slub.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/debugobjects.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/memory.h>
  24. #include <linux/math64.h>
  25. /*
  26. * Lock order:
  27. * 1. slab_lock(page)
  28. * 2. slab->list_lock
  29. *
  30. * The slab_lock protects operations on the object of a particular
  31. * slab and its metadata in the page struct. If the slab lock
  32. * has been taken then no allocations nor frees can be performed
  33. * on the objects in the slab nor can the slab be added or removed
  34. * from the partial or full lists since this would mean modifying
  35. * the page_struct of the slab.
  36. *
  37. * The list_lock protects the partial and full list on each node and
  38. * the partial slab counter. If taken then no new slabs may be added or
  39. * removed from the lists nor make the number of partial slabs be modified.
  40. * (Note that the total number of slabs is an atomic value that may be
  41. * modified without taking the list lock).
  42. *
  43. * The list_lock is a centralized lock and thus we avoid taking it as
  44. * much as possible. As long as SLUB does not have to handle partial
  45. * slabs, operations can continue without any centralized lock. F.e.
  46. * allocating a long series of objects that fill up slabs does not require
  47. * the list lock.
  48. *
  49. * The lock order is sometimes inverted when we are trying to get a slab
  50. * off a list. We take the list_lock and then look for a page on the list
  51. * to use. While we do that objects in the slabs may be freed. We can
  52. * only operate on the slab if we have also taken the slab_lock. So we use
  53. * a slab_trylock() on the slab. If trylock was successful then no frees
  54. * can occur anymore and we can use the slab for allocations etc. If the
  55. * slab_trylock() does not succeed then frees are in progress in the slab and
  56. * we must stay away from it for a while since we may cause a bouncing
  57. * cacheline if we try to acquire the lock. So go onto the next slab.
  58. * If all pages are busy then we may allocate a new slab instead of reusing
  59. * a partial slab. A new slab has noone operating on it and thus there is
  60. * no danger of cacheline contention.
  61. *
  62. * Interrupts are disabled during allocation and deallocation in order to
  63. * make the slab allocator safe to use in the context of an irq. In addition
  64. * interrupts are disabled to ensure that the processor does not change
  65. * while handling per_cpu slabs, due to kernel preemption.
  66. *
  67. * SLUB assigns one slab for allocation to each processor.
  68. * Allocations only occur from these slabs called cpu slabs.
  69. *
  70. * Slabs with free elements are kept on a partial list and during regular
  71. * operations no list for full slabs is used. If an object in a full slab is
  72. * freed then the slab will show up again on the partial lists.
  73. * We track full slabs for debugging purposes though because otherwise we
  74. * cannot scan all objects.
  75. *
  76. * Slabs are freed when they become empty. Teardown and setup is
  77. * minimal so we rely on the page allocators per cpu caches for
  78. * fast frees and allocs.
  79. *
  80. * Overloading of page flags that are otherwise used for LRU management.
  81. *
  82. * PageActive The slab is frozen and exempt from list processing.
  83. * This means that the slab is dedicated to a purpose
  84. * such as satisfying allocations for a specific
  85. * processor. Objects may be freed in the slab while
  86. * it is frozen but slab_free will then skip the usual
  87. * list operations. It is up to the processor holding
  88. * the slab to integrate the slab into the slab lists
  89. * when the slab is no longer needed.
  90. *
  91. * One use of this flag is to mark slabs that are
  92. * used for allocations. Then such a slab becomes a cpu
  93. * slab. The cpu slab may be equipped with an additional
  94. * freelist that allows lockless access to
  95. * free objects in addition to the regular freelist
  96. * that requires the slab lock.
  97. *
  98. * PageError Slab requires special handling due to debug
  99. * options set. This moves slab handling out of
  100. * the fast path and disables lockless freelists.
  101. */
  102. #ifdef CONFIG_SLUB_DEBUG
  103. #define SLABDEBUG 1
  104. #else
  105. #define SLABDEBUG 0
  106. #endif
  107. /*
  108. * Issues still to be resolved:
  109. *
  110. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  111. *
  112. * - Variable sizing of the per node arrays
  113. */
  114. /* Enable to test recovery from slab corruption on boot */
  115. #undef SLUB_RESILIENCY_TEST
  116. /*
  117. * Mininum number of partial slabs. These will be left on the partial
  118. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  119. */
  120. #define MIN_PARTIAL 5
  121. /*
  122. * Maximum number of desirable partial slabs.
  123. * The existence of more partial slabs makes kmem_cache_shrink
  124. * sort the partial list by the number of objects in the.
  125. */
  126. #define MAX_PARTIAL 10
  127. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  128. SLAB_POISON | SLAB_STORE_USER)
  129. /*
  130. * Set of flags that will prevent slab merging
  131. */
  132. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  133. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  134. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  135. SLAB_CACHE_DMA)
  136. #ifndef ARCH_KMALLOC_MINALIGN
  137. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  138. #endif
  139. #ifndef ARCH_SLAB_MINALIGN
  140. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  141. #endif
  142. /* Internal SLUB flags */
  143. #define __OBJECT_POISON 0x80000000 /* Poison object */
  144. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  145. static int kmem_size = sizeof(struct kmem_cache);
  146. #ifdef CONFIG_SMP
  147. static struct notifier_block slab_notifier;
  148. #endif
  149. static enum {
  150. DOWN, /* No slab functionality available */
  151. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  152. UP, /* Everything works but does not show up in sysfs */
  153. SYSFS /* Sysfs up */
  154. } slab_state = DOWN;
  155. /* A list of all slab caches on the system */
  156. static DECLARE_RWSEM(slub_lock);
  157. static LIST_HEAD(slab_caches);
  158. /*
  159. * Tracking user of a slab.
  160. */
  161. struct track {
  162. void *addr; /* Called from address */
  163. int cpu; /* Was running on cpu */
  164. int pid; /* Pid context */
  165. unsigned long when; /* When did the operation occur */
  166. };
  167. enum track_item { TRACK_ALLOC, TRACK_FREE };
  168. #ifdef CONFIG_SLUB_DEBUG
  169. static int sysfs_slab_add(struct kmem_cache *);
  170. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  171. static void sysfs_slab_remove(struct kmem_cache *);
  172. #else
  173. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  174. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  175. { return 0; }
  176. static inline void sysfs_slab_remove(struct kmem_cache *s)
  177. {
  178. kfree(s);
  179. }
  180. #endif
  181. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  182. {
  183. #ifdef CONFIG_SLUB_STATS
  184. c->stat[si]++;
  185. #endif
  186. }
  187. /********************************************************************
  188. * Core slab cache functions
  189. *******************************************************************/
  190. int slab_is_available(void)
  191. {
  192. return slab_state >= UP;
  193. }
  194. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  195. {
  196. #ifdef CONFIG_NUMA
  197. return s->node[node];
  198. #else
  199. return &s->local_node;
  200. #endif
  201. }
  202. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  203. {
  204. #ifdef CONFIG_SMP
  205. return s->cpu_slab[cpu];
  206. #else
  207. return &s->cpu_slab;
  208. #endif
  209. }
  210. /* Verify that a pointer has an address that is valid within a slab page */
  211. static inline int check_valid_pointer(struct kmem_cache *s,
  212. struct page *page, const void *object)
  213. {
  214. void *base;
  215. if (!object)
  216. return 1;
  217. base = page_address(page);
  218. if (object < base || object >= base + page->objects * s->size ||
  219. (object - base) % s->size) {
  220. return 0;
  221. }
  222. return 1;
  223. }
  224. /*
  225. * Slow version of get and set free pointer.
  226. *
  227. * This version requires touching the cache lines of kmem_cache which
  228. * we avoid to do in the fast alloc free paths. There we obtain the offset
  229. * from the page struct.
  230. */
  231. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  232. {
  233. return *(void **)(object + s->offset);
  234. }
  235. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  236. {
  237. *(void **)(object + s->offset) = fp;
  238. }
  239. /* Loop over all objects in a slab */
  240. #define for_each_object(__p, __s, __addr, __objects) \
  241. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  242. __p += (__s)->size)
  243. /* Scan freelist */
  244. #define for_each_free_object(__p, __s, __free) \
  245. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  246. /* Determine object index from a given position */
  247. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  248. {
  249. return (p - addr) / s->size;
  250. }
  251. static inline struct kmem_cache_order_objects oo_make(int order,
  252. unsigned long size)
  253. {
  254. struct kmem_cache_order_objects x = {
  255. (order << 16) + (PAGE_SIZE << order) / size
  256. };
  257. return x;
  258. }
  259. static inline int oo_order(struct kmem_cache_order_objects x)
  260. {
  261. return x.x >> 16;
  262. }
  263. static inline int oo_objects(struct kmem_cache_order_objects x)
  264. {
  265. return x.x & ((1 << 16) - 1);
  266. }
  267. #ifdef CONFIG_SLUB_DEBUG
  268. /*
  269. * Debug settings:
  270. */
  271. #ifdef CONFIG_SLUB_DEBUG_ON
  272. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  273. #else
  274. static int slub_debug;
  275. #endif
  276. static char *slub_debug_slabs;
  277. /*
  278. * Object debugging
  279. */
  280. static void print_section(char *text, u8 *addr, unsigned int length)
  281. {
  282. int i, offset;
  283. int newline = 1;
  284. char ascii[17];
  285. ascii[16] = 0;
  286. for (i = 0; i < length; i++) {
  287. if (newline) {
  288. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  289. newline = 0;
  290. }
  291. printk(KERN_CONT " %02x", addr[i]);
  292. offset = i % 16;
  293. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  294. if (offset == 15) {
  295. printk(KERN_CONT " %s\n", ascii);
  296. newline = 1;
  297. }
  298. }
  299. if (!newline) {
  300. i %= 16;
  301. while (i < 16) {
  302. printk(KERN_CONT " ");
  303. ascii[i] = ' ';
  304. i++;
  305. }
  306. printk(KERN_CONT " %s\n", ascii);
  307. }
  308. }
  309. static struct track *get_track(struct kmem_cache *s, void *object,
  310. enum track_item alloc)
  311. {
  312. struct track *p;
  313. if (s->offset)
  314. p = object + s->offset + sizeof(void *);
  315. else
  316. p = object + s->inuse;
  317. return p + alloc;
  318. }
  319. static void set_track(struct kmem_cache *s, void *object,
  320. enum track_item alloc, void *addr)
  321. {
  322. struct track *p;
  323. if (s->offset)
  324. p = object + s->offset + sizeof(void *);
  325. else
  326. p = object + s->inuse;
  327. p += alloc;
  328. if (addr) {
  329. p->addr = addr;
  330. p->cpu = smp_processor_id();
  331. p->pid = current->pid;
  332. p->when = jiffies;
  333. } else
  334. memset(p, 0, sizeof(struct track));
  335. }
  336. static void init_tracking(struct kmem_cache *s, void *object)
  337. {
  338. if (!(s->flags & SLAB_STORE_USER))
  339. return;
  340. set_track(s, object, TRACK_FREE, NULL);
  341. set_track(s, object, TRACK_ALLOC, NULL);
  342. }
  343. static void print_track(const char *s, struct track *t)
  344. {
  345. if (!t->addr)
  346. return;
  347. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  348. s, t->addr, jiffies - t->when, t->cpu, t->pid);
  349. }
  350. static void print_tracking(struct kmem_cache *s, void *object)
  351. {
  352. if (!(s->flags & SLAB_STORE_USER))
  353. return;
  354. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  355. print_track("Freed", get_track(s, object, TRACK_FREE));
  356. }
  357. static void print_page_info(struct page *page)
  358. {
  359. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  360. page, page->objects, page->inuse, page->freelist, page->flags);
  361. }
  362. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  363. {
  364. va_list args;
  365. char buf[100];
  366. va_start(args, fmt);
  367. vsnprintf(buf, sizeof(buf), fmt, args);
  368. va_end(args);
  369. printk(KERN_ERR "========================================"
  370. "=====================================\n");
  371. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  372. printk(KERN_ERR "----------------------------------------"
  373. "-------------------------------------\n\n");
  374. }
  375. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  376. {
  377. va_list args;
  378. char buf[100];
  379. va_start(args, fmt);
  380. vsnprintf(buf, sizeof(buf), fmt, args);
  381. va_end(args);
  382. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  383. }
  384. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  385. {
  386. unsigned int off; /* Offset of last byte */
  387. u8 *addr = page_address(page);
  388. print_tracking(s, p);
  389. print_page_info(page);
  390. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  391. p, p - addr, get_freepointer(s, p));
  392. if (p > addr + 16)
  393. print_section("Bytes b4", p - 16, 16);
  394. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  395. if (s->flags & SLAB_RED_ZONE)
  396. print_section("Redzone", p + s->objsize,
  397. s->inuse - s->objsize);
  398. if (s->offset)
  399. off = s->offset + sizeof(void *);
  400. else
  401. off = s->inuse;
  402. if (s->flags & SLAB_STORE_USER)
  403. off += 2 * sizeof(struct track);
  404. if (off != s->size)
  405. /* Beginning of the filler is the free pointer */
  406. print_section("Padding", p + off, s->size - off);
  407. dump_stack();
  408. }
  409. static void object_err(struct kmem_cache *s, struct page *page,
  410. u8 *object, char *reason)
  411. {
  412. slab_bug(s, "%s", reason);
  413. print_trailer(s, page, object);
  414. }
  415. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  416. {
  417. va_list args;
  418. char buf[100];
  419. va_start(args, fmt);
  420. vsnprintf(buf, sizeof(buf), fmt, args);
  421. va_end(args);
  422. slab_bug(s, "%s", buf);
  423. print_page_info(page);
  424. dump_stack();
  425. }
  426. static void init_object(struct kmem_cache *s, void *object, int active)
  427. {
  428. u8 *p = object;
  429. if (s->flags & __OBJECT_POISON) {
  430. memset(p, POISON_FREE, s->objsize - 1);
  431. p[s->objsize - 1] = POISON_END;
  432. }
  433. if (s->flags & SLAB_RED_ZONE)
  434. memset(p + s->objsize,
  435. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  436. s->inuse - s->objsize);
  437. }
  438. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  439. {
  440. while (bytes) {
  441. if (*start != (u8)value)
  442. return start;
  443. start++;
  444. bytes--;
  445. }
  446. return NULL;
  447. }
  448. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  449. void *from, void *to)
  450. {
  451. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  452. memset(from, data, to - from);
  453. }
  454. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  455. u8 *object, char *what,
  456. u8 *start, unsigned int value, unsigned int bytes)
  457. {
  458. u8 *fault;
  459. u8 *end;
  460. fault = check_bytes(start, value, bytes);
  461. if (!fault)
  462. return 1;
  463. end = start + bytes;
  464. while (end > fault && end[-1] == value)
  465. end--;
  466. slab_bug(s, "%s overwritten", what);
  467. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  468. fault, end - 1, fault[0], value);
  469. print_trailer(s, page, object);
  470. restore_bytes(s, what, value, fault, end);
  471. return 0;
  472. }
  473. /*
  474. * Object layout:
  475. *
  476. * object address
  477. * Bytes of the object to be managed.
  478. * If the freepointer may overlay the object then the free
  479. * pointer is the first word of the object.
  480. *
  481. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  482. * 0xa5 (POISON_END)
  483. *
  484. * object + s->objsize
  485. * Padding to reach word boundary. This is also used for Redzoning.
  486. * Padding is extended by another word if Redzoning is enabled and
  487. * objsize == inuse.
  488. *
  489. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  490. * 0xcc (RED_ACTIVE) for objects in use.
  491. *
  492. * object + s->inuse
  493. * Meta data starts here.
  494. *
  495. * A. Free pointer (if we cannot overwrite object on free)
  496. * B. Tracking data for SLAB_STORE_USER
  497. * C. Padding to reach required alignment boundary or at mininum
  498. * one word if debugging is on to be able to detect writes
  499. * before the word boundary.
  500. *
  501. * Padding is done using 0x5a (POISON_INUSE)
  502. *
  503. * object + s->size
  504. * Nothing is used beyond s->size.
  505. *
  506. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  507. * ignored. And therefore no slab options that rely on these boundaries
  508. * may be used with merged slabcaches.
  509. */
  510. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  511. {
  512. unsigned long off = s->inuse; /* The end of info */
  513. if (s->offset)
  514. /* Freepointer is placed after the object. */
  515. off += sizeof(void *);
  516. if (s->flags & SLAB_STORE_USER)
  517. /* We also have user information there */
  518. off += 2 * sizeof(struct track);
  519. if (s->size == off)
  520. return 1;
  521. return check_bytes_and_report(s, page, p, "Object padding",
  522. p + off, POISON_INUSE, s->size - off);
  523. }
  524. /* Check the pad bytes at the end of a slab page */
  525. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  526. {
  527. u8 *start;
  528. u8 *fault;
  529. u8 *end;
  530. int length;
  531. int remainder;
  532. if (!(s->flags & SLAB_POISON))
  533. return 1;
  534. start = page_address(page);
  535. length = (PAGE_SIZE << compound_order(page));
  536. end = start + length;
  537. remainder = length % s->size;
  538. if (!remainder)
  539. return 1;
  540. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  541. if (!fault)
  542. return 1;
  543. while (end > fault && end[-1] == POISON_INUSE)
  544. end--;
  545. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  546. print_section("Padding", end - remainder, remainder);
  547. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  548. return 0;
  549. }
  550. static int check_object(struct kmem_cache *s, struct page *page,
  551. void *object, int active)
  552. {
  553. u8 *p = object;
  554. u8 *endobject = object + s->objsize;
  555. if (s->flags & SLAB_RED_ZONE) {
  556. unsigned int red =
  557. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  558. if (!check_bytes_and_report(s, page, object, "Redzone",
  559. endobject, red, s->inuse - s->objsize))
  560. return 0;
  561. } else {
  562. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  563. check_bytes_and_report(s, page, p, "Alignment padding",
  564. endobject, POISON_INUSE, s->inuse - s->objsize);
  565. }
  566. }
  567. if (s->flags & SLAB_POISON) {
  568. if (!active && (s->flags & __OBJECT_POISON) &&
  569. (!check_bytes_and_report(s, page, p, "Poison", p,
  570. POISON_FREE, s->objsize - 1) ||
  571. !check_bytes_and_report(s, page, p, "Poison",
  572. p + s->objsize - 1, POISON_END, 1)))
  573. return 0;
  574. /*
  575. * check_pad_bytes cleans up on its own.
  576. */
  577. check_pad_bytes(s, page, p);
  578. }
  579. if (!s->offset && active)
  580. /*
  581. * Object and freepointer overlap. Cannot check
  582. * freepointer while object is allocated.
  583. */
  584. return 1;
  585. /* Check free pointer validity */
  586. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  587. object_err(s, page, p, "Freepointer corrupt");
  588. /*
  589. * No choice but to zap it and thus loose the remainder
  590. * of the free objects in this slab. May cause
  591. * another error because the object count is now wrong.
  592. */
  593. set_freepointer(s, p, NULL);
  594. return 0;
  595. }
  596. return 1;
  597. }
  598. static int check_slab(struct kmem_cache *s, struct page *page)
  599. {
  600. int maxobj;
  601. VM_BUG_ON(!irqs_disabled());
  602. if (!PageSlab(page)) {
  603. slab_err(s, page, "Not a valid slab page");
  604. return 0;
  605. }
  606. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  607. if (page->objects > maxobj) {
  608. slab_err(s, page, "objects %u > max %u",
  609. s->name, page->objects, maxobj);
  610. return 0;
  611. }
  612. if (page->inuse > page->objects) {
  613. slab_err(s, page, "inuse %u > max %u",
  614. s->name, page->inuse, page->objects);
  615. return 0;
  616. }
  617. /* Slab_pad_check fixes things up after itself */
  618. slab_pad_check(s, page);
  619. return 1;
  620. }
  621. /*
  622. * Determine if a certain object on a page is on the freelist. Must hold the
  623. * slab lock to guarantee that the chains are in a consistent state.
  624. */
  625. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  626. {
  627. int nr = 0;
  628. void *fp = page->freelist;
  629. void *object = NULL;
  630. unsigned long max_objects;
  631. while (fp && nr <= page->objects) {
  632. if (fp == search)
  633. return 1;
  634. if (!check_valid_pointer(s, page, fp)) {
  635. if (object) {
  636. object_err(s, page, object,
  637. "Freechain corrupt");
  638. set_freepointer(s, object, NULL);
  639. break;
  640. } else {
  641. slab_err(s, page, "Freepointer corrupt");
  642. page->freelist = NULL;
  643. page->inuse = page->objects;
  644. slab_fix(s, "Freelist cleared");
  645. return 0;
  646. }
  647. break;
  648. }
  649. object = fp;
  650. fp = get_freepointer(s, object);
  651. nr++;
  652. }
  653. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  654. if (max_objects > 65535)
  655. max_objects = 65535;
  656. if (page->objects != max_objects) {
  657. slab_err(s, page, "Wrong number of objects. Found %d but "
  658. "should be %d", page->objects, max_objects);
  659. page->objects = max_objects;
  660. slab_fix(s, "Number of objects adjusted.");
  661. }
  662. if (page->inuse != page->objects - nr) {
  663. slab_err(s, page, "Wrong object count. Counter is %d but "
  664. "counted were %d", page->inuse, page->objects - nr);
  665. page->inuse = page->objects - nr;
  666. slab_fix(s, "Object count adjusted.");
  667. }
  668. return search == NULL;
  669. }
  670. static void trace(struct kmem_cache *s, struct page *page, void *object,
  671. int alloc)
  672. {
  673. if (s->flags & SLAB_TRACE) {
  674. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  675. s->name,
  676. alloc ? "alloc" : "free",
  677. object, page->inuse,
  678. page->freelist);
  679. if (!alloc)
  680. print_section("Object", (void *)object, s->objsize);
  681. dump_stack();
  682. }
  683. }
  684. /*
  685. * Tracking of fully allocated slabs for debugging purposes.
  686. */
  687. static void add_full(struct kmem_cache_node *n, struct page *page)
  688. {
  689. spin_lock(&n->list_lock);
  690. list_add(&page->lru, &n->full);
  691. spin_unlock(&n->list_lock);
  692. }
  693. static void remove_full(struct kmem_cache *s, struct page *page)
  694. {
  695. struct kmem_cache_node *n;
  696. if (!(s->flags & SLAB_STORE_USER))
  697. return;
  698. n = get_node(s, page_to_nid(page));
  699. spin_lock(&n->list_lock);
  700. list_del(&page->lru);
  701. spin_unlock(&n->list_lock);
  702. }
  703. /* Tracking of the number of slabs for debugging purposes */
  704. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  705. {
  706. struct kmem_cache_node *n = get_node(s, node);
  707. return atomic_long_read(&n->nr_slabs);
  708. }
  709. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  710. {
  711. struct kmem_cache_node *n = get_node(s, node);
  712. /*
  713. * May be called early in order to allocate a slab for the
  714. * kmem_cache_node structure. Solve the chicken-egg
  715. * dilemma by deferring the increment of the count during
  716. * bootstrap (see early_kmem_cache_node_alloc).
  717. */
  718. if (!NUMA_BUILD || n) {
  719. atomic_long_inc(&n->nr_slabs);
  720. atomic_long_add(objects, &n->total_objects);
  721. }
  722. }
  723. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  724. {
  725. struct kmem_cache_node *n = get_node(s, node);
  726. atomic_long_dec(&n->nr_slabs);
  727. atomic_long_sub(objects, &n->total_objects);
  728. }
  729. /* Object debug checks for alloc/free paths */
  730. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  731. void *object)
  732. {
  733. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  734. return;
  735. init_object(s, object, 0);
  736. init_tracking(s, object);
  737. }
  738. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  739. void *object, void *addr)
  740. {
  741. if (!check_slab(s, page))
  742. goto bad;
  743. if (!on_freelist(s, page, object)) {
  744. object_err(s, page, object, "Object already allocated");
  745. goto bad;
  746. }
  747. if (!check_valid_pointer(s, page, object)) {
  748. object_err(s, page, object, "Freelist Pointer check fails");
  749. goto bad;
  750. }
  751. if (!check_object(s, page, object, 0))
  752. goto bad;
  753. /* Success perform special debug activities for allocs */
  754. if (s->flags & SLAB_STORE_USER)
  755. set_track(s, object, TRACK_ALLOC, addr);
  756. trace(s, page, object, 1);
  757. init_object(s, object, 1);
  758. return 1;
  759. bad:
  760. if (PageSlab(page)) {
  761. /*
  762. * If this is a slab page then lets do the best we can
  763. * to avoid issues in the future. Marking all objects
  764. * as used avoids touching the remaining objects.
  765. */
  766. slab_fix(s, "Marking all objects used");
  767. page->inuse = page->objects;
  768. page->freelist = NULL;
  769. }
  770. return 0;
  771. }
  772. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  773. void *object, void *addr)
  774. {
  775. if (!check_slab(s, page))
  776. goto fail;
  777. if (!check_valid_pointer(s, page, object)) {
  778. slab_err(s, page, "Invalid object pointer 0x%p", object);
  779. goto fail;
  780. }
  781. if (on_freelist(s, page, object)) {
  782. object_err(s, page, object, "Object already free");
  783. goto fail;
  784. }
  785. if (!check_object(s, page, object, 1))
  786. return 0;
  787. if (unlikely(s != page->slab)) {
  788. if (!PageSlab(page)) {
  789. slab_err(s, page, "Attempt to free object(0x%p) "
  790. "outside of slab", object);
  791. } else if (!page->slab) {
  792. printk(KERN_ERR
  793. "SLUB <none>: no slab for object 0x%p.\n",
  794. object);
  795. dump_stack();
  796. } else
  797. object_err(s, page, object,
  798. "page slab pointer corrupt.");
  799. goto fail;
  800. }
  801. /* Special debug activities for freeing objects */
  802. if (!PageSlubFrozen(page) && !page->freelist)
  803. remove_full(s, page);
  804. if (s->flags & SLAB_STORE_USER)
  805. set_track(s, object, TRACK_FREE, addr);
  806. trace(s, page, object, 0);
  807. init_object(s, object, 0);
  808. return 1;
  809. fail:
  810. slab_fix(s, "Object at 0x%p not freed", object);
  811. return 0;
  812. }
  813. static int __init setup_slub_debug(char *str)
  814. {
  815. slub_debug = DEBUG_DEFAULT_FLAGS;
  816. if (*str++ != '=' || !*str)
  817. /*
  818. * No options specified. Switch on full debugging.
  819. */
  820. goto out;
  821. if (*str == ',')
  822. /*
  823. * No options but restriction on slabs. This means full
  824. * debugging for slabs matching a pattern.
  825. */
  826. goto check_slabs;
  827. slub_debug = 0;
  828. if (*str == '-')
  829. /*
  830. * Switch off all debugging measures.
  831. */
  832. goto out;
  833. /*
  834. * Determine which debug features should be switched on
  835. */
  836. for (; *str && *str != ','; str++) {
  837. switch (tolower(*str)) {
  838. case 'f':
  839. slub_debug |= SLAB_DEBUG_FREE;
  840. break;
  841. case 'z':
  842. slub_debug |= SLAB_RED_ZONE;
  843. break;
  844. case 'p':
  845. slub_debug |= SLAB_POISON;
  846. break;
  847. case 'u':
  848. slub_debug |= SLAB_STORE_USER;
  849. break;
  850. case 't':
  851. slub_debug |= SLAB_TRACE;
  852. break;
  853. default:
  854. printk(KERN_ERR "slub_debug option '%c' "
  855. "unknown. skipped\n", *str);
  856. }
  857. }
  858. check_slabs:
  859. if (*str == ',')
  860. slub_debug_slabs = str + 1;
  861. out:
  862. return 1;
  863. }
  864. __setup("slub_debug", setup_slub_debug);
  865. static unsigned long kmem_cache_flags(unsigned long objsize,
  866. unsigned long flags, const char *name,
  867. void (*ctor)(void *))
  868. {
  869. /*
  870. * Enable debugging if selected on the kernel commandline.
  871. */
  872. if (slub_debug && (!slub_debug_slabs ||
  873. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  874. flags |= slub_debug;
  875. return flags;
  876. }
  877. #else
  878. static inline void setup_object_debug(struct kmem_cache *s,
  879. struct page *page, void *object) {}
  880. static inline int alloc_debug_processing(struct kmem_cache *s,
  881. struct page *page, void *object, void *addr) { return 0; }
  882. static inline int free_debug_processing(struct kmem_cache *s,
  883. struct page *page, void *object, void *addr) { return 0; }
  884. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  885. { return 1; }
  886. static inline int check_object(struct kmem_cache *s, struct page *page,
  887. void *object, int active) { return 1; }
  888. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  889. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  890. unsigned long flags, const char *name,
  891. void (*ctor)(void *))
  892. {
  893. return flags;
  894. }
  895. #define slub_debug 0
  896. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  897. { return 0; }
  898. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  899. int objects) {}
  900. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  901. int objects) {}
  902. #endif
  903. /*
  904. * Slab allocation and freeing
  905. */
  906. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  907. struct kmem_cache_order_objects oo)
  908. {
  909. int order = oo_order(oo);
  910. if (node == -1)
  911. return alloc_pages(flags, order);
  912. else
  913. return alloc_pages_node(node, flags, order);
  914. }
  915. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  916. {
  917. struct page *page;
  918. struct kmem_cache_order_objects oo = s->oo;
  919. flags |= s->allocflags;
  920. page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
  921. oo);
  922. if (unlikely(!page)) {
  923. oo = s->min;
  924. /*
  925. * Allocation may have failed due to fragmentation.
  926. * Try a lower order alloc if possible
  927. */
  928. page = alloc_slab_page(flags, node, oo);
  929. if (!page)
  930. return NULL;
  931. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  932. }
  933. page->objects = oo_objects(oo);
  934. mod_zone_page_state(page_zone(page),
  935. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  936. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  937. 1 << oo_order(oo));
  938. return page;
  939. }
  940. static void setup_object(struct kmem_cache *s, struct page *page,
  941. void *object)
  942. {
  943. setup_object_debug(s, page, object);
  944. if (unlikely(s->ctor))
  945. s->ctor(object);
  946. }
  947. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  948. {
  949. struct page *page;
  950. void *start;
  951. void *last;
  952. void *p;
  953. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  954. page = allocate_slab(s,
  955. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  956. if (!page)
  957. goto out;
  958. inc_slabs_node(s, page_to_nid(page), page->objects);
  959. page->slab = s;
  960. page->flags |= 1 << PG_slab;
  961. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  962. SLAB_STORE_USER | SLAB_TRACE))
  963. __SetPageSlubDebug(page);
  964. start = page_address(page);
  965. if (unlikely(s->flags & SLAB_POISON))
  966. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  967. last = start;
  968. for_each_object(p, s, start, page->objects) {
  969. setup_object(s, page, last);
  970. set_freepointer(s, last, p);
  971. last = p;
  972. }
  973. setup_object(s, page, last);
  974. set_freepointer(s, last, NULL);
  975. page->freelist = start;
  976. page->inuse = 0;
  977. out:
  978. return page;
  979. }
  980. static void __free_slab(struct kmem_cache *s, struct page *page)
  981. {
  982. int order = compound_order(page);
  983. int pages = 1 << order;
  984. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  985. void *p;
  986. slab_pad_check(s, page);
  987. for_each_object(p, s, page_address(page),
  988. page->objects)
  989. check_object(s, page, p, 0);
  990. __ClearPageSlubDebug(page);
  991. }
  992. mod_zone_page_state(page_zone(page),
  993. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  994. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  995. -pages);
  996. __ClearPageSlab(page);
  997. reset_page_mapcount(page);
  998. __free_pages(page, order);
  999. }
  1000. static void rcu_free_slab(struct rcu_head *h)
  1001. {
  1002. struct page *page;
  1003. page = container_of((struct list_head *)h, struct page, lru);
  1004. __free_slab(page->slab, page);
  1005. }
  1006. static void free_slab(struct kmem_cache *s, struct page *page)
  1007. {
  1008. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1009. /*
  1010. * RCU free overloads the RCU head over the LRU
  1011. */
  1012. struct rcu_head *head = (void *)&page->lru;
  1013. call_rcu(head, rcu_free_slab);
  1014. } else
  1015. __free_slab(s, page);
  1016. }
  1017. static void discard_slab(struct kmem_cache *s, struct page *page)
  1018. {
  1019. dec_slabs_node(s, page_to_nid(page), page->objects);
  1020. free_slab(s, page);
  1021. }
  1022. /*
  1023. * Per slab locking using the pagelock
  1024. */
  1025. static __always_inline void slab_lock(struct page *page)
  1026. {
  1027. bit_spin_lock(PG_locked, &page->flags);
  1028. }
  1029. static __always_inline void slab_unlock(struct page *page)
  1030. {
  1031. __bit_spin_unlock(PG_locked, &page->flags);
  1032. }
  1033. static __always_inline int slab_trylock(struct page *page)
  1034. {
  1035. int rc = 1;
  1036. rc = bit_spin_trylock(PG_locked, &page->flags);
  1037. return rc;
  1038. }
  1039. /*
  1040. * Management of partially allocated slabs
  1041. */
  1042. static void add_partial(struct kmem_cache_node *n,
  1043. struct page *page, int tail)
  1044. {
  1045. spin_lock(&n->list_lock);
  1046. n->nr_partial++;
  1047. if (tail)
  1048. list_add_tail(&page->lru, &n->partial);
  1049. else
  1050. list_add(&page->lru, &n->partial);
  1051. spin_unlock(&n->list_lock);
  1052. }
  1053. static void remove_partial(struct kmem_cache *s, struct page *page)
  1054. {
  1055. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1056. spin_lock(&n->list_lock);
  1057. list_del(&page->lru);
  1058. n->nr_partial--;
  1059. spin_unlock(&n->list_lock);
  1060. }
  1061. /*
  1062. * Lock slab and remove from the partial list.
  1063. *
  1064. * Must hold list_lock.
  1065. */
  1066. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1067. struct page *page)
  1068. {
  1069. if (slab_trylock(page)) {
  1070. list_del(&page->lru);
  1071. n->nr_partial--;
  1072. __SetPageSlubFrozen(page);
  1073. return 1;
  1074. }
  1075. return 0;
  1076. }
  1077. /*
  1078. * Try to allocate a partial slab from a specific node.
  1079. */
  1080. static struct page *get_partial_node(struct kmem_cache_node *n)
  1081. {
  1082. struct page *page;
  1083. /*
  1084. * Racy check. If we mistakenly see no partial slabs then we
  1085. * just allocate an empty slab. If we mistakenly try to get a
  1086. * partial slab and there is none available then get_partials()
  1087. * will return NULL.
  1088. */
  1089. if (!n || !n->nr_partial)
  1090. return NULL;
  1091. spin_lock(&n->list_lock);
  1092. list_for_each_entry(page, &n->partial, lru)
  1093. if (lock_and_freeze_slab(n, page))
  1094. goto out;
  1095. page = NULL;
  1096. out:
  1097. spin_unlock(&n->list_lock);
  1098. return page;
  1099. }
  1100. /*
  1101. * Get a page from somewhere. Search in increasing NUMA distances.
  1102. */
  1103. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1104. {
  1105. #ifdef CONFIG_NUMA
  1106. struct zonelist *zonelist;
  1107. struct zoneref *z;
  1108. struct zone *zone;
  1109. enum zone_type high_zoneidx = gfp_zone(flags);
  1110. struct page *page;
  1111. /*
  1112. * The defrag ratio allows a configuration of the tradeoffs between
  1113. * inter node defragmentation and node local allocations. A lower
  1114. * defrag_ratio increases the tendency to do local allocations
  1115. * instead of attempting to obtain partial slabs from other nodes.
  1116. *
  1117. * If the defrag_ratio is set to 0 then kmalloc() always
  1118. * returns node local objects. If the ratio is higher then kmalloc()
  1119. * may return off node objects because partial slabs are obtained
  1120. * from other nodes and filled up.
  1121. *
  1122. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1123. * defrag_ratio = 1000) then every (well almost) allocation will
  1124. * first attempt to defrag slab caches on other nodes. This means
  1125. * scanning over all nodes to look for partial slabs which may be
  1126. * expensive if we do it every time we are trying to find a slab
  1127. * with available objects.
  1128. */
  1129. if (!s->remote_node_defrag_ratio ||
  1130. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1131. return NULL;
  1132. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1133. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1134. struct kmem_cache_node *n;
  1135. n = get_node(s, zone_to_nid(zone));
  1136. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1137. n->nr_partial > n->min_partial) {
  1138. page = get_partial_node(n);
  1139. if (page)
  1140. return page;
  1141. }
  1142. }
  1143. #endif
  1144. return NULL;
  1145. }
  1146. /*
  1147. * Get a partial page, lock it and return it.
  1148. */
  1149. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1150. {
  1151. struct page *page;
  1152. int searchnode = (node == -1) ? numa_node_id() : node;
  1153. page = get_partial_node(get_node(s, searchnode));
  1154. if (page || (flags & __GFP_THISNODE))
  1155. return page;
  1156. return get_any_partial(s, flags);
  1157. }
  1158. /*
  1159. * Move a page back to the lists.
  1160. *
  1161. * Must be called with the slab lock held.
  1162. *
  1163. * On exit the slab lock will have been dropped.
  1164. */
  1165. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1166. {
  1167. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1168. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1169. __ClearPageSlubFrozen(page);
  1170. if (page->inuse) {
  1171. if (page->freelist) {
  1172. add_partial(n, page, tail);
  1173. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1174. } else {
  1175. stat(c, DEACTIVATE_FULL);
  1176. if (SLABDEBUG && PageSlubDebug(page) &&
  1177. (s->flags & SLAB_STORE_USER))
  1178. add_full(n, page);
  1179. }
  1180. slab_unlock(page);
  1181. } else {
  1182. stat(c, DEACTIVATE_EMPTY);
  1183. if (n->nr_partial < n->min_partial) {
  1184. /*
  1185. * Adding an empty slab to the partial slabs in order
  1186. * to avoid page allocator overhead. This slab needs
  1187. * to come after the other slabs with objects in
  1188. * so that the others get filled first. That way the
  1189. * size of the partial list stays small.
  1190. *
  1191. * kmem_cache_shrink can reclaim any empty slabs from
  1192. * the partial list.
  1193. */
  1194. add_partial(n, page, 1);
  1195. slab_unlock(page);
  1196. } else {
  1197. slab_unlock(page);
  1198. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1199. discard_slab(s, page);
  1200. }
  1201. }
  1202. }
  1203. /*
  1204. * Remove the cpu slab
  1205. */
  1206. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1207. {
  1208. struct page *page = c->page;
  1209. int tail = 1;
  1210. if (page->freelist)
  1211. stat(c, DEACTIVATE_REMOTE_FREES);
  1212. /*
  1213. * Merge cpu freelist into slab freelist. Typically we get here
  1214. * because both freelists are empty. So this is unlikely
  1215. * to occur.
  1216. */
  1217. while (unlikely(c->freelist)) {
  1218. void **object;
  1219. tail = 0; /* Hot objects. Put the slab first */
  1220. /* Retrieve object from cpu_freelist */
  1221. object = c->freelist;
  1222. c->freelist = c->freelist[c->offset];
  1223. /* And put onto the regular freelist */
  1224. object[c->offset] = page->freelist;
  1225. page->freelist = object;
  1226. page->inuse--;
  1227. }
  1228. c->page = NULL;
  1229. unfreeze_slab(s, page, tail);
  1230. }
  1231. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1232. {
  1233. stat(c, CPUSLAB_FLUSH);
  1234. slab_lock(c->page);
  1235. deactivate_slab(s, c);
  1236. }
  1237. /*
  1238. * Flush cpu slab.
  1239. *
  1240. * Called from IPI handler with interrupts disabled.
  1241. */
  1242. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1243. {
  1244. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1245. if (likely(c && c->page))
  1246. flush_slab(s, c);
  1247. }
  1248. static void flush_cpu_slab(void *d)
  1249. {
  1250. struct kmem_cache *s = d;
  1251. __flush_cpu_slab(s, smp_processor_id());
  1252. }
  1253. static void flush_all(struct kmem_cache *s)
  1254. {
  1255. on_each_cpu(flush_cpu_slab, s, 1);
  1256. }
  1257. /*
  1258. * Check if the objects in a per cpu structure fit numa
  1259. * locality expectations.
  1260. */
  1261. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1262. {
  1263. #ifdef CONFIG_NUMA
  1264. if (node != -1 && c->node != node)
  1265. return 0;
  1266. #endif
  1267. return 1;
  1268. }
  1269. /*
  1270. * Slow path. The lockless freelist is empty or we need to perform
  1271. * debugging duties.
  1272. *
  1273. * Interrupts are disabled.
  1274. *
  1275. * Processing is still very fast if new objects have been freed to the
  1276. * regular freelist. In that case we simply take over the regular freelist
  1277. * as the lockless freelist and zap the regular freelist.
  1278. *
  1279. * If that is not working then we fall back to the partial lists. We take the
  1280. * first element of the freelist as the object to allocate now and move the
  1281. * rest of the freelist to the lockless freelist.
  1282. *
  1283. * And if we were unable to get a new slab from the partial slab lists then
  1284. * we need to allocate a new slab. This is the slowest path since it involves
  1285. * a call to the page allocator and the setup of a new slab.
  1286. */
  1287. static void *__slab_alloc(struct kmem_cache *s,
  1288. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1289. {
  1290. void **object;
  1291. struct page *new;
  1292. /* We handle __GFP_ZERO in the caller */
  1293. gfpflags &= ~__GFP_ZERO;
  1294. if (!c->page)
  1295. goto new_slab;
  1296. slab_lock(c->page);
  1297. if (unlikely(!node_match(c, node)))
  1298. goto another_slab;
  1299. stat(c, ALLOC_REFILL);
  1300. load_freelist:
  1301. object = c->page->freelist;
  1302. if (unlikely(!object))
  1303. goto another_slab;
  1304. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1305. goto debug;
  1306. c->freelist = object[c->offset];
  1307. c->page->inuse = c->page->objects;
  1308. c->page->freelist = NULL;
  1309. c->node = page_to_nid(c->page);
  1310. unlock_out:
  1311. slab_unlock(c->page);
  1312. stat(c, ALLOC_SLOWPATH);
  1313. return object;
  1314. another_slab:
  1315. deactivate_slab(s, c);
  1316. new_slab:
  1317. new = get_partial(s, gfpflags, node);
  1318. if (new) {
  1319. c->page = new;
  1320. stat(c, ALLOC_FROM_PARTIAL);
  1321. goto load_freelist;
  1322. }
  1323. if (gfpflags & __GFP_WAIT)
  1324. local_irq_enable();
  1325. new = new_slab(s, gfpflags, node);
  1326. if (gfpflags & __GFP_WAIT)
  1327. local_irq_disable();
  1328. if (new) {
  1329. c = get_cpu_slab(s, smp_processor_id());
  1330. stat(c, ALLOC_SLAB);
  1331. if (c->page)
  1332. flush_slab(s, c);
  1333. slab_lock(new);
  1334. __SetPageSlubFrozen(new);
  1335. c->page = new;
  1336. goto load_freelist;
  1337. }
  1338. return NULL;
  1339. debug:
  1340. if (!alloc_debug_processing(s, c->page, object, addr))
  1341. goto another_slab;
  1342. c->page->inuse++;
  1343. c->page->freelist = object[c->offset];
  1344. c->node = -1;
  1345. goto unlock_out;
  1346. }
  1347. /*
  1348. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1349. * have the fastpath folded into their functions. So no function call
  1350. * overhead for requests that can be satisfied on the fastpath.
  1351. *
  1352. * The fastpath works by first checking if the lockless freelist can be used.
  1353. * If not then __slab_alloc is called for slow processing.
  1354. *
  1355. * Otherwise we can simply pick the next object from the lockless free list.
  1356. */
  1357. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1358. gfp_t gfpflags, int node, void *addr)
  1359. {
  1360. void **object;
  1361. struct kmem_cache_cpu *c;
  1362. unsigned long flags;
  1363. unsigned int objsize;
  1364. local_irq_save(flags);
  1365. c = get_cpu_slab(s, smp_processor_id());
  1366. objsize = c->objsize;
  1367. if (unlikely(!c->freelist || !node_match(c, node)))
  1368. object = __slab_alloc(s, gfpflags, node, addr, c);
  1369. else {
  1370. object = c->freelist;
  1371. c->freelist = object[c->offset];
  1372. stat(c, ALLOC_FASTPATH);
  1373. }
  1374. local_irq_restore(flags);
  1375. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1376. memset(object, 0, objsize);
  1377. return object;
  1378. }
  1379. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1380. {
  1381. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1382. }
  1383. EXPORT_SYMBOL(kmem_cache_alloc);
  1384. #ifdef CONFIG_NUMA
  1385. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1386. {
  1387. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1388. }
  1389. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1390. #endif
  1391. /*
  1392. * Slow patch handling. This may still be called frequently since objects
  1393. * have a longer lifetime than the cpu slabs in most processing loads.
  1394. *
  1395. * So we still attempt to reduce cache line usage. Just take the slab
  1396. * lock and free the item. If there is no additional partial page
  1397. * handling required then we can return immediately.
  1398. */
  1399. static void __slab_free(struct kmem_cache *s, struct page *page,
  1400. void *x, void *addr, unsigned int offset)
  1401. {
  1402. void *prior;
  1403. void **object = (void *)x;
  1404. struct kmem_cache_cpu *c;
  1405. c = get_cpu_slab(s, raw_smp_processor_id());
  1406. stat(c, FREE_SLOWPATH);
  1407. slab_lock(page);
  1408. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1409. goto debug;
  1410. checks_ok:
  1411. prior = object[offset] = page->freelist;
  1412. page->freelist = object;
  1413. page->inuse--;
  1414. if (unlikely(PageSlubFrozen(page))) {
  1415. stat(c, FREE_FROZEN);
  1416. goto out_unlock;
  1417. }
  1418. if (unlikely(!page->inuse))
  1419. goto slab_empty;
  1420. /*
  1421. * Objects left in the slab. If it was not on the partial list before
  1422. * then add it.
  1423. */
  1424. if (unlikely(!prior)) {
  1425. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1426. stat(c, FREE_ADD_PARTIAL);
  1427. }
  1428. out_unlock:
  1429. slab_unlock(page);
  1430. return;
  1431. slab_empty:
  1432. if (prior) {
  1433. /*
  1434. * Slab still on the partial list.
  1435. */
  1436. remove_partial(s, page);
  1437. stat(c, FREE_REMOVE_PARTIAL);
  1438. }
  1439. slab_unlock(page);
  1440. stat(c, FREE_SLAB);
  1441. discard_slab(s, page);
  1442. return;
  1443. debug:
  1444. if (!free_debug_processing(s, page, x, addr))
  1445. goto out_unlock;
  1446. goto checks_ok;
  1447. }
  1448. /*
  1449. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1450. * can perform fastpath freeing without additional function calls.
  1451. *
  1452. * The fastpath is only possible if we are freeing to the current cpu slab
  1453. * of this processor. This typically the case if we have just allocated
  1454. * the item before.
  1455. *
  1456. * If fastpath is not possible then fall back to __slab_free where we deal
  1457. * with all sorts of special processing.
  1458. */
  1459. static __always_inline void slab_free(struct kmem_cache *s,
  1460. struct page *page, void *x, void *addr)
  1461. {
  1462. void **object = (void *)x;
  1463. struct kmem_cache_cpu *c;
  1464. unsigned long flags;
  1465. local_irq_save(flags);
  1466. c = get_cpu_slab(s, smp_processor_id());
  1467. debug_check_no_locks_freed(object, c->objsize);
  1468. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1469. debug_check_no_obj_freed(object, s->objsize);
  1470. if (likely(page == c->page && c->node >= 0)) {
  1471. object[c->offset] = c->freelist;
  1472. c->freelist = object;
  1473. stat(c, FREE_FASTPATH);
  1474. } else
  1475. __slab_free(s, page, x, addr, c->offset);
  1476. local_irq_restore(flags);
  1477. }
  1478. void kmem_cache_free(struct kmem_cache *s, void *x)
  1479. {
  1480. struct page *page;
  1481. page = virt_to_head_page(x);
  1482. slab_free(s, page, x, __builtin_return_address(0));
  1483. }
  1484. EXPORT_SYMBOL(kmem_cache_free);
  1485. /* Figure out on which slab object the object resides */
  1486. static struct page *get_object_page(const void *x)
  1487. {
  1488. struct page *page = virt_to_head_page(x);
  1489. if (!PageSlab(page))
  1490. return NULL;
  1491. return page;
  1492. }
  1493. /*
  1494. * Object placement in a slab is made very easy because we always start at
  1495. * offset 0. If we tune the size of the object to the alignment then we can
  1496. * get the required alignment by putting one properly sized object after
  1497. * another.
  1498. *
  1499. * Notice that the allocation order determines the sizes of the per cpu
  1500. * caches. Each processor has always one slab available for allocations.
  1501. * Increasing the allocation order reduces the number of times that slabs
  1502. * must be moved on and off the partial lists and is therefore a factor in
  1503. * locking overhead.
  1504. */
  1505. /*
  1506. * Mininum / Maximum order of slab pages. This influences locking overhead
  1507. * and slab fragmentation. A higher order reduces the number of partial slabs
  1508. * and increases the number of allocations possible without having to
  1509. * take the list_lock.
  1510. */
  1511. static int slub_min_order;
  1512. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1513. static int slub_min_objects;
  1514. /*
  1515. * Merge control. If this is set then no merging of slab caches will occur.
  1516. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1517. */
  1518. static int slub_nomerge;
  1519. /*
  1520. * Calculate the order of allocation given an slab object size.
  1521. *
  1522. * The order of allocation has significant impact on performance and other
  1523. * system components. Generally order 0 allocations should be preferred since
  1524. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1525. * be problematic to put into order 0 slabs because there may be too much
  1526. * unused space left. We go to a higher order if more than 1/16th of the slab
  1527. * would be wasted.
  1528. *
  1529. * In order to reach satisfactory performance we must ensure that a minimum
  1530. * number of objects is in one slab. Otherwise we may generate too much
  1531. * activity on the partial lists which requires taking the list_lock. This is
  1532. * less a concern for large slabs though which are rarely used.
  1533. *
  1534. * slub_max_order specifies the order where we begin to stop considering the
  1535. * number of objects in a slab as critical. If we reach slub_max_order then
  1536. * we try to keep the page order as low as possible. So we accept more waste
  1537. * of space in favor of a small page order.
  1538. *
  1539. * Higher order allocations also allow the placement of more objects in a
  1540. * slab and thereby reduce object handling overhead. If the user has
  1541. * requested a higher mininum order then we start with that one instead of
  1542. * the smallest order which will fit the object.
  1543. */
  1544. static inline int slab_order(int size, int min_objects,
  1545. int max_order, int fract_leftover)
  1546. {
  1547. int order;
  1548. int rem;
  1549. int min_order = slub_min_order;
  1550. if ((PAGE_SIZE << min_order) / size > 65535)
  1551. return get_order(size * 65535) - 1;
  1552. for (order = max(min_order,
  1553. fls(min_objects * size - 1) - PAGE_SHIFT);
  1554. order <= max_order; order++) {
  1555. unsigned long slab_size = PAGE_SIZE << order;
  1556. if (slab_size < min_objects * size)
  1557. continue;
  1558. rem = slab_size % size;
  1559. if (rem <= slab_size / fract_leftover)
  1560. break;
  1561. }
  1562. return order;
  1563. }
  1564. static inline int calculate_order(int size)
  1565. {
  1566. int order;
  1567. int min_objects;
  1568. int fraction;
  1569. /*
  1570. * Attempt to find best configuration for a slab. This
  1571. * works by first attempting to generate a layout with
  1572. * the best configuration and backing off gradually.
  1573. *
  1574. * First we reduce the acceptable waste in a slab. Then
  1575. * we reduce the minimum objects required in a slab.
  1576. */
  1577. min_objects = slub_min_objects;
  1578. if (!min_objects)
  1579. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1580. while (min_objects > 1) {
  1581. fraction = 16;
  1582. while (fraction >= 4) {
  1583. order = slab_order(size, min_objects,
  1584. slub_max_order, fraction);
  1585. if (order <= slub_max_order)
  1586. return order;
  1587. fraction /= 2;
  1588. }
  1589. min_objects /= 2;
  1590. }
  1591. /*
  1592. * We were unable to place multiple objects in a slab. Now
  1593. * lets see if we can place a single object there.
  1594. */
  1595. order = slab_order(size, 1, slub_max_order, 1);
  1596. if (order <= slub_max_order)
  1597. return order;
  1598. /*
  1599. * Doh this slab cannot be placed using slub_max_order.
  1600. */
  1601. order = slab_order(size, 1, MAX_ORDER, 1);
  1602. if (order <= MAX_ORDER)
  1603. return order;
  1604. return -ENOSYS;
  1605. }
  1606. /*
  1607. * Figure out what the alignment of the objects will be.
  1608. */
  1609. static unsigned long calculate_alignment(unsigned long flags,
  1610. unsigned long align, unsigned long size)
  1611. {
  1612. /*
  1613. * If the user wants hardware cache aligned objects then follow that
  1614. * suggestion if the object is sufficiently large.
  1615. *
  1616. * The hardware cache alignment cannot override the specified
  1617. * alignment though. If that is greater then use it.
  1618. */
  1619. if (flags & SLAB_HWCACHE_ALIGN) {
  1620. unsigned long ralign = cache_line_size();
  1621. while (size <= ralign / 2)
  1622. ralign /= 2;
  1623. align = max(align, ralign);
  1624. }
  1625. if (align < ARCH_SLAB_MINALIGN)
  1626. align = ARCH_SLAB_MINALIGN;
  1627. return ALIGN(align, sizeof(void *));
  1628. }
  1629. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1630. struct kmem_cache_cpu *c)
  1631. {
  1632. c->page = NULL;
  1633. c->freelist = NULL;
  1634. c->node = 0;
  1635. c->offset = s->offset / sizeof(void *);
  1636. c->objsize = s->objsize;
  1637. #ifdef CONFIG_SLUB_STATS
  1638. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1639. #endif
  1640. }
  1641. static void
  1642. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1643. {
  1644. n->nr_partial = 0;
  1645. /*
  1646. * The larger the object size is, the more pages we want on the partial
  1647. * list to avoid pounding the page allocator excessively.
  1648. */
  1649. n->min_partial = ilog2(s->size);
  1650. if (n->min_partial < MIN_PARTIAL)
  1651. n->min_partial = MIN_PARTIAL;
  1652. else if (n->min_partial > MAX_PARTIAL)
  1653. n->min_partial = MAX_PARTIAL;
  1654. spin_lock_init(&n->list_lock);
  1655. INIT_LIST_HEAD(&n->partial);
  1656. #ifdef CONFIG_SLUB_DEBUG
  1657. atomic_long_set(&n->nr_slabs, 0);
  1658. INIT_LIST_HEAD(&n->full);
  1659. #endif
  1660. }
  1661. #ifdef CONFIG_SMP
  1662. /*
  1663. * Per cpu array for per cpu structures.
  1664. *
  1665. * The per cpu array places all kmem_cache_cpu structures from one processor
  1666. * close together meaning that it becomes possible that multiple per cpu
  1667. * structures are contained in one cacheline. This may be particularly
  1668. * beneficial for the kmalloc caches.
  1669. *
  1670. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1671. * likely able to get per cpu structures for all caches from the array defined
  1672. * here. We must be able to cover all kmalloc caches during bootstrap.
  1673. *
  1674. * If the per cpu array is exhausted then fall back to kmalloc
  1675. * of individual cachelines. No sharing is possible then.
  1676. */
  1677. #define NR_KMEM_CACHE_CPU 100
  1678. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1679. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1680. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1681. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1682. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1683. int cpu, gfp_t flags)
  1684. {
  1685. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1686. if (c)
  1687. per_cpu(kmem_cache_cpu_free, cpu) =
  1688. (void *)c->freelist;
  1689. else {
  1690. /* Table overflow: So allocate ourselves */
  1691. c = kmalloc_node(
  1692. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1693. flags, cpu_to_node(cpu));
  1694. if (!c)
  1695. return NULL;
  1696. }
  1697. init_kmem_cache_cpu(s, c);
  1698. return c;
  1699. }
  1700. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1701. {
  1702. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1703. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1704. kfree(c);
  1705. return;
  1706. }
  1707. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1708. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1709. }
  1710. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1711. {
  1712. int cpu;
  1713. for_each_online_cpu(cpu) {
  1714. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1715. if (c) {
  1716. s->cpu_slab[cpu] = NULL;
  1717. free_kmem_cache_cpu(c, cpu);
  1718. }
  1719. }
  1720. }
  1721. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1722. {
  1723. int cpu;
  1724. for_each_online_cpu(cpu) {
  1725. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1726. if (c)
  1727. continue;
  1728. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1729. if (!c) {
  1730. free_kmem_cache_cpus(s);
  1731. return 0;
  1732. }
  1733. s->cpu_slab[cpu] = c;
  1734. }
  1735. return 1;
  1736. }
  1737. /*
  1738. * Initialize the per cpu array.
  1739. */
  1740. static void init_alloc_cpu_cpu(int cpu)
  1741. {
  1742. int i;
  1743. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1744. return;
  1745. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1746. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1747. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1748. }
  1749. static void __init init_alloc_cpu(void)
  1750. {
  1751. int cpu;
  1752. for_each_online_cpu(cpu)
  1753. init_alloc_cpu_cpu(cpu);
  1754. }
  1755. #else
  1756. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1757. static inline void init_alloc_cpu(void) {}
  1758. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1759. {
  1760. init_kmem_cache_cpu(s, &s->cpu_slab);
  1761. return 1;
  1762. }
  1763. #endif
  1764. #ifdef CONFIG_NUMA
  1765. /*
  1766. * No kmalloc_node yet so do it by hand. We know that this is the first
  1767. * slab on the node for this slabcache. There are no concurrent accesses
  1768. * possible.
  1769. *
  1770. * Note that this function only works on the kmalloc_node_cache
  1771. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1772. * memory on a fresh node that has no slab structures yet.
  1773. */
  1774. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1775. int node)
  1776. {
  1777. struct page *page;
  1778. struct kmem_cache_node *n;
  1779. unsigned long flags;
  1780. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1781. page = new_slab(kmalloc_caches, gfpflags, node);
  1782. BUG_ON(!page);
  1783. if (page_to_nid(page) != node) {
  1784. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1785. "node %d\n", node);
  1786. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1787. "in order to be able to continue\n");
  1788. }
  1789. n = page->freelist;
  1790. BUG_ON(!n);
  1791. page->freelist = get_freepointer(kmalloc_caches, n);
  1792. page->inuse++;
  1793. kmalloc_caches->node[node] = n;
  1794. #ifdef CONFIG_SLUB_DEBUG
  1795. init_object(kmalloc_caches, n, 1);
  1796. init_tracking(kmalloc_caches, n);
  1797. #endif
  1798. init_kmem_cache_node(n, kmalloc_caches);
  1799. inc_slabs_node(kmalloc_caches, node, page->objects);
  1800. /*
  1801. * lockdep requires consistent irq usage for each lock
  1802. * so even though there cannot be a race this early in
  1803. * the boot sequence, we still disable irqs.
  1804. */
  1805. local_irq_save(flags);
  1806. add_partial(n, page, 0);
  1807. local_irq_restore(flags);
  1808. return n;
  1809. }
  1810. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1811. {
  1812. int node;
  1813. for_each_node_state(node, N_NORMAL_MEMORY) {
  1814. struct kmem_cache_node *n = s->node[node];
  1815. if (n && n != &s->local_node)
  1816. kmem_cache_free(kmalloc_caches, n);
  1817. s->node[node] = NULL;
  1818. }
  1819. }
  1820. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1821. {
  1822. int node;
  1823. int local_node;
  1824. if (slab_state >= UP)
  1825. local_node = page_to_nid(virt_to_page(s));
  1826. else
  1827. local_node = 0;
  1828. for_each_node_state(node, N_NORMAL_MEMORY) {
  1829. struct kmem_cache_node *n;
  1830. if (local_node == node)
  1831. n = &s->local_node;
  1832. else {
  1833. if (slab_state == DOWN) {
  1834. n = early_kmem_cache_node_alloc(gfpflags,
  1835. node);
  1836. continue;
  1837. }
  1838. n = kmem_cache_alloc_node(kmalloc_caches,
  1839. gfpflags, node);
  1840. if (!n) {
  1841. free_kmem_cache_nodes(s);
  1842. return 0;
  1843. }
  1844. }
  1845. s->node[node] = n;
  1846. init_kmem_cache_node(n, s);
  1847. }
  1848. return 1;
  1849. }
  1850. #else
  1851. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1852. {
  1853. }
  1854. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1855. {
  1856. init_kmem_cache_node(&s->local_node, s);
  1857. return 1;
  1858. }
  1859. #endif
  1860. /*
  1861. * calculate_sizes() determines the order and the distribution of data within
  1862. * a slab object.
  1863. */
  1864. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1865. {
  1866. unsigned long flags = s->flags;
  1867. unsigned long size = s->objsize;
  1868. unsigned long align = s->align;
  1869. int order;
  1870. /*
  1871. * Round up object size to the next word boundary. We can only
  1872. * place the free pointer at word boundaries and this determines
  1873. * the possible location of the free pointer.
  1874. */
  1875. size = ALIGN(size, sizeof(void *));
  1876. #ifdef CONFIG_SLUB_DEBUG
  1877. /*
  1878. * Determine if we can poison the object itself. If the user of
  1879. * the slab may touch the object after free or before allocation
  1880. * then we should never poison the object itself.
  1881. */
  1882. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1883. !s->ctor)
  1884. s->flags |= __OBJECT_POISON;
  1885. else
  1886. s->flags &= ~__OBJECT_POISON;
  1887. /*
  1888. * If we are Redzoning then check if there is some space between the
  1889. * end of the object and the free pointer. If not then add an
  1890. * additional word to have some bytes to store Redzone information.
  1891. */
  1892. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1893. size += sizeof(void *);
  1894. #endif
  1895. /*
  1896. * With that we have determined the number of bytes in actual use
  1897. * by the object. This is the potential offset to the free pointer.
  1898. */
  1899. s->inuse = size;
  1900. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1901. s->ctor)) {
  1902. /*
  1903. * Relocate free pointer after the object if it is not
  1904. * permitted to overwrite the first word of the object on
  1905. * kmem_cache_free.
  1906. *
  1907. * This is the case if we do RCU, have a constructor or
  1908. * destructor or are poisoning the objects.
  1909. */
  1910. s->offset = size;
  1911. size += sizeof(void *);
  1912. }
  1913. #ifdef CONFIG_SLUB_DEBUG
  1914. if (flags & SLAB_STORE_USER)
  1915. /*
  1916. * Need to store information about allocs and frees after
  1917. * the object.
  1918. */
  1919. size += 2 * sizeof(struct track);
  1920. if (flags & SLAB_RED_ZONE)
  1921. /*
  1922. * Add some empty padding so that we can catch
  1923. * overwrites from earlier objects rather than let
  1924. * tracking information or the free pointer be
  1925. * corrupted if an user writes before the start
  1926. * of the object.
  1927. */
  1928. size += sizeof(void *);
  1929. #endif
  1930. /*
  1931. * Determine the alignment based on various parameters that the
  1932. * user specified and the dynamic determination of cache line size
  1933. * on bootup.
  1934. */
  1935. align = calculate_alignment(flags, align, s->objsize);
  1936. /*
  1937. * SLUB stores one object immediately after another beginning from
  1938. * offset 0. In order to align the objects we have to simply size
  1939. * each object to conform to the alignment.
  1940. */
  1941. size = ALIGN(size, align);
  1942. s->size = size;
  1943. if (forced_order >= 0)
  1944. order = forced_order;
  1945. else
  1946. order = calculate_order(size);
  1947. if (order < 0)
  1948. return 0;
  1949. s->allocflags = 0;
  1950. if (order)
  1951. s->allocflags |= __GFP_COMP;
  1952. if (s->flags & SLAB_CACHE_DMA)
  1953. s->allocflags |= SLUB_DMA;
  1954. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1955. s->allocflags |= __GFP_RECLAIMABLE;
  1956. /*
  1957. * Determine the number of objects per slab
  1958. */
  1959. s->oo = oo_make(order, size);
  1960. s->min = oo_make(get_order(size), size);
  1961. if (oo_objects(s->oo) > oo_objects(s->max))
  1962. s->max = s->oo;
  1963. return !!oo_objects(s->oo);
  1964. }
  1965. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1966. const char *name, size_t size,
  1967. size_t align, unsigned long flags,
  1968. void (*ctor)(void *))
  1969. {
  1970. memset(s, 0, kmem_size);
  1971. s->name = name;
  1972. s->ctor = ctor;
  1973. s->objsize = size;
  1974. s->align = align;
  1975. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1976. if (!calculate_sizes(s, -1))
  1977. goto error;
  1978. s->refcount = 1;
  1979. #ifdef CONFIG_NUMA
  1980. s->remote_node_defrag_ratio = 100;
  1981. #endif
  1982. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1983. goto error;
  1984. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  1985. return 1;
  1986. free_kmem_cache_nodes(s);
  1987. error:
  1988. if (flags & SLAB_PANIC)
  1989. panic("Cannot create slab %s size=%lu realsize=%u "
  1990. "order=%u offset=%u flags=%lx\n",
  1991. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  1992. s->offset, flags);
  1993. return 0;
  1994. }
  1995. /*
  1996. * Check if a given pointer is valid
  1997. */
  1998. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  1999. {
  2000. struct page *page;
  2001. page = get_object_page(object);
  2002. if (!page || s != page->slab)
  2003. /* No slab or wrong slab */
  2004. return 0;
  2005. if (!check_valid_pointer(s, page, object))
  2006. return 0;
  2007. /*
  2008. * We could also check if the object is on the slabs freelist.
  2009. * But this would be too expensive and it seems that the main
  2010. * purpose of kmem_ptr_valid() is to check if the object belongs
  2011. * to a certain slab.
  2012. */
  2013. return 1;
  2014. }
  2015. EXPORT_SYMBOL(kmem_ptr_validate);
  2016. /*
  2017. * Determine the size of a slab object
  2018. */
  2019. unsigned int kmem_cache_size(struct kmem_cache *s)
  2020. {
  2021. return s->objsize;
  2022. }
  2023. EXPORT_SYMBOL(kmem_cache_size);
  2024. const char *kmem_cache_name(struct kmem_cache *s)
  2025. {
  2026. return s->name;
  2027. }
  2028. EXPORT_SYMBOL(kmem_cache_name);
  2029. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2030. const char *text)
  2031. {
  2032. #ifdef CONFIG_SLUB_DEBUG
  2033. void *addr = page_address(page);
  2034. void *p;
  2035. DECLARE_BITMAP(map, page->objects);
  2036. bitmap_zero(map, page->objects);
  2037. slab_err(s, page, "%s", text);
  2038. slab_lock(page);
  2039. for_each_free_object(p, s, page->freelist)
  2040. set_bit(slab_index(p, s, addr), map);
  2041. for_each_object(p, s, addr, page->objects) {
  2042. if (!test_bit(slab_index(p, s, addr), map)) {
  2043. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2044. p, p - addr);
  2045. print_tracking(s, p);
  2046. }
  2047. }
  2048. slab_unlock(page);
  2049. #endif
  2050. }
  2051. /*
  2052. * Attempt to free all partial slabs on a node.
  2053. */
  2054. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2055. {
  2056. unsigned long flags;
  2057. struct page *page, *h;
  2058. spin_lock_irqsave(&n->list_lock, flags);
  2059. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2060. if (!page->inuse) {
  2061. list_del(&page->lru);
  2062. discard_slab(s, page);
  2063. n->nr_partial--;
  2064. } else {
  2065. list_slab_objects(s, page,
  2066. "Objects remaining on kmem_cache_close()");
  2067. }
  2068. }
  2069. spin_unlock_irqrestore(&n->list_lock, flags);
  2070. }
  2071. /*
  2072. * Release all resources used by a slab cache.
  2073. */
  2074. static inline int kmem_cache_close(struct kmem_cache *s)
  2075. {
  2076. int node;
  2077. flush_all(s);
  2078. /* Attempt to free all objects */
  2079. free_kmem_cache_cpus(s);
  2080. for_each_node_state(node, N_NORMAL_MEMORY) {
  2081. struct kmem_cache_node *n = get_node(s, node);
  2082. free_partial(s, n);
  2083. if (n->nr_partial || slabs_node(s, node))
  2084. return 1;
  2085. }
  2086. free_kmem_cache_nodes(s);
  2087. return 0;
  2088. }
  2089. /*
  2090. * Close a cache and release the kmem_cache structure
  2091. * (must be used for caches created using kmem_cache_create)
  2092. */
  2093. void kmem_cache_destroy(struct kmem_cache *s)
  2094. {
  2095. down_write(&slub_lock);
  2096. s->refcount--;
  2097. if (!s->refcount) {
  2098. list_del(&s->list);
  2099. up_write(&slub_lock);
  2100. if (kmem_cache_close(s)) {
  2101. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2102. "still has objects.\n", s->name, __func__);
  2103. dump_stack();
  2104. }
  2105. sysfs_slab_remove(s);
  2106. } else
  2107. up_write(&slub_lock);
  2108. }
  2109. EXPORT_SYMBOL(kmem_cache_destroy);
  2110. /********************************************************************
  2111. * Kmalloc subsystem
  2112. *******************************************************************/
  2113. struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
  2114. EXPORT_SYMBOL(kmalloc_caches);
  2115. static int __init setup_slub_min_order(char *str)
  2116. {
  2117. get_option(&str, &slub_min_order);
  2118. return 1;
  2119. }
  2120. __setup("slub_min_order=", setup_slub_min_order);
  2121. static int __init setup_slub_max_order(char *str)
  2122. {
  2123. get_option(&str, &slub_max_order);
  2124. return 1;
  2125. }
  2126. __setup("slub_max_order=", setup_slub_max_order);
  2127. static int __init setup_slub_min_objects(char *str)
  2128. {
  2129. get_option(&str, &slub_min_objects);
  2130. return 1;
  2131. }
  2132. __setup("slub_min_objects=", setup_slub_min_objects);
  2133. static int __init setup_slub_nomerge(char *str)
  2134. {
  2135. slub_nomerge = 1;
  2136. return 1;
  2137. }
  2138. __setup("slub_nomerge", setup_slub_nomerge);
  2139. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2140. const char *name, int size, gfp_t gfp_flags)
  2141. {
  2142. unsigned int flags = 0;
  2143. if (gfp_flags & SLUB_DMA)
  2144. flags = SLAB_CACHE_DMA;
  2145. down_write(&slub_lock);
  2146. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2147. flags, NULL))
  2148. goto panic;
  2149. list_add(&s->list, &slab_caches);
  2150. up_write(&slub_lock);
  2151. if (sysfs_slab_add(s))
  2152. goto panic;
  2153. return s;
  2154. panic:
  2155. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2156. }
  2157. #ifdef CONFIG_ZONE_DMA
  2158. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
  2159. static void sysfs_add_func(struct work_struct *w)
  2160. {
  2161. struct kmem_cache *s;
  2162. down_write(&slub_lock);
  2163. list_for_each_entry(s, &slab_caches, list) {
  2164. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2165. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2166. sysfs_slab_add(s);
  2167. }
  2168. }
  2169. up_write(&slub_lock);
  2170. }
  2171. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2172. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2173. {
  2174. struct kmem_cache *s;
  2175. char *text;
  2176. size_t realsize;
  2177. s = kmalloc_caches_dma[index];
  2178. if (s)
  2179. return s;
  2180. /* Dynamically create dma cache */
  2181. if (flags & __GFP_WAIT)
  2182. down_write(&slub_lock);
  2183. else {
  2184. if (!down_write_trylock(&slub_lock))
  2185. goto out;
  2186. }
  2187. if (kmalloc_caches_dma[index])
  2188. goto unlock_out;
  2189. realsize = kmalloc_caches[index].objsize;
  2190. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2191. (unsigned int)realsize);
  2192. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2193. if (!s || !text || !kmem_cache_open(s, flags, text,
  2194. realsize, ARCH_KMALLOC_MINALIGN,
  2195. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2196. kfree(s);
  2197. kfree(text);
  2198. goto unlock_out;
  2199. }
  2200. list_add(&s->list, &slab_caches);
  2201. kmalloc_caches_dma[index] = s;
  2202. schedule_work(&sysfs_add_work);
  2203. unlock_out:
  2204. up_write(&slub_lock);
  2205. out:
  2206. return kmalloc_caches_dma[index];
  2207. }
  2208. #endif
  2209. /*
  2210. * Conversion table for small slabs sizes / 8 to the index in the
  2211. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2212. * of two cache sizes there. The size of larger slabs can be determined using
  2213. * fls.
  2214. */
  2215. static s8 size_index[24] = {
  2216. 3, /* 8 */
  2217. 4, /* 16 */
  2218. 5, /* 24 */
  2219. 5, /* 32 */
  2220. 6, /* 40 */
  2221. 6, /* 48 */
  2222. 6, /* 56 */
  2223. 6, /* 64 */
  2224. 1, /* 72 */
  2225. 1, /* 80 */
  2226. 1, /* 88 */
  2227. 1, /* 96 */
  2228. 7, /* 104 */
  2229. 7, /* 112 */
  2230. 7, /* 120 */
  2231. 7, /* 128 */
  2232. 2, /* 136 */
  2233. 2, /* 144 */
  2234. 2, /* 152 */
  2235. 2, /* 160 */
  2236. 2, /* 168 */
  2237. 2, /* 176 */
  2238. 2, /* 184 */
  2239. 2 /* 192 */
  2240. };
  2241. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2242. {
  2243. int index;
  2244. if (size <= 192) {
  2245. if (!size)
  2246. return ZERO_SIZE_PTR;
  2247. index = size_index[(size - 1) / 8];
  2248. } else
  2249. index = fls(size - 1);
  2250. #ifdef CONFIG_ZONE_DMA
  2251. if (unlikely((flags & SLUB_DMA)))
  2252. return dma_kmalloc_cache(index, flags);
  2253. #endif
  2254. return &kmalloc_caches[index];
  2255. }
  2256. void *__kmalloc(size_t size, gfp_t flags)
  2257. {
  2258. struct kmem_cache *s;
  2259. if (unlikely(size > PAGE_SIZE))
  2260. return kmalloc_large(size, flags);
  2261. s = get_slab(size, flags);
  2262. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2263. return s;
  2264. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2265. }
  2266. EXPORT_SYMBOL(__kmalloc);
  2267. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2268. {
  2269. struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
  2270. get_order(size));
  2271. if (page)
  2272. return page_address(page);
  2273. else
  2274. return NULL;
  2275. }
  2276. #ifdef CONFIG_NUMA
  2277. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2278. {
  2279. struct kmem_cache *s;
  2280. if (unlikely(size > PAGE_SIZE))
  2281. return kmalloc_large_node(size, flags, node);
  2282. s = get_slab(size, flags);
  2283. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2284. return s;
  2285. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2286. }
  2287. EXPORT_SYMBOL(__kmalloc_node);
  2288. #endif
  2289. size_t ksize(const void *object)
  2290. {
  2291. struct page *page;
  2292. struct kmem_cache *s;
  2293. if (unlikely(object == ZERO_SIZE_PTR))
  2294. return 0;
  2295. page = virt_to_head_page(object);
  2296. if (unlikely(!PageSlab(page))) {
  2297. WARN_ON(!PageCompound(page));
  2298. return PAGE_SIZE << compound_order(page);
  2299. }
  2300. s = page->slab;
  2301. #ifdef CONFIG_SLUB_DEBUG
  2302. /*
  2303. * Debugging requires use of the padding between object
  2304. * and whatever may come after it.
  2305. */
  2306. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2307. return s->objsize;
  2308. #endif
  2309. /*
  2310. * If we have the need to store the freelist pointer
  2311. * back there or track user information then we can
  2312. * only use the space before that information.
  2313. */
  2314. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2315. return s->inuse;
  2316. /*
  2317. * Else we can use all the padding etc for the allocation
  2318. */
  2319. return s->size;
  2320. }
  2321. void kfree(const void *x)
  2322. {
  2323. struct page *page;
  2324. void *object = (void *)x;
  2325. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2326. return;
  2327. page = virt_to_head_page(x);
  2328. if (unlikely(!PageSlab(page))) {
  2329. BUG_ON(!PageCompound(page));
  2330. put_page(page);
  2331. return;
  2332. }
  2333. slab_free(page->slab, page, object, __builtin_return_address(0));
  2334. }
  2335. EXPORT_SYMBOL(kfree);
  2336. /*
  2337. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2338. * the remaining slabs by the number of items in use. The slabs with the
  2339. * most items in use come first. New allocations will then fill those up
  2340. * and thus they can be removed from the partial lists.
  2341. *
  2342. * The slabs with the least items are placed last. This results in them
  2343. * being allocated from last increasing the chance that the last objects
  2344. * are freed in them.
  2345. */
  2346. int kmem_cache_shrink(struct kmem_cache *s)
  2347. {
  2348. int node;
  2349. int i;
  2350. struct kmem_cache_node *n;
  2351. struct page *page;
  2352. struct page *t;
  2353. int objects = oo_objects(s->max);
  2354. struct list_head *slabs_by_inuse =
  2355. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2356. unsigned long flags;
  2357. if (!slabs_by_inuse)
  2358. return -ENOMEM;
  2359. flush_all(s);
  2360. for_each_node_state(node, N_NORMAL_MEMORY) {
  2361. n = get_node(s, node);
  2362. if (!n->nr_partial)
  2363. continue;
  2364. for (i = 0; i < objects; i++)
  2365. INIT_LIST_HEAD(slabs_by_inuse + i);
  2366. spin_lock_irqsave(&n->list_lock, flags);
  2367. /*
  2368. * Build lists indexed by the items in use in each slab.
  2369. *
  2370. * Note that concurrent frees may occur while we hold the
  2371. * list_lock. page->inuse here is the upper limit.
  2372. */
  2373. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2374. if (!page->inuse && slab_trylock(page)) {
  2375. /*
  2376. * Must hold slab lock here because slab_free
  2377. * may have freed the last object and be
  2378. * waiting to release the slab.
  2379. */
  2380. list_del(&page->lru);
  2381. n->nr_partial--;
  2382. slab_unlock(page);
  2383. discard_slab(s, page);
  2384. } else {
  2385. list_move(&page->lru,
  2386. slabs_by_inuse + page->inuse);
  2387. }
  2388. }
  2389. /*
  2390. * Rebuild the partial list with the slabs filled up most
  2391. * first and the least used slabs at the end.
  2392. */
  2393. for (i = objects - 1; i >= 0; i--)
  2394. list_splice(slabs_by_inuse + i, n->partial.prev);
  2395. spin_unlock_irqrestore(&n->list_lock, flags);
  2396. }
  2397. kfree(slabs_by_inuse);
  2398. return 0;
  2399. }
  2400. EXPORT_SYMBOL(kmem_cache_shrink);
  2401. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2402. static int slab_mem_going_offline_callback(void *arg)
  2403. {
  2404. struct kmem_cache *s;
  2405. down_read(&slub_lock);
  2406. list_for_each_entry(s, &slab_caches, list)
  2407. kmem_cache_shrink(s);
  2408. up_read(&slub_lock);
  2409. return 0;
  2410. }
  2411. static void slab_mem_offline_callback(void *arg)
  2412. {
  2413. struct kmem_cache_node *n;
  2414. struct kmem_cache *s;
  2415. struct memory_notify *marg = arg;
  2416. int offline_node;
  2417. offline_node = marg->status_change_nid;
  2418. /*
  2419. * If the node still has available memory. we need kmem_cache_node
  2420. * for it yet.
  2421. */
  2422. if (offline_node < 0)
  2423. return;
  2424. down_read(&slub_lock);
  2425. list_for_each_entry(s, &slab_caches, list) {
  2426. n = get_node(s, offline_node);
  2427. if (n) {
  2428. /*
  2429. * if n->nr_slabs > 0, slabs still exist on the node
  2430. * that is going down. We were unable to free them,
  2431. * and offline_pages() function shoudn't call this
  2432. * callback. So, we must fail.
  2433. */
  2434. BUG_ON(slabs_node(s, offline_node));
  2435. s->node[offline_node] = NULL;
  2436. kmem_cache_free(kmalloc_caches, n);
  2437. }
  2438. }
  2439. up_read(&slub_lock);
  2440. }
  2441. static int slab_mem_going_online_callback(void *arg)
  2442. {
  2443. struct kmem_cache_node *n;
  2444. struct kmem_cache *s;
  2445. struct memory_notify *marg = arg;
  2446. int nid = marg->status_change_nid;
  2447. int ret = 0;
  2448. /*
  2449. * If the node's memory is already available, then kmem_cache_node is
  2450. * already created. Nothing to do.
  2451. */
  2452. if (nid < 0)
  2453. return 0;
  2454. /*
  2455. * We are bringing a node online. No memory is available yet. We must
  2456. * allocate a kmem_cache_node structure in order to bring the node
  2457. * online.
  2458. */
  2459. down_read(&slub_lock);
  2460. list_for_each_entry(s, &slab_caches, list) {
  2461. /*
  2462. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2463. * since memory is not yet available from the node that
  2464. * is brought up.
  2465. */
  2466. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2467. if (!n) {
  2468. ret = -ENOMEM;
  2469. goto out;
  2470. }
  2471. init_kmem_cache_node(n, s);
  2472. s->node[nid] = n;
  2473. }
  2474. out:
  2475. up_read(&slub_lock);
  2476. return ret;
  2477. }
  2478. static int slab_memory_callback(struct notifier_block *self,
  2479. unsigned long action, void *arg)
  2480. {
  2481. int ret = 0;
  2482. switch (action) {
  2483. case MEM_GOING_ONLINE:
  2484. ret = slab_mem_going_online_callback(arg);
  2485. break;
  2486. case MEM_GOING_OFFLINE:
  2487. ret = slab_mem_going_offline_callback(arg);
  2488. break;
  2489. case MEM_OFFLINE:
  2490. case MEM_CANCEL_ONLINE:
  2491. slab_mem_offline_callback(arg);
  2492. break;
  2493. case MEM_ONLINE:
  2494. case MEM_CANCEL_OFFLINE:
  2495. break;
  2496. }
  2497. ret = notifier_from_errno(ret);
  2498. return ret;
  2499. }
  2500. #endif /* CONFIG_MEMORY_HOTPLUG */
  2501. /********************************************************************
  2502. * Basic setup of slabs
  2503. *******************************************************************/
  2504. void __init kmem_cache_init(void)
  2505. {
  2506. int i;
  2507. int caches = 0;
  2508. init_alloc_cpu();
  2509. #ifdef CONFIG_NUMA
  2510. /*
  2511. * Must first have the slab cache available for the allocations of the
  2512. * struct kmem_cache_node's. There is special bootstrap code in
  2513. * kmem_cache_open for slab_state == DOWN.
  2514. */
  2515. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2516. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2517. kmalloc_caches[0].refcount = -1;
  2518. caches++;
  2519. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2520. #endif
  2521. /* Able to allocate the per node structures */
  2522. slab_state = PARTIAL;
  2523. /* Caches that are not of the two-to-the-power-of size */
  2524. if (KMALLOC_MIN_SIZE <= 64) {
  2525. create_kmalloc_cache(&kmalloc_caches[1],
  2526. "kmalloc-96", 96, GFP_KERNEL);
  2527. caches++;
  2528. create_kmalloc_cache(&kmalloc_caches[2],
  2529. "kmalloc-192", 192, GFP_KERNEL);
  2530. caches++;
  2531. }
  2532. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
  2533. create_kmalloc_cache(&kmalloc_caches[i],
  2534. "kmalloc", 1 << i, GFP_KERNEL);
  2535. caches++;
  2536. }
  2537. /*
  2538. * Patch up the size_index table if we have strange large alignment
  2539. * requirements for the kmalloc array. This is only the case for
  2540. * MIPS it seems. The standard arches will not generate any code here.
  2541. *
  2542. * Largest permitted alignment is 256 bytes due to the way we
  2543. * handle the index determination for the smaller caches.
  2544. *
  2545. * Make sure that nothing crazy happens if someone starts tinkering
  2546. * around with ARCH_KMALLOC_MINALIGN
  2547. */
  2548. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2549. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2550. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2551. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2552. if (KMALLOC_MIN_SIZE == 128) {
  2553. /*
  2554. * The 192 byte sized cache is not used if the alignment
  2555. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2556. * instead.
  2557. */
  2558. for (i = 128 + 8; i <= 192; i += 8)
  2559. size_index[(i - 1) / 8] = 8;
  2560. }
  2561. slab_state = UP;
  2562. /* Provide the correct kmalloc names now that the caches are up */
  2563. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
  2564. kmalloc_caches[i]. name =
  2565. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2566. #ifdef CONFIG_SMP
  2567. register_cpu_notifier(&slab_notifier);
  2568. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2569. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2570. #else
  2571. kmem_size = sizeof(struct kmem_cache);
  2572. #endif
  2573. printk(KERN_INFO
  2574. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2575. " CPUs=%d, Nodes=%d\n",
  2576. caches, cache_line_size(),
  2577. slub_min_order, slub_max_order, slub_min_objects,
  2578. nr_cpu_ids, nr_node_ids);
  2579. }
  2580. /*
  2581. * Find a mergeable slab cache
  2582. */
  2583. static int slab_unmergeable(struct kmem_cache *s)
  2584. {
  2585. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2586. return 1;
  2587. if (s->ctor)
  2588. return 1;
  2589. /*
  2590. * We may have set a slab to be unmergeable during bootstrap.
  2591. */
  2592. if (s->refcount < 0)
  2593. return 1;
  2594. return 0;
  2595. }
  2596. static struct kmem_cache *find_mergeable(size_t size,
  2597. size_t align, unsigned long flags, const char *name,
  2598. void (*ctor)(void *))
  2599. {
  2600. struct kmem_cache *s;
  2601. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2602. return NULL;
  2603. if (ctor)
  2604. return NULL;
  2605. size = ALIGN(size, sizeof(void *));
  2606. align = calculate_alignment(flags, align, size);
  2607. size = ALIGN(size, align);
  2608. flags = kmem_cache_flags(size, flags, name, NULL);
  2609. list_for_each_entry(s, &slab_caches, list) {
  2610. if (slab_unmergeable(s))
  2611. continue;
  2612. if (size > s->size)
  2613. continue;
  2614. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2615. continue;
  2616. /*
  2617. * Check if alignment is compatible.
  2618. * Courtesy of Adrian Drzewiecki
  2619. */
  2620. if ((s->size & ~(align - 1)) != s->size)
  2621. continue;
  2622. if (s->size - size >= sizeof(void *))
  2623. continue;
  2624. return s;
  2625. }
  2626. return NULL;
  2627. }
  2628. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2629. size_t align, unsigned long flags, void (*ctor)(void *))
  2630. {
  2631. struct kmem_cache *s;
  2632. down_write(&slub_lock);
  2633. s = find_mergeable(size, align, flags, name, ctor);
  2634. if (s) {
  2635. int cpu;
  2636. s->refcount++;
  2637. /*
  2638. * Adjust the object sizes so that we clear
  2639. * the complete object on kzalloc.
  2640. */
  2641. s->objsize = max(s->objsize, (int)size);
  2642. /*
  2643. * And then we need to update the object size in the
  2644. * per cpu structures
  2645. */
  2646. for_each_online_cpu(cpu)
  2647. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2648. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2649. up_write(&slub_lock);
  2650. if (sysfs_slab_alias(s, name))
  2651. goto err;
  2652. return s;
  2653. }
  2654. s = kmalloc(kmem_size, GFP_KERNEL);
  2655. if (s) {
  2656. if (kmem_cache_open(s, GFP_KERNEL, name,
  2657. size, align, flags, ctor)) {
  2658. list_add(&s->list, &slab_caches);
  2659. up_write(&slub_lock);
  2660. if (sysfs_slab_add(s))
  2661. goto err;
  2662. return s;
  2663. }
  2664. kfree(s);
  2665. }
  2666. up_write(&slub_lock);
  2667. err:
  2668. if (flags & SLAB_PANIC)
  2669. panic("Cannot create slabcache %s\n", name);
  2670. else
  2671. s = NULL;
  2672. return s;
  2673. }
  2674. EXPORT_SYMBOL(kmem_cache_create);
  2675. #ifdef CONFIG_SMP
  2676. /*
  2677. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2678. * necessary.
  2679. */
  2680. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2681. unsigned long action, void *hcpu)
  2682. {
  2683. long cpu = (long)hcpu;
  2684. struct kmem_cache *s;
  2685. unsigned long flags;
  2686. switch (action) {
  2687. case CPU_UP_PREPARE:
  2688. case CPU_UP_PREPARE_FROZEN:
  2689. init_alloc_cpu_cpu(cpu);
  2690. down_read(&slub_lock);
  2691. list_for_each_entry(s, &slab_caches, list)
  2692. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2693. GFP_KERNEL);
  2694. up_read(&slub_lock);
  2695. break;
  2696. case CPU_UP_CANCELED:
  2697. case CPU_UP_CANCELED_FROZEN:
  2698. case CPU_DEAD:
  2699. case CPU_DEAD_FROZEN:
  2700. down_read(&slub_lock);
  2701. list_for_each_entry(s, &slab_caches, list) {
  2702. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2703. local_irq_save(flags);
  2704. __flush_cpu_slab(s, cpu);
  2705. local_irq_restore(flags);
  2706. free_kmem_cache_cpu(c, cpu);
  2707. s->cpu_slab[cpu] = NULL;
  2708. }
  2709. up_read(&slub_lock);
  2710. break;
  2711. default:
  2712. break;
  2713. }
  2714. return NOTIFY_OK;
  2715. }
  2716. static struct notifier_block __cpuinitdata slab_notifier = {
  2717. .notifier_call = slab_cpuup_callback
  2718. };
  2719. #endif
  2720. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2721. {
  2722. struct kmem_cache *s;
  2723. if (unlikely(size > PAGE_SIZE))
  2724. return kmalloc_large(size, gfpflags);
  2725. s = get_slab(size, gfpflags);
  2726. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2727. return s;
  2728. return slab_alloc(s, gfpflags, -1, caller);
  2729. }
  2730. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2731. int node, void *caller)
  2732. {
  2733. struct kmem_cache *s;
  2734. if (unlikely(size > PAGE_SIZE))
  2735. return kmalloc_large_node(size, gfpflags, node);
  2736. s = get_slab(size, gfpflags);
  2737. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2738. return s;
  2739. return slab_alloc(s, gfpflags, node, caller);
  2740. }
  2741. #ifdef CONFIG_SLUB_DEBUG
  2742. static unsigned long count_partial(struct kmem_cache_node *n,
  2743. int (*get_count)(struct page *))
  2744. {
  2745. unsigned long flags;
  2746. unsigned long x = 0;
  2747. struct page *page;
  2748. spin_lock_irqsave(&n->list_lock, flags);
  2749. list_for_each_entry(page, &n->partial, lru)
  2750. x += get_count(page);
  2751. spin_unlock_irqrestore(&n->list_lock, flags);
  2752. return x;
  2753. }
  2754. static int count_inuse(struct page *page)
  2755. {
  2756. return page->inuse;
  2757. }
  2758. static int count_total(struct page *page)
  2759. {
  2760. return page->objects;
  2761. }
  2762. static int count_free(struct page *page)
  2763. {
  2764. return page->objects - page->inuse;
  2765. }
  2766. static int validate_slab(struct kmem_cache *s, struct page *page,
  2767. unsigned long *map)
  2768. {
  2769. void *p;
  2770. void *addr = page_address(page);
  2771. if (!check_slab(s, page) ||
  2772. !on_freelist(s, page, NULL))
  2773. return 0;
  2774. /* Now we know that a valid freelist exists */
  2775. bitmap_zero(map, page->objects);
  2776. for_each_free_object(p, s, page->freelist) {
  2777. set_bit(slab_index(p, s, addr), map);
  2778. if (!check_object(s, page, p, 0))
  2779. return 0;
  2780. }
  2781. for_each_object(p, s, addr, page->objects)
  2782. if (!test_bit(slab_index(p, s, addr), map))
  2783. if (!check_object(s, page, p, 1))
  2784. return 0;
  2785. return 1;
  2786. }
  2787. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2788. unsigned long *map)
  2789. {
  2790. if (slab_trylock(page)) {
  2791. validate_slab(s, page, map);
  2792. slab_unlock(page);
  2793. } else
  2794. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2795. s->name, page);
  2796. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2797. if (!PageSlubDebug(page))
  2798. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2799. "on slab 0x%p\n", s->name, page);
  2800. } else {
  2801. if (PageSlubDebug(page))
  2802. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2803. "slab 0x%p\n", s->name, page);
  2804. }
  2805. }
  2806. static int validate_slab_node(struct kmem_cache *s,
  2807. struct kmem_cache_node *n, unsigned long *map)
  2808. {
  2809. unsigned long count = 0;
  2810. struct page *page;
  2811. unsigned long flags;
  2812. spin_lock_irqsave(&n->list_lock, flags);
  2813. list_for_each_entry(page, &n->partial, lru) {
  2814. validate_slab_slab(s, page, map);
  2815. count++;
  2816. }
  2817. if (count != n->nr_partial)
  2818. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2819. "counter=%ld\n", s->name, count, n->nr_partial);
  2820. if (!(s->flags & SLAB_STORE_USER))
  2821. goto out;
  2822. list_for_each_entry(page, &n->full, lru) {
  2823. validate_slab_slab(s, page, map);
  2824. count++;
  2825. }
  2826. if (count != atomic_long_read(&n->nr_slabs))
  2827. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2828. "counter=%ld\n", s->name, count,
  2829. atomic_long_read(&n->nr_slabs));
  2830. out:
  2831. spin_unlock_irqrestore(&n->list_lock, flags);
  2832. return count;
  2833. }
  2834. static long validate_slab_cache(struct kmem_cache *s)
  2835. {
  2836. int node;
  2837. unsigned long count = 0;
  2838. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2839. sizeof(unsigned long), GFP_KERNEL);
  2840. if (!map)
  2841. return -ENOMEM;
  2842. flush_all(s);
  2843. for_each_node_state(node, N_NORMAL_MEMORY) {
  2844. struct kmem_cache_node *n = get_node(s, node);
  2845. count += validate_slab_node(s, n, map);
  2846. }
  2847. kfree(map);
  2848. return count;
  2849. }
  2850. #ifdef SLUB_RESILIENCY_TEST
  2851. static void resiliency_test(void)
  2852. {
  2853. u8 *p;
  2854. printk(KERN_ERR "SLUB resiliency testing\n");
  2855. printk(KERN_ERR "-----------------------\n");
  2856. printk(KERN_ERR "A. Corruption after allocation\n");
  2857. p = kzalloc(16, GFP_KERNEL);
  2858. p[16] = 0x12;
  2859. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2860. " 0x12->0x%p\n\n", p + 16);
  2861. validate_slab_cache(kmalloc_caches + 4);
  2862. /* Hmmm... The next two are dangerous */
  2863. p = kzalloc(32, GFP_KERNEL);
  2864. p[32 + sizeof(void *)] = 0x34;
  2865. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2866. " 0x34 -> -0x%p\n", p);
  2867. printk(KERN_ERR
  2868. "If allocated object is overwritten then not detectable\n\n");
  2869. validate_slab_cache(kmalloc_caches + 5);
  2870. p = kzalloc(64, GFP_KERNEL);
  2871. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2872. *p = 0x56;
  2873. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2874. p);
  2875. printk(KERN_ERR
  2876. "If allocated object is overwritten then not detectable\n\n");
  2877. validate_slab_cache(kmalloc_caches + 6);
  2878. printk(KERN_ERR "\nB. Corruption after free\n");
  2879. p = kzalloc(128, GFP_KERNEL);
  2880. kfree(p);
  2881. *p = 0x78;
  2882. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2883. validate_slab_cache(kmalloc_caches + 7);
  2884. p = kzalloc(256, GFP_KERNEL);
  2885. kfree(p);
  2886. p[50] = 0x9a;
  2887. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2888. p);
  2889. validate_slab_cache(kmalloc_caches + 8);
  2890. p = kzalloc(512, GFP_KERNEL);
  2891. kfree(p);
  2892. p[512] = 0xab;
  2893. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2894. validate_slab_cache(kmalloc_caches + 9);
  2895. }
  2896. #else
  2897. static void resiliency_test(void) {};
  2898. #endif
  2899. /*
  2900. * Generate lists of code addresses where slabcache objects are allocated
  2901. * and freed.
  2902. */
  2903. struct location {
  2904. unsigned long count;
  2905. void *addr;
  2906. long long sum_time;
  2907. long min_time;
  2908. long max_time;
  2909. long min_pid;
  2910. long max_pid;
  2911. cpumask_t cpus;
  2912. nodemask_t nodes;
  2913. };
  2914. struct loc_track {
  2915. unsigned long max;
  2916. unsigned long count;
  2917. struct location *loc;
  2918. };
  2919. static void free_loc_track(struct loc_track *t)
  2920. {
  2921. if (t->max)
  2922. free_pages((unsigned long)t->loc,
  2923. get_order(sizeof(struct location) * t->max));
  2924. }
  2925. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2926. {
  2927. struct location *l;
  2928. int order;
  2929. order = get_order(sizeof(struct location) * max);
  2930. l = (void *)__get_free_pages(flags, order);
  2931. if (!l)
  2932. return 0;
  2933. if (t->count) {
  2934. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2935. free_loc_track(t);
  2936. }
  2937. t->max = max;
  2938. t->loc = l;
  2939. return 1;
  2940. }
  2941. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2942. const struct track *track)
  2943. {
  2944. long start, end, pos;
  2945. struct location *l;
  2946. void *caddr;
  2947. unsigned long age = jiffies - track->when;
  2948. start = -1;
  2949. end = t->count;
  2950. for ( ; ; ) {
  2951. pos = start + (end - start + 1) / 2;
  2952. /*
  2953. * There is nothing at "end". If we end up there
  2954. * we need to add something to before end.
  2955. */
  2956. if (pos == end)
  2957. break;
  2958. caddr = t->loc[pos].addr;
  2959. if (track->addr == caddr) {
  2960. l = &t->loc[pos];
  2961. l->count++;
  2962. if (track->when) {
  2963. l->sum_time += age;
  2964. if (age < l->min_time)
  2965. l->min_time = age;
  2966. if (age > l->max_time)
  2967. l->max_time = age;
  2968. if (track->pid < l->min_pid)
  2969. l->min_pid = track->pid;
  2970. if (track->pid > l->max_pid)
  2971. l->max_pid = track->pid;
  2972. cpu_set(track->cpu, l->cpus);
  2973. }
  2974. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2975. return 1;
  2976. }
  2977. if (track->addr < caddr)
  2978. end = pos;
  2979. else
  2980. start = pos;
  2981. }
  2982. /*
  2983. * Not found. Insert new tracking element.
  2984. */
  2985. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2986. return 0;
  2987. l = t->loc + pos;
  2988. if (pos < t->count)
  2989. memmove(l + 1, l,
  2990. (t->count - pos) * sizeof(struct location));
  2991. t->count++;
  2992. l->count = 1;
  2993. l->addr = track->addr;
  2994. l->sum_time = age;
  2995. l->min_time = age;
  2996. l->max_time = age;
  2997. l->min_pid = track->pid;
  2998. l->max_pid = track->pid;
  2999. cpus_clear(l->cpus);
  3000. cpu_set(track->cpu, l->cpus);
  3001. nodes_clear(l->nodes);
  3002. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3003. return 1;
  3004. }
  3005. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3006. struct page *page, enum track_item alloc)
  3007. {
  3008. void *addr = page_address(page);
  3009. DECLARE_BITMAP(map, page->objects);
  3010. void *p;
  3011. bitmap_zero(map, page->objects);
  3012. for_each_free_object(p, s, page->freelist)
  3013. set_bit(slab_index(p, s, addr), map);
  3014. for_each_object(p, s, addr, page->objects)
  3015. if (!test_bit(slab_index(p, s, addr), map))
  3016. add_location(t, s, get_track(s, p, alloc));
  3017. }
  3018. static int list_locations(struct kmem_cache *s, char *buf,
  3019. enum track_item alloc)
  3020. {
  3021. int len = 0;
  3022. unsigned long i;
  3023. struct loc_track t = { 0, 0, NULL };
  3024. int node;
  3025. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3026. GFP_TEMPORARY))
  3027. return sprintf(buf, "Out of memory\n");
  3028. /* Push back cpu slabs */
  3029. flush_all(s);
  3030. for_each_node_state(node, N_NORMAL_MEMORY) {
  3031. struct kmem_cache_node *n = get_node(s, node);
  3032. unsigned long flags;
  3033. struct page *page;
  3034. if (!atomic_long_read(&n->nr_slabs))
  3035. continue;
  3036. spin_lock_irqsave(&n->list_lock, flags);
  3037. list_for_each_entry(page, &n->partial, lru)
  3038. process_slab(&t, s, page, alloc);
  3039. list_for_each_entry(page, &n->full, lru)
  3040. process_slab(&t, s, page, alloc);
  3041. spin_unlock_irqrestore(&n->list_lock, flags);
  3042. }
  3043. for (i = 0; i < t.count; i++) {
  3044. struct location *l = &t.loc[i];
  3045. if (len > PAGE_SIZE - 100)
  3046. break;
  3047. len += sprintf(buf + len, "%7ld ", l->count);
  3048. if (l->addr)
  3049. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3050. else
  3051. len += sprintf(buf + len, "<not-available>");
  3052. if (l->sum_time != l->min_time) {
  3053. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3054. l->min_time,
  3055. (long)div_u64(l->sum_time, l->count),
  3056. l->max_time);
  3057. } else
  3058. len += sprintf(buf + len, " age=%ld",
  3059. l->min_time);
  3060. if (l->min_pid != l->max_pid)
  3061. len += sprintf(buf + len, " pid=%ld-%ld",
  3062. l->min_pid, l->max_pid);
  3063. else
  3064. len += sprintf(buf + len, " pid=%ld",
  3065. l->min_pid);
  3066. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  3067. len < PAGE_SIZE - 60) {
  3068. len += sprintf(buf + len, " cpus=");
  3069. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3070. l->cpus);
  3071. }
  3072. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  3073. len < PAGE_SIZE - 60) {
  3074. len += sprintf(buf + len, " nodes=");
  3075. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3076. l->nodes);
  3077. }
  3078. len += sprintf(buf + len, "\n");
  3079. }
  3080. free_loc_track(&t);
  3081. if (!t.count)
  3082. len += sprintf(buf, "No data\n");
  3083. return len;
  3084. }
  3085. enum slab_stat_type {
  3086. SL_ALL, /* All slabs */
  3087. SL_PARTIAL, /* Only partially allocated slabs */
  3088. SL_CPU, /* Only slabs used for cpu caches */
  3089. SL_OBJECTS, /* Determine allocated objects not slabs */
  3090. SL_TOTAL /* Determine object capacity not slabs */
  3091. };
  3092. #define SO_ALL (1 << SL_ALL)
  3093. #define SO_PARTIAL (1 << SL_PARTIAL)
  3094. #define SO_CPU (1 << SL_CPU)
  3095. #define SO_OBJECTS (1 << SL_OBJECTS)
  3096. #define SO_TOTAL (1 << SL_TOTAL)
  3097. static ssize_t show_slab_objects(struct kmem_cache *s,
  3098. char *buf, unsigned long flags)
  3099. {
  3100. unsigned long total = 0;
  3101. int node;
  3102. int x;
  3103. unsigned long *nodes;
  3104. unsigned long *per_cpu;
  3105. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3106. if (!nodes)
  3107. return -ENOMEM;
  3108. per_cpu = nodes + nr_node_ids;
  3109. if (flags & SO_CPU) {
  3110. int cpu;
  3111. for_each_possible_cpu(cpu) {
  3112. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3113. if (!c || c->node < 0)
  3114. continue;
  3115. if (c->page) {
  3116. if (flags & SO_TOTAL)
  3117. x = c->page->objects;
  3118. else if (flags & SO_OBJECTS)
  3119. x = c->page->inuse;
  3120. else
  3121. x = 1;
  3122. total += x;
  3123. nodes[c->node] += x;
  3124. }
  3125. per_cpu[c->node]++;
  3126. }
  3127. }
  3128. if (flags & SO_ALL) {
  3129. for_each_node_state(node, N_NORMAL_MEMORY) {
  3130. struct kmem_cache_node *n = get_node(s, node);
  3131. if (flags & SO_TOTAL)
  3132. x = atomic_long_read(&n->total_objects);
  3133. else if (flags & SO_OBJECTS)
  3134. x = atomic_long_read(&n->total_objects) -
  3135. count_partial(n, count_free);
  3136. else
  3137. x = atomic_long_read(&n->nr_slabs);
  3138. total += x;
  3139. nodes[node] += x;
  3140. }
  3141. } else if (flags & SO_PARTIAL) {
  3142. for_each_node_state(node, N_NORMAL_MEMORY) {
  3143. struct kmem_cache_node *n = get_node(s, node);
  3144. if (flags & SO_TOTAL)
  3145. x = count_partial(n, count_total);
  3146. else if (flags & SO_OBJECTS)
  3147. x = count_partial(n, count_inuse);
  3148. else
  3149. x = n->nr_partial;
  3150. total += x;
  3151. nodes[node] += x;
  3152. }
  3153. }
  3154. x = sprintf(buf, "%lu", total);
  3155. #ifdef CONFIG_NUMA
  3156. for_each_node_state(node, N_NORMAL_MEMORY)
  3157. if (nodes[node])
  3158. x += sprintf(buf + x, " N%d=%lu",
  3159. node, nodes[node]);
  3160. #endif
  3161. kfree(nodes);
  3162. return x + sprintf(buf + x, "\n");
  3163. }
  3164. static int any_slab_objects(struct kmem_cache *s)
  3165. {
  3166. int node;
  3167. for_each_online_node(node) {
  3168. struct kmem_cache_node *n = get_node(s, node);
  3169. if (!n)
  3170. continue;
  3171. if (atomic_long_read(&n->total_objects))
  3172. return 1;
  3173. }
  3174. return 0;
  3175. }
  3176. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3177. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3178. struct slab_attribute {
  3179. struct attribute attr;
  3180. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3181. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3182. };
  3183. #define SLAB_ATTR_RO(_name) \
  3184. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3185. #define SLAB_ATTR(_name) \
  3186. static struct slab_attribute _name##_attr = \
  3187. __ATTR(_name, 0644, _name##_show, _name##_store)
  3188. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3189. {
  3190. return sprintf(buf, "%d\n", s->size);
  3191. }
  3192. SLAB_ATTR_RO(slab_size);
  3193. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3194. {
  3195. return sprintf(buf, "%d\n", s->align);
  3196. }
  3197. SLAB_ATTR_RO(align);
  3198. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3199. {
  3200. return sprintf(buf, "%d\n", s->objsize);
  3201. }
  3202. SLAB_ATTR_RO(object_size);
  3203. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3204. {
  3205. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3206. }
  3207. SLAB_ATTR_RO(objs_per_slab);
  3208. static ssize_t order_store(struct kmem_cache *s,
  3209. const char *buf, size_t length)
  3210. {
  3211. unsigned long order;
  3212. int err;
  3213. err = strict_strtoul(buf, 10, &order);
  3214. if (err)
  3215. return err;
  3216. if (order > slub_max_order || order < slub_min_order)
  3217. return -EINVAL;
  3218. calculate_sizes(s, order);
  3219. return length;
  3220. }
  3221. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3222. {
  3223. return sprintf(buf, "%d\n", oo_order(s->oo));
  3224. }
  3225. SLAB_ATTR(order);
  3226. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3227. {
  3228. if (s->ctor) {
  3229. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3230. return n + sprintf(buf + n, "\n");
  3231. }
  3232. return 0;
  3233. }
  3234. SLAB_ATTR_RO(ctor);
  3235. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3236. {
  3237. return sprintf(buf, "%d\n", s->refcount - 1);
  3238. }
  3239. SLAB_ATTR_RO(aliases);
  3240. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3241. {
  3242. return show_slab_objects(s, buf, SO_ALL);
  3243. }
  3244. SLAB_ATTR_RO(slabs);
  3245. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3246. {
  3247. return show_slab_objects(s, buf, SO_PARTIAL);
  3248. }
  3249. SLAB_ATTR_RO(partial);
  3250. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3251. {
  3252. return show_slab_objects(s, buf, SO_CPU);
  3253. }
  3254. SLAB_ATTR_RO(cpu_slabs);
  3255. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3256. {
  3257. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3258. }
  3259. SLAB_ATTR_RO(objects);
  3260. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3261. {
  3262. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3263. }
  3264. SLAB_ATTR_RO(objects_partial);
  3265. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3266. {
  3267. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3268. }
  3269. SLAB_ATTR_RO(total_objects);
  3270. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3271. {
  3272. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3273. }
  3274. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3275. const char *buf, size_t length)
  3276. {
  3277. s->flags &= ~SLAB_DEBUG_FREE;
  3278. if (buf[0] == '1')
  3279. s->flags |= SLAB_DEBUG_FREE;
  3280. return length;
  3281. }
  3282. SLAB_ATTR(sanity_checks);
  3283. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3284. {
  3285. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3286. }
  3287. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3288. size_t length)
  3289. {
  3290. s->flags &= ~SLAB_TRACE;
  3291. if (buf[0] == '1')
  3292. s->flags |= SLAB_TRACE;
  3293. return length;
  3294. }
  3295. SLAB_ATTR(trace);
  3296. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3297. {
  3298. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3299. }
  3300. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3301. const char *buf, size_t length)
  3302. {
  3303. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3304. if (buf[0] == '1')
  3305. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3306. return length;
  3307. }
  3308. SLAB_ATTR(reclaim_account);
  3309. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3310. {
  3311. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3312. }
  3313. SLAB_ATTR_RO(hwcache_align);
  3314. #ifdef CONFIG_ZONE_DMA
  3315. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3316. {
  3317. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3318. }
  3319. SLAB_ATTR_RO(cache_dma);
  3320. #endif
  3321. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3322. {
  3323. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3324. }
  3325. SLAB_ATTR_RO(destroy_by_rcu);
  3326. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3327. {
  3328. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3329. }
  3330. static ssize_t red_zone_store(struct kmem_cache *s,
  3331. const char *buf, size_t length)
  3332. {
  3333. if (any_slab_objects(s))
  3334. return -EBUSY;
  3335. s->flags &= ~SLAB_RED_ZONE;
  3336. if (buf[0] == '1')
  3337. s->flags |= SLAB_RED_ZONE;
  3338. calculate_sizes(s, -1);
  3339. return length;
  3340. }
  3341. SLAB_ATTR(red_zone);
  3342. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3343. {
  3344. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3345. }
  3346. static ssize_t poison_store(struct kmem_cache *s,
  3347. const char *buf, size_t length)
  3348. {
  3349. if (any_slab_objects(s))
  3350. return -EBUSY;
  3351. s->flags &= ~SLAB_POISON;
  3352. if (buf[0] == '1')
  3353. s->flags |= SLAB_POISON;
  3354. calculate_sizes(s, -1);
  3355. return length;
  3356. }
  3357. SLAB_ATTR(poison);
  3358. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3359. {
  3360. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3361. }
  3362. static ssize_t store_user_store(struct kmem_cache *s,
  3363. const char *buf, size_t length)
  3364. {
  3365. if (any_slab_objects(s))
  3366. return -EBUSY;
  3367. s->flags &= ~SLAB_STORE_USER;
  3368. if (buf[0] == '1')
  3369. s->flags |= SLAB_STORE_USER;
  3370. calculate_sizes(s, -1);
  3371. return length;
  3372. }
  3373. SLAB_ATTR(store_user);
  3374. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3375. {
  3376. return 0;
  3377. }
  3378. static ssize_t validate_store(struct kmem_cache *s,
  3379. const char *buf, size_t length)
  3380. {
  3381. int ret = -EINVAL;
  3382. if (buf[0] == '1') {
  3383. ret = validate_slab_cache(s);
  3384. if (ret >= 0)
  3385. ret = length;
  3386. }
  3387. return ret;
  3388. }
  3389. SLAB_ATTR(validate);
  3390. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3391. {
  3392. return 0;
  3393. }
  3394. static ssize_t shrink_store(struct kmem_cache *s,
  3395. const char *buf, size_t length)
  3396. {
  3397. if (buf[0] == '1') {
  3398. int rc = kmem_cache_shrink(s);
  3399. if (rc)
  3400. return rc;
  3401. } else
  3402. return -EINVAL;
  3403. return length;
  3404. }
  3405. SLAB_ATTR(shrink);
  3406. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3407. {
  3408. if (!(s->flags & SLAB_STORE_USER))
  3409. return -ENOSYS;
  3410. return list_locations(s, buf, TRACK_ALLOC);
  3411. }
  3412. SLAB_ATTR_RO(alloc_calls);
  3413. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3414. {
  3415. if (!(s->flags & SLAB_STORE_USER))
  3416. return -ENOSYS;
  3417. return list_locations(s, buf, TRACK_FREE);
  3418. }
  3419. SLAB_ATTR_RO(free_calls);
  3420. #ifdef CONFIG_NUMA
  3421. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3422. {
  3423. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3424. }
  3425. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3426. const char *buf, size_t length)
  3427. {
  3428. unsigned long ratio;
  3429. int err;
  3430. err = strict_strtoul(buf, 10, &ratio);
  3431. if (err)
  3432. return err;
  3433. if (ratio < 100)
  3434. s->remote_node_defrag_ratio = ratio * 10;
  3435. return length;
  3436. }
  3437. SLAB_ATTR(remote_node_defrag_ratio);
  3438. #endif
  3439. #ifdef CONFIG_SLUB_STATS
  3440. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3441. {
  3442. unsigned long sum = 0;
  3443. int cpu;
  3444. int len;
  3445. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3446. if (!data)
  3447. return -ENOMEM;
  3448. for_each_online_cpu(cpu) {
  3449. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3450. data[cpu] = x;
  3451. sum += x;
  3452. }
  3453. len = sprintf(buf, "%lu", sum);
  3454. #ifdef CONFIG_SMP
  3455. for_each_online_cpu(cpu) {
  3456. if (data[cpu] && len < PAGE_SIZE - 20)
  3457. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3458. }
  3459. #endif
  3460. kfree(data);
  3461. return len + sprintf(buf + len, "\n");
  3462. }
  3463. #define STAT_ATTR(si, text) \
  3464. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3465. { \
  3466. return show_stat(s, buf, si); \
  3467. } \
  3468. SLAB_ATTR_RO(text); \
  3469. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3470. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3471. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3472. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3473. STAT_ATTR(FREE_FROZEN, free_frozen);
  3474. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3475. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3476. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3477. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3478. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3479. STAT_ATTR(FREE_SLAB, free_slab);
  3480. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3481. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3482. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3483. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3484. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3485. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3486. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3487. #endif
  3488. static struct attribute *slab_attrs[] = {
  3489. &slab_size_attr.attr,
  3490. &object_size_attr.attr,
  3491. &objs_per_slab_attr.attr,
  3492. &order_attr.attr,
  3493. &objects_attr.attr,
  3494. &objects_partial_attr.attr,
  3495. &total_objects_attr.attr,
  3496. &slabs_attr.attr,
  3497. &partial_attr.attr,
  3498. &cpu_slabs_attr.attr,
  3499. &ctor_attr.attr,
  3500. &aliases_attr.attr,
  3501. &align_attr.attr,
  3502. &sanity_checks_attr.attr,
  3503. &trace_attr.attr,
  3504. &hwcache_align_attr.attr,
  3505. &reclaim_account_attr.attr,
  3506. &destroy_by_rcu_attr.attr,
  3507. &red_zone_attr.attr,
  3508. &poison_attr.attr,
  3509. &store_user_attr.attr,
  3510. &validate_attr.attr,
  3511. &shrink_attr.attr,
  3512. &alloc_calls_attr.attr,
  3513. &free_calls_attr.attr,
  3514. #ifdef CONFIG_ZONE_DMA
  3515. &cache_dma_attr.attr,
  3516. #endif
  3517. #ifdef CONFIG_NUMA
  3518. &remote_node_defrag_ratio_attr.attr,
  3519. #endif
  3520. #ifdef CONFIG_SLUB_STATS
  3521. &alloc_fastpath_attr.attr,
  3522. &alloc_slowpath_attr.attr,
  3523. &free_fastpath_attr.attr,
  3524. &free_slowpath_attr.attr,
  3525. &free_frozen_attr.attr,
  3526. &free_add_partial_attr.attr,
  3527. &free_remove_partial_attr.attr,
  3528. &alloc_from_partial_attr.attr,
  3529. &alloc_slab_attr.attr,
  3530. &alloc_refill_attr.attr,
  3531. &free_slab_attr.attr,
  3532. &cpuslab_flush_attr.attr,
  3533. &deactivate_full_attr.attr,
  3534. &deactivate_empty_attr.attr,
  3535. &deactivate_to_head_attr.attr,
  3536. &deactivate_to_tail_attr.attr,
  3537. &deactivate_remote_frees_attr.attr,
  3538. &order_fallback_attr.attr,
  3539. #endif
  3540. NULL
  3541. };
  3542. static struct attribute_group slab_attr_group = {
  3543. .attrs = slab_attrs,
  3544. };
  3545. static ssize_t slab_attr_show(struct kobject *kobj,
  3546. struct attribute *attr,
  3547. char *buf)
  3548. {
  3549. struct slab_attribute *attribute;
  3550. struct kmem_cache *s;
  3551. int err;
  3552. attribute = to_slab_attr(attr);
  3553. s = to_slab(kobj);
  3554. if (!attribute->show)
  3555. return -EIO;
  3556. err = attribute->show(s, buf);
  3557. return err;
  3558. }
  3559. static ssize_t slab_attr_store(struct kobject *kobj,
  3560. struct attribute *attr,
  3561. const char *buf, size_t len)
  3562. {
  3563. struct slab_attribute *attribute;
  3564. struct kmem_cache *s;
  3565. int err;
  3566. attribute = to_slab_attr(attr);
  3567. s = to_slab(kobj);
  3568. if (!attribute->store)
  3569. return -EIO;
  3570. err = attribute->store(s, buf, len);
  3571. return err;
  3572. }
  3573. static void kmem_cache_release(struct kobject *kobj)
  3574. {
  3575. struct kmem_cache *s = to_slab(kobj);
  3576. kfree(s);
  3577. }
  3578. static struct sysfs_ops slab_sysfs_ops = {
  3579. .show = slab_attr_show,
  3580. .store = slab_attr_store,
  3581. };
  3582. static struct kobj_type slab_ktype = {
  3583. .sysfs_ops = &slab_sysfs_ops,
  3584. .release = kmem_cache_release
  3585. };
  3586. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3587. {
  3588. struct kobj_type *ktype = get_ktype(kobj);
  3589. if (ktype == &slab_ktype)
  3590. return 1;
  3591. return 0;
  3592. }
  3593. static struct kset_uevent_ops slab_uevent_ops = {
  3594. .filter = uevent_filter,
  3595. };
  3596. static struct kset *slab_kset;
  3597. #define ID_STR_LENGTH 64
  3598. /* Create a unique string id for a slab cache:
  3599. *
  3600. * Format :[flags-]size
  3601. */
  3602. static char *create_unique_id(struct kmem_cache *s)
  3603. {
  3604. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3605. char *p = name;
  3606. BUG_ON(!name);
  3607. *p++ = ':';
  3608. /*
  3609. * First flags affecting slabcache operations. We will only
  3610. * get here for aliasable slabs so we do not need to support
  3611. * too many flags. The flags here must cover all flags that
  3612. * are matched during merging to guarantee that the id is
  3613. * unique.
  3614. */
  3615. if (s->flags & SLAB_CACHE_DMA)
  3616. *p++ = 'd';
  3617. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3618. *p++ = 'a';
  3619. if (s->flags & SLAB_DEBUG_FREE)
  3620. *p++ = 'F';
  3621. if (p != name + 1)
  3622. *p++ = '-';
  3623. p += sprintf(p, "%07d", s->size);
  3624. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3625. return name;
  3626. }
  3627. static int sysfs_slab_add(struct kmem_cache *s)
  3628. {
  3629. int err;
  3630. const char *name;
  3631. int unmergeable;
  3632. if (slab_state < SYSFS)
  3633. /* Defer until later */
  3634. return 0;
  3635. unmergeable = slab_unmergeable(s);
  3636. if (unmergeable) {
  3637. /*
  3638. * Slabcache can never be merged so we can use the name proper.
  3639. * This is typically the case for debug situations. In that
  3640. * case we can catch duplicate names easily.
  3641. */
  3642. sysfs_remove_link(&slab_kset->kobj, s->name);
  3643. name = s->name;
  3644. } else {
  3645. /*
  3646. * Create a unique name for the slab as a target
  3647. * for the symlinks.
  3648. */
  3649. name = create_unique_id(s);
  3650. }
  3651. s->kobj.kset = slab_kset;
  3652. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3653. if (err) {
  3654. kobject_put(&s->kobj);
  3655. return err;
  3656. }
  3657. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3658. if (err)
  3659. return err;
  3660. kobject_uevent(&s->kobj, KOBJ_ADD);
  3661. if (!unmergeable) {
  3662. /* Setup first alias */
  3663. sysfs_slab_alias(s, s->name);
  3664. kfree(name);
  3665. }
  3666. return 0;
  3667. }
  3668. static void sysfs_slab_remove(struct kmem_cache *s)
  3669. {
  3670. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3671. kobject_del(&s->kobj);
  3672. kobject_put(&s->kobj);
  3673. }
  3674. /*
  3675. * Need to buffer aliases during bootup until sysfs becomes
  3676. * available lest we loose that information.
  3677. */
  3678. struct saved_alias {
  3679. struct kmem_cache *s;
  3680. const char *name;
  3681. struct saved_alias *next;
  3682. };
  3683. static struct saved_alias *alias_list;
  3684. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3685. {
  3686. struct saved_alias *al;
  3687. if (slab_state == SYSFS) {
  3688. /*
  3689. * If we have a leftover link then remove it.
  3690. */
  3691. sysfs_remove_link(&slab_kset->kobj, name);
  3692. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3693. }
  3694. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3695. if (!al)
  3696. return -ENOMEM;
  3697. al->s = s;
  3698. al->name = name;
  3699. al->next = alias_list;
  3700. alias_list = al;
  3701. return 0;
  3702. }
  3703. static int __init slab_sysfs_init(void)
  3704. {
  3705. struct kmem_cache *s;
  3706. int err;
  3707. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3708. if (!slab_kset) {
  3709. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3710. return -ENOSYS;
  3711. }
  3712. slab_state = SYSFS;
  3713. list_for_each_entry(s, &slab_caches, list) {
  3714. err = sysfs_slab_add(s);
  3715. if (err)
  3716. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3717. " to sysfs\n", s->name);
  3718. }
  3719. while (alias_list) {
  3720. struct saved_alias *al = alias_list;
  3721. alias_list = alias_list->next;
  3722. err = sysfs_slab_alias(al->s, al->name);
  3723. if (err)
  3724. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3725. " %s to sysfs\n", s->name);
  3726. kfree(al);
  3727. }
  3728. resiliency_test();
  3729. return 0;
  3730. }
  3731. __initcall(slab_sysfs_init);
  3732. #endif
  3733. /*
  3734. * The /proc/slabinfo ABI
  3735. */
  3736. #ifdef CONFIG_SLABINFO
  3737. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  3738. size_t count, loff_t *ppos)
  3739. {
  3740. return -EINVAL;
  3741. }
  3742. static void print_slabinfo_header(struct seq_file *m)
  3743. {
  3744. seq_puts(m, "slabinfo - version: 2.1\n");
  3745. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3746. "<objperslab> <pagesperslab>");
  3747. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3748. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3749. seq_putc(m, '\n');
  3750. }
  3751. static void *s_start(struct seq_file *m, loff_t *pos)
  3752. {
  3753. loff_t n = *pos;
  3754. down_read(&slub_lock);
  3755. if (!n)
  3756. print_slabinfo_header(m);
  3757. return seq_list_start(&slab_caches, *pos);
  3758. }
  3759. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3760. {
  3761. return seq_list_next(p, &slab_caches, pos);
  3762. }
  3763. static void s_stop(struct seq_file *m, void *p)
  3764. {
  3765. up_read(&slub_lock);
  3766. }
  3767. static int s_show(struct seq_file *m, void *p)
  3768. {
  3769. unsigned long nr_partials = 0;
  3770. unsigned long nr_slabs = 0;
  3771. unsigned long nr_inuse = 0;
  3772. unsigned long nr_objs = 0;
  3773. unsigned long nr_free = 0;
  3774. struct kmem_cache *s;
  3775. int node;
  3776. s = list_entry(p, struct kmem_cache, list);
  3777. for_each_online_node(node) {
  3778. struct kmem_cache_node *n = get_node(s, node);
  3779. if (!n)
  3780. continue;
  3781. nr_partials += n->nr_partial;
  3782. nr_slabs += atomic_long_read(&n->nr_slabs);
  3783. nr_objs += atomic_long_read(&n->total_objects);
  3784. nr_free += count_partial(n, count_free);
  3785. }
  3786. nr_inuse = nr_objs - nr_free;
  3787. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3788. nr_objs, s->size, oo_objects(s->oo),
  3789. (1 << oo_order(s->oo)));
  3790. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3791. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3792. 0UL);
  3793. seq_putc(m, '\n');
  3794. return 0;
  3795. }
  3796. const struct seq_operations slabinfo_op = {
  3797. .start = s_start,
  3798. .next = s_next,
  3799. .stop = s_stop,
  3800. .show = s_show,
  3801. };
  3802. #endif /* CONFIG_SLABINFO */