
  5573. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5574. * It destroys each deleted domain and builds each new domain.
  5575. *
  5576. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5577. * The masks don't intersect (don't overlap.) We should setup one
  5578. * sched domain for each mask. CPUs not in any of the cpumasks will
  5579. * not be load balanced. If the same cpumask appears both in the
  5580. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5581. * it as it is.
  5582. *
  5583. * The passed in 'doms_new' should be allocated using
  5584. * alloc_sched_domains. This routine takes ownership of it and will
  5585. * free_sched_domains it when done with it. If the caller failed the
  5586. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5587. * and partition_sched_domains() will fallback to the single partition
  5588. * 'fallback_doms', it also forces the domains to be rebuilt.
  5589. *
  5590. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5591. * ndoms_new == 0 is a special case for destroying existing domains,
  5592. * and it will not create the default domain.
  5593. *
  5594. * Call with hotplug lock held
  5595. */
  5596. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5597. struct sched_domain_attr *dattr_new)
  5598. {
  5599. int i, j, n;
  5600. int new_topology;
  5601. mutex_lock(&sched_domains_mutex);
  5602. /* always unregister in case we don't destroy any domains */
  5603. unregister_sched_domain_sysctl();
  5604. /* Let architecture update cpu core mappings. */
  5605. new_topology = arch_update_cpu_topology();
  5606. n = doms_new ? ndoms_new : 0;
  5607. /* Destroy deleted domains */
  5608. for (i = 0; i < ndoms_cur; i++) {
  5609. for (j = 0; j < n && !new_topology; j++) {
  5610. if (cpumask_equal(doms_cur[i], doms_new[j])
  5611. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5612. goto match1;
  5613. }
  5614. /* no match - a current sched domain not in new doms_new[] */
  5615. detach_destroy_domains(doms_cur[i]);
  5616. match1:
  5617. ;
  5618. }
  5619. if (doms_new == NULL) {
  5620. ndoms_cur = 0;
  5621. doms_new = &fallback_doms;
  5622. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5623. WARN_ON_ONCE(dattr_new);
  5624. }
  5625. /* Build new domains */
  5626. for (i = 0; i < ndoms_new; i++) {
  5627. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5628. if (cpumask_equal(doms_new[i], doms_cur[j])
  5629. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5630. goto match2;
  5631. }
  5632. /* no match - add a new doms_new */
  5633. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5634. match2:
  5635. ;
  5636. }
  5637. /* Remember the new sched domains */
  5638. if (doms_cur != &fallback_doms)
  5639. free_sched_domains(doms_cur, ndoms_cur);
  5640. kfree(dattr_cur); /* kfree(NULL) is safe */
  5641. doms_cur = doms_new;
  5642. dattr_cur = dattr_new;
  5643. ndoms_cur = ndoms_new;
  5644. register_sched_domain_sysctl();
  5645. mutex_unlock(&sched_domains_mutex);
  5646. }
  5647. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5648. /*
  5649. * Update cpusets according to cpu_active mask. If cpusets are
  5650. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5651. * around partition_sched_domains().
  5652. *
  5653. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5654. * want to restore it back to its original state upon resume anyway.
  5655. */
  5656. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5657. void *hcpu)
  5658. {
  5659. switch (action) {
  5660. case CPU_ONLINE_FROZEN:
  5661. case CPU_DOWN_FAILED_FROZEN:
  5662. /*
  5663. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5664. * resume sequence. As long as this is not the last online
  5665. * operation in the resume sequence, just build a single sched
  5666. * domain, ignoring cpusets.
  5667. */
  5668. num_cpus_frozen--;
  5669. if (likely(num_cpus_frozen)) {
  5670. partition_sched_domains(1, NULL, NULL);
  5671. break;
  5672. }
  5673. /*
  5674. * This is the last CPU online operation. So fall through and
  5675. * restore the original sched domains by considering the
  5676. * cpuset configurations.
  5677. */
  5678. case CPU_ONLINE:
  5679. case CPU_DOWN_FAILED:
  5680. cpuset_update_active_cpus(true);
  5681. break;
  5682. default:
  5683. return NOTIFY_DONE;
  5684. }
  5685. return NOTIFY_OK;
  5686. }
  5687. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5688. void *hcpu)
  5689. {
  5690. switch (action) {
  5691. case CPU_DOWN_PREPARE:
  5692. cpuset_update_active_cpus(false);
  5693. break;
  5694. case CPU_DOWN_PREPARE_FROZEN:
  5695. num_cpus_frozen++;
  5696. partition_sched_domains(1, NULL, NULL);
  5697. break;
  5698. default:
  5699. return NOTIFY_DONE;
  5700. }
  5701. return NOTIFY_OK;
  5702. }
  5703. void __init sched_init_smp(void)
  5704. {
  5705. cpumask_var_t non_isolated_cpus;
  5706. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5707. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5708. sched_init_numa();
  5709. get_online_cpus();
  5710. mutex_lock(&sched_domains_mutex);
  5711. init_sched_domains(cpu_active_mask);
  5712. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5713. if (cpumask_empty(non_isolated_cpus))
  5714. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5715. mutex_unlock(&sched_domains_mutex);
  5716. put_online_cpus();
  5717. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5718. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5719. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5720. /* RT runtime code needs to handle some hotplug events */
  5721. hotcpu_notifier(update_runtime, 0);
  5722. init_hrtick();
  5723. /* Move init over to a non-isolated CPU */
  5724. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5725. BUG();
  5726. sched_init_granularity();
  5727. free_cpumask_var(non_isolated_cpus);
  5728. init_sched_rt_class();
  5729. }
  5730. #else
  5731. void __init sched_init_smp(void)
  5732. {
  5733. sched_init_granularity();
  5734. }
  5735. #endif /* CONFIG_SMP */
  5736. const_debug unsigned int sysctl_timer_migration = 1;
  5737. int in_sched_functions(unsigned long addr)
  5738. {
  5739. return in_lock_functions(addr) ||
  5740. (addr >= (unsigned long)__sched_text_start
  5741. && addr < (unsigned long)__sched_text_end);
  5742. }
  5743. #ifdef CONFIG_CGROUP_SCHED
  5744. struct task_group root_task_group;
  5745. LIST_HEAD(task_groups);
  5746. #endif
  5747. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5748. void __init sched_init(void)
  5749. {
  5750. int i, j;
  5751. unsigned long alloc_size = 0, ptr;
  5752. #ifdef CONFIG_FAIR_GROUP_SCHED
  5753. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5754. #endif
  5755. #ifdef CONFIG_RT_GROUP_SCHED
  5756. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5757. #endif
  5758. #ifdef CONFIG_CPUMASK_OFFSTACK
  5759. alloc_size += num_possible_cpus() * cpumask_size();
  5760. #endif
  5761. if (alloc_size) {
  5762. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5763. #ifdef CONFIG_FAIR_GROUP_SCHED
  5764. root_task_group.se = (struct sched_entity **)ptr;
  5765. ptr += nr_cpu_ids * sizeof(void **);
  5766. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5767. ptr += nr_cpu_ids * sizeof(void **);
  5768. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5769. #ifdef CONFIG_RT_GROUP_SCHED
  5770. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5771. ptr += nr_cpu_ids * sizeof(void **);
  5772. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5773. ptr += nr_cpu_ids * sizeof(void **);
  5774. #endif /* CONFIG_RT_GROUP_SCHED */
  5775. #ifdef CONFIG_CPUMASK_OFFSTACK
  5776. for_each_possible_cpu(i) {
  5777. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5778. ptr += cpumask_size();
  5779. }
  5780. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5781. }
  5782. #ifdef CONFIG_SMP
  5783. init_defrootdomain();
  5784. #endif
  5785. init_rt_bandwidth(&def_rt_bandwidth,
  5786. global_rt_period(), global_rt_runtime());
  5787. #ifdef CONFIG_RT_GROUP_SCHED
  5788. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5789. global_rt_period(), global_rt_runtime());
  5790. #endif /* CONFIG_RT_GROUP_SCHED */
  5791. #ifdef CONFIG_CGROUP_SCHED
  5792. list_add(&root_task_group.list, &task_groups);
  5793. INIT_LIST_HEAD(&root_task_group.children);
  5794. INIT_LIST_HEAD(&root_task_group.siblings);
  5795. autogroup_init(&init_task);
  5796. #endif /* CONFIG_CGROUP_SCHED */
  5797. #ifdef CONFIG_CGROUP_CPUACCT
  5798. root_cpuacct.cpustat = &kernel_cpustat;
  5799. root_cpuacct.cpuusage = alloc_percpu(u64);
  5800. /* Too early, not expected to fail */
  5801. BUG_ON(!root_cpuacct.cpuusage);
  5802. #endif
  5803. for_each_possible_cpu(i) {
  5804. struct rq *rq;
  5805. rq = cpu_rq(i);
  5806. raw_spin_lock_init(&rq->lock);
  5807. rq->nr_running = 0;
  5808. rq->calc_load_active = 0;
  5809. rq->calc_load_update = jiffies + LOAD_FREQ;
  5810. init_cfs_rq(&rq->cfs);
  5811. init_rt_rq(&rq->rt, rq);
  5812. #ifdef CONFIG_FAIR_GROUP_SCHED
  5813. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5814. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5815. /*
  5816. * How much cpu bandwidth does root_task_group get?
  5817. *
  5818. * In case of task-groups formed thr' the cgroup filesystem, it
  5819. * gets 100% of the cpu resources in the system. This overall
  5820. * system cpu resource is divided among the tasks of
  5821. * root_task_group and its child task-groups in a fair manner,
  5822. * based on each entity's (task or task-group's) weight
  5823. * (se->load.weight).
  5824. *
  5825. * In other words, if root_task_group has 10 tasks of weight
  5826. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5827. * then A0's share of the cpu resource is:
  5828. *
  5829. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5830. *
  5831. * We achieve this by letting root_task_group's tasks sit
  5832. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5833. */
  5834. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5835. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5836. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5837. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5838. #ifdef CONFIG_RT_GROUP_SCHED
  5839. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5840. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5841. #endif
  5842. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5843. rq->cpu_load[j] = 0;
  5844. rq->last_load_update_tick = jiffies;
  5845. #ifdef CONFIG_SMP
  5846. rq->sd = NULL;
  5847. rq->rd = NULL;
  5848. rq->cpu_power = SCHED_POWER_SCALE;
  5849. rq->post_schedule = 0;
  5850. rq->active_balance = 0;
  5851. rq->next_balance = jiffies;
  5852. rq->push_cpu = 0;
  5853. rq->cpu = i;
  5854. rq->online = 0;
  5855. rq->idle_stamp = 0;
  5856. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5857. INIT_LIST_HEAD(&rq->cfs_tasks);
  5858. rq_attach_root(rq, &def_root_domain);
  5859. #ifdef CONFIG_NO_HZ
  5860. rq->nohz_flags = 0;
  5861. #endif
  5862. #endif
  5863. init_rq_hrtick(rq);
  5864. atomic_set(&rq->nr_iowait, 0);
  5865. }
  5866. set_load_weight(&init_task);
  5867. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5868. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5869. #endif
  5870. #ifdef CONFIG_RT_MUTEXES
  5871. plist_head_init(&init_task.pi_waiters);
  5872. #endif
  5873. /*
  5874. * The boot idle thread does lazy MMU switching as well:
  5875. */
  5876. atomic_inc(&init_mm.mm_count);
  5877. enter_lazy_tlb(&init_mm, current);
  5878. /*
  5879. * Make us the idle thread. Technically, schedule() should not be
  5880. * called from this thread, however somewhere below it might be,
  5881. * but because we are the idle thread, we just pick up running again
  5882. * when this runqueue becomes "idle".
  5883. */
  5884. init_idle(current, smp_processor_id());
  5885. calc_load_update = jiffies + LOAD_FREQ;
  5886. /*
  5887. * During early bootup we pretend to be a normal task:
  5888. */
  5889. current->sched_class = &fair_sched_class;
  5890. #ifdef CONFIG_SMP
  5891. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5892. /* May be allocated at isolcpus cmdline parse time */
  5893. if (cpu_isolated_map == NULL)
  5894. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5895. idle_thread_set_boot_cpu();
  5896. #endif
  5897. init_sched_fair_class();
  5898. scheduler_running = 1;
  5899. }
  5900. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5901. static inline int preempt_count_equals(int preempt_offset)
  5902. {
  5903. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5904. return (nested == preempt_offset);
  5905. }
  5906. void __might_sleep(const char *file, int line, int preempt_offset)
  5907. {
  5908. static unsigned long prev_jiffy; /* ratelimiting */
  5909. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5910. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5911. system_state != SYSTEM_RUNNING || oops_in_progress)
  5912. return;
  5913. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5914. return;
  5915. prev_jiffy = jiffies;
  5916. printk(KERN_ERR
  5917. "BUG: sleeping function called from invalid context at %s:%d\n",
  5918. file, line);
  5919. printk(KERN_ERR
  5920. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5921. in_atomic(), irqs_disabled(),
  5922. current->pid, current->comm);
  5923. debug_show_held_locks(current);
  5924. if (irqs_disabled())
  5925. print_irqtrace_events(current);
  5926. dump_stack();
  5927. }
  5928. EXPORT_SYMBOL(__might_sleep);
  5929. #endif
  5930. #ifdef CONFIG_MAGIC_SYSRQ
  5931. static void normalize_task(struct rq *rq, struct task_struct *p)
  5932. {
  5933. const struct sched_class *prev_class = p->sched_class;
  5934. int old_prio = p->prio;
  5935. int on_rq;
  5936. on_rq = p->on_rq;
  5937. if (on_rq)
  5938. dequeue_task(rq, p, 0);
  5939. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5940. if (on_rq) {
  5941. enqueue_task(rq, p, 0);
  5942. resched_task(rq->curr);
  5943. }
  5944. check_class_changed(rq, p, prev_class, old_prio);
  5945. }
  5946. void normalize_rt_tasks(void)
  5947. {
  5948. struct task_struct *g, *p;
  5949. unsigned long flags;
  5950. struct rq *rq;
  5951. read_lock_irqsave(&tasklist_lock, flags);
  5952. do_each_thread(g, p) {
  5953. /*
  5954. * Only normalize user tasks:
  5955. */
  5956. if (!p->mm)
  5957. continue;
  5958. p->se.exec_start = 0;
  5959. #ifdef CONFIG_SCHEDSTATS
  5960. p->se.statistics.wait_start = 0;
  5961. p->se.statistics.sleep_start = 0;
  5962. p->se.statistics.block_start = 0;
  5963. #endif
  5964. if (!rt_task(p)) {
  5965. /*
  5966. * Renice negative nice level userspace
  5967. * tasks back to 0:
  5968. */
  5969. if (TASK_NICE(p) < 0 && p->mm)
  5970. set_user_nice(p, 0);
  5971. continue;
  5972. }
  5973. raw_spin_lock(&p->pi_lock);
  5974. rq = __task_rq_lock(p);
  5975. normalize_task(rq, p);
  5976. __task_rq_unlock(rq);
  5977. raw_spin_unlock(&p->pi_lock);
  5978. } while_each_thread(g, p);
  5979. read_unlock_irqrestore(&tasklist_lock, flags);
  5980. }
  5981. #endif /* CONFIG_MAGIC_SYSRQ */
  5982. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5983. /*
  5984. * These functions are only useful for the IA64 MCA handling, or kdb.
  5985. *
  5986. * They can only be called when the whole system has been
  5987. * stopped - every CPU needs to be quiescent, and no scheduling
  5988. * activity can take place. Using them for anything else would
  5989. * be a serious bug, and as a result, they aren't even visible
  5990. * under any other configuration.
  5991. */
  5992. /**
  5993. * curr_task - return the current task for a given cpu.
  5994. * @cpu: the processor in question.
  5995. *
  5996. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5997. */
  5998. struct task_struct *curr_task(int cpu)
  5999. {
  6000. return cpu_curr(cpu);
  6001. }
  6002. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6003. #ifdef CONFIG_IA64
  6004. /**
  6005. * set_curr_task - set the current task for a given cpu.
  6006. * @cpu: the processor in question.
  6007. * @p: the task pointer to set.
  6008. *
  6009. * Description: This function must only be used when non-maskable interrupts
  6010. * are serviced on a separate stack. It allows the architecture to switch the
  6011. * notion of the current task on a cpu in a non-blocking manner. This function
  6012. * must be called with all CPU's synchronized, and interrupts disabled, the
  6013. * and caller must save the original value of the current task (see
  6014. * curr_task() above) and restore that value before reenabling interrupts and
  6015. * re-starting the system.
  6016. *
  6017. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6018. */
  6019. void set_curr_task(int cpu, struct task_struct *p)
  6020. {
  6021. cpu_curr(cpu) = p;
  6022. }
  6023. #endif
  6024. #ifdef CONFIG_CGROUP_SCHED
  6025. /* task_group_lock serializes the addition/removal of task groups */
  6026. static DEFINE_SPINLOCK(task_group_lock);
  6027. static void free_sched_group(struct task_group *tg)
  6028. {
  6029. free_fair_sched_group(tg);
  6030. free_rt_sched_group(tg);
  6031. autogroup_free(tg);
  6032. kfree(tg);
  6033. }
  6034. /* allocate runqueue etc for a new task group */
  6035. struct task_group *sched_create_group(struct task_group *parent)
  6036. {
  6037. struct task_group *tg;
  6038. unsigned long flags;
  6039. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6040. if (!tg)
  6041. return ERR_PTR(-ENOMEM);
  6042. if (!alloc_fair_sched_group(tg, parent))
  6043. goto err;
  6044. if (!alloc_rt_sched_group(tg, parent))
  6045. goto err;
  6046. spin_lock_irqsave(&task_group_lock, flags);
  6047. list_add_rcu(&tg->list, &task_groups);
  6048. WARN_ON(!parent); /* root should already exist */
  6049. tg->parent = parent;
  6050. INIT_LIST_HEAD(&tg->children);
  6051. list_add_rcu(&tg->siblings, &parent->children);
  6052. spin_unlock_irqrestore(&task_group_lock, flags);
  6053. return tg;
  6054. err:
  6055. free_sched_group(tg);
  6056. return ERR_PTR(-ENOMEM);
  6057. }
  6058. /* rcu callback to free various structures associated with a task group */
  6059. static void free_sched_group_rcu(struct rcu_head *rhp)
  6060. {
  6061. /* now it should be safe to free those cfs_rqs */
  6062. free_sched_group(container_of(rhp, struct task_group, rcu));
  6063. }
  6064. /* Destroy runqueue etc associated with a task group */
  6065. void sched_destroy_group(struct task_group *tg)
  6066. {
  6067. unsigned long flags;
  6068. int i;
  6069. /* end participation in shares distribution */
  6070. for_each_possible_cpu(i)
  6071. unregister_fair_sched_group(tg, i);
  6072. spin_lock_irqsave(&task_group_lock, flags);
  6073. list_del_rcu(&tg->list);
  6074. list_del_rcu(&tg->siblings);
  6075. spin_unlock_irqrestore(&task_group_lock, flags);
  6076. /* wait for possible concurrent references to cfs_rqs complete */
  6077. call_rcu(&tg->rcu, free_sched_group_rcu);
  6078. }
  6079. /* change task's runqueue when it moves between groups.
  6080. * The caller of this function should have put the task in its new group
  6081. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6082. * reflect its new group.
  6083. */
  6084. void sched_move_task(struct task_struct *tsk)
  6085. {
  6086. struct task_group *tg;
  6087. int on_rq, running;
  6088. unsigned long flags;
  6089. struct rq *rq;
  6090. rq = task_rq_lock(tsk, &flags);
  6091. running = task_current(rq, tsk);
  6092. on_rq = tsk->on_rq;
  6093. if (on_rq)
  6094. dequeue_task(rq, tsk, 0);
  6095. if (unlikely(running))
  6096. tsk->sched_class->put_prev_task(rq, tsk);
  6097. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  6098. lockdep_is_held(&tsk->sighand->siglock)),
  6099. struct task_group, css);
  6100. tg = autogroup_task_group(tsk, tg);
  6101. tsk->sched_task_group = tg;
  6102. #ifdef CONFIG_FAIR_GROUP_SCHED
  6103. if (tsk->sched_class->task_move_group)
  6104. tsk->sched_class->task_move_group(tsk, on_rq);
  6105. else
  6106. #endif
  6107. set_task_rq(tsk, task_cpu(tsk));
  6108. if (unlikely(running))
  6109. tsk->sched_class->set_curr_task(rq);
  6110. if (on_rq)
  6111. enqueue_task(rq, tsk, 0);
  6112. task_rq_unlock(rq, tsk, &flags);
  6113. }
  6114. #endif /* CONFIG_CGROUP_SCHED */
  6115. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6116. static unsigned long to_ratio(u64 period, u64 runtime)
  6117. {
  6118. if (runtime == RUNTIME_INF)
  6119. return 1ULL << 20;
  6120. return div64_u64(runtime << 20, period);
  6121. }
  6122. #endif
  6123. #ifdef CONFIG_RT_GROUP_SCHED
  6124. /*
  6125. * Ensure that the real time constraints are schedulable.
  6126. */
  6127. static DEFINE_MUTEX(rt_constraints_mutex);
  6128. /* Must be called with tasklist_lock held */
  6129. static inline int tg_has_rt_tasks(struct task_group *tg)
  6130. {
  6131. struct task_struct *g, *p;
  6132. do_each_thread(g, p) {
  6133. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6134. return 1;
  6135. } while_each_thread(g, p);
  6136. return 0;
  6137. }
  6138. struct rt_schedulable_data {
  6139. struct task_group *tg;
  6140. u64 rt_period;
  6141. u64 rt_runtime;
  6142. };
  6143. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6144. {
  6145. struct rt_schedulable_data *d = data;
  6146. struct task_group *child;
  6147. unsigned long total, sum = 0;
  6148. u64 period, runtime;
  6149. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6150. runtime = tg->rt_bandwidth.rt_runtime;
  6151. if (tg == d->tg) {
  6152. period = d->rt_period;
  6153. runtime = d->rt_runtime;
  6154. }
  6155. /*
  6156. * Cannot have more runtime than the period.
  6157. */
  6158. if (runtime > period && runtime != RUNTIME_INF)
  6159. return -EINVAL;
  6160. /*
  6161. * Ensure we don't starve existing RT tasks.
  6162. */
  6163. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6164. return -EBUSY;
  6165. total = to_ratio(period, runtime);
  6166. /*
  6167. * Nobody can have more than the global setting allows.
  6168. */
  6169. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6170. return -EINVAL;
  6171. /*
  6172. * The sum of our children's runtime should not exceed our own.
  6173. */
  6174. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6175. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6176. runtime = child->rt_bandwidth.rt_runtime;
  6177. if (child == d->tg) {
  6178. period = d->rt_period;
  6179. runtime = d->rt_runtime;
  6180. }
  6181. sum += to_ratio(period, runtime);
  6182. }
  6183. if (sum > total)
  6184. return -EINVAL;
  6185. return 0;
  6186. }
  6187. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6188. {
  6189. int ret;
  6190. struct rt_schedulable_data data = {
  6191. .tg = tg,
  6192. .rt_period = period,
  6193. .rt_runtime = runtime,
  6194. };
  6195. rcu_read_lock();
  6196. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6197. rcu_read_unlock();
  6198. return ret;
  6199. }
  6200. static int tg_set_rt_bandwidth(struct task_group *tg,
  6201. u64 rt_period, u64 rt_runtime)
  6202. {
  6203. int i, err = 0;
  6204. mutex_lock(&rt_constraints_mutex);
  6205. read_lock(&tasklist_lock);
  6206. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6207. if (err)
  6208. goto unlock;
  6209. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6210. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6211. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6212. for_each_possible_cpu(i) {
  6213. struct rt_rq *rt_rq = tg->rt_rq[i];
  6214. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6215. rt_rq->rt_runtime = rt_runtime;
  6216. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6217. }
  6218. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6219. unlock:
  6220. read_unlock(&tasklist_lock);
  6221. mutex_unlock(&rt_constraints_mutex);
  6222. return err;
  6223. }
  6224. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6225. {
  6226. u64 rt_runtime, rt_period;
  6227. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6228. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6229. if (rt_runtime_us < 0)
  6230. rt_runtime = RUNTIME_INF;
  6231. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6232. }
  6233. long sched_group_rt_runtime(struct task_group *tg)
  6234. {
  6235. u64 rt_runtime_us;
  6236. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6237. return -1;
  6238. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6239. do_div(rt_runtime_us, NSEC_PER_USEC);
  6240. return rt_runtime_us;
  6241. }
  6242. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6243. {
  6244. u64 rt_runtime, rt_period;
  6245. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6246. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6247. if (rt_period == 0)
  6248. return -EINVAL;
  6249. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6250. }
  6251. long sched_group_rt_period(struct task_group *tg)
  6252. {
  6253. u64 rt_period_us;
  6254. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6255. do_div(rt_period_us, NSEC_PER_USEC);
  6256. return rt_period_us;
  6257. }
  6258. static int sched_rt_global_constraints(void)
  6259. {
  6260. u64 runtime, period;
  6261. int ret = 0;
  6262. if (sysctl_sched_rt_period <= 0)
  6263. return -EINVAL;
  6264. runtime = global_rt_runtime();
  6265. period = global_rt_period();
  6266. /*
  6267. * Sanity check on the sysctl variables.
  6268. */
  6269. if (runtime > period && runtime != RUNTIME_INF)
  6270. return -EINVAL;
  6271. mutex_lock(&rt_constraints_mutex);
  6272. read_lock(&tasklist_lock);
  6273. ret = __rt_schedulable(NULL, 0, 0);
  6274. read_unlock(&tasklist_lock);
  6275. mutex_unlock(&rt_constraints_mutex);
  6276. return ret;
  6277. }
  6278. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6279. {
  6280. /* Don't accept realtime tasks when there is no way for them to run */
  6281. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6282. return 0;
  6283. return 1;
  6284. }
  6285. #else /* !CONFIG_RT_GROUP_SCHED */
  6286. static int sched_rt_global_constraints(void)
  6287. {
  6288. unsigned long flags;
  6289. int i;
  6290. if (sysctl_sched_rt_period <= 0)
  6291. return -EINVAL;
  6292. /*
  6293. * There's always some RT tasks in the root group
  6294. * -- migration, kstopmachine etc..
  6295. */
  6296. if (sysctl_sched_rt_runtime == 0)
  6297. return -EBUSY;
  6298. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6299. for_each_possible_cpu(i) {
  6300. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6301. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6302. rt_rq->rt_runtime = global_rt_runtime();
  6303. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6304. }
  6305. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6306. return 0;
  6307. }
  6308. #endif /* CONFIG_RT_GROUP_SCHED */
  6309. int sched_rt_handler(struct ctl_table *table, int write,
  6310. void __user *buffer, size_t *lenp,
  6311. loff_t *ppos)
  6312. {
  6313. int ret;
  6314. int old_period, old_runtime;
  6315. static DEFINE_MUTEX(mutex);
  6316. mutex_lock(&mutex);
  6317. old_period = sysctl_sched_rt_period;
  6318. old_runtime = sysctl_sched_rt_runtime;
  6319. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6320. if (!ret && write) {
  6321. ret = sched_rt_global_constraints();
  6322. if (ret) {
  6323. sysctl_sched_rt_period = old_period;
  6324. sysctl_sched_rt_runtime = old_runtime;
  6325. } else {
  6326. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6327. def_rt_bandwidth.rt_period =
  6328. ns_to_ktime(global_rt_period());
  6329. }
  6330. }
  6331. mutex_unlock(&mutex);
  6332. return ret;
  6333. }
  6334. #ifdef CONFIG_CGROUP_SCHED
  6335. /* return corresponding task_group object of a cgroup */
  6336. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6337. {
  6338. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6339. struct task_group, css);
  6340. }
  6341. static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
  6342. {
  6343. struct task_group *tg, *parent;
  6344. if (!cgrp->parent) {
  6345. /* This is early initialization for the top cgroup */
  6346. return &root_task_group.css;
  6347. }
  6348. parent = cgroup_tg(cgrp->parent);
  6349. tg = sched_create_group(parent);
  6350. if (IS_ERR(tg))
  6351. return ERR_PTR(-ENOMEM);
  6352. return &tg->css;
  6353. }
  6354. static void cpu_cgroup_destroy(struct cgroup *cgrp)
  6355. {
  6356. struct task_group *tg = cgroup_tg(cgrp);
  6357. sched_destroy_group(tg);
  6358. }
  6359. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6360. struct cgroup_taskset *tset)
  6361. {
  6362. struct task_struct *task;
  6363. cgroup_taskset_for_each(task, cgrp, tset) {
  6364. #ifdef CONFIG_RT_GROUP_SCHED
  6365. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6366. return -EINVAL;
  6367. #else
  6368. /* We don't support RT-tasks being in separate groups */
  6369. if (task->sched_class != &fair_sched_class)
  6370. return -EINVAL;
  6371. #endif
  6372. }
  6373. return 0;
  6374. }
  6375. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6376. struct cgroup_taskset *tset)
  6377. {
  6378. struct task_struct *task;
  6379. cgroup_taskset_for_each(task, cgrp, tset)
  6380. sched_move_task(task);
  6381. }
  6382. static void
  6383. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6384. struct task_struct *task)
  6385. {
  6386. /*
  6387. * cgroup_exit() is called in the copy_process() failure path.
  6388. * Ignore this case since the task hasn't ran yet, this avoids
  6389. * trying to poke a half freed task state from generic code.
  6390. */
  6391. if (!(task->flags & PF_EXITING))
  6392. return;
  6393. sched_move_task(task);
  6394. }
  6395. #ifdef CONFIG_FAIR_GROUP_SCHED
  6396. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6397. u64 shareval)
  6398. {
  6399. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6400. }
  6401. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6402. {
  6403. struct task_group *tg = cgroup_tg(cgrp);
  6404. return (u64) scale_load_down(tg->shares);
  6405. }
  6406. #ifdef CONFIG_CFS_BANDWIDTH
  6407. static DEFINE_MUTEX(cfs_constraints_mutex);
  6408. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6409. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6410. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6411. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6412. {
  6413. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6414. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6415. if (tg == &root_task_group)
  6416. return -EINVAL;
  6417. /*
  6418. * Ensure we have at some amount of bandwidth every period. This is
  6419. * to prevent reaching a state of large arrears when throttled via
  6420. * entity_tick() resulting in prolonged exit starvation.
  6421. */
  6422. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6423. return -EINVAL;
  6424. /*
  6425. * Likewise, bound things on the otherside by preventing insane quota
  6426. * periods. This also allows us to normalize in computing quota
  6427. * feasibility.
  6428. */
  6429. if (period > max_cfs_quota_period)
  6430. return -EINVAL;
  6431. mutex_lock(&cfs_constraints_mutex);
  6432. ret = __cfs_schedulable(tg, period, quota);
  6433. if (ret)
  6434. goto out_unlock;
  6435. runtime_enabled = quota != RUNTIME_INF;
  6436. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6437. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6438. raw_spin_lock_irq(&cfs_b->lock);
  6439. cfs_b->period = ns_to_ktime(period);
  6440. cfs_b->quota = quota;
  6441. __refill_cfs_bandwidth_runtime(cfs_b);
  6442. /* restart the period timer (if active) to handle new period expiry */
  6443. if (runtime_enabled && cfs_b->timer_active) {
  6444. /* force a reprogram */
  6445. cfs_b->timer_active = 0;
  6446. __start_cfs_bandwidth(cfs_b);
  6447. }
  6448. raw_spin_unlock_irq(&cfs_b->lock);
  6449. for_each_possible_cpu(i) {
  6450. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6451. struct rq *rq = cfs_rq->rq;
  6452. raw_spin_lock_irq(&rq->lock);
  6453. cfs_rq->runtime_enabled = runtime_enabled;
  6454. cfs_rq->runtime_remaining = 0;
  6455. if (cfs_rq->throttled)
  6456. unthrottle_cfs_rq(cfs_rq);
  6457. raw_spin_unlock_irq(&rq->lock);
  6458. }
  6459. out_unlock:
  6460. mutex_unlock(&cfs_constraints_mutex);
  6461. return ret;
  6462. }
  6463. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6464. {
  6465. u64 quota, period;
  6466. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6467. if (cfs_quota_us < 0)
  6468. quota = RUNTIME_INF;
  6469. else
  6470. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6471. return tg_set_cfs_bandwidth(tg, period, quota);
  6472. }
  6473. long tg_get_cfs_quota(struct task_group *tg)
  6474. {
  6475. u64 quota_us;
  6476. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6477. return -1;
  6478. quota_us = tg->cfs_bandwidth.quota;
  6479. do_div(quota_us, NSEC_PER_USEC);
  6480. return quota_us;
  6481. }
  6482. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6483. {
  6484. u64 quota, period;
  6485. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6486. quota = tg->cfs_bandwidth.quota;
  6487. return tg_set_cfs_bandwidth(tg, period, quota);
  6488. }
  6489. long tg_get_cfs_period(struct task_group *tg)
  6490. {
  6491. u64 cfs_period_us;
  6492. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6493. do_div(cfs_period_us, NSEC_PER_USEC);
  6494. return cfs_period_us;
  6495. }
  6496. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6497. {
  6498. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6499. }
  6500. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6501. s64 cfs_quota_us)
  6502. {
  6503. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6504. }
  6505. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6506. {
  6507. return tg_get_cfs_period(cgroup_tg(cgrp));
  6508. }
  6509. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6510. u64 cfs_period_us)
  6511. {
  6512. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6513. }
  6514. struct cfs_schedulable_data {
  6515. struct task_group *tg;
  6516. u64 period, quota;
  6517. };
  6518. /*
  6519. * normalize group quota/period to be quota/max_period
  6520. * note: units are usecs
  6521. */
  6522. static u64 normalize_cfs_quota(struct task_group *tg,
  6523. struct cfs_schedulable_data *d)
  6524. {
  6525. u64 quota, period;
  6526. if (tg == d->tg) {
  6527. period = d->period;
  6528. quota = d->quota;
  6529. } else {
  6530. period = tg_get_cfs_period(tg);
  6531. quota = tg_get_cfs_quota(tg);
  6532. }
  6533. /* note: these should typically be equivalent */
  6534. if (quota == RUNTIME_INF || quota == -1)
  6535. return RUNTIME_INF;
  6536. return to_ratio(period, quota);
  6537. }
  6538. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6539. {
  6540. struct cfs_schedulable_data *d = data;
  6541. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6542. s64 quota = 0, parent_quota = -1;
  6543. if (!tg->parent) {
  6544. quota = RUNTIME_INF;
  6545. } else {
  6546. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6547. quota = normalize_cfs_quota(tg, d);
  6548. parent_quota = parent_b->hierarchal_quota;
  6549. /*
  6550. * ensure max(child_quota) <= parent_quota, inherit when no
  6551. * limit is set
  6552. */
  6553. if (quota == RUNTIME_INF)
  6554. quota = parent_quota;
  6555. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6556. return -EINVAL;
  6557. }
  6558. cfs_b->hierarchal_quota = quota;
  6559. return 0;
  6560. }
  6561. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6562. {
  6563. int ret;
  6564. struct cfs_schedulable_data data = {
  6565. .tg = tg,
  6566. .period = period,
  6567. .quota = quota,
  6568. };
  6569. if (quota != RUNTIME_INF) {
  6570. do_div(data.period, NSEC_PER_USEC);
  6571. do_div(data.quota, NSEC_PER_USEC);
  6572. }
  6573. rcu_read_lock();
  6574. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6575. rcu_read_unlock();
  6576. return ret;
  6577. }
  6578. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6579. struct cgroup_map_cb *cb)
  6580. {
  6581. struct task_group *tg = cgroup_tg(cgrp);
  6582. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6583. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6584. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6585. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6586. return 0;
  6587. }
  6588. #endif /* CONFIG_CFS_BANDWIDTH */
  6589. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6590. #ifdef CONFIG_RT_GROUP_SCHED
  6591. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6592. s64 val)
  6593. {
  6594. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6595. }
  6596. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6597. {
  6598. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6599. }
  6600. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6601. u64 rt_period_us)
  6602. {
  6603. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6604. }
  6605. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6606. {
  6607. return sched_group_rt_period(cgroup_tg(cgrp));
  6608. }
  6609. #endif /* CONFIG_RT_GROUP_SCHED */
  6610. static struct cftype cpu_files[] = {
  6611. #ifdef CONFIG_FAIR_GROUP_SCHED
  6612. {
  6613. .name = "shares",
  6614. .read_u64 = cpu_shares_read_u64,
  6615. .write_u64 = cpu_shares_write_u64,
  6616. },
  6617. #endif
  6618. #ifdef CONFIG_CFS_BANDWIDTH
  6619. {
  6620. .name = "cfs_quota_us",
  6621. .read_s64 = cpu_cfs_quota_read_s64,
  6622. .write_s64 = cpu_cfs_quota_write_s64,
  6623. },
  6624. {
  6625. .name = "cfs_period_us",
  6626. .read_u64 = cpu_cfs_period_read_u64,
  6627. .write_u64 = cpu_cfs_period_write_u64,
  6628. },
  6629. {
  6630. .name = "stat",
  6631. .read_map = cpu_stats_show,
  6632. },
  6633. #endif
  6634. #ifdef CONFIG_RT_GROUP_SCHED
  6635. {
  6636. .name = "rt_runtime_us",
  6637. .read_s64 = cpu_rt_runtime_read,
  6638. .write_s64 = cpu_rt_runtime_write,
  6639. },
  6640. {
  6641. .name = "rt_period_us",
  6642. .read_u64 = cpu_rt_period_read_uint,
  6643. .write_u64 = cpu_rt_period_write_uint,
  6644. },
  6645. #endif
  6646. { } /* terminate */
  6647. };
  6648. struct cgroup_subsys cpu_cgroup_subsys = {
  6649. .name = "cpu",
  6650. .create = cpu_cgroup_create,
  6651. .destroy = cpu_cgroup_destroy,
  6652. .can_attach = cpu_cgroup_can_attach,
  6653. .attach = cpu_cgroup_attach,
  6654. .exit = cpu_cgroup_exit,
  6655. .subsys_id = cpu_cgroup_subsys_id,
  6656. .base_cftypes = cpu_files,
  6657. .early_init = 1,
  6658. };
  6659. #endif /* CONFIG_CGROUP_SCHED */
  6660. #ifdef CONFIG_CGROUP_CPUACCT
  6661. /*
  6662. * CPU accounting code for task groups.
  6663. *
  6664. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6665. * (balbir@in.ibm.com).
  6666. */
  6667. struct cpuacct root_cpuacct;
  6668. /* create a new cpu accounting group */
  6669. static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
  6670. {
  6671. struct cpuacct *ca;
  6672. if (!cgrp->parent)
  6673. return &root_cpuacct.css;
  6674. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6675. if (!ca)
  6676. goto out;
  6677. ca->cpuusage = alloc_percpu(u64);
  6678. if (!ca->cpuusage)
  6679. goto out_free_ca;
  6680. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6681. if (!ca->cpustat)
  6682. goto out_free_cpuusage;
  6683. return &ca->css;
  6684. out_free_cpuusage:
  6685. free_percpu(ca->cpuusage);
  6686. out_free_ca:
  6687. kfree(ca);
  6688. out:
  6689. return ERR_PTR(-ENOMEM);
  6690. }
  6691. /* destroy an existing cpu accounting group */
  6692. static void cpuacct_destroy(struct cgroup *cgrp)
  6693. {
  6694. struct cpuacct *ca = cgroup_ca(cgrp);
  6695. free_percpu(ca->cpustat);
  6696. free_percpu(ca->cpuusage);
  6697. kfree(ca);
  6698. }
  6699. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6700. {
  6701. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6702. u64 data;
  6703. #ifndef CONFIG_64BIT
  6704. /*
  6705. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6706. */
  6707. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6708. data = *cpuusage;
  6709. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6710. #else
  6711. data = *cpuusage;
  6712. #endif
  6713. return data;
  6714. }
  6715. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6716. {
  6717. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6718. #ifndef CONFIG_64BIT
  6719. /*
  6720. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6721. */
  6722. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6723. *cpuusage = val;
  6724. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6725. #else
  6726. *cpuusage = val;
  6727. #endif
  6728. }
  6729. /* return total cpu usage (in nanoseconds) of a group */
  6730. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6731. {
  6732. struct cpuacct *ca = cgroup_ca(cgrp);
  6733. u64 totalcpuusage = 0;
  6734. int i;
  6735. for_each_present_cpu(i)
  6736. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6737. return totalcpuusage;
  6738. }
  6739. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6740. u64 reset)
  6741. {
  6742. struct cpuacct *ca = cgroup_ca(cgrp);
  6743. int err = 0;
  6744. int i;
  6745. if (reset) {
  6746. err = -EINVAL;
  6747. goto out;
  6748. }
  6749. for_each_present_cpu(i)
  6750. cpuacct_cpuusage_write(ca, i, 0);
  6751. out:
  6752. return err;
  6753. }
  6754. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6755. struct seq_file *m)
  6756. {
  6757. struct cpuacct *ca = cgroup_ca(cgroup);
  6758. u64 percpu;
  6759. int i;
  6760. for_each_present_cpu(i) {
  6761. percpu = cpuacct_cpuusage_read(ca, i);
  6762. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6763. }
  6764. seq_printf(m, "\n");
  6765. return 0;
  6766. }
  6767. static const char *cpuacct_stat_desc[] = {
  6768. [CPUACCT_STAT_USER] = "user",
  6769. [CPUACCT_STAT_SYSTEM] = "system",
  6770. };
  6771. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6772. struct cgroup_map_cb *cb)
  6773. {
  6774. struct cpuacct *ca = cgroup_ca(cgrp);
  6775. int cpu;
  6776. s64 val = 0;
  6777. for_each_online_cpu(cpu) {
  6778. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6779. val += kcpustat->cpustat[CPUTIME_USER];
  6780. val += kcpustat->cpustat[CPUTIME_NICE];
  6781. }
  6782. val = cputime64_to_clock_t(val);
  6783. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6784. val = 0;
  6785. for_each_online_cpu(cpu) {
  6786. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6787. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6788. val += kcpustat->cpustat[CPUTIME_IRQ];
  6789. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6790. }
  6791. val = cputime64_to_clock_t(val);
  6792. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6793. return 0;
  6794. }
  6795. static struct cftype files[] = {
  6796. {
  6797. .name = "usage",
  6798. .read_u64 = cpuusage_read,
  6799. .write_u64 = cpuusage_write,
  6800. },
  6801. {
  6802. .name = "usage_percpu",
  6803. .read_seq_string = cpuacct_percpu_seq_read,
  6804. },
  6805. {
  6806. .name = "stat",
  6807. .read_map = cpuacct_stats_show,
  6808. },
  6809. { } /* terminate */
  6810. };
  6811. /*
  6812. * charge this task's execution time to its accounting group.
  6813. *
  6814. * called with rq->lock held.
  6815. */
  6816. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6817. {
  6818. struct cpuacct *ca;
  6819. int cpu;
  6820. if (unlikely(!cpuacct_subsys.active))
  6821. return;
  6822. cpu = task_cpu(tsk);
  6823. rcu_read_lock();
  6824. ca = task_ca(tsk);
  6825. for (; ca; ca = parent_ca(ca)) {
  6826. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6827. *cpuusage += cputime;
  6828. }
  6829. rcu_read_unlock();
  6830. }
  6831. struct cgroup_subsys cpuacct_subsys = {
  6832. .name = "cpuacct",
  6833. .create = cpuacct_create,
  6834. .destroy = cpuacct_destroy,
  6835. .subsys_id = cpuacct_subsys_id,
  6836. .base_cftypes = files,
  6837. };
  6838. #endif /* CONFIG_CGROUP_CPUACCT */