sched.c 221 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define NICE_0_LOAD SCHED_LOAD_SCALE
  97. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  98. /*
  99. * These are the 'tuning knobs' of the scheduler:
  100. *
  101. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. /*
  106. * single value that denotes runtime == period, ie unlimited time.
  107. */
  108. #define RUNTIME_INF ((u64)~0ULL)
  109. #ifdef CONFIG_SMP
  110. /*
  111. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  112. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  113. */
  114. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  115. {
  116. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  117. }
  118. /*
  119. * Each time a sched group cpu_power is changed,
  120. * we must compute its reciprocal value
  121. */
  122. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  123. {
  124. sg->__cpu_power += val;
  125. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  126. }
  127. #endif
  128. static inline int rt_policy(int policy)
  129. {
  130. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  131. return 1;
  132. return 0;
  133. }
  134. static inline int task_has_rt_policy(struct task_struct *p)
  135. {
  136. return rt_policy(p->policy);
  137. }
  138. /*
  139. * This is the priority-queue data structure of the RT scheduling class:
  140. */
  141. struct rt_prio_array {
  142. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  143. struct list_head queue[MAX_RT_PRIO];
  144. };
  145. struct rt_bandwidth {
  146. /* nests inside the rq lock: */
  147. spinlock_t rt_runtime_lock;
  148. ktime_t rt_period;
  149. u64 rt_runtime;
  150. struct hrtimer rt_period_timer;
  151. };
  152. static struct rt_bandwidth def_rt_bandwidth;
  153. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  154. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  155. {
  156. struct rt_bandwidth *rt_b =
  157. container_of(timer, struct rt_bandwidth, rt_period_timer);
  158. ktime_t now;
  159. int overrun;
  160. int idle = 0;
  161. for (;;) {
  162. now = hrtimer_cb_get_time(timer);
  163. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  164. if (!overrun)
  165. break;
  166. idle = do_sched_rt_period_timer(rt_b, overrun);
  167. }
  168. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  169. }
  170. static
  171. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  172. {
  173. rt_b->rt_period = ns_to_ktime(period);
  174. rt_b->rt_runtime = runtime;
  175. spin_lock_init(&rt_b->rt_runtime_lock);
  176. hrtimer_init(&rt_b->rt_period_timer,
  177. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  178. rt_b->rt_period_timer.function = sched_rt_period_timer;
  179. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  180. }
  181. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  182. {
  183. ktime_t now;
  184. if (rt_b->rt_runtime == RUNTIME_INF)
  185. return;
  186. if (hrtimer_active(&rt_b->rt_period_timer))
  187. return;
  188. spin_lock(&rt_b->rt_runtime_lock);
  189. for (;;) {
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. break;
  192. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  193. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  194. hrtimer_start(&rt_b->rt_period_timer,
  195. rt_b->rt_period_timer.expires,
  196. HRTIMER_MODE_ABS);
  197. }
  198. spin_unlock(&rt_b->rt_runtime_lock);
  199. }
  200. #ifdef CONFIG_RT_GROUP_SCHED
  201. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  202. {
  203. hrtimer_cancel(&rt_b->rt_period_timer);
  204. }
  205. #endif
  206. /*
  207. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  208. * detach_destroy_domains and partition_sched_domains.
  209. */
  210. static DEFINE_MUTEX(sched_domains_mutex);
  211. #ifdef CONFIG_GROUP_SCHED
  212. #include <linux/cgroup.h>
  213. struct cfs_rq;
  214. static LIST_HEAD(task_groups);
  215. /* task group related information */
  216. struct task_group {
  217. #ifdef CONFIG_CGROUP_SCHED
  218. struct cgroup_subsys_state css;
  219. #endif
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. /* schedulable entities of this group on each cpu */
  222. struct sched_entity **se;
  223. /* runqueue "owned" by this group on each cpu */
  224. struct cfs_rq **cfs_rq;
  225. unsigned long shares;
  226. #endif
  227. #ifdef CONFIG_RT_GROUP_SCHED
  228. struct sched_rt_entity **rt_se;
  229. struct rt_rq **rt_rq;
  230. struct rt_bandwidth rt_bandwidth;
  231. #endif
  232. struct rcu_head rcu;
  233. struct list_head list;
  234. struct task_group *parent;
  235. struct list_head siblings;
  236. struct list_head children;
  237. };
  238. #ifdef CONFIG_USER_SCHED
  239. /*
  240. * Root task group.
  241. * Every UID task group (including init_task_group aka UID-0) will
  242. * be a child to this group.
  243. */
  244. struct task_group root_task_group;
  245. #ifdef CONFIG_FAIR_GROUP_SCHED
  246. /* Default task group's sched entity on each cpu */
  247. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  248. /* Default task group's cfs_rq on each cpu */
  249. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  250. #endif /* CONFIG_FAIR_GROUP_SCHED */
  251. #ifdef CONFIG_RT_GROUP_SCHED
  252. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  253. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  254. #endif /* CONFIG_RT_GROUP_SCHED */
  255. #else /* !CONFIG_FAIR_GROUP_SCHED */
  256. #define root_task_group init_task_group
  257. #endif /* CONFIG_FAIR_GROUP_SCHED */
  258. /* task_group_lock serializes add/remove of task groups and also changes to
  259. * a task group's cpu shares.
  260. */
  261. static DEFINE_SPINLOCK(task_group_lock);
  262. #ifdef CONFIG_FAIR_GROUP_SCHED
  263. #ifdef CONFIG_USER_SCHED
  264. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  265. #else /* !CONFIG_USER_SCHED */
  266. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  267. #endif /* CONFIG_USER_SCHED */
  268. /*
  269. * A weight of 0 or 1 can cause arithmetics problems.
  270. * A weight of a cfs_rq is the sum of weights of which entities
  271. * are queued on this cfs_rq, so a weight of a entity should not be
  272. * too large, so as the shares value of a task group.
  273. * (The default weight is 1024 - so there's no practical
  274. * limitation from this.)
  275. */
  276. #define MIN_SHARES 2
  277. #define MAX_SHARES (1UL << 18)
  278. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  279. #endif
  280. /* Default task group.
  281. * Every task in system belong to this group at bootup.
  282. */
  283. struct task_group init_task_group;
  284. /* return group to which a task belongs */
  285. static inline struct task_group *task_group(struct task_struct *p)
  286. {
  287. struct task_group *tg;
  288. #ifdef CONFIG_USER_SCHED
  289. tg = p->user->tg;
  290. #elif defined(CONFIG_CGROUP_SCHED)
  291. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  292. struct task_group, css);
  293. #else
  294. tg = &init_task_group;
  295. #endif
  296. return tg;
  297. }
  298. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  299. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  300. {
  301. #ifdef CONFIG_FAIR_GROUP_SCHED
  302. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  303. p->se.parent = task_group(p)->se[cpu];
  304. #endif
  305. #ifdef CONFIG_RT_GROUP_SCHED
  306. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  307. p->rt.parent = task_group(p)->rt_se[cpu];
  308. #endif
  309. }
  310. #else
  311. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  312. static inline struct task_group *task_group(struct task_struct *p)
  313. {
  314. return NULL;
  315. }
  316. #endif /* CONFIG_GROUP_SCHED */
  317. /* CFS-related fields in a runqueue */
  318. struct cfs_rq {
  319. struct load_weight load;
  320. unsigned long nr_running;
  321. u64 exec_clock;
  322. u64 min_vruntime;
  323. u64 pair_start;
  324. struct rb_root tasks_timeline;
  325. struct rb_node *rb_leftmost;
  326. struct list_head tasks;
  327. struct list_head *balance_iterator;
  328. /*
  329. * 'curr' points to currently running entity on this cfs_rq.
  330. * It is set to NULL otherwise (i.e when none are currently running).
  331. */
  332. struct sched_entity *curr, *next;
  333. unsigned long nr_spread_over;
  334. #ifdef CONFIG_FAIR_GROUP_SCHED
  335. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  336. /*
  337. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  338. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  339. * (like users, containers etc.)
  340. *
  341. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  342. * list is used during load balance.
  343. */
  344. struct list_head leaf_cfs_rq_list;
  345. struct task_group *tg; /* group that "owns" this runqueue */
  346. #ifdef CONFIG_SMP
  347. /*
  348. * the part of load.weight contributed by tasks
  349. */
  350. unsigned long task_weight;
  351. /*
  352. * h_load = weight * f(tg)
  353. *
  354. * Where f(tg) is the recursive weight fraction assigned to
  355. * this group.
  356. */
  357. unsigned long h_load;
  358. /*
  359. * this cpu's part of tg->shares
  360. */
  361. unsigned long shares;
  362. /*
  363. * load.weight at the time we set shares
  364. */
  365. unsigned long rq_weight;
  366. #endif
  367. #endif
  368. };
  369. /* Real-Time classes' related field in a runqueue: */
  370. struct rt_rq {
  371. struct rt_prio_array active;
  372. unsigned long rt_nr_running;
  373. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  374. int highest_prio; /* highest queued rt task prio */
  375. #endif
  376. #ifdef CONFIG_SMP
  377. unsigned long rt_nr_migratory;
  378. int overloaded;
  379. #endif
  380. int rt_throttled;
  381. u64 rt_time;
  382. u64 rt_runtime;
  383. /* Nests inside the rq lock: */
  384. spinlock_t rt_runtime_lock;
  385. #ifdef CONFIG_RT_GROUP_SCHED
  386. unsigned long rt_nr_boosted;
  387. struct rq *rq;
  388. struct list_head leaf_rt_rq_list;
  389. struct task_group *tg;
  390. struct sched_rt_entity *rt_se;
  391. #endif
  392. };
  393. #ifdef CONFIG_SMP
  394. /*
  395. * We add the notion of a root-domain which will be used to define per-domain
  396. * variables. Each exclusive cpuset essentially defines an island domain by
  397. * fully partitioning the member cpus from any other cpuset. Whenever a new
  398. * exclusive cpuset is created, we also create and attach a new root-domain
  399. * object.
  400. *
  401. */
  402. struct root_domain {
  403. atomic_t refcount;
  404. cpumask_t span;
  405. cpumask_t online;
  406. /*
  407. * The "RT overload" flag: it gets set if a CPU has more than
  408. * one runnable RT task.
  409. */
  410. cpumask_t rto_mask;
  411. atomic_t rto_count;
  412. #ifdef CONFIG_SMP
  413. struct cpupri cpupri;
  414. #endif
  415. };
  416. /*
  417. * By default the system creates a single root-domain with all cpus as
  418. * members (mimicking the global state we have today).
  419. */
  420. static struct root_domain def_root_domain;
  421. #endif
  422. /*
  423. * This is the main, per-CPU runqueue data structure.
  424. *
  425. * Locking rule: those places that want to lock multiple runqueues
  426. * (such as the load balancing or the thread migration code), lock
  427. * acquire operations must be ordered by ascending &runqueue.
  428. */
  429. struct rq {
  430. /* runqueue lock: */
  431. spinlock_t lock;
  432. /*
  433. * nr_running and cpu_load should be in the same cacheline because
  434. * remote CPUs use both these fields when doing load calculation.
  435. */
  436. unsigned long nr_running;
  437. #define CPU_LOAD_IDX_MAX 5
  438. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  439. unsigned char idle_at_tick;
  440. #ifdef CONFIG_NO_HZ
  441. unsigned long last_tick_seen;
  442. unsigned char in_nohz_recently;
  443. #endif
  444. /* capture load from *all* tasks on this cpu: */
  445. struct load_weight load;
  446. unsigned long nr_load_updates;
  447. u64 nr_switches;
  448. struct cfs_rq cfs;
  449. struct rt_rq rt;
  450. #ifdef CONFIG_FAIR_GROUP_SCHED
  451. /* list of leaf cfs_rq on this cpu: */
  452. struct list_head leaf_cfs_rq_list;
  453. #endif
  454. #ifdef CONFIG_RT_GROUP_SCHED
  455. struct list_head leaf_rt_rq_list;
  456. #endif
  457. /*
  458. * This is part of a global counter where only the total sum
  459. * over all CPUs matters. A task can increase this counter on
  460. * one CPU and if it got migrated afterwards it may decrease
  461. * it on another CPU. Always updated under the runqueue lock:
  462. */
  463. unsigned long nr_uninterruptible;
  464. struct task_struct *curr, *idle;
  465. unsigned long next_balance;
  466. struct mm_struct *prev_mm;
  467. u64 clock;
  468. atomic_t nr_iowait;
  469. #ifdef CONFIG_SMP
  470. struct root_domain *rd;
  471. struct sched_domain *sd;
  472. /* For active balancing */
  473. int active_balance;
  474. int push_cpu;
  475. /* cpu of this runqueue: */
  476. int cpu;
  477. int online;
  478. unsigned long avg_load_per_task;
  479. struct task_struct *migration_thread;
  480. struct list_head migration_queue;
  481. #endif
  482. #ifdef CONFIG_SCHED_HRTICK
  483. #ifdef CONFIG_SMP
  484. int hrtick_csd_pending;
  485. struct call_single_data hrtick_csd;
  486. #endif
  487. struct hrtimer hrtick_timer;
  488. #endif
  489. #ifdef CONFIG_SCHEDSTATS
  490. /* latency stats */
  491. struct sched_info rq_sched_info;
  492. /* sys_sched_yield() stats */
  493. unsigned int yld_exp_empty;
  494. unsigned int yld_act_empty;
  495. unsigned int yld_both_empty;
  496. unsigned int yld_count;
  497. /* schedule() stats */
  498. unsigned int sched_switch;
  499. unsigned int sched_count;
  500. unsigned int sched_goidle;
  501. /* try_to_wake_up() stats */
  502. unsigned int ttwu_count;
  503. unsigned int ttwu_local;
  504. /* BKL stats */
  505. unsigned int bkl_count;
  506. #endif
  507. };
  508. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  509. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  510. {
  511. rq->curr->sched_class->check_preempt_curr(rq, p);
  512. }
  513. static inline int cpu_of(struct rq *rq)
  514. {
  515. #ifdef CONFIG_SMP
  516. return rq->cpu;
  517. #else
  518. return 0;
  519. #endif
  520. }
  521. /*
  522. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  523. * See detach_destroy_domains: synchronize_sched for details.
  524. *
  525. * The domain tree of any CPU may only be accessed from within
  526. * preempt-disabled sections.
  527. */
  528. #define for_each_domain(cpu, __sd) \
  529. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  530. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  531. #define this_rq() (&__get_cpu_var(runqueues))
  532. #define task_rq(p) cpu_rq(task_cpu(p))
  533. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  534. static inline void update_rq_clock(struct rq *rq)
  535. {
  536. rq->clock = sched_clock_cpu(cpu_of(rq));
  537. }
  538. /*
  539. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  540. */
  541. #ifdef CONFIG_SCHED_DEBUG
  542. # define const_debug __read_mostly
  543. #else
  544. # define const_debug static const
  545. #endif
  546. /**
  547. * runqueue_is_locked
  548. *
  549. * Returns true if the current cpu runqueue is locked.
  550. * This interface allows printk to be called with the runqueue lock
  551. * held and know whether or not it is OK to wake up the klogd.
  552. */
  553. int runqueue_is_locked(void)
  554. {
  555. int cpu = get_cpu();
  556. struct rq *rq = cpu_rq(cpu);
  557. int ret;
  558. ret = spin_is_locked(&rq->lock);
  559. put_cpu();
  560. return ret;
  561. }
  562. /*
  563. * Debugging: various feature bits
  564. */
  565. #define SCHED_FEAT(name, enabled) \
  566. __SCHED_FEAT_##name ,
  567. enum {
  568. #include "sched_features.h"
  569. };
  570. #undef SCHED_FEAT
  571. #define SCHED_FEAT(name, enabled) \
  572. (1UL << __SCHED_FEAT_##name) * enabled |
  573. const_debug unsigned int sysctl_sched_features =
  574. #include "sched_features.h"
  575. 0;
  576. #undef SCHED_FEAT
  577. #ifdef CONFIG_SCHED_DEBUG
  578. #define SCHED_FEAT(name, enabled) \
  579. #name ,
  580. static __read_mostly char *sched_feat_names[] = {
  581. #include "sched_features.h"
  582. NULL
  583. };
  584. #undef SCHED_FEAT
  585. static int sched_feat_open(struct inode *inode, struct file *filp)
  586. {
  587. filp->private_data = inode->i_private;
  588. return 0;
  589. }
  590. static ssize_t
  591. sched_feat_read(struct file *filp, char __user *ubuf,
  592. size_t cnt, loff_t *ppos)
  593. {
  594. char *buf;
  595. int r = 0;
  596. int len = 0;
  597. int i;
  598. for (i = 0; sched_feat_names[i]; i++) {
  599. len += strlen(sched_feat_names[i]);
  600. len += 4;
  601. }
  602. buf = kmalloc(len + 2, GFP_KERNEL);
  603. if (!buf)
  604. return -ENOMEM;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (sysctl_sched_features & (1UL << i))
  607. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  608. else
  609. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  610. }
  611. r += sprintf(buf + r, "\n");
  612. WARN_ON(r >= len + 2);
  613. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  614. kfree(buf);
  615. return r;
  616. }
  617. static ssize_t
  618. sched_feat_write(struct file *filp, const char __user *ubuf,
  619. size_t cnt, loff_t *ppos)
  620. {
  621. char buf[64];
  622. char *cmp = buf;
  623. int neg = 0;
  624. int i;
  625. if (cnt > 63)
  626. cnt = 63;
  627. if (copy_from_user(&buf, ubuf, cnt))
  628. return -EFAULT;
  629. buf[cnt] = 0;
  630. if (strncmp(buf, "NO_", 3) == 0) {
  631. neg = 1;
  632. cmp += 3;
  633. }
  634. for (i = 0; sched_feat_names[i]; i++) {
  635. int len = strlen(sched_feat_names[i]);
  636. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  637. if (neg)
  638. sysctl_sched_features &= ~(1UL << i);
  639. else
  640. sysctl_sched_features |= (1UL << i);
  641. break;
  642. }
  643. }
  644. if (!sched_feat_names[i])
  645. return -EINVAL;
  646. filp->f_pos += cnt;
  647. return cnt;
  648. }
  649. static struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .read = sched_feat_read,
  652. .write = sched_feat_write,
  653. };
  654. static __init int sched_init_debug(void)
  655. {
  656. debugfs_create_file("sched_features", 0644, NULL, NULL,
  657. &sched_feat_fops);
  658. return 0;
  659. }
  660. late_initcall(sched_init_debug);
  661. #endif
  662. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  663. /*
  664. * Number of tasks to iterate in a single balance run.
  665. * Limited because this is done with IRQs disabled.
  666. */
  667. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  668. /*
  669. * ratelimit for updating the group shares.
  670. * default: 0.25ms
  671. */
  672. unsigned int sysctl_sched_shares_ratelimit = 250000;
  673. /*
  674. * period over which we measure -rt task cpu usage in us.
  675. * default: 1s
  676. */
  677. unsigned int sysctl_sched_rt_period = 1000000;
  678. static __read_mostly int scheduler_running;
  679. /*
  680. * part of the period that we allow rt tasks to run in us.
  681. * default: 0.95s
  682. */
  683. int sysctl_sched_rt_runtime = 950000;
  684. static inline u64 global_rt_period(void)
  685. {
  686. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  687. }
  688. static inline u64 global_rt_runtime(void)
  689. {
  690. if (sysctl_sched_rt_runtime < 0)
  691. return RUNTIME_INF;
  692. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  693. }
  694. #ifndef prepare_arch_switch
  695. # define prepare_arch_switch(next) do { } while (0)
  696. #endif
  697. #ifndef finish_arch_switch
  698. # define finish_arch_switch(prev) do { } while (0)
  699. #endif
  700. static inline int task_current(struct rq *rq, struct task_struct *p)
  701. {
  702. return rq->curr == p;
  703. }
  704. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  705. static inline int task_running(struct rq *rq, struct task_struct *p)
  706. {
  707. return task_current(rq, p);
  708. }
  709. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  710. {
  711. }
  712. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  713. {
  714. #ifdef CONFIG_DEBUG_SPINLOCK
  715. /* this is a valid case when another task releases the spinlock */
  716. rq->lock.owner = current;
  717. #endif
  718. /*
  719. * If we are tracking spinlock dependencies then we have to
  720. * fix up the runqueue lock - which gets 'carried over' from
  721. * prev into current:
  722. */
  723. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  724. spin_unlock_irq(&rq->lock);
  725. }
  726. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  727. static inline int task_running(struct rq *rq, struct task_struct *p)
  728. {
  729. #ifdef CONFIG_SMP
  730. return p->oncpu;
  731. #else
  732. return task_current(rq, p);
  733. #endif
  734. }
  735. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  736. {
  737. #ifdef CONFIG_SMP
  738. /*
  739. * We can optimise this out completely for !SMP, because the
  740. * SMP rebalancing from interrupt is the only thing that cares
  741. * here.
  742. */
  743. next->oncpu = 1;
  744. #endif
  745. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  746. spin_unlock_irq(&rq->lock);
  747. #else
  748. spin_unlock(&rq->lock);
  749. #endif
  750. }
  751. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * After ->oncpu is cleared, the task can be moved to a different CPU.
  756. * We must ensure this doesn't happen until the switch is completely
  757. * finished.
  758. */
  759. smp_wmb();
  760. prev->oncpu = 0;
  761. #endif
  762. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  763. local_irq_enable();
  764. #endif
  765. }
  766. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. /*
  768. * __task_rq_lock - lock the runqueue a given task resides on.
  769. * Must be called interrupts disabled.
  770. */
  771. static inline struct rq *__task_rq_lock(struct task_struct *p)
  772. __acquires(rq->lock)
  773. {
  774. for (;;) {
  775. struct rq *rq = task_rq(p);
  776. spin_lock(&rq->lock);
  777. if (likely(rq == task_rq(p)))
  778. return rq;
  779. spin_unlock(&rq->lock);
  780. }
  781. }
  782. /*
  783. * task_rq_lock - lock the runqueue a given task resides on and disable
  784. * interrupts. Note the ordering: we can safely lookup the task_rq without
  785. * explicitly disabling preemption.
  786. */
  787. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  788. __acquires(rq->lock)
  789. {
  790. struct rq *rq;
  791. for (;;) {
  792. local_irq_save(*flags);
  793. rq = task_rq(p);
  794. spin_lock(&rq->lock);
  795. if (likely(rq == task_rq(p)))
  796. return rq;
  797. spin_unlock_irqrestore(&rq->lock, *flags);
  798. }
  799. }
  800. static void __task_rq_unlock(struct rq *rq)
  801. __releases(rq->lock)
  802. {
  803. spin_unlock(&rq->lock);
  804. }
  805. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  806. __releases(rq->lock)
  807. {
  808. spin_unlock_irqrestore(&rq->lock, *flags);
  809. }
  810. /*
  811. * this_rq_lock - lock this runqueue and disable interrupts.
  812. */
  813. static struct rq *this_rq_lock(void)
  814. __acquires(rq->lock)
  815. {
  816. struct rq *rq;
  817. local_irq_disable();
  818. rq = this_rq();
  819. spin_lock(&rq->lock);
  820. return rq;
  821. }
  822. #ifdef CONFIG_SCHED_HRTICK
  823. /*
  824. * Use HR-timers to deliver accurate preemption points.
  825. *
  826. * Its all a bit involved since we cannot program an hrt while holding the
  827. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  828. * reschedule event.
  829. *
  830. * When we get rescheduled we reprogram the hrtick_timer outside of the
  831. * rq->lock.
  832. */
  833. /*
  834. * Use hrtick when:
  835. * - enabled by features
  836. * - hrtimer is actually high res
  837. */
  838. static inline int hrtick_enabled(struct rq *rq)
  839. {
  840. if (!sched_feat(HRTICK))
  841. return 0;
  842. if (!cpu_active(cpu_of(rq)))
  843. return 0;
  844. return hrtimer_is_hres_active(&rq->hrtick_timer);
  845. }
  846. static void hrtick_clear(struct rq *rq)
  847. {
  848. if (hrtimer_active(&rq->hrtick_timer))
  849. hrtimer_cancel(&rq->hrtick_timer);
  850. }
  851. /*
  852. * High-resolution timer tick.
  853. * Runs from hardirq context with interrupts disabled.
  854. */
  855. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  856. {
  857. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  858. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  859. spin_lock(&rq->lock);
  860. update_rq_clock(rq);
  861. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  862. spin_unlock(&rq->lock);
  863. return HRTIMER_NORESTART;
  864. }
  865. #ifdef CONFIG_SMP
  866. /*
  867. * called from hardirq (IPI) context
  868. */
  869. static void __hrtick_start(void *arg)
  870. {
  871. struct rq *rq = arg;
  872. spin_lock(&rq->lock);
  873. hrtimer_restart(&rq->hrtick_timer);
  874. rq->hrtick_csd_pending = 0;
  875. spin_unlock(&rq->lock);
  876. }
  877. /*
  878. * Called to set the hrtick timer state.
  879. *
  880. * called with rq->lock held and irqs disabled
  881. */
  882. static void hrtick_start(struct rq *rq, u64 delay)
  883. {
  884. struct hrtimer *timer = &rq->hrtick_timer;
  885. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  886. timer->expires = time;
  887. if (rq == this_rq()) {
  888. hrtimer_restart(timer);
  889. } else if (!rq->hrtick_csd_pending) {
  890. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  891. rq->hrtick_csd_pending = 1;
  892. }
  893. }
  894. static int
  895. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  896. {
  897. int cpu = (int)(long)hcpu;
  898. switch (action) {
  899. case CPU_UP_CANCELED:
  900. case CPU_UP_CANCELED_FROZEN:
  901. case CPU_DOWN_PREPARE:
  902. case CPU_DOWN_PREPARE_FROZEN:
  903. case CPU_DEAD:
  904. case CPU_DEAD_FROZEN:
  905. hrtick_clear(cpu_rq(cpu));
  906. return NOTIFY_OK;
  907. }
  908. return NOTIFY_DONE;
  909. }
  910. static void init_hrtick(void)
  911. {
  912. hotcpu_notifier(hotplug_hrtick, 0);
  913. }
  914. #else
  915. /*
  916. * Called to set the hrtick timer state.
  917. *
  918. * called with rq->lock held and irqs disabled
  919. */
  920. static void hrtick_start(struct rq *rq, u64 delay)
  921. {
  922. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  923. }
  924. static void init_hrtick(void)
  925. {
  926. }
  927. #endif /* CONFIG_SMP */
  928. static void init_rq_hrtick(struct rq *rq)
  929. {
  930. #ifdef CONFIG_SMP
  931. rq->hrtick_csd_pending = 0;
  932. rq->hrtick_csd.flags = 0;
  933. rq->hrtick_csd.func = __hrtick_start;
  934. rq->hrtick_csd.info = rq;
  935. #endif
  936. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  937. rq->hrtick_timer.function = hrtick;
  938. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  939. }
  940. #else
  941. static inline void hrtick_clear(struct rq *rq)
  942. {
  943. }
  944. static inline void init_rq_hrtick(struct rq *rq)
  945. {
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif
  951. /*
  952. * resched_task - mark a task 'to be rescheduled now'.
  953. *
  954. * On UP this means the setting of the need_resched flag, on SMP it
  955. * might also involve a cross-CPU call to trigger the scheduler on
  956. * the target CPU.
  957. */
  958. #ifdef CONFIG_SMP
  959. #ifndef tsk_is_polling
  960. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  961. #endif
  962. static void resched_task(struct task_struct *p)
  963. {
  964. int cpu;
  965. assert_spin_locked(&task_rq(p)->lock);
  966. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  967. return;
  968. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  969. cpu = task_cpu(p);
  970. if (cpu == smp_processor_id())
  971. return;
  972. /* NEED_RESCHED must be visible before we test polling */
  973. smp_mb();
  974. if (!tsk_is_polling(p))
  975. smp_send_reschedule(cpu);
  976. }
  977. static void resched_cpu(int cpu)
  978. {
  979. struct rq *rq = cpu_rq(cpu);
  980. unsigned long flags;
  981. if (!spin_trylock_irqsave(&rq->lock, flags))
  982. return;
  983. resched_task(cpu_curr(cpu));
  984. spin_unlock_irqrestore(&rq->lock, flags);
  985. }
  986. #ifdef CONFIG_NO_HZ
  987. /*
  988. * When add_timer_on() enqueues a timer into the timer wheel of an
  989. * idle CPU then this timer might expire before the next timer event
  990. * which is scheduled to wake up that CPU. In case of a completely
  991. * idle system the next event might even be infinite time into the
  992. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  993. * leaves the inner idle loop so the newly added timer is taken into
  994. * account when the CPU goes back to idle and evaluates the timer
  995. * wheel for the next timer event.
  996. */
  997. void wake_up_idle_cpu(int cpu)
  998. {
  999. struct rq *rq = cpu_rq(cpu);
  1000. if (cpu == smp_processor_id())
  1001. return;
  1002. /*
  1003. * This is safe, as this function is called with the timer
  1004. * wheel base lock of (cpu) held. When the CPU is on the way
  1005. * to idle and has not yet set rq->curr to idle then it will
  1006. * be serialized on the timer wheel base lock and take the new
  1007. * timer into account automatically.
  1008. */
  1009. if (rq->curr != rq->idle)
  1010. return;
  1011. /*
  1012. * We can set TIF_RESCHED on the idle task of the other CPU
  1013. * lockless. The worst case is that the other CPU runs the
  1014. * idle task through an additional NOOP schedule()
  1015. */
  1016. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1017. /* NEED_RESCHED must be visible before we test polling */
  1018. smp_mb();
  1019. if (!tsk_is_polling(rq->idle))
  1020. smp_send_reschedule(cpu);
  1021. }
  1022. #endif /* CONFIG_NO_HZ */
  1023. #else /* !CONFIG_SMP */
  1024. static void resched_task(struct task_struct *p)
  1025. {
  1026. assert_spin_locked(&task_rq(p)->lock);
  1027. set_tsk_need_resched(p);
  1028. }
  1029. #endif /* CONFIG_SMP */
  1030. #if BITS_PER_LONG == 32
  1031. # define WMULT_CONST (~0UL)
  1032. #else
  1033. # define WMULT_CONST (1UL << 32)
  1034. #endif
  1035. #define WMULT_SHIFT 32
  1036. /*
  1037. * Shift right and round:
  1038. */
  1039. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1040. /*
  1041. * delta *= weight / lw
  1042. */
  1043. static unsigned long
  1044. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1045. struct load_weight *lw)
  1046. {
  1047. u64 tmp;
  1048. if (!lw->inv_weight) {
  1049. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1050. lw->inv_weight = 1;
  1051. else
  1052. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1053. / (lw->weight+1);
  1054. }
  1055. tmp = (u64)delta_exec * weight;
  1056. /*
  1057. * Check whether we'd overflow the 64-bit multiplication:
  1058. */
  1059. if (unlikely(tmp > WMULT_CONST))
  1060. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1061. WMULT_SHIFT/2);
  1062. else
  1063. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1064. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1065. }
  1066. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1067. {
  1068. lw->weight += inc;
  1069. lw->inv_weight = 0;
  1070. }
  1071. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1072. {
  1073. lw->weight -= dec;
  1074. lw->inv_weight = 0;
  1075. }
  1076. /*
  1077. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1078. * of tasks with abnormal "nice" values across CPUs the contribution that
  1079. * each task makes to its run queue's load is weighted according to its
  1080. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1081. * scaled version of the new time slice allocation that they receive on time
  1082. * slice expiry etc.
  1083. */
  1084. #define WEIGHT_IDLEPRIO 2
  1085. #define WMULT_IDLEPRIO (1 << 31)
  1086. /*
  1087. * Nice levels are multiplicative, with a gentle 10% change for every
  1088. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1089. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1090. * that remained on nice 0.
  1091. *
  1092. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1093. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1094. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1095. * If a task goes up by ~10% and another task goes down by ~10% then
  1096. * the relative distance between them is ~25%.)
  1097. */
  1098. static const int prio_to_weight[40] = {
  1099. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1100. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1101. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1102. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1103. /* 0 */ 1024, 820, 655, 526, 423,
  1104. /* 5 */ 335, 272, 215, 172, 137,
  1105. /* 10 */ 110, 87, 70, 56, 45,
  1106. /* 15 */ 36, 29, 23, 18, 15,
  1107. };
  1108. /*
  1109. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1110. *
  1111. * In cases where the weight does not change often, we can use the
  1112. * precalculated inverse to speed up arithmetics by turning divisions
  1113. * into multiplications:
  1114. */
  1115. static const u32 prio_to_wmult[40] = {
  1116. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1117. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1118. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1119. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1120. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1121. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1122. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1123. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1124. };
  1125. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1126. /*
  1127. * runqueue iterator, to support SMP load-balancing between different
  1128. * scheduling classes, without having to expose their internal data
  1129. * structures to the load-balancing proper:
  1130. */
  1131. struct rq_iterator {
  1132. void *arg;
  1133. struct task_struct *(*start)(void *);
  1134. struct task_struct *(*next)(void *);
  1135. };
  1136. #ifdef CONFIG_SMP
  1137. static unsigned long
  1138. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1139. unsigned long max_load_move, struct sched_domain *sd,
  1140. enum cpu_idle_type idle, int *all_pinned,
  1141. int *this_best_prio, struct rq_iterator *iterator);
  1142. static int
  1143. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1144. struct sched_domain *sd, enum cpu_idle_type idle,
  1145. struct rq_iterator *iterator);
  1146. #endif
  1147. #ifdef CONFIG_CGROUP_CPUACCT
  1148. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1149. #else
  1150. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1151. #endif
  1152. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1153. {
  1154. update_load_add(&rq->load, load);
  1155. }
  1156. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1157. {
  1158. update_load_sub(&rq->load, load);
  1159. }
  1160. #ifdef CONFIG_SMP
  1161. static unsigned long source_load(int cpu, int type);
  1162. static unsigned long target_load(int cpu, int type);
  1163. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1164. static unsigned long cpu_avg_load_per_task(int cpu)
  1165. {
  1166. struct rq *rq = cpu_rq(cpu);
  1167. if (rq->nr_running)
  1168. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1169. return rq->avg_load_per_task;
  1170. }
  1171. #ifdef CONFIG_FAIR_GROUP_SCHED
  1172. typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
  1173. /*
  1174. * Iterate the full tree, calling @down when first entering a node and @up when
  1175. * leaving it for the final time.
  1176. */
  1177. static void
  1178. walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
  1179. {
  1180. struct task_group *parent, *child;
  1181. rcu_read_lock();
  1182. parent = &root_task_group;
  1183. down:
  1184. (*down)(parent, cpu, sd);
  1185. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1186. parent = child;
  1187. goto down;
  1188. up:
  1189. continue;
  1190. }
  1191. (*up)(parent, cpu, sd);
  1192. child = parent;
  1193. parent = parent->parent;
  1194. if (parent)
  1195. goto up;
  1196. rcu_read_unlock();
  1197. }
  1198. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1199. /*
  1200. * Calculate and set the cpu's group shares.
  1201. */
  1202. static void
  1203. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1204. unsigned long sd_shares, unsigned long sd_rq_weight)
  1205. {
  1206. int boost = 0;
  1207. unsigned long shares;
  1208. unsigned long rq_weight;
  1209. if (!tg->se[cpu])
  1210. return;
  1211. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1212. /*
  1213. * If there are currently no tasks on the cpu pretend there is one of
  1214. * average load so that when a new task gets to run here it will not
  1215. * get delayed by group starvation.
  1216. */
  1217. if (!rq_weight) {
  1218. boost = 1;
  1219. rq_weight = NICE_0_LOAD;
  1220. }
  1221. if (unlikely(rq_weight > sd_rq_weight))
  1222. rq_weight = sd_rq_weight;
  1223. /*
  1224. * \Sum shares * rq_weight
  1225. * shares = -----------------------
  1226. * \Sum rq_weight
  1227. *
  1228. */
  1229. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1230. /*
  1231. * record the actual number of shares, not the boosted amount.
  1232. */
  1233. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1234. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1235. if (shares < MIN_SHARES)
  1236. shares = MIN_SHARES;
  1237. else if (shares > MAX_SHARES)
  1238. shares = MAX_SHARES;
  1239. __set_se_shares(tg->se[cpu], shares);
  1240. }
  1241. /*
  1242. * Re-compute the task group their per cpu shares over the given domain.
  1243. * This needs to be done in a bottom-up fashion because the rq weight of a
  1244. * parent group depends on the shares of its child groups.
  1245. */
  1246. static void
  1247. tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1248. {
  1249. unsigned long rq_weight = 0;
  1250. unsigned long shares = 0;
  1251. int i;
  1252. for_each_cpu_mask(i, sd->span) {
  1253. rq_weight += tg->cfs_rq[i]->load.weight;
  1254. shares += tg->cfs_rq[i]->shares;
  1255. }
  1256. if ((!shares && rq_weight) || shares > tg->shares)
  1257. shares = tg->shares;
  1258. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1259. shares = tg->shares;
  1260. if (!rq_weight)
  1261. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1262. for_each_cpu_mask(i, sd->span) {
  1263. struct rq *rq = cpu_rq(i);
  1264. unsigned long flags;
  1265. spin_lock_irqsave(&rq->lock, flags);
  1266. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1267. spin_unlock_irqrestore(&rq->lock, flags);
  1268. }
  1269. }
  1270. /*
  1271. * Compute the cpu's hierarchical load factor for each task group.
  1272. * This needs to be done in a top-down fashion because the load of a child
  1273. * group is a fraction of its parents load.
  1274. */
  1275. static void
  1276. tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1277. {
  1278. unsigned long load;
  1279. if (!tg->parent) {
  1280. load = cpu_rq(cpu)->load.weight;
  1281. } else {
  1282. load = tg->parent->cfs_rq[cpu]->h_load;
  1283. load *= tg->cfs_rq[cpu]->shares;
  1284. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1285. }
  1286. tg->cfs_rq[cpu]->h_load = load;
  1287. }
  1288. static void
  1289. tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
  1290. {
  1291. }
  1292. static void update_shares(struct sched_domain *sd)
  1293. {
  1294. u64 now = cpu_clock(raw_smp_processor_id());
  1295. s64 elapsed = now - sd->last_update;
  1296. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1297. sd->last_update = now;
  1298. walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
  1299. }
  1300. }
  1301. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1302. {
  1303. spin_unlock(&rq->lock);
  1304. update_shares(sd);
  1305. spin_lock(&rq->lock);
  1306. }
  1307. static void update_h_load(int cpu)
  1308. {
  1309. walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
  1310. }
  1311. #else
  1312. static inline void update_shares(struct sched_domain *sd)
  1313. {
  1314. }
  1315. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1316. {
  1317. }
  1318. #endif
  1319. #endif
  1320. #ifdef CONFIG_FAIR_GROUP_SCHED
  1321. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1322. {
  1323. #ifdef CONFIG_SMP
  1324. cfs_rq->shares = shares;
  1325. #endif
  1326. }
  1327. #endif
  1328. #include "sched_stats.h"
  1329. #include "sched_idletask.c"
  1330. #include "sched_fair.c"
  1331. #include "sched_rt.c"
  1332. #ifdef CONFIG_SCHED_DEBUG
  1333. # include "sched_debug.c"
  1334. #endif
  1335. #define sched_class_highest (&rt_sched_class)
  1336. #define for_each_class(class) \
  1337. for (class = sched_class_highest; class; class = class->next)
  1338. static void inc_nr_running(struct rq *rq)
  1339. {
  1340. rq->nr_running++;
  1341. }
  1342. static void dec_nr_running(struct rq *rq)
  1343. {
  1344. rq->nr_running--;
  1345. }
  1346. static void set_load_weight(struct task_struct *p)
  1347. {
  1348. if (task_has_rt_policy(p)) {
  1349. p->se.load.weight = prio_to_weight[0] * 2;
  1350. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1351. return;
  1352. }
  1353. /*
  1354. * SCHED_IDLE tasks get minimal weight:
  1355. */
  1356. if (p->policy == SCHED_IDLE) {
  1357. p->se.load.weight = WEIGHT_IDLEPRIO;
  1358. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1359. return;
  1360. }
  1361. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1362. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1363. }
  1364. static void update_avg(u64 *avg, u64 sample)
  1365. {
  1366. s64 diff = sample - *avg;
  1367. *avg += diff >> 3;
  1368. }
  1369. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1370. {
  1371. sched_info_queued(p);
  1372. p->sched_class->enqueue_task(rq, p, wakeup);
  1373. p->se.on_rq = 1;
  1374. }
  1375. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1376. {
  1377. if (sleep && p->se.last_wakeup) {
  1378. update_avg(&p->se.avg_overlap,
  1379. p->se.sum_exec_runtime - p->se.last_wakeup);
  1380. p->se.last_wakeup = 0;
  1381. }
  1382. sched_info_dequeued(p);
  1383. p->sched_class->dequeue_task(rq, p, sleep);
  1384. p->se.on_rq = 0;
  1385. }
  1386. /*
  1387. * __normal_prio - return the priority that is based on the static prio
  1388. */
  1389. static inline int __normal_prio(struct task_struct *p)
  1390. {
  1391. return p->static_prio;
  1392. }
  1393. /*
  1394. * Calculate the expected normal priority: i.e. priority
  1395. * without taking RT-inheritance into account. Might be
  1396. * boosted by interactivity modifiers. Changes upon fork,
  1397. * setprio syscalls, and whenever the interactivity
  1398. * estimator recalculates.
  1399. */
  1400. static inline int normal_prio(struct task_struct *p)
  1401. {
  1402. int prio;
  1403. if (task_has_rt_policy(p))
  1404. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1405. else
  1406. prio = __normal_prio(p);
  1407. return prio;
  1408. }
  1409. /*
  1410. * Calculate the current priority, i.e. the priority
  1411. * taken into account by the scheduler. This value might
  1412. * be boosted by RT tasks, or might be boosted by
  1413. * interactivity modifiers. Will be RT if the task got
  1414. * RT-boosted. If not then it returns p->normal_prio.
  1415. */
  1416. static int effective_prio(struct task_struct *p)
  1417. {
  1418. p->normal_prio = normal_prio(p);
  1419. /*
  1420. * If we are RT tasks or we were boosted to RT priority,
  1421. * keep the priority unchanged. Otherwise, update priority
  1422. * to the normal priority:
  1423. */
  1424. if (!rt_prio(p->prio))
  1425. return p->normal_prio;
  1426. return p->prio;
  1427. }
  1428. /*
  1429. * activate_task - move a task to the runqueue.
  1430. */
  1431. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1432. {
  1433. if (task_contributes_to_load(p))
  1434. rq->nr_uninterruptible--;
  1435. enqueue_task(rq, p, wakeup);
  1436. inc_nr_running(rq);
  1437. }
  1438. /*
  1439. * deactivate_task - remove a task from the runqueue.
  1440. */
  1441. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1442. {
  1443. if (task_contributes_to_load(p))
  1444. rq->nr_uninterruptible++;
  1445. dequeue_task(rq, p, sleep);
  1446. dec_nr_running(rq);
  1447. }
  1448. /**
  1449. * task_curr - is this task currently executing on a CPU?
  1450. * @p: the task in question.
  1451. */
  1452. inline int task_curr(const struct task_struct *p)
  1453. {
  1454. return cpu_curr(task_cpu(p)) == p;
  1455. }
  1456. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1457. {
  1458. set_task_rq(p, cpu);
  1459. #ifdef CONFIG_SMP
  1460. /*
  1461. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1462. * successfuly executed on another CPU. We must ensure that updates of
  1463. * per-task data have been completed by this moment.
  1464. */
  1465. smp_wmb();
  1466. task_thread_info(p)->cpu = cpu;
  1467. #endif
  1468. }
  1469. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1470. const struct sched_class *prev_class,
  1471. int oldprio, int running)
  1472. {
  1473. if (prev_class != p->sched_class) {
  1474. if (prev_class->switched_from)
  1475. prev_class->switched_from(rq, p, running);
  1476. p->sched_class->switched_to(rq, p, running);
  1477. } else
  1478. p->sched_class->prio_changed(rq, p, oldprio, running);
  1479. }
  1480. #ifdef CONFIG_SMP
  1481. /* Used instead of source_load when we know the type == 0 */
  1482. static unsigned long weighted_cpuload(const int cpu)
  1483. {
  1484. return cpu_rq(cpu)->load.weight;
  1485. }
  1486. /*
  1487. * Is this task likely cache-hot:
  1488. */
  1489. static int
  1490. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1491. {
  1492. s64 delta;
  1493. /*
  1494. * Buddy candidates are cache hot:
  1495. */
  1496. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1497. return 1;
  1498. if (p->sched_class != &fair_sched_class)
  1499. return 0;
  1500. if (sysctl_sched_migration_cost == -1)
  1501. return 1;
  1502. if (sysctl_sched_migration_cost == 0)
  1503. return 0;
  1504. delta = now - p->se.exec_start;
  1505. return delta < (s64)sysctl_sched_migration_cost;
  1506. }
  1507. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1508. {
  1509. int old_cpu = task_cpu(p);
  1510. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1511. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1512. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1513. u64 clock_offset;
  1514. clock_offset = old_rq->clock - new_rq->clock;
  1515. #ifdef CONFIG_SCHEDSTATS
  1516. if (p->se.wait_start)
  1517. p->se.wait_start -= clock_offset;
  1518. if (p->se.sleep_start)
  1519. p->se.sleep_start -= clock_offset;
  1520. if (p->se.block_start)
  1521. p->se.block_start -= clock_offset;
  1522. if (old_cpu != new_cpu) {
  1523. schedstat_inc(p, se.nr_migrations);
  1524. if (task_hot(p, old_rq->clock, NULL))
  1525. schedstat_inc(p, se.nr_forced2_migrations);
  1526. }
  1527. #endif
  1528. p->se.vruntime -= old_cfsrq->min_vruntime -
  1529. new_cfsrq->min_vruntime;
  1530. __set_task_cpu(p, new_cpu);
  1531. }
  1532. struct migration_req {
  1533. struct list_head list;
  1534. struct task_struct *task;
  1535. int dest_cpu;
  1536. struct completion done;
  1537. };
  1538. /*
  1539. * The task's runqueue lock must be held.
  1540. * Returns true if you have to wait for migration thread.
  1541. */
  1542. static int
  1543. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1544. {
  1545. struct rq *rq = task_rq(p);
  1546. /*
  1547. * If the task is not on a runqueue (and not running), then
  1548. * it is sufficient to simply update the task's cpu field.
  1549. */
  1550. if (!p->se.on_rq && !task_running(rq, p)) {
  1551. set_task_cpu(p, dest_cpu);
  1552. return 0;
  1553. }
  1554. init_completion(&req->done);
  1555. req->task = p;
  1556. req->dest_cpu = dest_cpu;
  1557. list_add(&req->list, &rq->migration_queue);
  1558. return 1;
  1559. }
  1560. /*
  1561. * wait_task_inactive - wait for a thread to unschedule.
  1562. *
  1563. * If @match_state is nonzero, it's the @p->state value just checked and
  1564. * not expected to change. If it changes, i.e. @p might have woken up,
  1565. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1566. * we return a positive number (its total switch count). If a second call
  1567. * a short while later returns the same number, the caller can be sure that
  1568. * @p has remained unscheduled the whole time.
  1569. *
  1570. * The caller must ensure that the task *will* unschedule sometime soon,
  1571. * else this function might spin for a *long* time. This function can't
  1572. * be called with interrupts off, or it may introduce deadlock with
  1573. * smp_call_function() if an IPI is sent by the same process we are
  1574. * waiting to become inactive.
  1575. */
  1576. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1577. {
  1578. unsigned long flags;
  1579. int running, on_rq;
  1580. unsigned long ncsw;
  1581. struct rq *rq;
  1582. for (;;) {
  1583. /*
  1584. * We do the initial early heuristics without holding
  1585. * any task-queue locks at all. We'll only try to get
  1586. * the runqueue lock when things look like they will
  1587. * work out!
  1588. */
  1589. rq = task_rq(p);
  1590. /*
  1591. * If the task is actively running on another CPU
  1592. * still, just relax and busy-wait without holding
  1593. * any locks.
  1594. *
  1595. * NOTE! Since we don't hold any locks, it's not
  1596. * even sure that "rq" stays as the right runqueue!
  1597. * But we don't care, since "task_running()" will
  1598. * return false if the runqueue has changed and p
  1599. * is actually now running somewhere else!
  1600. */
  1601. while (task_running(rq, p)) {
  1602. if (match_state && unlikely(p->state != match_state))
  1603. return 0;
  1604. cpu_relax();
  1605. }
  1606. /*
  1607. * Ok, time to look more closely! We need the rq
  1608. * lock now, to be *sure*. If we're wrong, we'll
  1609. * just go back and repeat.
  1610. */
  1611. rq = task_rq_lock(p, &flags);
  1612. running = task_running(rq, p);
  1613. on_rq = p->se.on_rq;
  1614. ncsw = 0;
  1615. if (!match_state || p->state == match_state) {
  1616. ncsw = p->nivcsw + p->nvcsw;
  1617. if (unlikely(!ncsw))
  1618. ncsw = 1;
  1619. }
  1620. task_rq_unlock(rq, &flags);
  1621. /*
  1622. * If it changed from the expected state, bail out now.
  1623. */
  1624. if (unlikely(!ncsw))
  1625. break;
  1626. /*
  1627. * Was it really running after all now that we
  1628. * checked with the proper locks actually held?
  1629. *
  1630. * Oops. Go back and try again..
  1631. */
  1632. if (unlikely(running)) {
  1633. cpu_relax();
  1634. continue;
  1635. }
  1636. /*
  1637. * It's not enough that it's not actively running,
  1638. * it must be off the runqueue _entirely_, and not
  1639. * preempted!
  1640. *
  1641. * So if it wa still runnable (but just not actively
  1642. * running right now), it's preempted, and we should
  1643. * yield - it could be a while.
  1644. */
  1645. if (unlikely(on_rq)) {
  1646. schedule_timeout_uninterruptible(1);
  1647. continue;
  1648. }
  1649. /*
  1650. * Ahh, all good. It wasn't running, and it wasn't
  1651. * runnable, which means that it will never become
  1652. * running in the future either. We're all done!
  1653. */
  1654. break;
  1655. }
  1656. return ncsw;
  1657. }
  1658. /***
  1659. * kick_process - kick a running thread to enter/exit the kernel
  1660. * @p: the to-be-kicked thread
  1661. *
  1662. * Cause a process which is running on another CPU to enter
  1663. * kernel-mode, without any delay. (to get signals handled.)
  1664. *
  1665. * NOTE: this function doesnt have to take the runqueue lock,
  1666. * because all it wants to ensure is that the remote task enters
  1667. * the kernel. If the IPI races and the task has been migrated
  1668. * to another CPU then no harm is done and the purpose has been
  1669. * achieved as well.
  1670. */
  1671. void kick_process(struct task_struct *p)
  1672. {
  1673. int cpu;
  1674. preempt_disable();
  1675. cpu = task_cpu(p);
  1676. if ((cpu != smp_processor_id()) && task_curr(p))
  1677. smp_send_reschedule(cpu);
  1678. preempt_enable();
  1679. }
  1680. /*
  1681. * Return a low guess at the load of a migration-source cpu weighted
  1682. * according to the scheduling class and "nice" value.
  1683. *
  1684. * We want to under-estimate the load of migration sources, to
  1685. * balance conservatively.
  1686. */
  1687. static unsigned long source_load(int cpu, int type)
  1688. {
  1689. struct rq *rq = cpu_rq(cpu);
  1690. unsigned long total = weighted_cpuload(cpu);
  1691. if (type == 0 || !sched_feat(LB_BIAS))
  1692. return total;
  1693. return min(rq->cpu_load[type-1], total);
  1694. }
  1695. /*
  1696. * Return a high guess at the load of a migration-target cpu weighted
  1697. * according to the scheduling class and "nice" value.
  1698. */
  1699. static unsigned long target_load(int cpu, int type)
  1700. {
  1701. struct rq *rq = cpu_rq(cpu);
  1702. unsigned long total = weighted_cpuload(cpu);
  1703. if (type == 0 || !sched_feat(LB_BIAS))
  1704. return total;
  1705. return max(rq->cpu_load[type-1], total);
  1706. }
  1707. /*
  1708. * find_idlest_group finds and returns the least busy CPU group within the
  1709. * domain.
  1710. */
  1711. static struct sched_group *
  1712. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1713. {
  1714. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1715. unsigned long min_load = ULONG_MAX, this_load = 0;
  1716. int load_idx = sd->forkexec_idx;
  1717. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1718. do {
  1719. unsigned long load, avg_load;
  1720. int local_group;
  1721. int i;
  1722. /* Skip over this group if it has no CPUs allowed */
  1723. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1724. continue;
  1725. local_group = cpu_isset(this_cpu, group->cpumask);
  1726. /* Tally up the load of all CPUs in the group */
  1727. avg_load = 0;
  1728. for_each_cpu_mask_nr(i, group->cpumask) {
  1729. /* Bias balancing toward cpus of our domain */
  1730. if (local_group)
  1731. load = source_load(i, load_idx);
  1732. else
  1733. load = target_load(i, load_idx);
  1734. avg_load += load;
  1735. }
  1736. /* Adjust by relative CPU power of the group */
  1737. avg_load = sg_div_cpu_power(group,
  1738. avg_load * SCHED_LOAD_SCALE);
  1739. if (local_group) {
  1740. this_load = avg_load;
  1741. this = group;
  1742. } else if (avg_load < min_load) {
  1743. min_load = avg_load;
  1744. idlest = group;
  1745. }
  1746. } while (group = group->next, group != sd->groups);
  1747. if (!idlest || 100*this_load < imbalance*min_load)
  1748. return NULL;
  1749. return idlest;
  1750. }
  1751. /*
  1752. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1753. */
  1754. static int
  1755. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1756. cpumask_t *tmp)
  1757. {
  1758. unsigned long load, min_load = ULONG_MAX;
  1759. int idlest = -1;
  1760. int i;
  1761. /* Traverse only the allowed CPUs */
  1762. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1763. for_each_cpu_mask_nr(i, *tmp) {
  1764. load = weighted_cpuload(i);
  1765. if (load < min_load || (load == min_load && i == this_cpu)) {
  1766. min_load = load;
  1767. idlest = i;
  1768. }
  1769. }
  1770. return idlest;
  1771. }
  1772. /*
  1773. * sched_balance_self: balance the current task (running on cpu) in domains
  1774. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1775. * SD_BALANCE_EXEC.
  1776. *
  1777. * Balance, ie. select the least loaded group.
  1778. *
  1779. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1780. *
  1781. * preempt must be disabled.
  1782. */
  1783. static int sched_balance_self(int cpu, int flag)
  1784. {
  1785. struct task_struct *t = current;
  1786. struct sched_domain *tmp, *sd = NULL;
  1787. for_each_domain(cpu, tmp) {
  1788. /*
  1789. * If power savings logic is enabled for a domain, stop there.
  1790. */
  1791. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1792. break;
  1793. if (tmp->flags & flag)
  1794. sd = tmp;
  1795. }
  1796. if (sd)
  1797. update_shares(sd);
  1798. while (sd) {
  1799. cpumask_t span, tmpmask;
  1800. struct sched_group *group;
  1801. int new_cpu, weight;
  1802. if (!(sd->flags & flag)) {
  1803. sd = sd->child;
  1804. continue;
  1805. }
  1806. span = sd->span;
  1807. group = find_idlest_group(sd, t, cpu);
  1808. if (!group) {
  1809. sd = sd->child;
  1810. continue;
  1811. }
  1812. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1813. if (new_cpu == -1 || new_cpu == cpu) {
  1814. /* Now try balancing at a lower domain level of cpu */
  1815. sd = sd->child;
  1816. continue;
  1817. }
  1818. /* Now try balancing at a lower domain level of new_cpu */
  1819. cpu = new_cpu;
  1820. sd = NULL;
  1821. weight = cpus_weight(span);
  1822. for_each_domain(cpu, tmp) {
  1823. if (weight <= cpus_weight(tmp->span))
  1824. break;
  1825. if (tmp->flags & flag)
  1826. sd = tmp;
  1827. }
  1828. /* while loop will break here if sd == NULL */
  1829. }
  1830. return cpu;
  1831. }
  1832. #endif /* CONFIG_SMP */
  1833. /***
  1834. * try_to_wake_up - wake up a thread
  1835. * @p: the to-be-woken-up thread
  1836. * @state: the mask of task states that can be woken
  1837. * @sync: do a synchronous wakeup?
  1838. *
  1839. * Put it on the run-queue if it's not already there. The "current"
  1840. * thread is always on the run-queue (except when the actual
  1841. * re-schedule is in progress), and as such you're allowed to do
  1842. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1843. * runnable without the overhead of this.
  1844. *
  1845. * returns failure only if the task is already active.
  1846. */
  1847. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1848. {
  1849. int cpu, orig_cpu, this_cpu, success = 0;
  1850. unsigned long flags;
  1851. long old_state;
  1852. struct rq *rq;
  1853. if (!sched_feat(SYNC_WAKEUPS))
  1854. sync = 0;
  1855. #ifdef CONFIG_SMP
  1856. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1857. struct sched_domain *sd;
  1858. this_cpu = raw_smp_processor_id();
  1859. cpu = task_cpu(p);
  1860. for_each_domain(this_cpu, sd) {
  1861. if (cpu_isset(cpu, sd->span)) {
  1862. update_shares(sd);
  1863. break;
  1864. }
  1865. }
  1866. }
  1867. #endif
  1868. smp_wmb();
  1869. rq = task_rq_lock(p, &flags);
  1870. old_state = p->state;
  1871. if (!(old_state & state))
  1872. goto out;
  1873. if (p->se.on_rq)
  1874. goto out_running;
  1875. cpu = task_cpu(p);
  1876. orig_cpu = cpu;
  1877. this_cpu = smp_processor_id();
  1878. #ifdef CONFIG_SMP
  1879. if (unlikely(task_running(rq, p)))
  1880. goto out_activate;
  1881. cpu = p->sched_class->select_task_rq(p, sync);
  1882. if (cpu != orig_cpu) {
  1883. set_task_cpu(p, cpu);
  1884. task_rq_unlock(rq, &flags);
  1885. /* might preempt at this point */
  1886. rq = task_rq_lock(p, &flags);
  1887. old_state = p->state;
  1888. if (!(old_state & state))
  1889. goto out;
  1890. if (p->se.on_rq)
  1891. goto out_running;
  1892. this_cpu = smp_processor_id();
  1893. cpu = task_cpu(p);
  1894. }
  1895. #ifdef CONFIG_SCHEDSTATS
  1896. schedstat_inc(rq, ttwu_count);
  1897. if (cpu == this_cpu)
  1898. schedstat_inc(rq, ttwu_local);
  1899. else {
  1900. struct sched_domain *sd;
  1901. for_each_domain(this_cpu, sd) {
  1902. if (cpu_isset(cpu, sd->span)) {
  1903. schedstat_inc(sd, ttwu_wake_remote);
  1904. break;
  1905. }
  1906. }
  1907. }
  1908. #endif /* CONFIG_SCHEDSTATS */
  1909. out_activate:
  1910. #endif /* CONFIG_SMP */
  1911. schedstat_inc(p, se.nr_wakeups);
  1912. if (sync)
  1913. schedstat_inc(p, se.nr_wakeups_sync);
  1914. if (orig_cpu != cpu)
  1915. schedstat_inc(p, se.nr_wakeups_migrate);
  1916. if (cpu == this_cpu)
  1917. schedstat_inc(p, se.nr_wakeups_local);
  1918. else
  1919. schedstat_inc(p, se.nr_wakeups_remote);
  1920. update_rq_clock(rq);
  1921. activate_task(rq, p, 1);
  1922. success = 1;
  1923. out_running:
  1924. trace_mark(kernel_sched_wakeup,
  1925. "pid %d state %ld ## rq %p task %p rq->curr %p",
  1926. p->pid, p->state, rq, p, rq->curr);
  1927. check_preempt_curr(rq, p);
  1928. p->state = TASK_RUNNING;
  1929. #ifdef CONFIG_SMP
  1930. if (p->sched_class->task_wake_up)
  1931. p->sched_class->task_wake_up(rq, p);
  1932. #endif
  1933. out:
  1934. current->se.last_wakeup = current->se.sum_exec_runtime;
  1935. task_rq_unlock(rq, &flags);
  1936. return success;
  1937. }
  1938. int wake_up_process(struct task_struct *p)
  1939. {
  1940. return try_to_wake_up(p, TASK_ALL, 0);
  1941. }
  1942. EXPORT_SYMBOL(wake_up_process);
  1943. int wake_up_state(struct task_struct *p, unsigned int state)
  1944. {
  1945. return try_to_wake_up(p, state, 0);
  1946. }
  1947. /*
  1948. * Perform scheduler related setup for a newly forked process p.
  1949. * p is forked by current.
  1950. *
  1951. * __sched_fork() is basic setup used by init_idle() too:
  1952. */
  1953. static void __sched_fork(struct task_struct *p)
  1954. {
  1955. p->se.exec_start = 0;
  1956. p->se.sum_exec_runtime = 0;
  1957. p->se.prev_sum_exec_runtime = 0;
  1958. p->se.last_wakeup = 0;
  1959. p->se.avg_overlap = 0;
  1960. #ifdef CONFIG_SCHEDSTATS
  1961. p->se.wait_start = 0;
  1962. p->se.sum_sleep_runtime = 0;
  1963. p->se.sleep_start = 0;
  1964. p->se.block_start = 0;
  1965. p->se.sleep_max = 0;
  1966. p->se.block_max = 0;
  1967. p->se.exec_max = 0;
  1968. p->se.slice_max = 0;
  1969. p->se.wait_max = 0;
  1970. #endif
  1971. INIT_LIST_HEAD(&p->rt.run_list);
  1972. p->se.on_rq = 0;
  1973. INIT_LIST_HEAD(&p->se.group_node);
  1974. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1975. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1976. #endif
  1977. /*
  1978. * We mark the process as running here, but have not actually
  1979. * inserted it onto the runqueue yet. This guarantees that
  1980. * nobody will actually run it, and a signal or other external
  1981. * event cannot wake it up and insert it on the runqueue either.
  1982. */
  1983. p->state = TASK_RUNNING;
  1984. }
  1985. /*
  1986. * fork()/clone()-time setup:
  1987. */
  1988. void sched_fork(struct task_struct *p, int clone_flags)
  1989. {
  1990. int cpu = get_cpu();
  1991. __sched_fork(p);
  1992. #ifdef CONFIG_SMP
  1993. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1994. #endif
  1995. set_task_cpu(p, cpu);
  1996. /*
  1997. * Make sure we do not leak PI boosting priority to the child:
  1998. */
  1999. p->prio = current->normal_prio;
  2000. if (!rt_prio(p->prio))
  2001. p->sched_class = &fair_sched_class;
  2002. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2003. if (likely(sched_info_on()))
  2004. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2005. #endif
  2006. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2007. p->oncpu = 0;
  2008. #endif
  2009. #ifdef CONFIG_PREEMPT
  2010. /* Want to start with kernel preemption disabled. */
  2011. task_thread_info(p)->preempt_count = 1;
  2012. #endif
  2013. put_cpu();
  2014. }
  2015. /*
  2016. * wake_up_new_task - wake up a newly created task for the first time.
  2017. *
  2018. * This function will do some initial scheduler statistics housekeeping
  2019. * that must be done for every newly created context, then puts the task
  2020. * on the runqueue and wakes it.
  2021. */
  2022. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2023. {
  2024. unsigned long flags;
  2025. struct rq *rq;
  2026. rq = task_rq_lock(p, &flags);
  2027. BUG_ON(p->state != TASK_RUNNING);
  2028. update_rq_clock(rq);
  2029. p->prio = effective_prio(p);
  2030. if (!p->sched_class->task_new || !current->se.on_rq) {
  2031. activate_task(rq, p, 0);
  2032. } else {
  2033. /*
  2034. * Let the scheduling class do new task startup
  2035. * management (if any):
  2036. */
  2037. p->sched_class->task_new(rq, p);
  2038. inc_nr_running(rq);
  2039. }
  2040. trace_mark(kernel_sched_wakeup_new,
  2041. "pid %d state %ld ## rq %p task %p rq->curr %p",
  2042. p->pid, p->state, rq, p, rq->curr);
  2043. check_preempt_curr(rq, p);
  2044. #ifdef CONFIG_SMP
  2045. if (p->sched_class->task_wake_up)
  2046. p->sched_class->task_wake_up(rq, p);
  2047. #endif
  2048. task_rq_unlock(rq, &flags);
  2049. }
  2050. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2051. /**
  2052. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2053. * @notifier: notifier struct to register
  2054. */
  2055. void preempt_notifier_register(struct preempt_notifier *notifier)
  2056. {
  2057. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2058. }
  2059. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2060. /**
  2061. * preempt_notifier_unregister - no longer interested in preemption notifications
  2062. * @notifier: notifier struct to unregister
  2063. *
  2064. * This is safe to call from within a preemption notifier.
  2065. */
  2066. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2067. {
  2068. hlist_del(&notifier->link);
  2069. }
  2070. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2071. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2072. {
  2073. struct preempt_notifier *notifier;
  2074. struct hlist_node *node;
  2075. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2076. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2077. }
  2078. static void
  2079. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2080. struct task_struct *next)
  2081. {
  2082. struct preempt_notifier *notifier;
  2083. struct hlist_node *node;
  2084. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2085. notifier->ops->sched_out(notifier, next);
  2086. }
  2087. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2088. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2089. {
  2090. }
  2091. static void
  2092. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2093. struct task_struct *next)
  2094. {
  2095. }
  2096. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2097. /**
  2098. * prepare_task_switch - prepare to switch tasks
  2099. * @rq: the runqueue preparing to switch
  2100. * @prev: the current task that is being switched out
  2101. * @next: the task we are going to switch to.
  2102. *
  2103. * This is called with the rq lock held and interrupts off. It must
  2104. * be paired with a subsequent finish_task_switch after the context
  2105. * switch.
  2106. *
  2107. * prepare_task_switch sets up locking and calls architecture specific
  2108. * hooks.
  2109. */
  2110. static inline void
  2111. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2112. struct task_struct *next)
  2113. {
  2114. fire_sched_out_preempt_notifiers(prev, next);
  2115. prepare_lock_switch(rq, next);
  2116. prepare_arch_switch(next);
  2117. }
  2118. /**
  2119. * finish_task_switch - clean up after a task-switch
  2120. * @rq: runqueue associated with task-switch
  2121. * @prev: the thread we just switched away from.
  2122. *
  2123. * finish_task_switch must be called after the context switch, paired
  2124. * with a prepare_task_switch call before the context switch.
  2125. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2126. * and do any other architecture-specific cleanup actions.
  2127. *
  2128. * Note that we may have delayed dropping an mm in context_switch(). If
  2129. * so, we finish that here outside of the runqueue lock. (Doing it
  2130. * with the lock held can cause deadlocks; see schedule() for
  2131. * details.)
  2132. */
  2133. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2134. __releases(rq->lock)
  2135. {
  2136. struct mm_struct *mm = rq->prev_mm;
  2137. long prev_state;
  2138. rq->prev_mm = NULL;
  2139. /*
  2140. * A task struct has one reference for the use as "current".
  2141. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2142. * schedule one last time. The schedule call will never return, and
  2143. * the scheduled task must drop that reference.
  2144. * The test for TASK_DEAD must occur while the runqueue locks are
  2145. * still held, otherwise prev could be scheduled on another cpu, die
  2146. * there before we look at prev->state, and then the reference would
  2147. * be dropped twice.
  2148. * Manfred Spraul <manfred@colorfullife.com>
  2149. */
  2150. prev_state = prev->state;
  2151. finish_arch_switch(prev);
  2152. finish_lock_switch(rq, prev);
  2153. #ifdef CONFIG_SMP
  2154. if (current->sched_class->post_schedule)
  2155. current->sched_class->post_schedule(rq);
  2156. #endif
  2157. fire_sched_in_preempt_notifiers(current);
  2158. if (mm)
  2159. mmdrop(mm);
  2160. if (unlikely(prev_state == TASK_DEAD)) {
  2161. /*
  2162. * Remove function-return probe instances associated with this
  2163. * task and put them back on the free list.
  2164. */
  2165. kprobe_flush_task(prev);
  2166. put_task_struct(prev);
  2167. }
  2168. }
  2169. /**
  2170. * schedule_tail - first thing a freshly forked thread must call.
  2171. * @prev: the thread we just switched away from.
  2172. */
  2173. asmlinkage void schedule_tail(struct task_struct *prev)
  2174. __releases(rq->lock)
  2175. {
  2176. struct rq *rq = this_rq();
  2177. finish_task_switch(rq, prev);
  2178. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2179. /* In this case, finish_task_switch does not reenable preemption */
  2180. preempt_enable();
  2181. #endif
  2182. if (current->set_child_tid)
  2183. put_user(task_pid_vnr(current), current->set_child_tid);
  2184. }
  2185. /*
  2186. * context_switch - switch to the new MM and the new
  2187. * thread's register state.
  2188. */
  2189. static inline void
  2190. context_switch(struct rq *rq, struct task_struct *prev,
  2191. struct task_struct *next)
  2192. {
  2193. struct mm_struct *mm, *oldmm;
  2194. prepare_task_switch(rq, prev, next);
  2195. trace_mark(kernel_sched_schedule,
  2196. "prev_pid %d next_pid %d prev_state %ld "
  2197. "## rq %p prev %p next %p",
  2198. prev->pid, next->pid, prev->state,
  2199. rq, prev, next);
  2200. mm = next->mm;
  2201. oldmm = prev->active_mm;
  2202. /*
  2203. * For paravirt, this is coupled with an exit in switch_to to
  2204. * combine the page table reload and the switch backend into
  2205. * one hypercall.
  2206. */
  2207. arch_enter_lazy_cpu_mode();
  2208. if (unlikely(!mm)) {
  2209. next->active_mm = oldmm;
  2210. atomic_inc(&oldmm->mm_count);
  2211. enter_lazy_tlb(oldmm, next);
  2212. } else
  2213. switch_mm(oldmm, mm, next);
  2214. if (unlikely(!prev->mm)) {
  2215. prev->active_mm = NULL;
  2216. rq->prev_mm = oldmm;
  2217. }
  2218. /*
  2219. * Since the runqueue lock will be released by the next
  2220. * task (which is an invalid locking op but in the case
  2221. * of the scheduler it's an obvious special-case), so we
  2222. * do an early lockdep release here:
  2223. */
  2224. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2225. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2226. #endif
  2227. /* Here we just switch the register state and the stack. */
  2228. switch_to(prev, next, prev);
  2229. barrier();
  2230. /*
  2231. * this_rq must be evaluated again because prev may have moved
  2232. * CPUs since it called schedule(), thus the 'rq' on its stack
  2233. * frame will be invalid.
  2234. */
  2235. finish_task_switch(this_rq(), prev);
  2236. }
  2237. /*
  2238. * nr_running, nr_uninterruptible and nr_context_switches:
  2239. *
  2240. * externally visible scheduler statistics: current number of runnable
  2241. * threads, current number of uninterruptible-sleeping threads, total
  2242. * number of context switches performed since bootup.
  2243. */
  2244. unsigned long nr_running(void)
  2245. {
  2246. unsigned long i, sum = 0;
  2247. for_each_online_cpu(i)
  2248. sum += cpu_rq(i)->nr_running;
  2249. return sum;
  2250. }
  2251. unsigned long nr_uninterruptible(void)
  2252. {
  2253. unsigned long i, sum = 0;
  2254. for_each_possible_cpu(i)
  2255. sum += cpu_rq(i)->nr_uninterruptible;
  2256. /*
  2257. * Since we read the counters lockless, it might be slightly
  2258. * inaccurate. Do not allow it to go below zero though:
  2259. */
  2260. if (unlikely((long)sum < 0))
  2261. sum = 0;
  2262. return sum;
  2263. }
  2264. unsigned long long nr_context_switches(void)
  2265. {
  2266. int i;
  2267. unsigned long long sum = 0;
  2268. for_each_possible_cpu(i)
  2269. sum += cpu_rq(i)->nr_switches;
  2270. return sum;
  2271. }
  2272. unsigned long nr_iowait(void)
  2273. {
  2274. unsigned long i, sum = 0;
  2275. for_each_possible_cpu(i)
  2276. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2277. return sum;
  2278. }
  2279. unsigned long nr_active(void)
  2280. {
  2281. unsigned long i, running = 0, uninterruptible = 0;
  2282. for_each_online_cpu(i) {
  2283. running += cpu_rq(i)->nr_running;
  2284. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2285. }
  2286. if (unlikely((long)uninterruptible < 0))
  2287. uninterruptible = 0;
  2288. return running + uninterruptible;
  2289. }
  2290. /*
  2291. * Update rq->cpu_load[] statistics. This function is usually called every
  2292. * scheduler tick (TICK_NSEC).
  2293. */
  2294. static void update_cpu_load(struct rq *this_rq)
  2295. {
  2296. unsigned long this_load = this_rq->load.weight;
  2297. int i, scale;
  2298. this_rq->nr_load_updates++;
  2299. /* Update our load: */
  2300. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2301. unsigned long old_load, new_load;
  2302. /* scale is effectively 1 << i now, and >> i divides by scale */
  2303. old_load = this_rq->cpu_load[i];
  2304. new_load = this_load;
  2305. /*
  2306. * Round up the averaging division if load is increasing. This
  2307. * prevents us from getting stuck on 9 if the load is 10, for
  2308. * example.
  2309. */
  2310. if (new_load > old_load)
  2311. new_load += scale-1;
  2312. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2313. }
  2314. }
  2315. #ifdef CONFIG_SMP
  2316. /*
  2317. * double_rq_lock - safely lock two runqueues
  2318. *
  2319. * Note this does not disable interrupts like task_rq_lock,
  2320. * you need to do so manually before calling.
  2321. */
  2322. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2323. __acquires(rq1->lock)
  2324. __acquires(rq2->lock)
  2325. {
  2326. BUG_ON(!irqs_disabled());
  2327. if (rq1 == rq2) {
  2328. spin_lock(&rq1->lock);
  2329. __acquire(rq2->lock); /* Fake it out ;) */
  2330. } else {
  2331. if (rq1 < rq2) {
  2332. spin_lock(&rq1->lock);
  2333. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2334. } else {
  2335. spin_lock(&rq2->lock);
  2336. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2337. }
  2338. }
  2339. update_rq_clock(rq1);
  2340. update_rq_clock(rq2);
  2341. }
  2342. /*
  2343. * double_rq_unlock - safely unlock two runqueues
  2344. *
  2345. * Note this does not restore interrupts like task_rq_unlock,
  2346. * you need to do so manually after calling.
  2347. */
  2348. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2349. __releases(rq1->lock)
  2350. __releases(rq2->lock)
  2351. {
  2352. spin_unlock(&rq1->lock);
  2353. if (rq1 != rq2)
  2354. spin_unlock(&rq2->lock);
  2355. else
  2356. __release(rq2->lock);
  2357. }
  2358. /*
  2359. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2360. */
  2361. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2362. __releases(this_rq->lock)
  2363. __acquires(busiest->lock)
  2364. __acquires(this_rq->lock)
  2365. {
  2366. int ret = 0;
  2367. if (unlikely(!irqs_disabled())) {
  2368. /* printk() doesn't work good under rq->lock */
  2369. spin_unlock(&this_rq->lock);
  2370. BUG_ON(1);
  2371. }
  2372. if (unlikely(!spin_trylock(&busiest->lock))) {
  2373. if (busiest < this_rq) {
  2374. spin_unlock(&this_rq->lock);
  2375. spin_lock(&busiest->lock);
  2376. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2377. ret = 1;
  2378. } else
  2379. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2380. }
  2381. return ret;
  2382. }
  2383. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2384. __releases(busiest->lock)
  2385. {
  2386. spin_unlock(&busiest->lock);
  2387. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2388. }
  2389. /*
  2390. * If dest_cpu is allowed for this process, migrate the task to it.
  2391. * This is accomplished by forcing the cpu_allowed mask to only
  2392. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2393. * the cpu_allowed mask is restored.
  2394. */
  2395. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2396. {
  2397. struct migration_req req;
  2398. unsigned long flags;
  2399. struct rq *rq;
  2400. rq = task_rq_lock(p, &flags);
  2401. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2402. || unlikely(!cpu_active(dest_cpu)))
  2403. goto out;
  2404. /* force the process onto the specified CPU */
  2405. if (migrate_task(p, dest_cpu, &req)) {
  2406. /* Need to wait for migration thread (might exit: take ref). */
  2407. struct task_struct *mt = rq->migration_thread;
  2408. get_task_struct(mt);
  2409. task_rq_unlock(rq, &flags);
  2410. wake_up_process(mt);
  2411. put_task_struct(mt);
  2412. wait_for_completion(&req.done);
  2413. return;
  2414. }
  2415. out:
  2416. task_rq_unlock(rq, &flags);
  2417. }
  2418. /*
  2419. * sched_exec - execve() is a valuable balancing opportunity, because at
  2420. * this point the task has the smallest effective memory and cache footprint.
  2421. */
  2422. void sched_exec(void)
  2423. {
  2424. int new_cpu, this_cpu = get_cpu();
  2425. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2426. put_cpu();
  2427. if (new_cpu != this_cpu)
  2428. sched_migrate_task(current, new_cpu);
  2429. }
  2430. /*
  2431. * pull_task - move a task from a remote runqueue to the local runqueue.
  2432. * Both runqueues must be locked.
  2433. */
  2434. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2435. struct rq *this_rq, int this_cpu)
  2436. {
  2437. deactivate_task(src_rq, p, 0);
  2438. set_task_cpu(p, this_cpu);
  2439. activate_task(this_rq, p, 0);
  2440. /*
  2441. * Note that idle threads have a prio of MAX_PRIO, for this test
  2442. * to be always true for them.
  2443. */
  2444. check_preempt_curr(this_rq, p);
  2445. }
  2446. /*
  2447. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2448. */
  2449. static
  2450. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2451. struct sched_domain *sd, enum cpu_idle_type idle,
  2452. int *all_pinned)
  2453. {
  2454. /*
  2455. * We do not migrate tasks that are:
  2456. * 1) running (obviously), or
  2457. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2458. * 3) are cache-hot on their current CPU.
  2459. */
  2460. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2461. schedstat_inc(p, se.nr_failed_migrations_affine);
  2462. return 0;
  2463. }
  2464. *all_pinned = 0;
  2465. if (task_running(rq, p)) {
  2466. schedstat_inc(p, se.nr_failed_migrations_running);
  2467. return 0;
  2468. }
  2469. /*
  2470. * Aggressive migration if:
  2471. * 1) task is cache cold, or
  2472. * 2) too many balance attempts have failed.
  2473. */
  2474. if (!task_hot(p, rq->clock, sd) ||
  2475. sd->nr_balance_failed > sd->cache_nice_tries) {
  2476. #ifdef CONFIG_SCHEDSTATS
  2477. if (task_hot(p, rq->clock, sd)) {
  2478. schedstat_inc(sd, lb_hot_gained[idle]);
  2479. schedstat_inc(p, se.nr_forced_migrations);
  2480. }
  2481. #endif
  2482. return 1;
  2483. }
  2484. if (task_hot(p, rq->clock, sd)) {
  2485. schedstat_inc(p, se.nr_failed_migrations_hot);
  2486. return 0;
  2487. }
  2488. return 1;
  2489. }
  2490. static unsigned long
  2491. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2492. unsigned long max_load_move, struct sched_domain *sd,
  2493. enum cpu_idle_type idle, int *all_pinned,
  2494. int *this_best_prio, struct rq_iterator *iterator)
  2495. {
  2496. int loops = 0, pulled = 0, pinned = 0;
  2497. struct task_struct *p;
  2498. long rem_load_move = max_load_move;
  2499. if (max_load_move == 0)
  2500. goto out;
  2501. pinned = 1;
  2502. /*
  2503. * Start the load-balancing iterator:
  2504. */
  2505. p = iterator->start(iterator->arg);
  2506. next:
  2507. if (!p || loops++ > sysctl_sched_nr_migrate)
  2508. goto out;
  2509. if ((p->se.load.weight >> 1) > rem_load_move ||
  2510. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2511. p = iterator->next(iterator->arg);
  2512. goto next;
  2513. }
  2514. pull_task(busiest, p, this_rq, this_cpu);
  2515. pulled++;
  2516. rem_load_move -= p->se.load.weight;
  2517. /*
  2518. * We only want to steal up to the prescribed amount of weighted load.
  2519. */
  2520. if (rem_load_move > 0) {
  2521. if (p->prio < *this_best_prio)
  2522. *this_best_prio = p->prio;
  2523. p = iterator->next(iterator->arg);
  2524. goto next;
  2525. }
  2526. out:
  2527. /*
  2528. * Right now, this is one of only two places pull_task() is called,
  2529. * so we can safely collect pull_task() stats here rather than
  2530. * inside pull_task().
  2531. */
  2532. schedstat_add(sd, lb_gained[idle], pulled);
  2533. if (all_pinned)
  2534. *all_pinned = pinned;
  2535. return max_load_move - rem_load_move;
  2536. }
  2537. /*
  2538. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2539. * this_rq, as part of a balancing operation within domain "sd".
  2540. * Returns 1 if successful and 0 otherwise.
  2541. *
  2542. * Called with both runqueues locked.
  2543. */
  2544. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2545. unsigned long max_load_move,
  2546. struct sched_domain *sd, enum cpu_idle_type idle,
  2547. int *all_pinned)
  2548. {
  2549. const struct sched_class *class = sched_class_highest;
  2550. unsigned long total_load_moved = 0;
  2551. int this_best_prio = this_rq->curr->prio;
  2552. do {
  2553. total_load_moved +=
  2554. class->load_balance(this_rq, this_cpu, busiest,
  2555. max_load_move - total_load_moved,
  2556. sd, idle, all_pinned, &this_best_prio);
  2557. class = class->next;
  2558. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2559. break;
  2560. } while (class && max_load_move > total_load_moved);
  2561. return total_load_moved > 0;
  2562. }
  2563. static int
  2564. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2565. struct sched_domain *sd, enum cpu_idle_type idle,
  2566. struct rq_iterator *iterator)
  2567. {
  2568. struct task_struct *p = iterator->start(iterator->arg);
  2569. int pinned = 0;
  2570. while (p) {
  2571. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2572. pull_task(busiest, p, this_rq, this_cpu);
  2573. /*
  2574. * Right now, this is only the second place pull_task()
  2575. * is called, so we can safely collect pull_task()
  2576. * stats here rather than inside pull_task().
  2577. */
  2578. schedstat_inc(sd, lb_gained[idle]);
  2579. return 1;
  2580. }
  2581. p = iterator->next(iterator->arg);
  2582. }
  2583. return 0;
  2584. }
  2585. /*
  2586. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2587. * part of active balancing operations within "domain".
  2588. * Returns 1 if successful and 0 otherwise.
  2589. *
  2590. * Called with both runqueues locked.
  2591. */
  2592. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2593. struct sched_domain *sd, enum cpu_idle_type idle)
  2594. {
  2595. const struct sched_class *class;
  2596. for (class = sched_class_highest; class; class = class->next)
  2597. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2598. return 1;
  2599. return 0;
  2600. }
  2601. /*
  2602. * find_busiest_group finds and returns the busiest CPU group within the
  2603. * domain. It calculates and returns the amount of weighted load which
  2604. * should be moved to restore balance via the imbalance parameter.
  2605. */
  2606. static struct sched_group *
  2607. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2608. unsigned long *imbalance, enum cpu_idle_type idle,
  2609. int *sd_idle, const cpumask_t *cpus, int *balance)
  2610. {
  2611. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2612. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2613. unsigned long max_pull;
  2614. unsigned long busiest_load_per_task, busiest_nr_running;
  2615. unsigned long this_load_per_task, this_nr_running;
  2616. int load_idx, group_imb = 0;
  2617. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2618. int power_savings_balance = 1;
  2619. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2620. unsigned long min_nr_running = ULONG_MAX;
  2621. struct sched_group *group_min = NULL, *group_leader = NULL;
  2622. #endif
  2623. max_load = this_load = total_load = total_pwr = 0;
  2624. busiest_load_per_task = busiest_nr_running = 0;
  2625. this_load_per_task = this_nr_running = 0;
  2626. if (idle == CPU_NOT_IDLE)
  2627. load_idx = sd->busy_idx;
  2628. else if (idle == CPU_NEWLY_IDLE)
  2629. load_idx = sd->newidle_idx;
  2630. else
  2631. load_idx = sd->idle_idx;
  2632. do {
  2633. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2634. int local_group;
  2635. int i;
  2636. int __group_imb = 0;
  2637. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2638. unsigned long sum_nr_running, sum_weighted_load;
  2639. unsigned long sum_avg_load_per_task;
  2640. unsigned long avg_load_per_task;
  2641. local_group = cpu_isset(this_cpu, group->cpumask);
  2642. if (local_group)
  2643. balance_cpu = first_cpu(group->cpumask);
  2644. /* Tally up the load of all CPUs in the group */
  2645. sum_weighted_load = sum_nr_running = avg_load = 0;
  2646. sum_avg_load_per_task = avg_load_per_task = 0;
  2647. max_cpu_load = 0;
  2648. min_cpu_load = ~0UL;
  2649. for_each_cpu_mask_nr(i, group->cpumask) {
  2650. struct rq *rq;
  2651. if (!cpu_isset(i, *cpus))
  2652. continue;
  2653. rq = cpu_rq(i);
  2654. if (*sd_idle && rq->nr_running)
  2655. *sd_idle = 0;
  2656. /* Bias balancing toward cpus of our domain */
  2657. if (local_group) {
  2658. if (idle_cpu(i) && !first_idle_cpu) {
  2659. first_idle_cpu = 1;
  2660. balance_cpu = i;
  2661. }
  2662. load = target_load(i, load_idx);
  2663. } else {
  2664. load = source_load(i, load_idx);
  2665. if (load > max_cpu_load)
  2666. max_cpu_load = load;
  2667. if (min_cpu_load > load)
  2668. min_cpu_load = load;
  2669. }
  2670. avg_load += load;
  2671. sum_nr_running += rq->nr_running;
  2672. sum_weighted_load += weighted_cpuload(i);
  2673. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2674. }
  2675. /*
  2676. * First idle cpu or the first cpu(busiest) in this sched group
  2677. * is eligible for doing load balancing at this and above
  2678. * domains. In the newly idle case, we will allow all the cpu's
  2679. * to do the newly idle load balance.
  2680. */
  2681. if (idle != CPU_NEWLY_IDLE && local_group &&
  2682. balance_cpu != this_cpu && balance) {
  2683. *balance = 0;
  2684. goto ret;
  2685. }
  2686. total_load += avg_load;
  2687. total_pwr += group->__cpu_power;
  2688. /* Adjust by relative CPU power of the group */
  2689. avg_load = sg_div_cpu_power(group,
  2690. avg_load * SCHED_LOAD_SCALE);
  2691. /*
  2692. * Consider the group unbalanced when the imbalance is larger
  2693. * than the average weight of two tasks.
  2694. *
  2695. * APZ: with cgroup the avg task weight can vary wildly and
  2696. * might not be a suitable number - should we keep a
  2697. * normalized nr_running number somewhere that negates
  2698. * the hierarchy?
  2699. */
  2700. avg_load_per_task = sg_div_cpu_power(group,
  2701. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2702. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2703. __group_imb = 1;
  2704. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2705. if (local_group) {
  2706. this_load = avg_load;
  2707. this = group;
  2708. this_nr_running = sum_nr_running;
  2709. this_load_per_task = sum_weighted_load;
  2710. } else if (avg_load > max_load &&
  2711. (sum_nr_running > group_capacity || __group_imb)) {
  2712. max_load = avg_load;
  2713. busiest = group;
  2714. busiest_nr_running = sum_nr_running;
  2715. busiest_load_per_task = sum_weighted_load;
  2716. group_imb = __group_imb;
  2717. }
  2718. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2719. /*
  2720. * Busy processors will not participate in power savings
  2721. * balance.
  2722. */
  2723. if (idle == CPU_NOT_IDLE ||
  2724. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2725. goto group_next;
  2726. /*
  2727. * If the local group is idle or completely loaded
  2728. * no need to do power savings balance at this domain
  2729. */
  2730. if (local_group && (this_nr_running >= group_capacity ||
  2731. !this_nr_running))
  2732. power_savings_balance = 0;
  2733. /*
  2734. * If a group is already running at full capacity or idle,
  2735. * don't include that group in power savings calculations
  2736. */
  2737. if (!power_savings_balance || sum_nr_running >= group_capacity
  2738. || !sum_nr_running)
  2739. goto group_next;
  2740. /*
  2741. * Calculate the group which has the least non-idle load.
  2742. * This is the group from where we need to pick up the load
  2743. * for saving power
  2744. */
  2745. if ((sum_nr_running < min_nr_running) ||
  2746. (sum_nr_running == min_nr_running &&
  2747. first_cpu(group->cpumask) <
  2748. first_cpu(group_min->cpumask))) {
  2749. group_min = group;
  2750. min_nr_running = sum_nr_running;
  2751. min_load_per_task = sum_weighted_load /
  2752. sum_nr_running;
  2753. }
  2754. /*
  2755. * Calculate the group which is almost near its
  2756. * capacity but still has some space to pick up some load
  2757. * from other group and save more power
  2758. */
  2759. if (sum_nr_running <= group_capacity - 1) {
  2760. if (sum_nr_running > leader_nr_running ||
  2761. (sum_nr_running == leader_nr_running &&
  2762. first_cpu(group->cpumask) >
  2763. first_cpu(group_leader->cpumask))) {
  2764. group_leader = group;
  2765. leader_nr_running = sum_nr_running;
  2766. }
  2767. }
  2768. group_next:
  2769. #endif
  2770. group = group->next;
  2771. } while (group != sd->groups);
  2772. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2773. goto out_balanced;
  2774. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2775. if (this_load >= avg_load ||
  2776. 100*max_load <= sd->imbalance_pct*this_load)
  2777. goto out_balanced;
  2778. busiest_load_per_task /= busiest_nr_running;
  2779. if (group_imb)
  2780. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2781. /*
  2782. * We're trying to get all the cpus to the average_load, so we don't
  2783. * want to push ourselves above the average load, nor do we wish to
  2784. * reduce the max loaded cpu below the average load, as either of these
  2785. * actions would just result in more rebalancing later, and ping-pong
  2786. * tasks around. Thus we look for the minimum possible imbalance.
  2787. * Negative imbalances (*we* are more loaded than anyone else) will
  2788. * be counted as no imbalance for these purposes -- we can't fix that
  2789. * by pulling tasks to us. Be careful of negative numbers as they'll
  2790. * appear as very large values with unsigned longs.
  2791. */
  2792. if (max_load <= busiest_load_per_task)
  2793. goto out_balanced;
  2794. /*
  2795. * In the presence of smp nice balancing, certain scenarios can have
  2796. * max load less than avg load(as we skip the groups at or below
  2797. * its cpu_power, while calculating max_load..)
  2798. */
  2799. if (max_load < avg_load) {
  2800. *imbalance = 0;
  2801. goto small_imbalance;
  2802. }
  2803. /* Don't want to pull so many tasks that a group would go idle */
  2804. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2805. /* How much load to actually move to equalise the imbalance */
  2806. *imbalance = min(max_pull * busiest->__cpu_power,
  2807. (avg_load - this_load) * this->__cpu_power)
  2808. / SCHED_LOAD_SCALE;
  2809. /*
  2810. * if *imbalance is less than the average load per runnable task
  2811. * there is no gaurantee that any tasks will be moved so we'll have
  2812. * a think about bumping its value to force at least one task to be
  2813. * moved
  2814. */
  2815. if (*imbalance < busiest_load_per_task) {
  2816. unsigned long tmp, pwr_now, pwr_move;
  2817. unsigned int imbn;
  2818. small_imbalance:
  2819. pwr_move = pwr_now = 0;
  2820. imbn = 2;
  2821. if (this_nr_running) {
  2822. this_load_per_task /= this_nr_running;
  2823. if (busiest_load_per_task > this_load_per_task)
  2824. imbn = 1;
  2825. } else
  2826. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2827. if (max_load - this_load + 2*busiest_load_per_task >=
  2828. busiest_load_per_task * imbn) {
  2829. *imbalance = busiest_load_per_task;
  2830. return busiest;
  2831. }
  2832. /*
  2833. * OK, we don't have enough imbalance to justify moving tasks,
  2834. * however we may be able to increase total CPU power used by
  2835. * moving them.
  2836. */
  2837. pwr_now += busiest->__cpu_power *
  2838. min(busiest_load_per_task, max_load);
  2839. pwr_now += this->__cpu_power *
  2840. min(this_load_per_task, this_load);
  2841. pwr_now /= SCHED_LOAD_SCALE;
  2842. /* Amount of load we'd subtract */
  2843. tmp = sg_div_cpu_power(busiest,
  2844. busiest_load_per_task * SCHED_LOAD_SCALE);
  2845. if (max_load > tmp)
  2846. pwr_move += busiest->__cpu_power *
  2847. min(busiest_load_per_task, max_load - tmp);
  2848. /* Amount of load we'd add */
  2849. if (max_load * busiest->__cpu_power <
  2850. busiest_load_per_task * SCHED_LOAD_SCALE)
  2851. tmp = sg_div_cpu_power(this,
  2852. max_load * busiest->__cpu_power);
  2853. else
  2854. tmp = sg_div_cpu_power(this,
  2855. busiest_load_per_task * SCHED_LOAD_SCALE);
  2856. pwr_move += this->__cpu_power *
  2857. min(this_load_per_task, this_load + tmp);
  2858. pwr_move /= SCHED_LOAD_SCALE;
  2859. /* Move if we gain throughput */
  2860. if (pwr_move > pwr_now)
  2861. *imbalance = busiest_load_per_task;
  2862. }
  2863. return busiest;
  2864. out_balanced:
  2865. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2866. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2867. goto ret;
  2868. if (this == group_leader && group_leader != group_min) {
  2869. *imbalance = min_load_per_task;
  2870. return group_min;
  2871. }
  2872. #endif
  2873. ret:
  2874. *imbalance = 0;
  2875. return NULL;
  2876. }
  2877. /*
  2878. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2879. */
  2880. static struct rq *
  2881. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2882. unsigned long imbalance, const cpumask_t *cpus)
  2883. {
  2884. struct rq *busiest = NULL, *rq;
  2885. unsigned long max_load = 0;
  2886. int i;
  2887. for_each_cpu_mask_nr(i, group->cpumask) {
  2888. unsigned long wl;
  2889. if (!cpu_isset(i, *cpus))
  2890. continue;
  2891. rq = cpu_rq(i);
  2892. wl = weighted_cpuload(i);
  2893. if (rq->nr_running == 1 && wl > imbalance)
  2894. continue;
  2895. if (wl > max_load) {
  2896. max_load = wl;
  2897. busiest = rq;
  2898. }
  2899. }
  2900. return busiest;
  2901. }
  2902. /*
  2903. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2904. * so long as it is large enough.
  2905. */
  2906. #define MAX_PINNED_INTERVAL 512
  2907. /*
  2908. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2909. * tasks if there is an imbalance.
  2910. */
  2911. static int load_balance(int this_cpu, struct rq *this_rq,
  2912. struct sched_domain *sd, enum cpu_idle_type idle,
  2913. int *balance, cpumask_t *cpus)
  2914. {
  2915. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2916. struct sched_group *group;
  2917. unsigned long imbalance;
  2918. struct rq *busiest;
  2919. unsigned long flags;
  2920. cpus_setall(*cpus);
  2921. /*
  2922. * When power savings policy is enabled for the parent domain, idle
  2923. * sibling can pick up load irrespective of busy siblings. In this case,
  2924. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2925. * portraying it as CPU_NOT_IDLE.
  2926. */
  2927. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2928. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2929. sd_idle = 1;
  2930. schedstat_inc(sd, lb_count[idle]);
  2931. redo:
  2932. update_shares(sd);
  2933. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2934. cpus, balance);
  2935. if (*balance == 0)
  2936. goto out_balanced;
  2937. if (!group) {
  2938. schedstat_inc(sd, lb_nobusyg[idle]);
  2939. goto out_balanced;
  2940. }
  2941. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2942. if (!busiest) {
  2943. schedstat_inc(sd, lb_nobusyq[idle]);
  2944. goto out_balanced;
  2945. }
  2946. BUG_ON(busiest == this_rq);
  2947. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2948. ld_moved = 0;
  2949. if (busiest->nr_running > 1) {
  2950. /*
  2951. * Attempt to move tasks. If find_busiest_group has found
  2952. * an imbalance but busiest->nr_running <= 1, the group is
  2953. * still unbalanced. ld_moved simply stays zero, so it is
  2954. * correctly treated as an imbalance.
  2955. */
  2956. local_irq_save(flags);
  2957. double_rq_lock(this_rq, busiest);
  2958. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2959. imbalance, sd, idle, &all_pinned);
  2960. double_rq_unlock(this_rq, busiest);
  2961. local_irq_restore(flags);
  2962. /*
  2963. * some other cpu did the load balance for us.
  2964. */
  2965. if (ld_moved && this_cpu != smp_processor_id())
  2966. resched_cpu(this_cpu);
  2967. /* All tasks on this runqueue were pinned by CPU affinity */
  2968. if (unlikely(all_pinned)) {
  2969. cpu_clear(cpu_of(busiest), *cpus);
  2970. if (!cpus_empty(*cpus))
  2971. goto redo;
  2972. goto out_balanced;
  2973. }
  2974. }
  2975. if (!ld_moved) {
  2976. schedstat_inc(sd, lb_failed[idle]);
  2977. sd->nr_balance_failed++;
  2978. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2979. spin_lock_irqsave(&busiest->lock, flags);
  2980. /* don't kick the migration_thread, if the curr
  2981. * task on busiest cpu can't be moved to this_cpu
  2982. */
  2983. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2984. spin_unlock_irqrestore(&busiest->lock, flags);
  2985. all_pinned = 1;
  2986. goto out_one_pinned;
  2987. }
  2988. if (!busiest->active_balance) {
  2989. busiest->active_balance = 1;
  2990. busiest->push_cpu = this_cpu;
  2991. active_balance = 1;
  2992. }
  2993. spin_unlock_irqrestore(&busiest->lock, flags);
  2994. if (active_balance)
  2995. wake_up_process(busiest->migration_thread);
  2996. /*
  2997. * We've kicked active balancing, reset the failure
  2998. * counter.
  2999. */
  3000. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3001. }
  3002. } else
  3003. sd->nr_balance_failed = 0;
  3004. if (likely(!active_balance)) {
  3005. /* We were unbalanced, so reset the balancing interval */
  3006. sd->balance_interval = sd->min_interval;
  3007. } else {
  3008. /*
  3009. * If we've begun active balancing, start to back off. This
  3010. * case may not be covered by the all_pinned logic if there
  3011. * is only 1 task on the busy runqueue (because we don't call
  3012. * move_tasks).
  3013. */
  3014. if (sd->balance_interval < sd->max_interval)
  3015. sd->balance_interval *= 2;
  3016. }
  3017. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3018. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3019. ld_moved = -1;
  3020. goto out;
  3021. out_balanced:
  3022. schedstat_inc(sd, lb_balanced[idle]);
  3023. sd->nr_balance_failed = 0;
  3024. out_one_pinned:
  3025. /* tune up the balancing interval */
  3026. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3027. (sd->balance_interval < sd->max_interval))
  3028. sd->balance_interval *= 2;
  3029. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3030. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3031. ld_moved = -1;
  3032. else
  3033. ld_moved = 0;
  3034. out:
  3035. if (ld_moved)
  3036. update_shares(sd);
  3037. return ld_moved;
  3038. }
  3039. /*
  3040. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3041. * tasks if there is an imbalance.
  3042. *
  3043. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3044. * this_rq is locked.
  3045. */
  3046. static int
  3047. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3048. cpumask_t *cpus)
  3049. {
  3050. struct sched_group *group;
  3051. struct rq *busiest = NULL;
  3052. unsigned long imbalance;
  3053. int ld_moved = 0;
  3054. int sd_idle = 0;
  3055. int all_pinned = 0;
  3056. cpus_setall(*cpus);
  3057. /*
  3058. * When power savings policy is enabled for the parent domain, idle
  3059. * sibling can pick up load irrespective of busy siblings. In this case,
  3060. * let the state of idle sibling percolate up as IDLE, instead of
  3061. * portraying it as CPU_NOT_IDLE.
  3062. */
  3063. if (sd->flags & SD_SHARE_CPUPOWER &&
  3064. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3065. sd_idle = 1;
  3066. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3067. redo:
  3068. update_shares_locked(this_rq, sd);
  3069. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3070. &sd_idle, cpus, NULL);
  3071. if (!group) {
  3072. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3073. goto out_balanced;
  3074. }
  3075. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3076. if (!busiest) {
  3077. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3078. goto out_balanced;
  3079. }
  3080. BUG_ON(busiest == this_rq);
  3081. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3082. ld_moved = 0;
  3083. if (busiest->nr_running > 1) {
  3084. /* Attempt to move tasks */
  3085. double_lock_balance(this_rq, busiest);
  3086. /* this_rq->clock is already updated */
  3087. update_rq_clock(busiest);
  3088. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3089. imbalance, sd, CPU_NEWLY_IDLE,
  3090. &all_pinned);
  3091. double_unlock_balance(this_rq, busiest);
  3092. if (unlikely(all_pinned)) {
  3093. cpu_clear(cpu_of(busiest), *cpus);
  3094. if (!cpus_empty(*cpus))
  3095. goto redo;
  3096. }
  3097. }
  3098. if (!ld_moved) {
  3099. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3100. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3101. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3102. return -1;
  3103. } else
  3104. sd->nr_balance_failed = 0;
  3105. update_shares_locked(this_rq, sd);
  3106. return ld_moved;
  3107. out_balanced:
  3108. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3109. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3110. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3111. return -1;
  3112. sd->nr_balance_failed = 0;
  3113. return 0;
  3114. }
  3115. /*
  3116. * idle_balance is called by schedule() if this_cpu is about to become
  3117. * idle. Attempts to pull tasks from other CPUs.
  3118. */
  3119. static void idle_balance(int this_cpu, struct rq *this_rq)
  3120. {
  3121. struct sched_domain *sd;
  3122. int pulled_task = -1;
  3123. unsigned long next_balance = jiffies + HZ;
  3124. cpumask_t tmpmask;
  3125. for_each_domain(this_cpu, sd) {
  3126. unsigned long interval;
  3127. if (!(sd->flags & SD_LOAD_BALANCE))
  3128. continue;
  3129. if (sd->flags & SD_BALANCE_NEWIDLE)
  3130. /* If we've pulled tasks over stop searching: */
  3131. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3132. sd, &tmpmask);
  3133. interval = msecs_to_jiffies(sd->balance_interval);
  3134. if (time_after(next_balance, sd->last_balance + interval))
  3135. next_balance = sd->last_balance + interval;
  3136. if (pulled_task)
  3137. break;
  3138. }
  3139. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3140. /*
  3141. * We are going idle. next_balance may be set based on
  3142. * a busy processor. So reset next_balance.
  3143. */
  3144. this_rq->next_balance = next_balance;
  3145. }
  3146. }
  3147. /*
  3148. * active_load_balance is run by migration threads. It pushes running tasks
  3149. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3150. * running on each physical CPU where possible, and avoids physical /
  3151. * logical imbalances.
  3152. *
  3153. * Called with busiest_rq locked.
  3154. */
  3155. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3156. {
  3157. int target_cpu = busiest_rq->push_cpu;
  3158. struct sched_domain *sd;
  3159. struct rq *target_rq;
  3160. /* Is there any task to move? */
  3161. if (busiest_rq->nr_running <= 1)
  3162. return;
  3163. target_rq = cpu_rq(target_cpu);
  3164. /*
  3165. * This condition is "impossible", if it occurs
  3166. * we need to fix it. Originally reported by
  3167. * Bjorn Helgaas on a 128-cpu setup.
  3168. */
  3169. BUG_ON(busiest_rq == target_rq);
  3170. /* move a task from busiest_rq to target_rq */
  3171. double_lock_balance(busiest_rq, target_rq);
  3172. update_rq_clock(busiest_rq);
  3173. update_rq_clock(target_rq);
  3174. /* Search for an sd spanning us and the target CPU. */
  3175. for_each_domain(target_cpu, sd) {
  3176. if ((sd->flags & SD_LOAD_BALANCE) &&
  3177. cpu_isset(busiest_cpu, sd->span))
  3178. break;
  3179. }
  3180. if (likely(sd)) {
  3181. schedstat_inc(sd, alb_count);
  3182. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3183. sd, CPU_IDLE))
  3184. schedstat_inc(sd, alb_pushed);
  3185. else
  3186. schedstat_inc(sd, alb_failed);
  3187. }
  3188. double_unlock_balance(busiest_rq, target_rq);
  3189. }
  3190. #ifdef CONFIG_NO_HZ
  3191. static struct {
  3192. atomic_t load_balancer;
  3193. cpumask_t cpu_mask;
  3194. } nohz ____cacheline_aligned = {
  3195. .load_balancer = ATOMIC_INIT(-1),
  3196. .cpu_mask = CPU_MASK_NONE,
  3197. };
  3198. /*
  3199. * This routine will try to nominate the ilb (idle load balancing)
  3200. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3201. * load balancing on behalf of all those cpus. If all the cpus in the system
  3202. * go into this tickless mode, then there will be no ilb owner (as there is
  3203. * no need for one) and all the cpus will sleep till the next wakeup event
  3204. * arrives...
  3205. *
  3206. * For the ilb owner, tick is not stopped. And this tick will be used
  3207. * for idle load balancing. ilb owner will still be part of
  3208. * nohz.cpu_mask..
  3209. *
  3210. * While stopping the tick, this cpu will become the ilb owner if there
  3211. * is no other owner. And will be the owner till that cpu becomes busy
  3212. * or if all cpus in the system stop their ticks at which point
  3213. * there is no need for ilb owner.
  3214. *
  3215. * When the ilb owner becomes busy, it nominates another owner, during the
  3216. * next busy scheduler_tick()
  3217. */
  3218. int select_nohz_load_balancer(int stop_tick)
  3219. {
  3220. int cpu = smp_processor_id();
  3221. if (stop_tick) {
  3222. cpu_set(cpu, nohz.cpu_mask);
  3223. cpu_rq(cpu)->in_nohz_recently = 1;
  3224. /*
  3225. * If we are going offline and still the leader, give up!
  3226. */
  3227. if (!cpu_active(cpu) &&
  3228. atomic_read(&nohz.load_balancer) == cpu) {
  3229. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3230. BUG();
  3231. return 0;
  3232. }
  3233. /* time for ilb owner also to sleep */
  3234. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3235. if (atomic_read(&nohz.load_balancer) == cpu)
  3236. atomic_set(&nohz.load_balancer, -1);
  3237. return 0;
  3238. }
  3239. if (atomic_read(&nohz.load_balancer) == -1) {
  3240. /* make me the ilb owner */
  3241. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3242. return 1;
  3243. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3244. return 1;
  3245. } else {
  3246. if (!cpu_isset(cpu, nohz.cpu_mask))
  3247. return 0;
  3248. cpu_clear(cpu, nohz.cpu_mask);
  3249. if (atomic_read(&nohz.load_balancer) == cpu)
  3250. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3251. BUG();
  3252. }
  3253. return 0;
  3254. }
  3255. #endif
  3256. static DEFINE_SPINLOCK(balancing);
  3257. /*
  3258. * It checks each scheduling domain to see if it is due to be balanced,
  3259. * and initiates a balancing operation if so.
  3260. *
  3261. * Balancing parameters are set up in arch_init_sched_domains.
  3262. */
  3263. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3264. {
  3265. int balance = 1;
  3266. struct rq *rq = cpu_rq(cpu);
  3267. unsigned long interval;
  3268. struct sched_domain *sd;
  3269. /* Earliest time when we have to do rebalance again */
  3270. unsigned long next_balance = jiffies + 60*HZ;
  3271. int update_next_balance = 0;
  3272. int need_serialize;
  3273. cpumask_t tmp;
  3274. for_each_domain(cpu, sd) {
  3275. if (!(sd->flags & SD_LOAD_BALANCE))
  3276. continue;
  3277. interval = sd->balance_interval;
  3278. if (idle != CPU_IDLE)
  3279. interval *= sd->busy_factor;
  3280. /* scale ms to jiffies */
  3281. interval = msecs_to_jiffies(interval);
  3282. if (unlikely(!interval))
  3283. interval = 1;
  3284. if (interval > HZ*NR_CPUS/10)
  3285. interval = HZ*NR_CPUS/10;
  3286. need_serialize = sd->flags & SD_SERIALIZE;
  3287. if (need_serialize) {
  3288. if (!spin_trylock(&balancing))
  3289. goto out;
  3290. }
  3291. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3292. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3293. /*
  3294. * We've pulled tasks over so either we're no
  3295. * longer idle, or one of our SMT siblings is
  3296. * not idle.
  3297. */
  3298. idle = CPU_NOT_IDLE;
  3299. }
  3300. sd->last_balance = jiffies;
  3301. }
  3302. if (need_serialize)
  3303. spin_unlock(&balancing);
  3304. out:
  3305. if (time_after(next_balance, sd->last_balance + interval)) {
  3306. next_balance = sd->last_balance + interval;
  3307. update_next_balance = 1;
  3308. }
  3309. /*
  3310. * Stop the load balance at this level. There is another
  3311. * CPU in our sched group which is doing load balancing more
  3312. * actively.
  3313. */
  3314. if (!balance)
  3315. break;
  3316. }
  3317. /*
  3318. * next_balance will be updated only when there is a need.
  3319. * When the cpu is attached to null domain for ex, it will not be
  3320. * updated.
  3321. */
  3322. if (likely(update_next_balance))
  3323. rq->next_balance = next_balance;
  3324. }
  3325. /*
  3326. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3327. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3328. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3329. */
  3330. static void run_rebalance_domains(struct softirq_action *h)
  3331. {
  3332. int this_cpu = smp_processor_id();
  3333. struct rq *this_rq = cpu_rq(this_cpu);
  3334. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3335. CPU_IDLE : CPU_NOT_IDLE;
  3336. rebalance_domains(this_cpu, idle);
  3337. #ifdef CONFIG_NO_HZ
  3338. /*
  3339. * If this cpu is the owner for idle load balancing, then do the
  3340. * balancing on behalf of the other idle cpus whose ticks are
  3341. * stopped.
  3342. */
  3343. if (this_rq->idle_at_tick &&
  3344. atomic_read(&nohz.load_balancer) == this_cpu) {
  3345. cpumask_t cpus = nohz.cpu_mask;
  3346. struct rq *rq;
  3347. int balance_cpu;
  3348. cpu_clear(this_cpu, cpus);
  3349. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3350. /*
  3351. * If this cpu gets work to do, stop the load balancing
  3352. * work being done for other cpus. Next load
  3353. * balancing owner will pick it up.
  3354. */
  3355. if (need_resched())
  3356. break;
  3357. rebalance_domains(balance_cpu, CPU_IDLE);
  3358. rq = cpu_rq(balance_cpu);
  3359. if (time_after(this_rq->next_balance, rq->next_balance))
  3360. this_rq->next_balance = rq->next_balance;
  3361. }
  3362. }
  3363. #endif
  3364. }
  3365. /*
  3366. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3367. *
  3368. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3369. * idle load balancing owner or decide to stop the periodic load balancing,
  3370. * if the whole system is idle.
  3371. */
  3372. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3373. {
  3374. #ifdef CONFIG_NO_HZ
  3375. /*
  3376. * If we were in the nohz mode recently and busy at the current
  3377. * scheduler tick, then check if we need to nominate new idle
  3378. * load balancer.
  3379. */
  3380. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3381. rq->in_nohz_recently = 0;
  3382. if (atomic_read(&nohz.load_balancer) == cpu) {
  3383. cpu_clear(cpu, nohz.cpu_mask);
  3384. atomic_set(&nohz.load_balancer, -1);
  3385. }
  3386. if (atomic_read(&nohz.load_balancer) == -1) {
  3387. /*
  3388. * simple selection for now: Nominate the
  3389. * first cpu in the nohz list to be the next
  3390. * ilb owner.
  3391. *
  3392. * TBD: Traverse the sched domains and nominate
  3393. * the nearest cpu in the nohz.cpu_mask.
  3394. */
  3395. int ilb = first_cpu(nohz.cpu_mask);
  3396. if (ilb < nr_cpu_ids)
  3397. resched_cpu(ilb);
  3398. }
  3399. }
  3400. /*
  3401. * If this cpu is idle and doing idle load balancing for all the
  3402. * cpus with ticks stopped, is it time for that to stop?
  3403. */
  3404. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3405. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3406. resched_cpu(cpu);
  3407. return;
  3408. }
  3409. /*
  3410. * If this cpu is idle and the idle load balancing is done by
  3411. * someone else, then no need raise the SCHED_SOFTIRQ
  3412. */
  3413. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3414. cpu_isset(cpu, nohz.cpu_mask))
  3415. return;
  3416. #endif
  3417. if (time_after_eq(jiffies, rq->next_balance))
  3418. raise_softirq(SCHED_SOFTIRQ);
  3419. }
  3420. #else /* CONFIG_SMP */
  3421. /*
  3422. * on UP we do not need to balance between CPUs:
  3423. */
  3424. static inline void idle_balance(int cpu, struct rq *rq)
  3425. {
  3426. }
  3427. #endif
  3428. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3429. EXPORT_PER_CPU_SYMBOL(kstat);
  3430. /*
  3431. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3432. * that have not yet been banked in case the task is currently running.
  3433. */
  3434. unsigned long long task_sched_runtime(struct task_struct *p)
  3435. {
  3436. unsigned long flags;
  3437. u64 ns, delta_exec;
  3438. struct rq *rq;
  3439. rq = task_rq_lock(p, &flags);
  3440. ns = p->se.sum_exec_runtime;
  3441. if (task_current(rq, p)) {
  3442. update_rq_clock(rq);
  3443. delta_exec = rq->clock - p->se.exec_start;
  3444. if ((s64)delta_exec > 0)
  3445. ns += delta_exec;
  3446. }
  3447. task_rq_unlock(rq, &flags);
  3448. return ns;
  3449. }
  3450. /*
  3451. * Account user cpu time to a process.
  3452. * @p: the process that the cpu time gets accounted to
  3453. * @cputime: the cpu time spent in user space since the last update
  3454. */
  3455. void account_user_time(struct task_struct *p, cputime_t cputime)
  3456. {
  3457. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3458. cputime64_t tmp;
  3459. p->utime = cputime_add(p->utime, cputime);
  3460. /* Add user time to cpustat. */
  3461. tmp = cputime_to_cputime64(cputime);
  3462. if (TASK_NICE(p) > 0)
  3463. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3464. else
  3465. cpustat->user = cputime64_add(cpustat->user, tmp);
  3466. /* Account for user time used */
  3467. acct_update_integrals(p);
  3468. }
  3469. /*
  3470. * Account guest cpu time to a process.
  3471. * @p: the process that the cpu time gets accounted to
  3472. * @cputime: the cpu time spent in virtual machine since the last update
  3473. */
  3474. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3475. {
  3476. cputime64_t tmp;
  3477. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3478. tmp = cputime_to_cputime64(cputime);
  3479. p->utime = cputime_add(p->utime, cputime);
  3480. p->gtime = cputime_add(p->gtime, cputime);
  3481. cpustat->user = cputime64_add(cpustat->user, tmp);
  3482. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3483. }
  3484. /*
  3485. * Account scaled user cpu time to a process.
  3486. * @p: the process that the cpu time gets accounted to
  3487. * @cputime: the cpu time spent in user space since the last update
  3488. */
  3489. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3490. {
  3491. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3492. }
  3493. /*
  3494. * Account system cpu time to a process.
  3495. * @p: the process that the cpu time gets accounted to
  3496. * @hardirq_offset: the offset to subtract from hardirq_count()
  3497. * @cputime: the cpu time spent in kernel space since the last update
  3498. */
  3499. void account_system_time(struct task_struct *p, int hardirq_offset,
  3500. cputime_t cputime)
  3501. {
  3502. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3503. struct rq *rq = this_rq();
  3504. cputime64_t tmp;
  3505. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3506. account_guest_time(p, cputime);
  3507. return;
  3508. }
  3509. p->stime = cputime_add(p->stime, cputime);
  3510. /* Add system time to cpustat. */
  3511. tmp = cputime_to_cputime64(cputime);
  3512. if (hardirq_count() - hardirq_offset)
  3513. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3514. else if (softirq_count())
  3515. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3516. else if (p != rq->idle)
  3517. cpustat->system = cputime64_add(cpustat->system, tmp);
  3518. else if (atomic_read(&rq->nr_iowait) > 0)
  3519. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3520. else
  3521. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3522. /* Account for system time used */
  3523. acct_update_integrals(p);
  3524. }
  3525. /*
  3526. * Account scaled system cpu time to a process.
  3527. * @p: the process that the cpu time gets accounted to
  3528. * @hardirq_offset: the offset to subtract from hardirq_count()
  3529. * @cputime: the cpu time spent in kernel space since the last update
  3530. */
  3531. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3532. {
  3533. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3534. }
  3535. /*
  3536. * Account for involuntary wait time.
  3537. * @p: the process from which the cpu time has been stolen
  3538. * @steal: the cpu time spent in involuntary wait
  3539. */
  3540. void account_steal_time(struct task_struct *p, cputime_t steal)
  3541. {
  3542. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3543. cputime64_t tmp = cputime_to_cputime64(steal);
  3544. struct rq *rq = this_rq();
  3545. if (p == rq->idle) {
  3546. p->stime = cputime_add(p->stime, steal);
  3547. if (atomic_read(&rq->nr_iowait) > 0)
  3548. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3549. else
  3550. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3551. } else
  3552. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3553. }
  3554. /*
  3555. * This function gets called by the timer code, with HZ frequency.
  3556. * We call it with interrupts disabled.
  3557. *
  3558. * It also gets called by the fork code, when changing the parent's
  3559. * timeslices.
  3560. */
  3561. void scheduler_tick(void)
  3562. {
  3563. int cpu = smp_processor_id();
  3564. struct rq *rq = cpu_rq(cpu);
  3565. struct task_struct *curr = rq->curr;
  3566. sched_clock_tick();
  3567. spin_lock(&rq->lock);
  3568. update_rq_clock(rq);
  3569. update_cpu_load(rq);
  3570. curr->sched_class->task_tick(rq, curr, 0);
  3571. spin_unlock(&rq->lock);
  3572. #ifdef CONFIG_SMP
  3573. rq->idle_at_tick = idle_cpu(cpu);
  3574. trigger_load_balance(rq, cpu);
  3575. #endif
  3576. }
  3577. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3578. defined(CONFIG_PREEMPT_TRACER))
  3579. static inline unsigned long get_parent_ip(unsigned long addr)
  3580. {
  3581. if (in_lock_functions(addr)) {
  3582. addr = CALLER_ADDR2;
  3583. if (in_lock_functions(addr))
  3584. addr = CALLER_ADDR3;
  3585. }
  3586. return addr;
  3587. }
  3588. void __kprobes add_preempt_count(int val)
  3589. {
  3590. #ifdef CONFIG_DEBUG_PREEMPT
  3591. /*
  3592. * Underflow?
  3593. */
  3594. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3595. return;
  3596. #endif
  3597. preempt_count() += val;
  3598. #ifdef CONFIG_DEBUG_PREEMPT
  3599. /*
  3600. * Spinlock count overflowing soon?
  3601. */
  3602. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3603. PREEMPT_MASK - 10);
  3604. #endif
  3605. if (preempt_count() == val)
  3606. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3607. }
  3608. EXPORT_SYMBOL(add_preempt_count);
  3609. void __kprobes sub_preempt_count(int val)
  3610. {
  3611. #ifdef CONFIG_DEBUG_PREEMPT
  3612. /*
  3613. * Underflow?
  3614. */
  3615. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3616. return;
  3617. /*
  3618. * Is the spinlock portion underflowing?
  3619. */
  3620. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3621. !(preempt_count() & PREEMPT_MASK)))
  3622. return;
  3623. #endif
  3624. if (preempt_count() == val)
  3625. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3626. preempt_count() -= val;
  3627. }
  3628. EXPORT_SYMBOL(sub_preempt_count);
  3629. #endif
  3630. /*
  3631. * Print scheduling while atomic bug:
  3632. */
  3633. static noinline void __schedule_bug(struct task_struct *prev)
  3634. {
  3635. struct pt_regs *regs = get_irq_regs();
  3636. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3637. prev->comm, prev->pid, preempt_count());
  3638. debug_show_held_locks(prev);
  3639. print_modules();
  3640. if (irqs_disabled())
  3641. print_irqtrace_events(prev);
  3642. if (regs)
  3643. show_regs(regs);
  3644. else
  3645. dump_stack();
  3646. }
  3647. /*
  3648. * Various schedule()-time debugging checks and statistics:
  3649. */
  3650. static inline void schedule_debug(struct task_struct *prev)
  3651. {
  3652. /*
  3653. * Test if we are atomic. Since do_exit() needs to call into
  3654. * schedule() atomically, we ignore that path for now.
  3655. * Otherwise, whine if we are scheduling when we should not be.
  3656. */
  3657. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3658. __schedule_bug(prev);
  3659. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3660. schedstat_inc(this_rq(), sched_count);
  3661. #ifdef CONFIG_SCHEDSTATS
  3662. if (unlikely(prev->lock_depth >= 0)) {
  3663. schedstat_inc(this_rq(), bkl_count);
  3664. schedstat_inc(prev, sched_info.bkl_count);
  3665. }
  3666. #endif
  3667. }
  3668. /*
  3669. * Pick up the highest-prio task:
  3670. */
  3671. static inline struct task_struct *
  3672. pick_next_task(struct rq *rq, struct task_struct *prev)
  3673. {
  3674. const struct sched_class *class;
  3675. struct task_struct *p;
  3676. /*
  3677. * Optimization: we know that if all tasks are in
  3678. * the fair class we can call that function directly:
  3679. */
  3680. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3681. p = fair_sched_class.pick_next_task(rq);
  3682. if (likely(p))
  3683. return p;
  3684. }
  3685. class = sched_class_highest;
  3686. for ( ; ; ) {
  3687. p = class->pick_next_task(rq);
  3688. if (p)
  3689. return p;
  3690. /*
  3691. * Will never be NULL as the idle class always
  3692. * returns a non-NULL p:
  3693. */
  3694. class = class->next;
  3695. }
  3696. }
  3697. /*
  3698. * schedule() is the main scheduler function.
  3699. */
  3700. asmlinkage void __sched schedule(void)
  3701. {
  3702. struct task_struct *prev, *next;
  3703. unsigned long *switch_count;
  3704. struct rq *rq;
  3705. int cpu;
  3706. need_resched:
  3707. preempt_disable();
  3708. cpu = smp_processor_id();
  3709. rq = cpu_rq(cpu);
  3710. rcu_qsctr_inc(cpu);
  3711. prev = rq->curr;
  3712. switch_count = &prev->nivcsw;
  3713. release_kernel_lock(prev);
  3714. need_resched_nonpreemptible:
  3715. schedule_debug(prev);
  3716. if (sched_feat(HRTICK))
  3717. hrtick_clear(rq);
  3718. /*
  3719. * Do the rq-clock update outside the rq lock:
  3720. */
  3721. local_irq_disable();
  3722. update_rq_clock(rq);
  3723. spin_lock(&rq->lock);
  3724. clear_tsk_need_resched(prev);
  3725. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3726. if (unlikely(signal_pending_state(prev->state, prev)))
  3727. prev->state = TASK_RUNNING;
  3728. else
  3729. deactivate_task(rq, prev, 1);
  3730. switch_count = &prev->nvcsw;
  3731. }
  3732. #ifdef CONFIG_SMP
  3733. if (prev->sched_class->pre_schedule)
  3734. prev->sched_class->pre_schedule(rq, prev);
  3735. #endif
  3736. if (unlikely(!rq->nr_running))
  3737. idle_balance(cpu, rq);
  3738. prev->sched_class->put_prev_task(rq, prev);
  3739. next = pick_next_task(rq, prev);
  3740. if (likely(prev != next)) {
  3741. sched_info_switch(prev, next);
  3742. rq->nr_switches++;
  3743. rq->curr = next;
  3744. ++*switch_count;
  3745. context_switch(rq, prev, next); /* unlocks the rq */
  3746. /*
  3747. * the context switch might have flipped the stack from under
  3748. * us, hence refresh the local variables.
  3749. */
  3750. cpu = smp_processor_id();
  3751. rq = cpu_rq(cpu);
  3752. } else
  3753. spin_unlock_irq(&rq->lock);
  3754. if (unlikely(reacquire_kernel_lock(current) < 0))
  3755. goto need_resched_nonpreemptible;
  3756. preempt_enable_no_resched();
  3757. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3758. goto need_resched;
  3759. }
  3760. EXPORT_SYMBOL(schedule);
  3761. #ifdef CONFIG_PREEMPT
  3762. /*
  3763. * this is the entry point to schedule() from in-kernel preemption
  3764. * off of preempt_enable. Kernel preemptions off return from interrupt
  3765. * occur there and call schedule directly.
  3766. */
  3767. asmlinkage void __sched preempt_schedule(void)
  3768. {
  3769. struct thread_info *ti = current_thread_info();
  3770. /*
  3771. * If there is a non-zero preempt_count or interrupts are disabled,
  3772. * we do not want to preempt the current task. Just return..
  3773. */
  3774. if (likely(ti->preempt_count || irqs_disabled()))
  3775. return;
  3776. do {
  3777. add_preempt_count(PREEMPT_ACTIVE);
  3778. schedule();
  3779. sub_preempt_count(PREEMPT_ACTIVE);
  3780. /*
  3781. * Check again in case we missed a preemption opportunity
  3782. * between schedule and now.
  3783. */
  3784. barrier();
  3785. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3786. }
  3787. EXPORT_SYMBOL(preempt_schedule);
  3788. /*
  3789. * this is the entry point to schedule() from kernel preemption
  3790. * off of irq context.
  3791. * Note, that this is called and return with irqs disabled. This will
  3792. * protect us against recursive calling from irq.
  3793. */
  3794. asmlinkage void __sched preempt_schedule_irq(void)
  3795. {
  3796. struct thread_info *ti = current_thread_info();
  3797. /* Catch callers which need to be fixed */
  3798. BUG_ON(ti->preempt_count || !irqs_disabled());
  3799. do {
  3800. add_preempt_count(PREEMPT_ACTIVE);
  3801. local_irq_enable();
  3802. schedule();
  3803. local_irq_disable();
  3804. sub_preempt_count(PREEMPT_ACTIVE);
  3805. /*
  3806. * Check again in case we missed a preemption opportunity
  3807. * between schedule and now.
  3808. */
  3809. barrier();
  3810. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3811. }
  3812. #endif /* CONFIG_PREEMPT */
  3813. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3814. void *key)
  3815. {
  3816. return try_to_wake_up(curr->private, mode, sync);
  3817. }
  3818. EXPORT_SYMBOL(default_wake_function);
  3819. /*
  3820. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3821. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3822. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3823. *
  3824. * There are circumstances in which we can try to wake a task which has already
  3825. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3826. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3827. */
  3828. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3829. int nr_exclusive, int sync, void *key)
  3830. {
  3831. wait_queue_t *curr, *next;
  3832. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3833. unsigned flags = curr->flags;
  3834. if (curr->func(curr, mode, sync, key) &&
  3835. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3836. break;
  3837. }
  3838. }
  3839. /**
  3840. * __wake_up - wake up threads blocked on a waitqueue.
  3841. * @q: the waitqueue
  3842. * @mode: which threads
  3843. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3844. * @key: is directly passed to the wakeup function
  3845. */
  3846. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3847. int nr_exclusive, void *key)
  3848. {
  3849. unsigned long flags;
  3850. spin_lock_irqsave(&q->lock, flags);
  3851. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3852. spin_unlock_irqrestore(&q->lock, flags);
  3853. }
  3854. EXPORT_SYMBOL(__wake_up);
  3855. /*
  3856. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3857. */
  3858. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3859. {
  3860. __wake_up_common(q, mode, 1, 0, NULL);
  3861. }
  3862. /**
  3863. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3864. * @q: the waitqueue
  3865. * @mode: which threads
  3866. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3867. *
  3868. * The sync wakeup differs that the waker knows that it will schedule
  3869. * away soon, so while the target thread will be woken up, it will not
  3870. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3871. * with each other. This can prevent needless bouncing between CPUs.
  3872. *
  3873. * On UP it can prevent extra preemption.
  3874. */
  3875. void
  3876. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3877. {
  3878. unsigned long flags;
  3879. int sync = 1;
  3880. if (unlikely(!q))
  3881. return;
  3882. if (unlikely(!nr_exclusive))
  3883. sync = 0;
  3884. spin_lock_irqsave(&q->lock, flags);
  3885. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3886. spin_unlock_irqrestore(&q->lock, flags);
  3887. }
  3888. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3889. void complete(struct completion *x)
  3890. {
  3891. unsigned long flags;
  3892. spin_lock_irqsave(&x->wait.lock, flags);
  3893. x->done++;
  3894. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3895. spin_unlock_irqrestore(&x->wait.lock, flags);
  3896. }
  3897. EXPORT_SYMBOL(complete);
  3898. void complete_all(struct completion *x)
  3899. {
  3900. unsigned long flags;
  3901. spin_lock_irqsave(&x->wait.lock, flags);
  3902. x->done += UINT_MAX/2;
  3903. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3904. spin_unlock_irqrestore(&x->wait.lock, flags);
  3905. }
  3906. EXPORT_SYMBOL(complete_all);
  3907. static inline long __sched
  3908. do_wait_for_common(struct completion *x, long timeout, int state)
  3909. {
  3910. if (!x->done) {
  3911. DECLARE_WAITQUEUE(wait, current);
  3912. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3913. __add_wait_queue_tail(&x->wait, &wait);
  3914. do {
  3915. if ((state == TASK_INTERRUPTIBLE &&
  3916. signal_pending(current)) ||
  3917. (state == TASK_KILLABLE &&
  3918. fatal_signal_pending(current))) {
  3919. timeout = -ERESTARTSYS;
  3920. break;
  3921. }
  3922. __set_current_state(state);
  3923. spin_unlock_irq(&x->wait.lock);
  3924. timeout = schedule_timeout(timeout);
  3925. spin_lock_irq(&x->wait.lock);
  3926. } while (!x->done && timeout);
  3927. __remove_wait_queue(&x->wait, &wait);
  3928. if (!x->done)
  3929. return timeout;
  3930. }
  3931. x->done--;
  3932. return timeout ?: 1;
  3933. }
  3934. static long __sched
  3935. wait_for_common(struct completion *x, long timeout, int state)
  3936. {
  3937. might_sleep();
  3938. spin_lock_irq(&x->wait.lock);
  3939. timeout = do_wait_for_common(x, timeout, state);
  3940. spin_unlock_irq(&x->wait.lock);
  3941. return timeout;
  3942. }
  3943. void __sched wait_for_completion(struct completion *x)
  3944. {
  3945. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3946. }
  3947. EXPORT_SYMBOL(wait_for_completion);
  3948. unsigned long __sched
  3949. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3950. {
  3951. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3952. }
  3953. EXPORT_SYMBOL(wait_for_completion_timeout);
  3954. int __sched wait_for_completion_interruptible(struct completion *x)
  3955. {
  3956. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3957. if (t == -ERESTARTSYS)
  3958. return t;
  3959. return 0;
  3960. }
  3961. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3962. unsigned long __sched
  3963. wait_for_completion_interruptible_timeout(struct completion *x,
  3964. unsigned long timeout)
  3965. {
  3966. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3967. }
  3968. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3969. int __sched wait_for_completion_killable(struct completion *x)
  3970. {
  3971. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3972. if (t == -ERESTARTSYS)
  3973. return t;
  3974. return 0;
  3975. }
  3976. EXPORT_SYMBOL(wait_for_completion_killable);
  3977. /**
  3978. * try_wait_for_completion - try to decrement a completion without blocking
  3979. * @x: completion structure
  3980. *
  3981. * Returns: 0 if a decrement cannot be done without blocking
  3982. * 1 if a decrement succeeded.
  3983. *
  3984. * If a completion is being used as a counting completion,
  3985. * attempt to decrement the counter without blocking. This
  3986. * enables us to avoid waiting if the resource the completion
  3987. * is protecting is not available.
  3988. */
  3989. bool try_wait_for_completion(struct completion *x)
  3990. {
  3991. int ret = 1;
  3992. spin_lock_irq(&x->wait.lock);
  3993. if (!x->done)
  3994. ret = 0;
  3995. else
  3996. x->done--;
  3997. spin_unlock_irq(&x->wait.lock);
  3998. return ret;
  3999. }
  4000. EXPORT_SYMBOL(try_wait_for_completion);
  4001. /**
  4002. * completion_done - Test to see if a completion has any waiters
  4003. * @x: completion structure
  4004. *
  4005. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4006. * 1 if there are no waiters.
  4007. *
  4008. */
  4009. bool completion_done(struct completion *x)
  4010. {
  4011. int ret = 1;
  4012. spin_lock_irq(&x->wait.lock);
  4013. if (!x->done)
  4014. ret = 0;
  4015. spin_unlock_irq(&x->wait.lock);
  4016. return ret;
  4017. }
  4018. EXPORT_SYMBOL(completion_done);
  4019. static long __sched
  4020. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4021. {
  4022. unsigned long flags;
  4023. wait_queue_t wait;
  4024. init_waitqueue_entry(&wait, current);
  4025. __set_current_state(state);
  4026. spin_lock_irqsave(&q->lock, flags);
  4027. __add_wait_queue(q, &wait);
  4028. spin_unlock(&q->lock);
  4029. timeout = schedule_timeout(timeout);
  4030. spin_lock_irq(&q->lock);
  4031. __remove_wait_queue(q, &wait);
  4032. spin_unlock_irqrestore(&q->lock, flags);
  4033. return timeout;
  4034. }
  4035. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4036. {
  4037. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4038. }
  4039. EXPORT_SYMBOL(interruptible_sleep_on);
  4040. long __sched
  4041. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4042. {
  4043. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4044. }
  4045. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4046. void __sched sleep_on(wait_queue_head_t *q)
  4047. {
  4048. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4049. }
  4050. EXPORT_SYMBOL(sleep_on);
  4051. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4052. {
  4053. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4054. }
  4055. EXPORT_SYMBOL(sleep_on_timeout);
  4056. #ifdef CONFIG_RT_MUTEXES
  4057. /*
  4058. * rt_mutex_setprio - set the current priority of a task
  4059. * @p: task
  4060. * @prio: prio value (kernel-internal form)
  4061. *
  4062. * This function changes the 'effective' priority of a task. It does
  4063. * not touch ->normal_prio like __setscheduler().
  4064. *
  4065. * Used by the rt_mutex code to implement priority inheritance logic.
  4066. */
  4067. void rt_mutex_setprio(struct task_struct *p, int prio)
  4068. {
  4069. unsigned long flags;
  4070. int oldprio, on_rq, running;
  4071. struct rq *rq;
  4072. const struct sched_class *prev_class = p->sched_class;
  4073. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4074. rq = task_rq_lock(p, &flags);
  4075. update_rq_clock(rq);
  4076. oldprio = p->prio;
  4077. on_rq = p->se.on_rq;
  4078. running = task_current(rq, p);
  4079. if (on_rq)
  4080. dequeue_task(rq, p, 0);
  4081. if (running)
  4082. p->sched_class->put_prev_task(rq, p);
  4083. if (rt_prio(prio))
  4084. p->sched_class = &rt_sched_class;
  4085. else
  4086. p->sched_class = &fair_sched_class;
  4087. p->prio = prio;
  4088. if (running)
  4089. p->sched_class->set_curr_task(rq);
  4090. if (on_rq) {
  4091. enqueue_task(rq, p, 0);
  4092. check_class_changed(rq, p, prev_class, oldprio, running);
  4093. }
  4094. task_rq_unlock(rq, &flags);
  4095. }
  4096. #endif
  4097. void set_user_nice(struct task_struct *p, long nice)
  4098. {
  4099. int old_prio, delta, on_rq;
  4100. unsigned long flags;
  4101. struct rq *rq;
  4102. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4103. return;
  4104. /*
  4105. * We have to be careful, if called from sys_setpriority(),
  4106. * the task might be in the middle of scheduling on another CPU.
  4107. */
  4108. rq = task_rq_lock(p, &flags);
  4109. update_rq_clock(rq);
  4110. /*
  4111. * The RT priorities are set via sched_setscheduler(), but we still
  4112. * allow the 'normal' nice value to be set - but as expected
  4113. * it wont have any effect on scheduling until the task is
  4114. * SCHED_FIFO/SCHED_RR:
  4115. */
  4116. if (task_has_rt_policy(p)) {
  4117. p->static_prio = NICE_TO_PRIO(nice);
  4118. goto out_unlock;
  4119. }
  4120. on_rq = p->se.on_rq;
  4121. if (on_rq)
  4122. dequeue_task(rq, p, 0);
  4123. p->static_prio = NICE_TO_PRIO(nice);
  4124. set_load_weight(p);
  4125. old_prio = p->prio;
  4126. p->prio = effective_prio(p);
  4127. delta = p->prio - old_prio;
  4128. if (on_rq) {
  4129. enqueue_task(rq, p, 0);
  4130. /*
  4131. * If the task increased its priority or is running and
  4132. * lowered its priority, then reschedule its CPU:
  4133. */
  4134. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4135. resched_task(rq->curr);
  4136. }
  4137. out_unlock:
  4138. task_rq_unlock(rq, &flags);
  4139. }
  4140. EXPORT_SYMBOL(set_user_nice);
  4141. /*
  4142. * can_nice - check if a task can reduce its nice value
  4143. * @p: task
  4144. * @nice: nice value
  4145. */
  4146. int can_nice(const struct task_struct *p, const int nice)
  4147. {
  4148. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4149. int nice_rlim = 20 - nice;
  4150. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4151. capable(CAP_SYS_NICE));
  4152. }
  4153. #ifdef __ARCH_WANT_SYS_NICE
  4154. /*
  4155. * sys_nice - change the priority of the current process.
  4156. * @increment: priority increment
  4157. *
  4158. * sys_setpriority is a more generic, but much slower function that
  4159. * does similar things.
  4160. */
  4161. asmlinkage long sys_nice(int increment)
  4162. {
  4163. long nice, retval;
  4164. /*
  4165. * Setpriority might change our priority at the same moment.
  4166. * We don't have to worry. Conceptually one call occurs first
  4167. * and we have a single winner.
  4168. */
  4169. if (increment < -40)
  4170. increment = -40;
  4171. if (increment > 40)
  4172. increment = 40;
  4173. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4174. if (nice < -20)
  4175. nice = -20;
  4176. if (nice > 19)
  4177. nice = 19;
  4178. if (increment < 0 && !can_nice(current, nice))
  4179. return -EPERM;
  4180. retval = security_task_setnice(current, nice);
  4181. if (retval)
  4182. return retval;
  4183. set_user_nice(current, nice);
  4184. return 0;
  4185. }
  4186. #endif
  4187. /**
  4188. * task_prio - return the priority value of a given task.
  4189. * @p: the task in question.
  4190. *
  4191. * This is the priority value as seen by users in /proc.
  4192. * RT tasks are offset by -200. Normal tasks are centered
  4193. * around 0, value goes from -16 to +15.
  4194. */
  4195. int task_prio(const struct task_struct *p)
  4196. {
  4197. return p->prio - MAX_RT_PRIO;
  4198. }
  4199. /**
  4200. * task_nice - return the nice value of a given task.
  4201. * @p: the task in question.
  4202. */
  4203. int task_nice(const struct task_struct *p)
  4204. {
  4205. return TASK_NICE(p);
  4206. }
  4207. EXPORT_SYMBOL(task_nice);
  4208. /**
  4209. * idle_cpu - is a given cpu idle currently?
  4210. * @cpu: the processor in question.
  4211. */
  4212. int idle_cpu(int cpu)
  4213. {
  4214. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4215. }
  4216. /**
  4217. * idle_task - return the idle task for a given cpu.
  4218. * @cpu: the processor in question.
  4219. */
  4220. struct task_struct *idle_task(int cpu)
  4221. {
  4222. return cpu_rq(cpu)->idle;
  4223. }
  4224. /**
  4225. * find_process_by_pid - find a process with a matching PID value.
  4226. * @pid: the pid in question.
  4227. */
  4228. static struct task_struct *find_process_by_pid(pid_t pid)
  4229. {
  4230. return pid ? find_task_by_vpid(pid) : current;
  4231. }
  4232. /* Actually do priority change: must hold rq lock. */
  4233. static void
  4234. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4235. {
  4236. BUG_ON(p->se.on_rq);
  4237. p->policy = policy;
  4238. switch (p->policy) {
  4239. case SCHED_NORMAL:
  4240. case SCHED_BATCH:
  4241. case SCHED_IDLE:
  4242. p->sched_class = &fair_sched_class;
  4243. break;
  4244. case SCHED_FIFO:
  4245. case SCHED_RR:
  4246. p->sched_class = &rt_sched_class;
  4247. break;
  4248. }
  4249. p->rt_priority = prio;
  4250. p->normal_prio = normal_prio(p);
  4251. /* we are holding p->pi_lock already */
  4252. p->prio = rt_mutex_getprio(p);
  4253. set_load_weight(p);
  4254. }
  4255. static int __sched_setscheduler(struct task_struct *p, int policy,
  4256. struct sched_param *param, bool user)
  4257. {
  4258. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4259. unsigned long flags;
  4260. const struct sched_class *prev_class = p->sched_class;
  4261. struct rq *rq;
  4262. /* may grab non-irq protected spin_locks */
  4263. BUG_ON(in_interrupt());
  4264. recheck:
  4265. /* double check policy once rq lock held */
  4266. if (policy < 0)
  4267. policy = oldpolicy = p->policy;
  4268. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4269. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4270. policy != SCHED_IDLE)
  4271. return -EINVAL;
  4272. /*
  4273. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4274. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4275. * SCHED_BATCH and SCHED_IDLE is 0.
  4276. */
  4277. if (param->sched_priority < 0 ||
  4278. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4279. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4280. return -EINVAL;
  4281. if (rt_policy(policy) != (param->sched_priority != 0))
  4282. return -EINVAL;
  4283. /*
  4284. * Allow unprivileged RT tasks to decrease priority:
  4285. */
  4286. if (user && !capable(CAP_SYS_NICE)) {
  4287. if (rt_policy(policy)) {
  4288. unsigned long rlim_rtprio;
  4289. if (!lock_task_sighand(p, &flags))
  4290. return -ESRCH;
  4291. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4292. unlock_task_sighand(p, &flags);
  4293. /* can't set/change the rt policy */
  4294. if (policy != p->policy && !rlim_rtprio)
  4295. return -EPERM;
  4296. /* can't increase priority */
  4297. if (param->sched_priority > p->rt_priority &&
  4298. param->sched_priority > rlim_rtprio)
  4299. return -EPERM;
  4300. }
  4301. /*
  4302. * Like positive nice levels, dont allow tasks to
  4303. * move out of SCHED_IDLE either:
  4304. */
  4305. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4306. return -EPERM;
  4307. /* can't change other user's priorities */
  4308. if ((current->euid != p->euid) &&
  4309. (current->euid != p->uid))
  4310. return -EPERM;
  4311. }
  4312. if (user) {
  4313. #ifdef CONFIG_RT_GROUP_SCHED
  4314. /*
  4315. * Do not allow realtime tasks into groups that have no runtime
  4316. * assigned.
  4317. */
  4318. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4319. return -EPERM;
  4320. #endif
  4321. retval = security_task_setscheduler(p, policy, param);
  4322. if (retval)
  4323. return retval;
  4324. }
  4325. /*
  4326. * make sure no PI-waiters arrive (or leave) while we are
  4327. * changing the priority of the task:
  4328. */
  4329. spin_lock_irqsave(&p->pi_lock, flags);
  4330. /*
  4331. * To be able to change p->policy safely, the apropriate
  4332. * runqueue lock must be held.
  4333. */
  4334. rq = __task_rq_lock(p);
  4335. /* recheck policy now with rq lock held */
  4336. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4337. policy = oldpolicy = -1;
  4338. __task_rq_unlock(rq);
  4339. spin_unlock_irqrestore(&p->pi_lock, flags);
  4340. goto recheck;
  4341. }
  4342. update_rq_clock(rq);
  4343. on_rq = p->se.on_rq;
  4344. running = task_current(rq, p);
  4345. if (on_rq)
  4346. deactivate_task(rq, p, 0);
  4347. if (running)
  4348. p->sched_class->put_prev_task(rq, p);
  4349. oldprio = p->prio;
  4350. __setscheduler(rq, p, policy, param->sched_priority);
  4351. if (running)
  4352. p->sched_class->set_curr_task(rq);
  4353. if (on_rq) {
  4354. activate_task(rq, p, 0);
  4355. check_class_changed(rq, p, prev_class, oldprio, running);
  4356. }
  4357. __task_rq_unlock(rq);
  4358. spin_unlock_irqrestore(&p->pi_lock, flags);
  4359. rt_mutex_adjust_pi(p);
  4360. return 0;
  4361. }
  4362. /**
  4363. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4364. * @p: the task in question.
  4365. * @policy: new policy.
  4366. * @param: structure containing the new RT priority.
  4367. *
  4368. * NOTE that the task may be already dead.
  4369. */
  4370. int sched_setscheduler(struct task_struct *p, int policy,
  4371. struct sched_param *param)
  4372. {
  4373. return __sched_setscheduler(p, policy, param, true);
  4374. }
  4375. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4376. /**
  4377. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4378. * @p: the task in question.
  4379. * @policy: new policy.
  4380. * @param: structure containing the new RT priority.
  4381. *
  4382. * Just like sched_setscheduler, only don't bother checking if the
  4383. * current context has permission. For example, this is needed in
  4384. * stop_machine(): we create temporary high priority worker threads,
  4385. * but our caller might not have that capability.
  4386. */
  4387. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4388. struct sched_param *param)
  4389. {
  4390. return __sched_setscheduler(p, policy, param, false);
  4391. }
  4392. static int
  4393. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4394. {
  4395. struct sched_param lparam;
  4396. struct task_struct *p;
  4397. int retval;
  4398. if (!param || pid < 0)
  4399. return -EINVAL;
  4400. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4401. return -EFAULT;
  4402. rcu_read_lock();
  4403. retval = -ESRCH;
  4404. p = find_process_by_pid(pid);
  4405. if (p != NULL)
  4406. retval = sched_setscheduler(p, policy, &lparam);
  4407. rcu_read_unlock();
  4408. return retval;
  4409. }
  4410. /**
  4411. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4412. * @pid: the pid in question.
  4413. * @policy: new policy.
  4414. * @param: structure containing the new RT priority.
  4415. */
  4416. asmlinkage long
  4417. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4418. {
  4419. /* negative values for policy are not valid */
  4420. if (policy < 0)
  4421. return -EINVAL;
  4422. return do_sched_setscheduler(pid, policy, param);
  4423. }
  4424. /**
  4425. * sys_sched_setparam - set/change the RT priority of a thread
  4426. * @pid: the pid in question.
  4427. * @param: structure containing the new RT priority.
  4428. */
  4429. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4430. {
  4431. return do_sched_setscheduler(pid, -1, param);
  4432. }
  4433. /**
  4434. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4435. * @pid: the pid in question.
  4436. */
  4437. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4438. {
  4439. struct task_struct *p;
  4440. int retval;
  4441. if (pid < 0)
  4442. return -EINVAL;
  4443. retval = -ESRCH;
  4444. read_lock(&tasklist_lock);
  4445. p = find_process_by_pid(pid);
  4446. if (p) {
  4447. retval = security_task_getscheduler(p);
  4448. if (!retval)
  4449. retval = p->policy;
  4450. }
  4451. read_unlock(&tasklist_lock);
  4452. return retval;
  4453. }
  4454. /**
  4455. * sys_sched_getscheduler - get the RT priority of a thread
  4456. * @pid: the pid in question.
  4457. * @param: structure containing the RT priority.
  4458. */
  4459. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4460. {
  4461. struct sched_param lp;
  4462. struct task_struct *p;
  4463. int retval;
  4464. if (!param || pid < 0)
  4465. return -EINVAL;
  4466. read_lock(&tasklist_lock);
  4467. p = find_process_by_pid(pid);
  4468. retval = -ESRCH;
  4469. if (!p)
  4470. goto out_unlock;
  4471. retval = security_task_getscheduler(p);
  4472. if (retval)
  4473. goto out_unlock;
  4474. lp.sched_priority = p->rt_priority;
  4475. read_unlock(&tasklist_lock);
  4476. /*
  4477. * This one might sleep, we cannot do it with a spinlock held ...
  4478. */
  4479. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4480. return retval;
  4481. out_unlock:
  4482. read_unlock(&tasklist_lock);
  4483. return retval;
  4484. }
  4485. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4486. {
  4487. cpumask_t cpus_allowed;
  4488. cpumask_t new_mask = *in_mask;
  4489. struct task_struct *p;
  4490. int retval;
  4491. get_online_cpus();
  4492. read_lock(&tasklist_lock);
  4493. p = find_process_by_pid(pid);
  4494. if (!p) {
  4495. read_unlock(&tasklist_lock);
  4496. put_online_cpus();
  4497. return -ESRCH;
  4498. }
  4499. /*
  4500. * It is not safe to call set_cpus_allowed with the
  4501. * tasklist_lock held. We will bump the task_struct's
  4502. * usage count and then drop tasklist_lock.
  4503. */
  4504. get_task_struct(p);
  4505. read_unlock(&tasklist_lock);
  4506. retval = -EPERM;
  4507. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4508. !capable(CAP_SYS_NICE))
  4509. goto out_unlock;
  4510. retval = security_task_setscheduler(p, 0, NULL);
  4511. if (retval)
  4512. goto out_unlock;
  4513. cpuset_cpus_allowed(p, &cpus_allowed);
  4514. cpus_and(new_mask, new_mask, cpus_allowed);
  4515. again:
  4516. retval = set_cpus_allowed_ptr(p, &new_mask);
  4517. if (!retval) {
  4518. cpuset_cpus_allowed(p, &cpus_allowed);
  4519. if (!cpus_subset(new_mask, cpus_allowed)) {
  4520. /*
  4521. * We must have raced with a concurrent cpuset
  4522. * update. Just reset the cpus_allowed to the
  4523. * cpuset's cpus_allowed
  4524. */
  4525. new_mask = cpus_allowed;
  4526. goto again;
  4527. }
  4528. }
  4529. out_unlock:
  4530. put_task_struct(p);
  4531. put_online_cpus();
  4532. return retval;
  4533. }
  4534. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4535. cpumask_t *new_mask)
  4536. {
  4537. if (len < sizeof(cpumask_t)) {
  4538. memset(new_mask, 0, sizeof(cpumask_t));
  4539. } else if (len > sizeof(cpumask_t)) {
  4540. len = sizeof(cpumask_t);
  4541. }
  4542. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4543. }
  4544. /**
  4545. * sys_sched_setaffinity - set the cpu affinity of a process
  4546. * @pid: pid of the process
  4547. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4548. * @user_mask_ptr: user-space pointer to the new cpu mask
  4549. */
  4550. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4551. unsigned long __user *user_mask_ptr)
  4552. {
  4553. cpumask_t new_mask;
  4554. int retval;
  4555. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4556. if (retval)
  4557. return retval;
  4558. return sched_setaffinity(pid, &new_mask);
  4559. }
  4560. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4561. {
  4562. struct task_struct *p;
  4563. int retval;
  4564. get_online_cpus();
  4565. read_lock(&tasklist_lock);
  4566. retval = -ESRCH;
  4567. p = find_process_by_pid(pid);
  4568. if (!p)
  4569. goto out_unlock;
  4570. retval = security_task_getscheduler(p);
  4571. if (retval)
  4572. goto out_unlock;
  4573. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4574. out_unlock:
  4575. read_unlock(&tasklist_lock);
  4576. put_online_cpus();
  4577. return retval;
  4578. }
  4579. /**
  4580. * sys_sched_getaffinity - get the cpu affinity of a process
  4581. * @pid: pid of the process
  4582. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4583. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4584. */
  4585. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4586. unsigned long __user *user_mask_ptr)
  4587. {
  4588. int ret;
  4589. cpumask_t mask;
  4590. if (len < sizeof(cpumask_t))
  4591. return -EINVAL;
  4592. ret = sched_getaffinity(pid, &mask);
  4593. if (ret < 0)
  4594. return ret;
  4595. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4596. return -EFAULT;
  4597. return sizeof(cpumask_t);
  4598. }
  4599. /**
  4600. * sys_sched_yield - yield the current processor to other threads.
  4601. *
  4602. * This function yields the current CPU to other tasks. If there are no
  4603. * other threads running on this CPU then this function will return.
  4604. */
  4605. asmlinkage long sys_sched_yield(void)
  4606. {
  4607. struct rq *rq = this_rq_lock();
  4608. schedstat_inc(rq, yld_count);
  4609. current->sched_class->yield_task(rq);
  4610. /*
  4611. * Since we are going to call schedule() anyway, there's
  4612. * no need to preempt or enable interrupts:
  4613. */
  4614. __release(rq->lock);
  4615. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4616. _raw_spin_unlock(&rq->lock);
  4617. preempt_enable_no_resched();
  4618. schedule();
  4619. return 0;
  4620. }
  4621. static void __cond_resched(void)
  4622. {
  4623. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4624. __might_sleep(__FILE__, __LINE__);
  4625. #endif
  4626. /*
  4627. * The BKS might be reacquired before we have dropped
  4628. * PREEMPT_ACTIVE, which could trigger a second
  4629. * cond_resched() call.
  4630. */
  4631. do {
  4632. add_preempt_count(PREEMPT_ACTIVE);
  4633. schedule();
  4634. sub_preempt_count(PREEMPT_ACTIVE);
  4635. } while (need_resched());
  4636. }
  4637. int __sched _cond_resched(void)
  4638. {
  4639. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4640. system_state == SYSTEM_RUNNING) {
  4641. __cond_resched();
  4642. return 1;
  4643. }
  4644. return 0;
  4645. }
  4646. EXPORT_SYMBOL(_cond_resched);
  4647. /*
  4648. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4649. * call schedule, and on return reacquire the lock.
  4650. *
  4651. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4652. * operations here to prevent schedule() from being called twice (once via
  4653. * spin_unlock(), once by hand).
  4654. */
  4655. int cond_resched_lock(spinlock_t *lock)
  4656. {
  4657. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4658. int ret = 0;
  4659. if (spin_needbreak(lock) || resched) {
  4660. spin_unlock(lock);
  4661. if (resched && need_resched())
  4662. __cond_resched();
  4663. else
  4664. cpu_relax();
  4665. ret = 1;
  4666. spin_lock(lock);
  4667. }
  4668. return ret;
  4669. }
  4670. EXPORT_SYMBOL(cond_resched_lock);
  4671. int __sched cond_resched_softirq(void)
  4672. {
  4673. BUG_ON(!in_softirq());
  4674. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4675. local_bh_enable();
  4676. __cond_resched();
  4677. local_bh_disable();
  4678. return 1;
  4679. }
  4680. return 0;
  4681. }
  4682. EXPORT_SYMBOL(cond_resched_softirq);
  4683. /**
  4684. * yield - yield the current processor to other threads.
  4685. *
  4686. * This is a shortcut for kernel-space yielding - it marks the
  4687. * thread runnable and calls sys_sched_yield().
  4688. */
  4689. void __sched yield(void)
  4690. {
  4691. set_current_state(TASK_RUNNING);
  4692. sys_sched_yield();
  4693. }
  4694. EXPORT_SYMBOL(yield);
  4695. /*
  4696. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4697. * that process accounting knows that this is a task in IO wait state.
  4698. *
  4699. * But don't do that if it is a deliberate, throttling IO wait (this task
  4700. * has set its backing_dev_info: the queue against which it should throttle)
  4701. */
  4702. void __sched io_schedule(void)
  4703. {
  4704. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4705. delayacct_blkio_start();
  4706. atomic_inc(&rq->nr_iowait);
  4707. schedule();
  4708. atomic_dec(&rq->nr_iowait);
  4709. delayacct_blkio_end();
  4710. }
  4711. EXPORT_SYMBOL(io_schedule);
  4712. long __sched io_schedule_timeout(long timeout)
  4713. {
  4714. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4715. long ret;
  4716. delayacct_blkio_start();
  4717. atomic_inc(&rq->nr_iowait);
  4718. ret = schedule_timeout(timeout);
  4719. atomic_dec(&rq->nr_iowait);
  4720. delayacct_blkio_end();
  4721. return ret;
  4722. }
  4723. /**
  4724. * sys_sched_get_priority_max - return maximum RT priority.
  4725. * @policy: scheduling class.
  4726. *
  4727. * this syscall returns the maximum rt_priority that can be used
  4728. * by a given scheduling class.
  4729. */
  4730. asmlinkage long sys_sched_get_priority_max(int policy)
  4731. {
  4732. int ret = -EINVAL;
  4733. switch (policy) {
  4734. case SCHED_FIFO:
  4735. case SCHED_RR:
  4736. ret = MAX_USER_RT_PRIO-1;
  4737. break;
  4738. case SCHED_NORMAL:
  4739. case SCHED_BATCH:
  4740. case SCHED_IDLE:
  4741. ret = 0;
  4742. break;
  4743. }
  4744. return ret;
  4745. }
  4746. /**
  4747. * sys_sched_get_priority_min - return minimum RT priority.
  4748. * @policy: scheduling class.
  4749. *
  4750. * this syscall returns the minimum rt_priority that can be used
  4751. * by a given scheduling class.
  4752. */
  4753. asmlinkage long sys_sched_get_priority_min(int policy)
  4754. {
  4755. int ret = -EINVAL;
  4756. switch (policy) {
  4757. case SCHED_FIFO:
  4758. case SCHED_RR:
  4759. ret = 1;
  4760. break;
  4761. case SCHED_NORMAL:
  4762. case SCHED_BATCH:
  4763. case SCHED_IDLE:
  4764. ret = 0;
  4765. }
  4766. return ret;
  4767. }
  4768. /**
  4769. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4770. * @pid: pid of the process.
  4771. * @interval: userspace pointer to the timeslice value.
  4772. *
  4773. * this syscall writes the default timeslice value of a given process
  4774. * into the user-space timespec buffer. A value of '0' means infinity.
  4775. */
  4776. asmlinkage
  4777. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4778. {
  4779. struct task_struct *p;
  4780. unsigned int time_slice;
  4781. int retval;
  4782. struct timespec t;
  4783. if (pid < 0)
  4784. return -EINVAL;
  4785. retval = -ESRCH;
  4786. read_lock(&tasklist_lock);
  4787. p = find_process_by_pid(pid);
  4788. if (!p)
  4789. goto out_unlock;
  4790. retval = security_task_getscheduler(p);
  4791. if (retval)
  4792. goto out_unlock;
  4793. /*
  4794. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4795. * tasks that are on an otherwise idle runqueue:
  4796. */
  4797. time_slice = 0;
  4798. if (p->policy == SCHED_RR) {
  4799. time_slice = DEF_TIMESLICE;
  4800. } else if (p->policy != SCHED_FIFO) {
  4801. struct sched_entity *se = &p->se;
  4802. unsigned long flags;
  4803. struct rq *rq;
  4804. rq = task_rq_lock(p, &flags);
  4805. if (rq->cfs.load.weight)
  4806. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4807. task_rq_unlock(rq, &flags);
  4808. }
  4809. read_unlock(&tasklist_lock);
  4810. jiffies_to_timespec(time_slice, &t);
  4811. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4812. return retval;
  4813. out_unlock:
  4814. read_unlock(&tasklist_lock);
  4815. return retval;
  4816. }
  4817. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4818. void sched_show_task(struct task_struct *p)
  4819. {
  4820. unsigned long free = 0;
  4821. unsigned state;
  4822. state = p->state ? __ffs(p->state) + 1 : 0;
  4823. printk(KERN_INFO "%-13.13s %c", p->comm,
  4824. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4825. #if BITS_PER_LONG == 32
  4826. if (state == TASK_RUNNING)
  4827. printk(KERN_CONT " running ");
  4828. else
  4829. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4830. #else
  4831. if (state == TASK_RUNNING)
  4832. printk(KERN_CONT " running task ");
  4833. else
  4834. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4835. #endif
  4836. #ifdef CONFIG_DEBUG_STACK_USAGE
  4837. {
  4838. unsigned long *n = end_of_stack(p);
  4839. while (!*n)
  4840. n++;
  4841. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4842. }
  4843. #endif
  4844. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4845. task_pid_nr(p), task_pid_nr(p->real_parent));
  4846. show_stack(p, NULL);
  4847. }
  4848. void show_state_filter(unsigned long state_filter)
  4849. {
  4850. struct task_struct *g, *p;
  4851. #if BITS_PER_LONG == 32
  4852. printk(KERN_INFO
  4853. " task PC stack pid father\n");
  4854. #else
  4855. printk(KERN_INFO
  4856. " task PC stack pid father\n");
  4857. #endif
  4858. read_lock(&tasklist_lock);
  4859. do_each_thread(g, p) {
  4860. /*
  4861. * reset the NMI-timeout, listing all files on a slow
  4862. * console might take alot of time:
  4863. */
  4864. touch_nmi_watchdog();
  4865. if (!state_filter || (p->state & state_filter))
  4866. sched_show_task(p);
  4867. } while_each_thread(g, p);
  4868. touch_all_softlockup_watchdogs();
  4869. #ifdef CONFIG_SCHED_DEBUG
  4870. sysrq_sched_debug_show();
  4871. #endif
  4872. read_unlock(&tasklist_lock);
  4873. /*
  4874. * Only show locks if all tasks are dumped:
  4875. */
  4876. if (state_filter == -1)
  4877. debug_show_all_locks();
  4878. }
  4879. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4880. {
  4881. idle->sched_class = &idle_sched_class;
  4882. }
  4883. /**
  4884. * init_idle - set up an idle thread for a given CPU
  4885. * @idle: task in question
  4886. * @cpu: cpu the idle task belongs to
  4887. *
  4888. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4889. * flag, to make booting more robust.
  4890. */
  4891. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4892. {
  4893. struct rq *rq = cpu_rq(cpu);
  4894. unsigned long flags;
  4895. __sched_fork(idle);
  4896. idle->se.exec_start = sched_clock();
  4897. idle->prio = idle->normal_prio = MAX_PRIO;
  4898. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4899. __set_task_cpu(idle, cpu);
  4900. spin_lock_irqsave(&rq->lock, flags);
  4901. rq->curr = rq->idle = idle;
  4902. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4903. idle->oncpu = 1;
  4904. #endif
  4905. spin_unlock_irqrestore(&rq->lock, flags);
  4906. /* Set the preempt count _outside_ the spinlocks! */
  4907. #if defined(CONFIG_PREEMPT)
  4908. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4909. #else
  4910. task_thread_info(idle)->preempt_count = 0;
  4911. #endif
  4912. /*
  4913. * The idle tasks have their own, simple scheduling class:
  4914. */
  4915. idle->sched_class = &idle_sched_class;
  4916. }
  4917. /*
  4918. * In a system that switches off the HZ timer nohz_cpu_mask
  4919. * indicates which cpus entered this state. This is used
  4920. * in the rcu update to wait only for active cpus. For system
  4921. * which do not switch off the HZ timer nohz_cpu_mask should
  4922. * always be CPU_MASK_NONE.
  4923. */
  4924. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4925. /*
  4926. * Increase the granularity value when there are more CPUs,
  4927. * because with more CPUs the 'effective latency' as visible
  4928. * to users decreases. But the relationship is not linear,
  4929. * so pick a second-best guess by going with the log2 of the
  4930. * number of CPUs.
  4931. *
  4932. * This idea comes from the SD scheduler of Con Kolivas:
  4933. */
  4934. static inline void sched_init_granularity(void)
  4935. {
  4936. unsigned int factor = 1 + ilog2(num_online_cpus());
  4937. const unsigned long limit = 200000000;
  4938. sysctl_sched_min_granularity *= factor;
  4939. if (sysctl_sched_min_granularity > limit)
  4940. sysctl_sched_min_granularity = limit;
  4941. sysctl_sched_latency *= factor;
  4942. if (sysctl_sched_latency > limit)
  4943. sysctl_sched_latency = limit;
  4944. sysctl_sched_wakeup_granularity *= factor;
  4945. sysctl_sched_shares_ratelimit *= factor;
  4946. }
  4947. #ifdef CONFIG_SMP
  4948. /*
  4949. * This is how migration works:
  4950. *
  4951. * 1) we queue a struct migration_req structure in the source CPU's
  4952. * runqueue and wake up that CPU's migration thread.
  4953. * 2) we down() the locked semaphore => thread blocks.
  4954. * 3) migration thread wakes up (implicitly it forces the migrated
  4955. * thread off the CPU)
  4956. * 4) it gets the migration request and checks whether the migrated
  4957. * task is still in the wrong runqueue.
  4958. * 5) if it's in the wrong runqueue then the migration thread removes
  4959. * it and puts it into the right queue.
  4960. * 6) migration thread up()s the semaphore.
  4961. * 7) we wake up and the migration is done.
  4962. */
  4963. /*
  4964. * Change a given task's CPU affinity. Migrate the thread to a
  4965. * proper CPU and schedule it away if the CPU it's executing on
  4966. * is removed from the allowed bitmask.
  4967. *
  4968. * NOTE: the caller must have a valid reference to the task, the
  4969. * task must not exit() & deallocate itself prematurely. The
  4970. * call is not atomic; no spinlocks may be held.
  4971. */
  4972. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4973. {
  4974. struct migration_req req;
  4975. unsigned long flags;
  4976. struct rq *rq;
  4977. int ret = 0;
  4978. rq = task_rq_lock(p, &flags);
  4979. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4980. ret = -EINVAL;
  4981. goto out;
  4982. }
  4983. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4984. !cpus_equal(p->cpus_allowed, *new_mask))) {
  4985. ret = -EINVAL;
  4986. goto out;
  4987. }
  4988. if (p->sched_class->set_cpus_allowed)
  4989. p->sched_class->set_cpus_allowed(p, new_mask);
  4990. else {
  4991. p->cpus_allowed = *new_mask;
  4992. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4993. }
  4994. /* Can the task run on the task's current CPU? If so, we're done */
  4995. if (cpu_isset(task_cpu(p), *new_mask))
  4996. goto out;
  4997. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4998. /* Need help from migration thread: drop lock and wait. */
  4999. task_rq_unlock(rq, &flags);
  5000. wake_up_process(rq->migration_thread);
  5001. wait_for_completion(&req.done);
  5002. tlb_migrate_finish(p->mm);
  5003. return 0;
  5004. }
  5005. out:
  5006. task_rq_unlock(rq, &flags);
  5007. return ret;
  5008. }
  5009. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5010. /*
  5011. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5012. * this because either it can't run here any more (set_cpus_allowed()
  5013. * away from this CPU, or CPU going down), or because we're
  5014. * attempting to rebalance this task on exec (sched_exec).
  5015. *
  5016. * So we race with normal scheduler movements, but that's OK, as long
  5017. * as the task is no longer on this CPU.
  5018. *
  5019. * Returns non-zero if task was successfully migrated.
  5020. */
  5021. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5022. {
  5023. struct rq *rq_dest, *rq_src;
  5024. int ret = 0, on_rq;
  5025. if (unlikely(!cpu_active(dest_cpu)))
  5026. return ret;
  5027. rq_src = cpu_rq(src_cpu);
  5028. rq_dest = cpu_rq(dest_cpu);
  5029. double_rq_lock(rq_src, rq_dest);
  5030. /* Already moved. */
  5031. if (task_cpu(p) != src_cpu)
  5032. goto done;
  5033. /* Affinity changed (again). */
  5034. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5035. goto fail;
  5036. on_rq = p->se.on_rq;
  5037. if (on_rq)
  5038. deactivate_task(rq_src, p, 0);
  5039. set_task_cpu(p, dest_cpu);
  5040. if (on_rq) {
  5041. activate_task(rq_dest, p, 0);
  5042. check_preempt_curr(rq_dest, p);
  5043. }
  5044. done:
  5045. ret = 1;
  5046. fail:
  5047. double_rq_unlock(rq_src, rq_dest);
  5048. return ret;
  5049. }
  5050. /*
  5051. * migration_thread - this is a highprio system thread that performs
  5052. * thread migration by bumping thread off CPU then 'pushing' onto
  5053. * another runqueue.
  5054. */
  5055. static int migration_thread(void *data)
  5056. {
  5057. int cpu = (long)data;
  5058. struct rq *rq;
  5059. rq = cpu_rq(cpu);
  5060. BUG_ON(rq->migration_thread != current);
  5061. set_current_state(TASK_INTERRUPTIBLE);
  5062. while (!kthread_should_stop()) {
  5063. struct migration_req *req;
  5064. struct list_head *head;
  5065. spin_lock_irq(&rq->lock);
  5066. if (cpu_is_offline(cpu)) {
  5067. spin_unlock_irq(&rq->lock);
  5068. goto wait_to_die;
  5069. }
  5070. if (rq->active_balance) {
  5071. active_load_balance(rq, cpu);
  5072. rq->active_balance = 0;
  5073. }
  5074. head = &rq->migration_queue;
  5075. if (list_empty(head)) {
  5076. spin_unlock_irq(&rq->lock);
  5077. schedule();
  5078. set_current_state(TASK_INTERRUPTIBLE);
  5079. continue;
  5080. }
  5081. req = list_entry(head->next, struct migration_req, list);
  5082. list_del_init(head->next);
  5083. spin_unlock(&rq->lock);
  5084. __migrate_task(req->task, cpu, req->dest_cpu);
  5085. local_irq_enable();
  5086. complete(&req->done);
  5087. }
  5088. __set_current_state(TASK_RUNNING);
  5089. return 0;
  5090. wait_to_die:
  5091. /* Wait for kthread_stop */
  5092. set_current_state(TASK_INTERRUPTIBLE);
  5093. while (!kthread_should_stop()) {
  5094. schedule();
  5095. set_current_state(TASK_INTERRUPTIBLE);
  5096. }
  5097. __set_current_state(TASK_RUNNING);
  5098. return 0;
  5099. }
  5100. #ifdef CONFIG_HOTPLUG_CPU
  5101. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5102. {
  5103. int ret;
  5104. local_irq_disable();
  5105. ret = __migrate_task(p, src_cpu, dest_cpu);
  5106. local_irq_enable();
  5107. return ret;
  5108. }
  5109. /*
  5110. * Figure out where task on dead CPU should go, use force if necessary.
  5111. * NOTE: interrupts should be disabled by the caller
  5112. */
  5113. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5114. {
  5115. unsigned long flags;
  5116. cpumask_t mask;
  5117. struct rq *rq;
  5118. int dest_cpu;
  5119. do {
  5120. /* On same node? */
  5121. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5122. cpus_and(mask, mask, p->cpus_allowed);
  5123. dest_cpu = any_online_cpu(mask);
  5124. /* On any allowed CPU? */
  5125. if (dest_cpu >= nr_cpu_ids)
  5126. dest_cpu = any_online_cpu(p->cpus_allowed);
  5127. /* No more Mr. Nice Guy. */
  5128. if (dest_cpu >= nr_cpu_ids) {
  5129. cpumask_t cpus_allowed;
  5130. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5131. /*
  5132. * Try to stay on the same cpuset, where the
  5133. * current cpuset may be a subset of all cpus.
  5134. * The cpuset_cpus_allowed_locked() variant of
  5135. * cpuset_cpus_allowed() will not block. It must be
  5136. * called within calls to cpuset_lock/cpuset_unlock.
  5137. */
  5138. rq = task_rq_lock(p, &flags);
  5139. p->cpus_allowed = cpus_allowed;
  5140. dest_cpu = any_online_cpu(p->cpus_allowed);
  5141. task_rq_unlock(rq, &flags);
  5142. /*
  5143. * Don't tell them about moving exiting tasks or
  5144. * kernel threads (both mm NULL), since they never
  5145. * leave kernel.
  5146. */
  5147. if (p->mm && printk_ratelimit()) {
  5148. printk(KERN_INFO "process %d (%s) no "
  5149. "longer affine to cpu%d\n",
  5150. task_pid_nr(p), p->comm, dead_cpu);
  5151. }
  5152. }
  5153. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5154. }
  5155. /*
  5156. * While a dead CPU has no uninterruptible tasks queued at this point,
  5157. * it might still have a nonzero ->nr_uninterruptible counter, because
  5158. * for performance reasons the counter is not stricly tracking tasks to
  5159. * their home CPUs. So we just add the counter to another CPU's counter,
  5160. * to keep the global sum constant after CPU-down:
  5161. */
  5162. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5163. {
  5164. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5165. unsigned long flags;
  5166. local_irq_save(flags);
  5167. double_rq_lock(rq_src, rq_dest);
  5168. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5169. rq_src->nr_uninterruptible = 0;
  5170. double_rq_unlock(rq_src, rq_dest);
  5171. local_irq_restore(flags);
  5172. }
  5173. /* Run through task list and migrate tasks from the dead cpu. */
  5174. static void migrate_live_tasks(int src_cpu)
  5175. {
  5176. struct task_struct *p, *t;
  5177. read_lock(&tasklist_lock);
  5178. do_each_thread(t, p) {
  5179. if (p == current)
  5180. continue;
  5181. if (task_cpu(p) == src_cpu)
  5182. move_task_off_dead_cpu(src_cpu, p);
  5183. } while_each_thread(t, p);
  5184. read_unlock(&tasklist_lock);
  5185. }
  5186. /*
  5187. * Schedules idle task to be the next runnable task on current CPU.
  5188. * It does so by boosting its priority to highest possible.
  5189. * Used by CPU offline code.
  5190. */
  5191. void sched_idle_next(void)
  5192. {
  5193. int this_cpu = smp_processor_id();
  5194. struct rq *rq = cpu_rq(this_cpu);
  5195. struct task_struct *p = rq->idle;
  5196. unsigned long flags;
  5197. /* cpu has to be offline */
  5198. BUG_ON(cpu_online(this_cpu));
  5199. /*
  5200. * Strictly not necessary since rest of the CPUs are stopped by now
  5201. * and interrupts disabled on the current cpu.
  5202. */
  5203. spin_lock_irqsave(&rq->lock, flags);
  5204. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5205. update_rq_clock(rq);
  5206. activate_task(rq, p, 0);
  5207. spin_unlock_irqrestore(&rq->lock, flags);
  5208. }
  5209. /*
  5210. * Ensures that the idle task is using init_mm right before its cpu goes
  5211. * offline.
  5212. */
  5213. void idle_task_exit(void)
  5214. {
  5215. struct mm_struct *mm = current->active_mm;
  5216. BUG_ON(cpu_online(smp_processor_id()));
  5217. if (mm != &init_mm)
  5218. switch_mm(mm, &init_mm, current);
  5219. mmdrop(mm);
  5220. }
  5221. /* called under rq->lock with disabled interrupts */
  5222. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5223. {
  5224. struct rq *rq = cpu_rq(dead_cpu);
  5225. /* Must be exiting, otherwise would be on tasklist. */
  5226. BUG_ON(!p->exit_state);
  5227. /* Cannot have done final schedule yet: would have vanished. */
  5228. BUG_ON(p->state == TASK_DEAD);
  5229. get_task_struct(p);
  5230. /*
  5231. * Drop lock around migration; if someone else moves it,
  5232. * that's OK. No task can be added to this CPU, so iteration is
  5233. * fine.
  5234. */
  5235. spin_unlock_irq(&rq->lock);
  5236. move_task_off_dead_cpu(dead_cpu, p);
  5237. spin_lock_irq(&rq->lock);
  5238. put_task_struct(p);
  5239. }
  5240. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5241. static void migrate_dead_tasks(unsigned int dead_cpu)
  5242. {
  5243. struct rq *rq = cpu_rq(dead_cpu);
  5244. struct task_struct *next;
  5245. for ( ; ; ) {
  5246. if (!rq->nr_running)
  5247. break;
  5248. update_rq_clock(rq);
  5249. next = pick_next_task(rq, rq->curr);
  5250. if (!next)
  5251. break;
  5252. next->sched_class->put_prev_task(rq, next);
  5253. migrate_dead(dead_cpu, next);
  5254. }
  5255. }
  5256. #endif /* CONFIG_HOTPLUG_CPU */
  5257. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5258. static struct ctl_table sd_ctl_dir[] = {
  5259. {
  5260. .procname = "sched_domain",
  5261. .mode = 0555,
  5262. },
  5263. {0, },
  5264. };
  5265. static struct ctl_table sd_ctl_root[] = {
  5266. {
  5267. .ctl_name = CTL_KERN,
  5268. .procname = "kernel",
  5269. .mode = 0555,
  5270. .child = sd_ctl_dir,
  5271. },
  5272. {0, },
  5273. };
  5274. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5275. {
  5276. struct ctl_table *entry =
  5277. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5278. return entry;
  5279. }
  5280. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5281. {
  5282. struct ctl_table *entry;
  5283. /*
  5284. * In the intermediate directories, both the child directory and
  5285. * procname are dynamically allocated and could fail but the mode
  5286. * will always be set. In the lowest directory the names are
  5287. * static strings and all have proc handlers.
  5288. */
  5289. for (entry = *tablep; entry->mode; entry++) {
  5290. if (entry->child)
  5291. sd_free_ctl_entry(&entry->child);
  5292. if (entry->proc_handler == NULL)
  5293. kfree(entry->procname);
  5294. }
  5295. kfree(*tablep);
  5296. *tablep = NULL;
  5297. }
  5298. static void
  5299. set_table_entry(struct ctl_table *entry,
  5300. const char *procname, void *data, int maxlen,
  5301. mode_t mode, proc_handler *proc_handler)
  5302. {
  5303. entry->procname = procname;
  5304. entry->data = data;
  5305. entry->maxlen = maxlen;
  5306. entry->mode = mode;
  5307. entry->proc_handler = proc_handler;
  5308. }
  5309. static struct ctl_table *
  5310. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5311. {
  5312. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5313. if (table == NULL)
  5314. return NULL;
  5315. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5316. sizeof(long), 0644, proc_doulongvec_minmax);
  5317. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5318. sizeof(long), 0644, proc_doulongvec_minmax);
  5319. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5320. sizeof(int), 0644, proc_dointvec_minmax);
  5321. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5322. sizeof(int), 0644, proc_dointvec_minmax);
  5323. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5324. sizeof(int), 0644, proc_dointvec_minmax);
  5325. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5326. sizeof(int), 0644, proc_dointvec_minmax);
  5327. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5328. sizeof(int), 0644, proc_dointvec_minmax);
  5329. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5330. sizeof(int), 0644, proc_dointvec_minmax);
  5331. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5332. sizeof(int), 0644, proc_dointvec_minmax);
  5333. set_table_entry(&table[9], "cache_nice_tries",
  5334. &sd->cache_nice_tries,
  5335. sizeof(int), 0644, proc_dointvec_minmax);
  5336. set_table_entry(&table[10], "flags", &sd->flags,
  5337. sizeof(int), 0644, proc_dointvec_minmax);
  5338. /* &table[11] is terminator */
  5339. return table;
  5340. }
  5341. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5342. {
  5343. struct ctl_table *entry, *table;
  5344. struct sched_domain *sd;
  5345. int domain_num = 0, i;
  5346. char buf[32];
  5347. for_each_domain(cpu, sd)
  5348. domain_num++;
  5349. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5350. if (table == NULL)
  5351. return NULL;
  5352. i = 0;
  5353. for_each_domain(cpu, sd) {
  5354. snprintf(buf, 32, "domain%d", i);
  5355. entry->procname = kstrdup(buf, GFP_KERNEL);
  5356. entry->mode = 0555;
  5357. entry->child = sd_alloc_ctl_domain_table(sd);
  5358. entry++;
  5359. i++;
  5360. }
  5361. return table;
  5362. }
  5363. static struct ctl_table_header *sd_sysctl_header;
  5364. static void register_sched_domain_sysctl(void)
  5365. {
  5366. int i, cpu_num = num_online_cpus();
  5367. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5368. char buf[32];
  5369. WARN_ON(sd_ctl_dir[0].child);
  5370. sd_ctl_dir[0].child = entry;
  5371. if (entry == NULL)
  5372. return;
  5373. for_each_online_cpu(i) {
  5374. snprintf(buf, 32, "cpu%d", i);
  5375. entry->procname = kstrdup(buf, GFP_KERNEL);
  5376. entry->mode = 0555;
  5377. entry->child = sd_alloc_ctl_cpu_table(i);
  5378. entry++;
  5379. }
  5380. WARN_ON(sd_sysctl_header);
  5381. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5382. }
  5383. /* may be called multiple times per register */
  5384. static void unregister_sched_domain_sysctl(void)
  5385. {
  5386. if (sd_sysctl_header)
  5387. unregister_sysctl_table(sd_sysctl_header);
  5388. sd_sysctl_header = NULL;
  5389. if (sd_ctl_dir[0].child)
  5390. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5391. }
  5392. #else
  5393. static void register_sched_domain_sysctl(void)
  5394. {
  5395. }
  5396. static void unregister_sched_domain_sysctl(void)
  5397. {
  5398. }
  5399. #endif
  5400. static void set_rq_online(struct rq *rq)
  5401. {
  5402. if (!rq->online) {
  5403. const struct sched_class *class;
  5404. cpu_set(rq->cpu, rq->rd->online);
  5405. rq->online = 1;
  5406. for_each_class(class) {
  5407. if (class->rq_online)
  5408. class->rq_online(rq);
  5409. }
  5410. }
  5411. }
  5412. static void set_rq_offline(struct rq *rq)
  5413. {
  5414. if (rq->online) {
  5415. const struct sched_class *class;
  5416. for_each_class(class) {
  5417. if (class->rq_offline)
  5418. class->rq_offline(rq);
  5419. }
  5420. cpu_clear(rq->cpu, rq->rd->online);
  5421. rq->online = 0;
  5422. }
  5423. }
  5424. /*
  5425. * migration_call - callback that gets triggered when a CPU is added.
  5426. * Here we can start up the necessary migration thread for the new CPU.
  5427. */
  5428. static int __cpuinit
  5429. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5430. {
  5431. struct task_struct *p;
  5432. int cpu = (long)hcpu;
  5433. unsigned long flags;
  5434. struct rq *rq;
  5435. switch (action) {
  5436. case CPU_UP_PREPARE:
  5437. case CPU_UP_PREPARE_FROZEN:
  5438. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5439. if (IS_ERR(p))
  5440. return NOTIFY_BAD;
  5441. kthread_bind(p, cpu);
  5442. /* Must be high prio: stop_machine expects to yield to it. */
  5443. rq = task_rq_lock(p, &flags);
  5444. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5445. task_rq_unlock(rq, &flags);
  5446. cpu_rq(cpu)->migration_thread = p;
  5447. break;
  5448. case CPU_ONLINE:
  5449. case CPU_ONLINE_FROZEN:
  5450. /* Strictly unnecessary, as first user will wake it. */
  5451. wake_up_process(cpu_rq(cpu)->migration_thread);
  5452. /* Update our root-domain */
  5453. rq = cpu_rq(cpu);
  5454. spin_lock_irqsave(&rq->lock, flags);
  5455. if (rq->rd) {
  5456. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5457. set_rq_online(rq);
  5458. }
  5459. spin_unlock_irqrestore(&rq->lock, flags);
  5460. break;
  5461. #ifdef CONFIG_HOTPLUG_CPU
  5462. case CPU_UP_CANCELED:
  5463. case CPU_UP_CANCELED_FROZEN:
  5464. if (!cpu_rq(cpu)->migration_thread)
  5465. break;
  5466. /* Unbind it from offline cpu so it can run. Fall thru. */
  5467. kthread_bind(cpu_rq(cpu)->migration_thread,
  5468. any_online_cpu(cpu_online_map));
  5469. kthread_stop(cpu_rq(cpu)->migration_thread);
  5470. cpu_rq(cpu)->migration_thread = NULL;
  5471. break;
  5472. case CPU_DEAD:
  5473. case CPU_DEAD_FROZEN:
  5474. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5475. migrate_live_tasks(cpu);
  5476. rq = cpu_rq(cpu);
  5477. kthread_stop(rq->migration_thread);
  5478. rq->migration_thread = NULL;
  5479. /* Idle task back to normal (off runqueue, low prio) */
  5480. spin_lock_irq(&rq->lock);
  5481. update_rq_clock(rq);
  5482. deactivate_task(rq, rq->idle, 0);
  5483. rq->idle->static_prio = MAX_PRIO;
  5484. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5485. rq->idle->sched_class = &idle_sched_class;
  5486. migrate_dead_tasks(cpu);
  5487. spin_unlock_irq(&rq->lock);
  5488. cpuset_unlock();
  5489. migrate_nr_uninterruptible(rq);
  5490. BUG_ON(rq->nr_running != 0);
  5491. /*
  5492. * No need to migrate the tasks: it was best-effort if
  5493. * they didn't take sched_hotcpu_mutex. Just wake up
  5494. * the requestors.
  5495. */
  5496. spin_lock_irq(&rq->lock);
  5497. while (!list_empty(&rq->migration_queue)) {
  5498. struct migration_req *req;
  5499. req = list_entry(rq->migration_queue.next,
  5500. struct migration_req, list);
  5501. list_del_init(&req->list);
  5502. complete(&req->done);
  5503. }
  5504. spin_unlock_irq(&rq->lock);
  5505. break;
  5506. case CPU_DYING:
  5507. case CPU_DYING_FROZEN:
  5508. /* Update our root-domain */
  5509. rq = cpu_rq(cpu);
  5510. spin_lock_irqsave(&rq->lock, flags);
  5511. if (rq->rd) {
  5512. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5513. set_rq_offline(rq);
  5514. }
  5515. spin_unlock_irqrestore(&rq->lock, flags);
  5516. break;
  5517. #endif
  5518. }
  5519. return NOTIFY_OK;
  5520. }
  5521. /* Register at highest priority so that task migration (migrate_all_tasks)
  5522. * happens before everything else.
  5523. */
  5524. static struct notifier_block __cpuinitdata migration_notifier = {
  5525. .notifier_call = migration_call,
  5526. .priority = 10
  5527. };
  5528. static int __init migration_init(void)
  5529. {
  5530. void *cpu = (void *)(long)smp_processor_id();
  5531. int err;
  5532. /* Start one for the boot CPU: */
  5533. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5534. BUG_ON(err == NOTIFY_BAD);
  5535. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5536. register_cpu_notifier(&migration_notifier);
  5537. return err;
  5538. }
  5539. early_initcall(migration_init);
  5540. #endif
  5541. #ifdef CONFIG_SMP
  5542. #ifdef CONFIG_SCHED_DEBUG
  5543. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5544. {
  5545. switch (lvl) {
  5546. case SD_LV_NONE:
  5547. return "NONE";
  5548. case SD_LV_SIBLING:
  5549. return "SIBLING";
  5550. case SD_LV_MC:
  5551. return "MC";
  5552. case SD_LV_CPU:
  5553. return "CPU";
  5554. case SD_LV_NODE:
  5555. return "NODE";
  5556. case SD_LV_ALLNODES:
  5557. return "ALLNODES";
  5558. case SD_LV_MAX:
  5559. return "MAX";
  5560. }
  5561. return "MAX";
  5562. }
  5563. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5564. cpumask_t *groupmask)
  5565. {
  5566. struct sched_group *group = sd->groups;
  5567. char str[256];
  5568. cpulist_scnprintf(str, sizeof(str), sd->span);
  5569. cpus_clear(*groupmask);
  5570. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5571. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5572. printk("does not load-balance\n");
  5573. if (sd->parent)
  5574. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5575. " has parent");
  5576. return -1;
  5577. }
  5578. printk(KERN_CONT "span %s level %s\n",
  5579. str, sd_level_to_string(sd->level));
  5580. if (!cpu_isset(cpu, sd->span)) {
  5581. printk(KERN_ERR "ERROR: domain->span does not contain "
  5582. "CPU%d\n", cpu);
  5583. }
  5584. if (!cpu_isset(cpu, group->cpumask)) {
  5585. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5586. " CPU%d\n", cpu);
  5587. }
  5588. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5589. do {
  5590. if (!group) {
  5591. printk("\n");
  5592. printk(KERN_ERR "ERROR: group is NULL\n");
  5593. break;
  5594. }
  5595. if (!group->__cpu_power) {
  5596. printk(KERN_CONT "\n");
  5597. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5598. "set\n");
  5599. break;
  5600. }
  5601. if (!cpus_weight(group->cpumask)) {
  5602. printk(KERN_CONT "\n");
  5603. printk(KERN_ERR "ERROR: empty group\n");
  5604. break;
  5605. }
  5606. if (cpus_intersects(*groupmask, group->cpumask)) {
  5607. printk(KERN_CONT "\n");
  5608. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5609. break;
  5610. }
  5611. cpus_or(*groupmask, *groupmask, group->cpumask);
  5612. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5613. printk(KERN_CONT " %s", str);
  5614. group = group->next;
  5615. } while (group != sd->groups);
  5616. printk(KERN_CONT "\n");
  5617. if (!cpus_equal(sd->span, *groupmask))
  5618. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5619. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5620. printk(KERN_ERR "ERROR: parent span is not a superset "
  5621. "of domain->span\n");
  5622. return 0;
  5623. }
  5624. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5625. {
  5626. cpumask_t *groupmask;
  5627. int level = 0;
  5628. if (!sd) {
  5629. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5630. return;
  5631. }
  5632. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5633. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5634. if (!groupmask) {
  5635. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5636. return;
  5637. }
  5638. for (;;) {
  5639. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5640. break;
  5641. level++;
  5642. sd = sd->parent;
  5643. if (!sd)
  5644. break;
  5645. }
  5646. kfree(groupmask);
  5647. }
  5648. #else /* !CONFIG_SCHED_DEBUG */
  5649. # define sched_domain_debug(sd, cpu) do { } while (0)
  5650. #endif /* CONFIG_SCHED_DEBUG */
  5651. static int sd_degenerate(struct sched_domain *sd)
  5652. {
  5653. if (cpus_weight(sd->span) == 1)
  5654. return 1;
  5655. /* Following flags need at least 2 groups */
  5656. if (sd->flags & (SD_LOAD_BALANCE |
  5657. SD_BALANCE_NEWIDLE |
  5658. SD_BALANCE_FORK |
  5659. SD_BALANCE_EXEC |
  5660. SD_SHARE_CPUPOWER |
  5661. SD_SHARE_PKG_RESOURCES)) {
  5662. if (sd->groups != sd->groups->next)
  5663. return 0;
  5664. }
  5665. /* Following flags don't use groups */
  5666. if (sd->flags & (SD_WAKE_IDLE |
  5667. SD_WAKE_AFFINE |
  5668. SD_WAKE_BALANCE))
  5669. return 0;
  5670. return 1;
  5671. }
  5672. static int
  5673. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5674. {
  5675. unsigned long cflags = sd->flags, pflags = parent->flags;
  5676. if (sd_degenerate(parent))
  5677. return 1;
  5678. if (!cpus_equal(sd->span, parent->span))
  5679. return 0;
  5680. /* Does parent contain flags not in child? */
  5681. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5682. if (cflags & SD_WAKE_AFFINE)
  5683. pflags &= ~SD_WAKE_BALANCE;
  5684. /* Flags needing groups don't count if only 1 group in parent */
  5685. if (parent->groups == parent->groups->next) {
  5686. pflags &= ~(SD_LOAD_BALANCE |
  5687. SD_BALANCE_NEWIDLE |
  5688. SD_BALANCE_FORK |
  5689. SD_BALANCE_EXEC |
  5690. SD_SHARE_CPUPOWER |
  5691. SD_SHARE_PKG_RESOURCES);
  5692. }
  5693. if (~cflags & pflags)
  5694. return 0;
  5695. return 1;
  5696. }
  5697. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5698. {
  5699. unsigned long flags;
  5700. spin_lock_irqsave(&rq->lock, flags);
  5701. if (rq->rd) {
  5702. struct root_domain *old_rd = rq->rd;
  5703. if (cpu_isset(rq->cpu, old_rd->online))
  5704. set_rq_offline(rq);
  5705. cpu_clear(rq->cpu, old_rd->span);
  5706. if (atomic_dec_and_test(&old_rd->refcount))
  5707. kfree(old_rd);
  5708. }
  5709. atomic_inc(&rd->refcount);
  5710. rq->rd = rd;
  5711. cpu_set(rq->cpu, rd->span);
  5712. if (cpu_isset(rq->cpu, cpu_online_map))
  5713. set_rq_online(rq);
  5714. spin_unlock_irqrestore(&rq->lock, flags);
  5715. }
  5716. static void init_rootdomain(struct root_domain *rd)
  5717. {
  5718. memset(rd, 0, sizeof(*rd));
  5719. cpus_clear(rd->span);
  5720. cpus_clear(rd->online);
  5721. cpupri_init(&rd->cpupri);
  5722. }
  5723. static void init_defrootdomain(void)
  5724. {
  5725. init_rootdomain(&def_root_domain);
  5726. atomic_set(&def_root_domain.refcount, 1);
  5727. }
  5728. static struct root_domain *alloc_rootdomain(void)
  5729. {
  5730. struct root_domain *rd;
  5731. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5732. if (!rd)
  5733. return NULL;
  5734. init_rootdomain(rd);
  5735. return rd;
  5736. }
  5737. /*
  5738. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5739. * hold the hotplug lock.
  5740. */
  5741. static void
  5742. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5743. {
  5744. struct rq *rq = cpu_rq(cpu);
  5745. struct sched_domain *tmp;
  5746. /* Remove the sched domains which do not contribute to scheduling. */
  5747. for (tmp = sd; tmp; tmp = tmp->parent) {
  5748. struct sched_domain *parent = tmp->parent;
  5749. if (!parent)
  5750. break;
  5751. if (sd_parent_degenerate(tmp, parent)) {
  5752. tmp->parent = parent->parent;
  5753. if (parent->parent)
  5754. parent->parent->child = tmp;
  5755. }
  5756. }
  5757. if (sd && sd_degenerate(sd)) {
  5758. sd = sd->parent;
  5759. if (sd)
  5760. sd->child = NULL;
  5761. }
  5762. sched_domain_debug(sd, cpu);
  5763. rq_attach_root(rq, rd);
  5764. rcu_assign_pointer(rq->sd, sd);
  5765. }
  5766. /* cpus with isolated domains */
  5767. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5768. /* Setup the mask of cpus configured for isolated domains */
  5769. static int __init isolated_cpu_setup(char *str)
  5770. {
  5771. static int __initdata ints[NR_CPUS];
  5772. int i;
  5773. str = get_options(str, ARRAY_SIZE(ints), ints);
  5774. cpus_clear(cpu_isolated_map);
  5775. for (i = 1; i <= ints[0]; i++)
  5776. if (ints[i] < NR_CPUS)
  5777. cpu_set(ints[i], cpu_isolated_map);
  5778. return 1;
  5779. }
  5780. __setup("isolcpus=", isolated_cpu_setup);
  5781. /*
  5782. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5783. * to a function which identifies what group(along with sched group) a CPU
  5784. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5785. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5786. *
  5787. * init_sched_build_groups will build a circular linked list of the groups
  5788. * covered by the given span, and will set each group's ->cpumask correctly,
  5789. * and ->cpu_power to 0.
  5790. */
  5791. static void
  5792. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5793. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5794. struct sched_group **sg,
  5795. cpumask_t *tmpmask),
  5796. cpumask_t *covered, cpumask_t *tmpmask)
  5797. {
  5798. struct sched_group *first = NULL, *last = NULL;
  5799. int i;
  5800. cpus_clear(*covered);
  5801. for_each_cpu_mask_nr(i, *span) {
  5802. struct sched_group *sg;
  5803. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5804. int j;
  5805. if (cpu_isset(i, *covered))
  5806. continue;
  5807. cpus_clear(sg->cpumask);
  5808. sg->__cpu_power = 0;
  5809. for_each_cpu_mask_nr(j, *span) {
  5810. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5811. continue;
  5812. cpu_set(j, *covered);
  5813. cpu_set(j, sg->cpumask);
  5814. }
  5815. if (!first)
  5816. first = sg;
  5817. if (last)
  5818. last->next = sg;
  5819. last = sg;
  5820. }
  5821. last->next = first;
  5822. }
  5823. #define SD_NODES_PER_DOMAIN 16
  5824. #ifdef CONFIG_NUMA
  5825. /**
  5826. * find_next_best_node - find the next node to include in a sched_domain
  5827. * @node: node whose sched_domain we're building
  5828. * @used_nodes: nodes already in the sched_domain
  5829. *
  5830. * Find the next node to include in a given scheduling domain. Simply
  5831. * finds the closest node not already in the @used_nodes map.
  5832. *
  5833. * Should use nodemask_t.
  5834. */
  5835. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5836. {
  5837. int i, n, val, min_val, best_node = 0;
  5838. min_val = INT_MAX;
  5839. for (i = 0; i < nr_node_ids; i++) {
  5840. /* Start at @node */
  5841. n = (node + i) % nr_node_ids;
  5842. if (!nr_cpus_node(n))
  5843. continue;
  5844. /* Skip already used nodes */
  5845. if (node_isset(n, *used_nodes))
  5846. continue;
  5847. /* Simple min distance search */
  5848. val = node_distance(node, n);
  5849. if (val < min_val) {
  5850. min_val = val;
  5851. best_node = n;
  5852. }
  5853. }
  5854. node_set(best_node, *used_nodes);
  5855. return best_node;
  5856. }
  5857. /**
  5858. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5859. * @node: node whose cpumask we're constructing
  5860. * @span: resulting cpumask
  5861. *
  5862. * Given a node, construct a good cpumask for its sched_domain to span. It
  5863. * should be one that prevents unnecessary balancing, but also spreads tasks
  5864. * out optimally.
  5865. */
  5866. static void sched_domain_node_span(int node, cpumask_t *span)
  5867. {
  5868. nodemask_t used_nodes;
  5869. node_to_cpumask_ptr(nodemask, node);
  5870. int i;
  5871. cpus_clear(*span);
  5872. nodes_clear(used_nodes);
  5873. cpus_or(*span, *span, *nodemask);
  5874. node_set(node, used_nodes);
  5875. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5876. int next_node = find_next_best_node(node, &used_nodes);
  5877. node_to_cpumask_ptr_next(nodemask, next_node);
  5878. cpus_or(*span, *span, *nodemask);
  5879. }
  5880. }
  5881. #endif /* CONFIG_NUMA */
  5882. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5883. /*
  5884. * SMT sched-domains:
  5885. */
  5886. #ifdef CONFIG_SCHED_SMT
  5887. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5888. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5889. static int
  5890. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5891. cpumask_t *unused)
  5892. {
  5893. if (sg)
  5894. *sg = &per_cpu(sched_group_cpus, cpu);
  5895. return cpu;
  5896. }
  5897. #endif /* CONFIG_SCHED_SMT */
  5898. /*
  5899. * multi-core sched-domains:
  5900. */
  5901. #ifdef CONFIG_SCHED_MC
  5902. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5903. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5904. #endif /* CONFIG_SCHED_MC */
  5905. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5906. static int
  5907. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5908. cpumask_t *mask)
  5909. {
  5910. int group;
  5911. *mask = per_cpu(cpu_sibling_map, cpu);
  5912. cpus_and(*mask, *mask, *cpu_map);
  5913. group = first_cpu(*mask);
  5914. if (sg)
  5915. *sg = &per_cpu(sched_group_core, group);
  5916. return group;
  5917. }
  5918. #elif defined(CONFIG_SCHED_MC)
  5919. static int
  5920. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5921. cpumask_t *unused)
  5922. {
  5923. if (sg)
  5924. *sg = &per_cpu(sched_group_core, cpu);
  5925. return cpu;
  5926. }
  5927. #endif
  5928. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5929. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5930. static int
  5931. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5932. cpumask_t *mask)
  5933. {
  5934. int group;
  5935. #ifdef CONFIG_SCHED_MC
  5936. *mask = cpu_coregroup_map(cpu);
  5937. cpus_and(*mask, *mask, *cpu_map);
  5938. group = first_cpu(*mask);
  5939. #elif defined(CONFIG_SCHED_SMT)
  5940. *mask = per_cpu(cpu_sibling_map, cpu);
  5941. cpus_and(*mask, *mask, *cpu_map);
  5942. group = first_cpu(*mask);
  5943. #else
  5944. group = cpu;
  5945. #endif
  5946. if (sg)
  5947. *sg = &per_cpu(sched_group_phys, group);
  5948. return group;
  5949. }
  5950. #ifdef CONFIG_NUMA
  5951. /*
  5952. * The init_sched_build_groups can't handle what we want to do with node
  5953. * groups, so roll our own. Now each node has its own list of groups which
  5954. * gets dynamically allocated.
  5955. */
  5956. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5957. static struct sched_group ***sched_group_nodes_bycpu;
  5958. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5959. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5960. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5961. struct sched_group **sg, cpumask_t *nodemask)
  5962. {
  5963. int group;
  5964. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5965. cpus_and(*nodemask, *nodemask, *cpu_map);
  5966. group = first_cpu(*nodemask);
  5967. if (sg)
  5968. *sg = &per_cpu(sched_group_allnodes, group);
  5969. return group;
  5970. }
  5971. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5972. {
  5973. struct sched_group *sg = group_head;
  5974. int j;
  5975. if (!sg)
  5976. return;
  5977. do {
  5978. for_each_cpu_mask_nr(j, sg->cpumask) {
  5979. struct sched_domain *sd;
  5980. sd = &per_cpu(phys_domains, j);
  5981. if (j != first_cpu(sd->groups->cpumask)) {
  5982. /*
  5983. * Only add "power" once for each
  5984. * physical package.
  5985. */
  5986. continue;
  5987. }
  5988. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5989. }
  5990. sg = sg->next;
  5991. } while (sg != group_head);
  5992. }
  5993. #endif /* CONFIG_NUMA */
  5994. #ifdef CONFIG_NUMA
  5995. /* Free memory allocated for various sched_group structures */
  5996. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5997. {
  5998. int cpu, i;
  5999. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6000. struct sched_group **sched_group_nodes
  6001. = sched_group_nodes_bycpu[cpu];
  6002. if (!sched_group_nodes)
  6003. continue;
  6004. for (i = 0; i < nr_node_ids; i++) {
  6005. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6006. *nodemask = node_to_cpumask(i);
  6007. cpus_and(*nodemask, *nodemask, *cpu_map);
  6008. if (cpus_empty(*nodemask))
  6009. continue;
  6010. if (sg == NULL)
  6011. continue;
  6012. sg = sg->next;
  6013. next_sg:
  6014. oldsg = sg;
  6015. sg = sg->next;
  6016. kfree(oldsg);
  6017. if (oldsg != sched_group_nodes[i])
  6018. goto next_sg;
  6019. }
  6020. kfree(sched_group_nodes);
  6021. sched_group_nodes_bycpu[cpu] = NULL;
  6022. }
  6023. }
  6024. #else /* !CONFIG_NUMA */
  6025. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6026. {
  6027. }
  6028. #endif /* CONFIG_NUMA */
  6029. /*
  6030. * Initialize sched groups cpu_power.
  6031. *
  6032. * cpu_power indicates the capacity of sched group, which is used while
  6033. * distributing the load between different sched groups in a sched domain.
  6034. * Typically cpu_power for all the groups in a sched domain will be same unless
  6035. * there are asymmetries in the topology. If there are asymmetries, group
  6036. * having more cpu_power will pickup more load compared to the group having
  6037. * less cpu_power.
  6038. *
  6039. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6040. * the maximum number of tasks a group can handle in the presence of other idle
  6041. * or lightly loaded groups in the same sched domain.
  6042. */
  6043. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6044. {
  6045. struct sched_domain *child;
  6046. struct sched_group *group;
  6047. WARN_ON(!sd || !sd->groups);
  6048. if (cpu != first_cpu(sd->groups->cpumask))
  6049. return;
  6050. child = sd->child;
  6051. sd->groups->__cpu_power = 0;
  6052. /*
  6053. * For perf policy, if the groups in child domain share resources
  6054. * (for example cores sharing some portions of the cache hierarchy
  6055. * or SMT), then set this domain groups cpu_power such that each group
  6056. * can handle only one task, when there are other idle groups in the
  6057. * same sched domain.
  6058. */
  6059. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6060. (child->flags &
  6061. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6062. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6063. return;
  6064. }
  6065. /*
  6066. * add cpu_power of each child group to this groups cpu_power
  6067. */
  6068. group = child->groups;
  6069. do {
  6070. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6071. group = group->next;
  6072. } while (group != child->groups);
  6073. }
  6074. /*
  6075. * Initializers for schedule domains
  6076. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6077. */
  6078. #define SD_INIT(sd, type) sd_init_##type(sd)
  6079. #define SD_INIT_FUNC(type) \
  6080. static noinline void sd_init_##type(struct sched_domain *sd) \
  6081. { \
  6082. memset(sd, 0, sizeof(*sd)); \
  6083. *sd = SD_##type##_INIT; \
  6084. sd->level = SD_LV_##type; \
  6085. }
  6086. SD_INIT_FUNC(CPU)
  6087. #ifdef CONFIG_NUMA
  6088. SD_INIT_FUNC(ALLNODES)
  6089. SD_INIT_FUNC(NODE)
  6090. #endif
  6091. #ifdef CONFIG_SCHED_SMT
  6092. SD_INIT_FUNC(SIBLING)
  6093. #endif
  6094. #ifdef CONFIG_SCHED_MC
  6095. SD_INIT_FUNC(MC)
  6096. #endif
  6097. /*
  6098. * To minimize stack usage kmalloc room for cpumasks and share the
  6099. * space as the usage in build_sched_domains() dictates. Used only
  6100. * if the amount of space is significant.
  6101. */
  6102. struct allmasks {
  6103. cpumask_t tmpmask; /* make this one first */
  6104. union {
  6105. cpumask_t nodemask;
  6106. cpumask_t this_sibling_map;
  6107. cpumask_t this_core_map;
  6108. };
  6109. cpumask_t send_covered;
  6110. #ifdef CONFIG_NUMA
  6111. cpumask_t domainspan;
  6112. cpumask_t covered;
  6113. cpumask_t notcovered;
  6114. #endif
  6115. };
  6116. #if NR_CPUS > 128
  6117. #define SCHED_CPUMASK_ALLOC 1
  6118. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6119. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6120. #else
  6121. #define SCHED_CPUMASK_ALLOC 0
  6122. #define SCHED_CPUMASK_FREE(v)
  6123. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6124. #endif
  6125. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6126. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6127. static int default_relax_domain_level = -1;
  6128. static int __init setup_relax_domain_level(char *str)
  6129. {
  6130. unsigned long val;
  6131. val = simple_strtoul(str, NULL, 0);
  6132. if (val < SD_LV_MAX)
  6133. default_relax_domain_level = val;
  6134. return 1;
  6135. }
  6136. __setup("relax_domain_level=", setup_relax_domain_level);
  6137. static void set_domain_attribute(struct sched_domain *sd,
  6138. struct sched_domain_attr *attr)
  6139. {
  6140. int request;
  6141. if (!attr || attr->relax_domain_level < 0) {
  6142. if (default_relax_domain_level < 0)
  6143. return;
  6144. else
  6145. request = default_relax_domain_level;
  6146. } else
  6147. request = attr->relax_domain_level;
  6148. if (request < sd->level) {
  6149. /* turn off idle balance on this domain */
  6150. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6151. } else {
  6152. /* turn on idle balance on this domain */
  6153. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6154. }
  6155. }
  6156. /*
  6157. * Build sched domains for a given set of cpus and attach the sched domains
  6158. * to the individual cpus
  6159. */
  6160. static int __build_sched_domains(const cpumask_t *cpu_map,
  6161. struct sched_domain_attr *attr)
  6162. {
  6163. int i;
  6164. struct root_domain *rd;
  6165. SCHED_CPUMASK_DECLARE(allmasks);
  6166. cpumask_t *tmpmask;
  6167. #ifdef CONFIG_NUMA
  6168. struct sched_group **sched_group_nodes = NULL;
  6169. int sd_allnodes = 0;
  6170. /*
  6171. * Allocate the per-node list of sched groups
  6172. */
  6173. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6174. GFP_KERNEL);
  6175. if (!sched_group_nodes) {
  6176. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6177. return -ENOMEM;
  6178. }
  6179. #endif
  6180. rd = alloc_rootdomain();
  6181. if (!rd) {
  6182. printk(KERN_WARNING "Cannot alloc root domain\n");
  6183. #ifdef CONFIG_NUMA
  6184. kfree(sched_group_nodes);
  6185. #endif
  6186. return -ENOMEM;
  6187. }
  6188. #if SCHED_CPUMASK_ALLOC
  6189. /* get space for all scratch cpumask variables */
  6190. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6191. if (!allmasks) {
  6192. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6193. kfree(rd);
  6194. #ifdef CONFIG_NUMA
  6195. kfree(sched_group_nodes);
  6196. #endif
  6197. return -ENOMEM;
  6198. }
  6199. #endif
  6200. tmpmask = (cpumask_t *)allmasks;
  6201. #ifdef CONFIG_NUMA
  6202. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6203. #endif
  6204. /*
  6205. * Set up domains for cpus specified by the cpu_map.
  6206. */
  6207. for_each_cpu_mask_nr(i, *cpu_map) {
  6208. struct sched_domain *sd = NULL, *p;
  6209. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6210. *nodemask = node_to_cpumask(cpu_to_node(i));
  6211. cpus_and(*nodemask, *nodemask, *cpu_map);
  6212. #ifdef CONFIG_NUMA
  6213. if (cpus_weight(*cpu_map) >
  6214. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6215. sd = &per_cpu(allnodes_domains, i);
  6216. SD_INIT(sd, ALLNODES);
  6217. set_domain_attribute(sd, attr);
  6218. sd->span = *cpu_map;
  6219. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6220. p = sd;
  6221. sd_allnodes = 1;
  6222. } else
  6223. p = NULL;
  6224. sd = &per_cpu(node_domains, i);
  6225. SD_INIT(sd, NODE);
  6226. set_domain_attribute(sd, attr);
  6227. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6228. sd->parent = p;
  6229. if (p)
  6230. p->child = sd;
  6231. cpus_and(sd->span, sd->span, *cpu_map);
  6232. #endif
  6233. p = sd;
  6234. sd = &per_cpu(phys_domains, i);
  6235. SD_INIT(sd, CPU);
  6236. set_domain_attribute(sd, attr);
  6237. sd->span = *nodemask;
  6238. sd->parent = p;
  6239. if (p)
  6240. p->child = sd;
  6241. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6242. #ifdef CONFIG_SCHED_MC
  6243. p = sd;
  6244. sd = &per_cpu(core_domains, i);
  6245. SD_INIT(sd, MC);
  6246. set_domain_attribute(sd, attr);
  6247. sd->span = cpu_coregroup_map(i);
  6248. cpus_and(sd->span, sd->span, *cpu_map);
  6249. sd->parent = p;
  6250. p->child = sd;
  6251. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6252. #endif
  6253. #ifdef CONFIG_SCHED_SMT
  6254. p = sd;
  6255. sd = &per_cpu(cpu_domains, i);
  6256. SD_INIT(sd, SIBLING);
  6257. set_domain_attribute(sd, attr);
  6258. sd->span = per_cpu(cpu_sibling_map, i);
  6259. cpus_and(sd->span, sd->span, *cpu_map);
  6260. sd->parent = p;
  6261. p->child = sd;
  6262. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6263. #endif
  6264. }
  6265. #ifdef CONFIG_SCHED_SMT
  6266. /* Set up CPU (sibling) groups */
  6267. for_each_cpu_mask_nr(i, *cpu_map) {
  6268. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6269. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6270. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6271. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6272. if (i != first_cpu(*this_sibling_map))
  6273. continue;
  6274. init_sched_build_groups(this_sibling_map, cpu_map,
  6275. &cpu_to_cpu_group,
  6276. send_covered, tmpmask);
  6277. }
  6278. #endif
  6279. #ifdef CONFIG_SCHED_MC
  6280. /* Set up multi-core groups */
  6281. for_each_cpu_mask_nr(i, *cpu_map) {
  6282. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6283. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6284. *this_core_map = cpu_coregroup_map(i);
  6285. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6286. if (i != first_cpu(*this_core_map))
  6287. continue;
  6288. init_sched_build_groups(this_core_map, cpu_map,
  6289. &cpu_to_core_group,
  6290. send_covered, tmpmask);
  6291. }
  6292. #endif
  6293. /* Set up physical groups */
  6294. for (i = 0; i < nr_node_ids; i++) {
  6295. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6296. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6297. *nodemask = node_to_cpumask(i);
  6298. cpus_and(*nodemask, *nodemask, *cpu_map);
  6299. if (cpus_empty(*nodemask))
  6300. continue;
  6301. init_sched_build_groups(nodemask, cpu_map,
  6302. &cpu_to_phys_group,
  6303. send_covered, tmpmask);
  6304. }
  6305. #ifdef CONFIG_NUMA
  6306. /* Set up node groups */
  6307. if (sd_allnodes) {
  6308. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6309. init_sched_build_groups(cpu_map, cpu_map,
  6310. &cpu_to_allnodes_group,
  6311. send_covered, tmpmask);
  6312. }
  6313. for (i = 0; i < nr_node_ids; i++) {
  6314. /* Set up node groups */
  6315. struct sched_group *sg, *prev;
  6316. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6317. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6318. SCHED_CPUMASK_VAR(covered, allmasks);
  6319. int j;
  6320. *nodemask = node_to_cpumask(i);
  6321. cpus_clear(*covered);
  6322. cpus_and(*nodemask, *nodemask, *cpu_map);
  6323. if (cpus_empty(*nodemask)) {
  6324. sched_group_nodes[i] = NULL;
  6325. continue;
  6326. }
  6327. sched_domain_node_span(i, domainspan);
  6328. cpus_and(*domainspan, *domainspan, *cpu_map);
  6329. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6330. if (!sg) {
  6331. printk(KERN_WARNING "Can not alloc domain group for "
  6332. "node %d\n", i);
  6333. goto error;
  6334. }
  6335. sched_group_nodes[i] = sg;
  6336. for_each_cpu_mask_nr(j, *nodemask) {
  6337. struct sched_domain *sd;
  6338. sd = &per_cpu(node_domains, j);
  6339. sd->groups = sg;
  6340. }
  6341. sg->__cpu_power = 0;
  6342. sg->cpumask = *nodemask;
  6343. sg->next = sg;
  6344. cpus_or(*covered, *covered, *nodemask);
  6345. prev = sg;
  6346. for (j = 0; j < nr_node_ids; j++) {
  6347. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6348. int n = (i + j) % nr_node_ids;
  6349. node_to_cpumask_ptr(pnodemask, n);
  6350. cpus_complement(*notcovered, *covered);
  6351. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6352. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6353. if (cpus_empty(*tmpmask))
  6354. break;
  6355. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6356. if (cpus_empty(*tmpmask))
  6357. continue;
  6358. sg = kmalloc_node(sizeof(struct sched_group),
  6359. GFP_KERNEL, i);
  6360. if (!sg) {
  6361. printk(KERN_WARNING
  6362. "Can not alloc domain group for node %d\n", j);
  6363. goto error;
  6364. }
  6365. sg->__cpu_power = 0;
  6366. sg->cpumask = *tmpmask;
  6367. sg->next = prev->next;
  6368. cpus_or(*covered, *covered, *tmpmask);
  6369. prev->next = sg;
  6370. prev = sg;
  6371. }
  6372. }
  6373. #endif
  6374. /* Calculate CPU power for physical packages and nodes */
  6375. #ifdef CONFIG_SCHED_SMT
  6376. for_each_cpu_mask_nr(i, *cpu_map) {
  6377. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6378. init_sched_groups_power(i, sd);
  6379. }
  6380. #endif
  6381. #ifdef CONFIG_SCHED_MC
  6382. for_each_cpu_mask_nr(i, *cpu_map) {
  6383. struct sched_domain *sd = &per_cpu(core_domains, i);
  6384. init_sched_groups_power(i, sd);
  6385. }
  6386. #endif
  6387. for_each_cpu_mask_nr(i, *cpu_map) {
  6388. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6389. init_sched_groups_power(i, sd);
  6390. }
  6391. #ifdef CONFIG_NUMA
  6392. for (i = 0; i < nr_node_ids; i++)
  6393. init_numa_sched_groups_power(sched_group_nodes[i]);
  6394. if (sd_allnodes) {
  6395. struct sched_group *sg;
  6396. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6397. tmpmask);
  6398. init_numa_sched_groups_power(sg);
  6399. }
  6400. #endif
  6401. /* Attach the domains */
  6402. for_each_cpu_mask_nr(i, *cpu_map) {
  6403. struct sched_domain *sd;
  6404. #ifdef CONFIG_SCHED_SMT
  6405. sd = &per_cpu(cpu_domains, i);
  6406. #elif defined(CONFIG_SCHED_MC)
  6407. sd = &per_cpu(core_domains, i);
  6408. #else
  6409. sd = &per_cpu(phys_domains, i);
  6410. #endif
  6411. cpu_attach_domain(sd, rd, i);
  6412. }
  6413. SCHED_CPUMASK_FREE((void *)allmasks);
  6414. return 0;
  6415. #ifdef CONFIG_NUMA
  6416. error:
  6417. free_sched_groups(cpu_map, tmpmask);
  6418. SCHED_CPUMASK_FREE((void *)allmasks);
  6419. return -ENOMEM;
  6420. #endif
  6421. }
  6422. static int build_sched_domains(const cpumask_t *cpu_map)
  6423. {
  6424. return __build_sched_domains(cpu_map, NULL);
  6425. }
  6426. static cpumask_t *doms_cur; /* current sched domains */
  6427. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6428. static struct sched_domain_attr *dattr_cur;
  6429. /* attribues of custom domains in 'doms_cur' */
  6430. /*
  6431. * Special case: If a kmalloc of a doms_cur partition (array of
  6432. * cpumask_t) fails, then fallback to a single sched domain,
  6433. * as determined by the single cpumask_t fallback_doms.
  6434. */
  6435. static cpumask_t fallback_doms;
  6436. void __attribute__((weak)) arch_update_cpu_topology(void)
  6437. {
  6438. }
  6439. /*
  6440. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6441. * For now this just excludes isolated cpus, but could be used to
  6442. * exclude other special cases in the future.
  6443. */
  6444. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6445. {
  6446. int err;
  6447. arch_update_cpu_topology();
  6448. ndoms_cur = 1;
  6449. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6450. if (!doms_cur)
  6451. doms_cur = &fallback_doms;
  6452. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6453. dattr_cur = NULL;
  6454. err = build_sched_domains(doms_cur);
  6455. register_sched_domain_sysctl();
  6456. return err;
  6457. }
  6458. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6459. cpumask_t *tmpmask)
  6460. {
  6461. free_sched_groups(cpu_map, tmpmask);
  6462. }
  6463. /*
  6464. * Detach sched domains from a group of cpus specified in cpu_map
  6465. * These cpus will now be attached to the NULL domain
  6466. */
  6467. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6468. {
  6469. cpumask_t tmpmask;
  6470. int i;
  6471. unregister_sched_domain_sysctl();
  6472. for_each_cpu_mask_nr(i, *cpu_map)
  6473. cpu_attach_domain(NULL, &def_root_domain, i);
  6474. synchronize_sched();
  6475. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6476. }
  6477. /* handle null as "default" */
  6478. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6479. struct sched_domain_attr *new, int idx_new)
  6480. {
  6481. struct sched_domain_attr tmp;
  6482. /* fast path */
  6483. if (!new && !cur)
  6484. return 1;
  6485. tmp = SD_ATTR_INIT;
  6486. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6487. new ? (new + idx_new) : &tmp,
  6488. sizeof(struct sched_domain_attr));
  6489. }
  6490. /*
  6491. * Partition sched domains as specified by the 'ndoms_new'
  6492. * cpumasks in the array doms_new[] of cpumasks. This compares
  6493. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6494. * It destroys each deleted domain and builds each new domain.
  6495. *
  6496. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6497. * The masks don't intersect (don't overlap.) We should setup one
  6498. * sched domain for each mask. CPUs not in any of the cpumasks will
  6499. * not be load balanced. If the same cpumask appears both in the
  6500. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6501. * it as it is.
  6502. *
  6503. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6504. * ownership of it and will kfree it when done with it. If the caller
  6505. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6506. * and partition_sched_domains() will fallback to the single partition
  6507. * 'fallback_doms', it also forces the domains to be rebuilt.
  6508. *
  6509. * Call with hotplug lock held
  6510. */
  6511. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6512. struct sched_domain_attr *dattr_new)
  6513. {
  6514. int i, j;
  6515. mutex_lock(&sched_domains_mutex);
  6516. /* always unregister in case we don't destroy any domains */
  6517. unregister_sched_domain_sysctl();
  6518. if (doms_new == NULL)
  6519. ndoms_new = 0;
  6520. /* Destroy deleted domains */
  6521. for (i = 0; i < ndoms_cur; i++) {
  6522. for (j = 0; j < ndoms_new; j++) {
  6523. if (cpus_equal(doms_cur[i], doms_new[j])
  6524. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6525. goto match1;
  6526. }
  6527. /* no match - a current sched domain not in new doms_new[] */
  6528. detach_destroy_domains(doms_cur + i);
  6529. match1:
  6530. ;
  6531. }
  6532. if (doms_new == NULL) {
  6533. ndoms_cur = 0;
  6534. ndoms_new = 1;
  6535. doms_new = &fallback_doms;
  6536. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6537. dattr_new = NULL;
  6538. }
  6539. /* Build new domains */
  6540. for (i = 0; i < ndoms_new; i++) {
  6541. for (j = 0; j < ndoms_cur; j++) {
  6542. if (cpus_equal(doms_new[i], doms_cur[j])
  6543. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6544. goto match2;
  6545. }
  6546. /* no match - add a new doms_new */
  6547. __build_sched_domains(doms_new + i,
  6548. dattr_new ? dattr_new + i : NULL);
  6549. match2:
  6550. ;
  6551. }
  6552. /* Remember the new sched domains */
  6553. if (doms_cur != &fallback_doms)
  6554. kfree(doms_cur);
  6555. kfree(dattr_cur); /* kfree(NULL) is safe */
  6556. doms_cur = doms_new;
  6557. dattr_cur = dattr_new;
  6558. ndoms_cur = ndoms_new;
  6559. register_sched_domain_sysctl();
  6560. mutex_unlock(&sched_domains_mutex);
  6561. }
  6562. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6563. int arch_reinit_sched_domains(void)
  6564. {
  6565. get_online_cpus();
  6566. rebuild_sched_domains();
  6567. put_online_cpus();
  6568. return 0;
  6569. }
  6570. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6571. {
  6572. int ret;
  6573. if (buf[0] != '0' && buf[0] != '1')
  6574. return -EINVAL;
  6575. if (smt)
  6576. sched_smt_power_savings = (buf[0] == '1');
  6577. else
  6578. sched_mc_power_savings = (buf[0] == '1');
  6579. ret = arch_reinit_sched_domains();
  6580. return ret ? ret : count;
  6581. }
  6582. #ifdef CONFIG_SCHED_MC
  6583. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6584. char *page)
  6585. {
  6586. return sprintf(page, "%u\n", sched_mc_power_savings);
  6587. }
  6588. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6589. const char *buf, size_t count)
  6590. {
  6591. return sched_power_savings_store(buf, count, 0);
  6592. }
  6593. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6594. sched_mc_power_savings_show,
  6595. sched_mc_power_savings_store);
  6596. #endif
  6597. #ifdef CONFIG_SCHED_SMT
  6598. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6599. char *page)
  6600. {
  6601. return sprintf(page, "%u\n", sched_smt_power_savings);
  6602. }
  6603. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6604. const char *buf, size_t count)
  6605. {
  6606. return sched_power_savings_store(buf, count, 1);
  6607. }
  6608. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6609. sched_smt_power_savings_show,
  6610. sched_smt_power_savings_store);
  6611. #endif
  6612. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6613. {
  6614. int err = 0;
  6615. #ifdef CONFIG_SCHED_SMT
  6616. if (smt_capable())
  6617. err = sysfs_create_file(&cls->kset.kobj,
  6618. &attr_sched_smt_power_savings.attr);
  6619. #endif
  6620. #ifdef CONFIG_SCHED_MC
  6621. if (!err && mc_capable())
  6622. err = sysfs_create_file(&cls->kset.kobj,
  6623. &attr_sched_mc_power_savings.attr);
  6624. #endif
  6625. return err;
  6626. }
  6627. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6628. #ifndef CONFIG_CPUSETS
  6629. /*
  6630. * Add online and remove offline CPUs from the scheduler domains.
  6631. * When cpusets are enabled they take over this function.
  6632. */
  6633. static int update_sched_domains(struct notifier_block *nfb,
  6634. unsigned long action, void *hcpu)
  6635. {
  6636. switch (action) {
  6637. case CPU_ONLINE:
  6638. case CPU_ONLINE_FROZEN:
  6639. case CPU_DEAD:
  6640. case CPU_DEAD_FROZEN:
  6641. partition_sched_domains(0, NULL, NULL);
  6642. return NOTIFY_OK;
  6643. default:
  6644. return NOTIFY_DONE;
  6645. }
  6646. }
  6647. #endif
  6648. static int update_runtime(struct notifier_block *nfb,
  6649. unsigned long action, void *hcpu)
  6650. {
  6651. int cpu = (int)(long)hcpu;
  6652. switch (action) {
  6653. case CPU_DOWN_PREPARE:
  6654. case CPU_DOWN_PREPARE_FROZEN:
  6655. disable_runtime(cpu_rq(cpu));
  6656. return NOTIFY_OK;
  6657. case CPU_DOWN_FAILED:
  6658. case CPU_DOWN_FAILED_FROZEN:
  6659. case CPU_ONLINE:
  6660. case CPU_ONLINE_FROZEN:
  6661. enable_runtime(cpu_rq(cpu));
  6662. return NOTIFY_OK;
  6663. default:
  6664. return NOTIFY_DONE;
  6665. }
  6666. }
  6667. void __init sched_init_smp(void)
  6668. {
  6669. cpumask_t non_isolated_cpus;
  6670. #if defined(CONFIG_NUMA)
  6671. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6672. GFP_KERNEL);
  6673. BUG_ON(sched_group_nodes_bycpu == NULL);
  6674. #endif
  6675. get_online_cpus();
  6676. mutex_lock(&sched_domains_mutex);
  6677. arch_init_sched_domains(&cpu_online_map);
  6678. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6679. if (cpus_empty(non_isolated_cpus))
  6680. cpu_set(smp_processor_id(), non_isolated_cpus);
  6681. mutex_unlock(&sched_domains_mutex);
  6682. put_online_cpus();
  6683. #ifndef CONFIG_CPUSETS
  6684. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6685. hotcpu_notifier(update_sched_domains, 0);
  6686. #endif
  6687. /* RT runtime code needs to handle some hotplug events */
  6688. hotcpu_notifier(update_runtime, 0);
  6689. init_hrtick();
  6690. /* Move init over to a non-isolated CPU */
  6691. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6692. BUG();
  6693. sched_init_granularity();
  6694. }
  6695. #else
  6696. void __init sched_init_smp(void)
  6697. {
  6698. sched_init_granularity();
  6699. }
  6700. #endif /* CONFIG_SMP */
  6701. int in_sched_functions(unsigned long addr)
  6702. {
  6703. return in_lock_functions(addr) ||
  6704. (addr >= (unsigned long)__sched_text_start
  6705. && addr < (unsigned long)__sched_text_end);
  6706. }
  6707. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6708. {
  6709. cfs_rq->tasks_timeline = RB_ROOT;
  6710. INIT_LIST_HEAD(&cfs_rq->tasks);
  6711. #ifdef CONFIG_FAIR_GROUP_SCHED
  6712. cfs_rq->rq = rq;
  6713. #endif
  6714. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6715. }
  6716. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6717. {
  6718. struct rt_prio_array *array;
  6719. int i;
  6720. array = &rt_rq->active;
  6721. for (i = 0; i < MAX_RT_PRIO; i++) {
  6722. INIT_LIST_HEAD(array->queue + i);
  6723. __clear_bit(i, array->bitmap);
  6724. }
  6725. /* delimiter for bitsearch: */
  6726. __set_bit(MAX_RT_PRIO, array->bitmap);
  6727. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6728. rt_rq->highest_prio = MAX_RT_PRIO;
  6729. #endif
  6730. #ifdef CONFIG_SMP
  6731. rt_rq->rt_nr_migratory = 0;
  6732. rt_rq->overloaded = 0;
  6733. #endif
  6734. rt_rq->rt_time = 0;
  6735. rt_rq->rt_throttled = 0;
  6736. rt_rq->rt_runtime = 0;
  6737. spin_lock_init(&rt_rq->rt_runtime_lock);
  6738. #ifdef CONFIG_RT_GROUP_SCHED
  6739. rt_rq->rt_nr_boosted = 0;
  6740. rt_rq->rq = rq;
  6741. #endif
  6742. }
  6743. #ifdef CONFIG_FAIR_GROUP_SCHED
  6744. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6745. struct sched_entity *se, int cpu, int add,
  6746. struct sched_entity *parent)
  6747. {
  6748. struct rq *rq = cpu_rq(cpu);
  6749. tg->cfs_rq[cpu] = cfs_rq;
  6750. init_cfs_rq(cfs_rq, rq);
  6751. cfs_rq->tg = tg;
  6752. if (add)
  6753. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6754. tg->se[cpu] = se;
  6755. /* se could be NULL for init_task_group */
  6756. if (!se)
  6757. return;
  6758. if (!parent)
  6759. se->cfs_rq = &rq->cfs;
  6760. else
  6761. se->cfs_rq = parent->my_q;
  6762. se->my_q = cfs_rq;
  6763. se->load.weight = tg->shares;
  6764. se->load.inv_weight = 0;
  6765. se->parent = parent;
  6766. }
  6767. #endif
  6768. #ifdef CONFIG_RT_GROUP_SCHED
  6769. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6770. struct sched_rt_entity *rt_se, int cpu, int add,
  6771. struct sched_rt_entity *parent)
  6772. {
  6773. struct rq *rq = cpu_rq(cpu);
  6774. tg->rt_rq[cpu] = rt_rq;
  6775. init_rt_rq(rt_rq, rq);
  6776. rt_rq->tg = tg;
  6777. rt_rq->rt_se = rt_se;
  6778. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6779. if (add)
  6780. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6781. tg->rt_se[cpu] = rt_se;
  6782. if (!rt_se)
  6783. return;
  6784. if (!parent)
  6785. rt_se->rt_rq = &rq->rt;
  6786. else
  6787. rt_se->rt_rq = parent->my_q;
  6788. rt_se->my_q = rt_rq;
  6789. rt_se->parent = parent;
  6790. INIT_LIST_HEAD(&rt_se->run_list);
  6791. }
  6792. #endif
  6793. void __init sched_init(void)
  6794. {
  6795. int i, j;
  6796. unsigned long alloc_size = 0, ptr;
  6797. #ifdef CONFIG_FAIR_GROUP_SCHED
  6798. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6799. #endif
  6800. #ifdef CONFIG_RT_GROUP_SCHED
  6801. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6802. #endif
  6803. #ifdef CONFIG_USER_SCHED
  6804. alloc_size *= 2;
  6805. #endif
  6806. /*
  6807. * As sched_init() is called before page_alloc is setup,
  6808. * we use alloc_bootmem().
  6809. */
  6810. if (alloc_size) {
  6811. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6812. #ifdef CONFIG_FAIR_GROUP_SCHED
  6813. init_task_group.se = (struct sched_entity **)ptr;
  6814. ptr += nr_cpu_ids * sizeof(void **);
  6815. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6816. ptr += nr_cpu_ids * sizeof(void **);
  6817. #ifdef CONFIG_USER_SCHED
  6818. root_task_group.se = (struct sched_entity **)ptr;
  6819. ptr += nr_cpu_ids * sizeof(void **);
  6820. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6821. ptr += nr_cpu_ids * sizeof(void **);
  6822. #endif /* CONFIG_USER_SCHED */
  6823. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6824. #ifdef CONFIG_RT_GROUP_SCHED
  6825. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6826. ptr += nr_cpu_ids * sizeof(void **);
  6827. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6828. ptr += nr_cpu_ids * sizeof(void **);
  6829. #ifdef CONFIG_USER_SCHED
  6830. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6831. ptr += nr_cpu_ids * sizeof(void **);
  6832. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6833. ptr += nr_cpu_ids * sizeof(void **);
  6834. #endif /* CONFIG_USER_SCHED */
  6835. #endif /* CONFIG_RT_GROUP_SCHED */
  6836. }
  6837. #ifdef CONFIG_SMP
  6838. init_defrootdomain();
  6839. #endif
  6840. init_rt_bandwidth(&def_rt_bandwidth,
  6841. global_rt_period(), global_rt_runtime());
  6842. #ifdef CONFIG_RT_GROUP_SCHED
  6843. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6844. global_rt_period(), global_rt_runtime());
  6845. #ifdef CONFIG_USER_SCHED
  6846. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6847. global_rt_period(), RUNTIME_INF);
  6848. #endif /* CONFIG_USER_SCHED */
  6849. #endif /* CONFIG_RT_GROUP_SCHED */
  6850. #ifdef CONFIG_GROUP_SCHED
  6851. list_add(&init_task_group.list, &task_groups);
  6852. INIT_LIST_HEAD(&init_task_group.children);
  6853. #ifdef CONFIG_USER_SCHED
  6854. INIT_LIST_HEAD(&root_task_group.children);
  6855. init_task_group.parent = &root_task_group;
  6856. list_add(&init_task_group.siblings, &root_task_group.children);
  6857. #endif /* CONFIG_USER_SCHED */
  6858. #endif /* CONFIG_GROUP_SCHED */
  6859. for_each_possible_cpu(i) {
  6860. struct rq *rq;
  6861. rq = cpu_rq(i);
  6862. spin_lock_init(&rq->lock);
  6863. rq->nr_running = 0;
  6864. init_cfs_rq(&rq->cfs, rq);
  6865. init_rt_rq(&rq->rt, rq);
  6866. #ifdef CONFIG_FAIR_GROUP_SCHED
  6867. init_task_group.shares = init_task_group_load;
  6868. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6869. #ifdef CONFIG_CGROUP_SCHED
  6870. /*
  6871. * How much cpu bandwidth does init_task_group get?
  6872. *
  6873. * In case of task-groups formed thr' the cgroup filesystem, it
  6874. * gets 100% of the cpu resources in the system. This overall
  6875. * system cpu resource is divided among the tasks of
  6876. * init_task_group and its child task-groups in a fair manner,
  6877. * based on each entity's (task or task-group's) weight
  6878. * (se->load.weight).
  6879. *
  6880. * In other words, if init_task_group has 10 tasks of weight
  6881. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6882. * then A0's share of the cpu resource is:
  6883. *
  6884. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6885. *
  6886. * We achieve this by letting init_task_group's tasks sit
  6887. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6888. */
  6889. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6890. #elif defined CONFIG_USER_SCHED
  6891. root_task_group.shares = NICE_0_LOAD;
  6892. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6893. /*
  6894. * In case of task-groups formed thr' the user id of tasks,
  6895. * init_task_group represents tasks belonging to root user.
  6896. * Hence it forms a sibling of all subsequent groups formed.
  6897. * In this case, init_task_group gets only a fraction of overall
  6898. * system cpu resource, based on the weight assigned to root
  6899. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6900. * by letting tasks of init_task_group sit in a separate cfs_rq
  6901. * (init_cfs_rq) and having one entity represent this group of
  6902. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6903. */
  6904. init_tg_cfs_entry(&init_task_group,
  6905. &per_cpu(init_cfs_rq, i),
  6906. &per_cpu(init_sched_entity, i), i, 1,
  6907. root_task_group.se[i]);
  6908. #endif
  6909. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6910. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6911. #ifdef CONFIG_RT_GROUP_SCHED
  6912. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6913. #ifdef CONFIG_CGROUP_SCHED
  6914. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6915. #elif defined CONFIG_USER_SCHED
  6916. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6917. init_tg_rt_entry(&init_task_group,
  6918. &per_cpu(init_rt_rq, i),
  6919. &per_cpu(init_sched_rt_entity, i), i, 1,
  6920. root_task_group.rt_se[i]);
  6921. #endif
  6922. #endif
  6923. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6924. rq->cpu_load[j] = 0;
  6925. #ifdef CONFIG_SMP
  6926. rq->sd = NULL;
  6927. rq->rd = NULL;
  6928. rq->active_balance = 0;
  6929. rq->next_balance = jiffies;
  6930. rq->push_cpu = 0;
  6931. rq->cpu = i;
  6932. rq->online = 0;
  6933. rq->migration_thread = NULL;
  6934. INIT_LIST_HEAD(&rq->migration_queue);
  6935. rq_attach_root(rq, &def_root_domain);
  6936. #endif
  6937. init_rq_hrtick(rq);
  6938. atomic_set(&rq->nr_iowait, 0);
  6939. }
  6940. set_load_weight(&init_task);
  6941. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6942. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6943. #endif
  6944. #ifdef CONFIG_SMP
  6945. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6946. #endif
  6947. #ifdef CONFIG_RT_MUTEXES
  6948. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6949. #endif
  6950. /*
  6951. * The boot idle thread does lazy MMU switching as well:
  6952. */
  6953. atomic_inc(&init_mm.mm_count);
  6954. enter_lazy_tlb(&init_mm, current);
  6955. /*
  6956. * Make us the idle thread. Technically, schedule() should not be
  6957. * called from this thread, however somewhere below it might be,
  6958. * but because we are the idle thread, we just pick up running again
  6959. * when this runqueue becomes "idle".
  6960. */
  6961. init_idle(current, smp_processor_id());
  6962. /*
  6963. * During early bootup we pretend to be a normal task:
  6964. */
  6965. current->sched_class = &fair_sched_class;
  6966. scheduler_running = 1;
  6967. }
  6968. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6969. void __might_sleep(char *file, int line)
  6970. {
  6971. #ifdef in_atomic
  6972. static unsigned long prev_jiffy; /* ratelimiting */
  6973. if ((in_atomic() || irqs_disabled()) &&
  6974. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6975. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6976. return;
  6977. prev_jiffy = jiffies;
  6978. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6979. " context at %s:%d\n", file, line);
  6980. printk("in_atomic():%d, irqs_disabled():%d\n",
  6981. in_atomic(), irqs_disabled());
  6982. debug_show_held_locks(current);
  6983. if (irqs_disabled())
  6984. print_irqtrace_events(current);
  6985. dump_stack();
  6986. }
  6987. #endif
  6988. }
  6989. EXPORT_SYMBOL(__might_sleep);
  6990. #endif
  6991. #ifdef CONFIG_MAGIC_SYSRQ
  6992. static void normalize_task(struct rq *rq, struct task_struct *p)
  6993. {
  6994. int on_rq;
  6995. update_rq_clock(rq);
  6996. on_rq = p->se.on_rq;
  6997. if (on_rq)
  6998. deactivate_task(rq, p, 0);
  6999. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7000. if (on_rq) {
  7001. activate_task(rq, p, 0);
  7002. resched_task(rq->curr);
  7003. }
  7004. }
  7005. void normalize_rt_tasks(void)
  7006. {
  7007. struct task_struct *g, *p;
  7008. unsigned long flags;
  7009. struct rq *rq;
  7010. read_lock_irqsave(&tasklist_lock, flags);
  7011. do_each_thread(g, p) {
  7012. /*
  7013. * Only normalize user tasks:
  7014. */
  7015. if (!p->mm)
  7016. continue;
  7017. p->se.exec_start = 0;
  7018. #ifdef CONFIG_SCHEDSTATS
  7019. p->se.wait_start = 0;
  7020. p->se.sleep_start = 0;
  7021. p->se.block_start = 0;
  7022. #endif
  7023. if (!rt_task(p)) {
  7024. /*
  7025. * Renice negative nice level userspace
  7026. * tasks back to 0:
  7027. */
  7028. if (TASK_NICE(p) < 0 && p->mm)
  7029. set_user_nice(p, 0);
  7030. continue;
  7031. }
  7032. spin_lock(&p->pi_lock);
  7033. rq = __task_rq_lock(p);
  7034. normalize_task(rq, p);
  7035. __task_rq_unlock(rq);
  7036. spin_unlock(&p->pi_lock);
  7037. } while_each_thread(g, p);
  7038. read_unlock_irqrestore(&tasklist_lock, flags);
  7039. }
  7040. #endif /* CONFIG_MAGIC_SYSRQ */
  7041. #ifdef CONFIG_IA64
  7042. /*
  7043. * These functions are only useful for the IA64 MCA handling.
  7044. *
  7045. * They can only be called when the whole system has been
  7046. * stopped - every CPU needs to be quiescent, and no scheduling
  7047. * activity can take place. Using them for anything else would
  7048. * be a serious bug, and as a result, they aren't even visible
  7049. * under any other configuration.
  7050. */
  7051. /**
  7052. * curr_task - return the current task for a given cpu.
  7053. * @cpu: the processor in question.
  7054. *
  7055. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7056. */
  7057. struct task_struct *curr_task(int cpu)
  7058. {
  7059. return cpu_curr(cpu);
  7060. }
  7061. /**
  7062. * set_curr_task - set the current task for a given cpu.
  7063. * @cpu: the processor in question.
  7064. * @p: the task pointer to set.
  7065. *
  7066. * Description: This function must only be used when non-maskable interrupts
  7067. * are serviced on a separate stack. It allows the architecture to switch the
  7068. * notion of the current task on a cpu in a non-blocking manner. This function
  7069. * must be called with all CPU's synchronized, and interrupts disabled, the
  7070. * and caller must save the original value of the current task (see
  7071. * curr_task() above) and restore that value before reenabling interrupts and
  7072. * re-starting the system.
  7073. *
  7074. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7075. */
  7076. void set_curr_task(int cpu, struct task_struct *p)
  7077. {
  7078. cpu_curr(cpu) = p;
  7079. }
  7080. #endif
  7081. #ifdef CONFIG_FAIR_GROUP_SCHED
  7082. static void free_fair_sched_group(struct task_group *tg)
  7083. {
  7084. int i;
  7085. for_each_possible_cpu(i) {
  7086. if (tg->cfs_rq)
  7087. kfree(tg->cfs_rq[i]);
  7088. if (tg->se)
  7089. kfree(tg->se[i]);
  7090. }
  7091. kfree(tg->cfs_rq);
  7092. kfree(tg->se);
  7093. }
  7094. static
  7095. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7096. {
  7097. struct cfs_rq *cfs_rq;
  7098. struct sched_entity *se, *parent_se;
  7099. struct rq *rq;
  7100. int i;
  7101. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7102. if (!tg->cfs_rq)
  7103. goto err;
  7104. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7105. if (!tg->se)
  7106. goto err;
  7107. tg->shares = NICE_0_LOAD;
  7108. for_each_possible_cpu(i) {
  7109. rq = cpu_rq(i);
  7110. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7111. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7112. if (!cfs_rq)
  7113. goto err;
  7114. se = kmalloc_node(sizeof(struct sched_entity),
  7115. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7116. if (!se)
  7117. goto err;
  7118. parent_se = parent ? parent->se[i] : NULL;
  7119. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7120. }
  7121. return 1;
  7122. err:
  7123. return 0;
  7124. }
  7125. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7126. {
  7127. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7128. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7129. }
  7130. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7131. {
  7132. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7133. }
  7134. #else /* !CONFG_FAIR_GROUP_SCHED */
  7135. static inline void free_fair_sched_group(struct task_group *tg)
  7136. {
  7137. }
  7138. static inline
  7139. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7140. {
  7141. return 1;
  7142. }
  7143. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7144. {
  7145. }
  7146. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7147. {
  7148. }
  7149. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7150. #ifdef CONFIG_RT_GROUP_SCHED
  7151. static void free_rt_sched_group(struct task_group *tg)
  7152. {
  7153. int i;
  7154. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7155. for_each_possible_cpu(i) {
  7156. if (tg->rt_rq)
  7157. kfree(tg->rt_rq[i]);
  7158. if (tg->rt_se)
  7159. kfree(tg->rt_se[i]);
  7160. }
  7161. kfree(tg->rt_rq);
  7162. kfree(tg->rt_se);
  7163. }
  7164. static
  7165. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7166. {
  7167. struct rt_rq *rt_rq;
  7168. struct sched_rt_entity *rt_se, *parent_se;
  7169. struct rq *rq;
  7170. int i;
  7171. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7172. if (!tg->rt_rq)
  7173. goto err;
  7174. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7175. if (!tg->rt_se)
  7176. goto err;
  7177. init_rt_bandwidth(&tg->rt_bandwidth,
  7178. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7179. for_each_possible_cpu(i) {
  7180. rq = cpu_rq(i);
  7181. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7182. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7183. if (!rt_rq)
  7184. goto err;
  7185. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7186. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7187. if (!rt_se)
  7188. goto err;
  7189. parent_se = parent ? parent->rt_se[i] : NULL;
  7190. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7191. }
  7192. return 1;
  7193. err:
  7194. return 0;
  7195. }
  7196. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7197. {
  7198. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7199. &cpu_rq(cpu)->leaf_rt_rq_list);
  7200. }
  7201. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7202. {
  7203. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7204. }
  7205. #else /* !CONFIG_RT_GROUP_SCHED */
  7206. static inline void free_rt_sched_group(struct task_group *tg)
  7207. {
  7208. }
  7209. static inline
  7210. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7211. {
  7212. return 1;
  7213. }
  7214. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7215. {
  7216. }
  7217. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7218. {
  7219. }
  7220. #endif /* CONFIG_RT_GROUP_SCHED */
  7221. #ifdef CONFIG_GROUP_SCHED
  7222. static void free_sched_group(struct task_group *tg)
  7223. {
  7224. free_fair_sched_group(tg);
  7225. free_rt_sched_group(tg);
  7226. kfree(tg);
  7227. }
  7228. /* allocate runqueue etc for a new task group */
  7229. struct task_group *sched_create_group(struct task_group *parent)
  7230. {
  7231. struct task_group *tg;
  7232. unsigned long flags;
  7233. int i;
  7234. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7235. if (!tg)
  7236. return ERR_PTR(-ENOMEM);
  7237. if (!alloc_fair_sched_group(tg, parent))
  7238. goto err;
  7239. if (!alloc_rt_sched_group(tg, parent))
  7240. goto err;
  7241. spin_lock_irqsave(&task_group_lock, flags);
  7242. for_each_possible_cpu(i) {
  7243. register_fair_sched_group(tg, i);
  7244. register_rt_sched_group(tg, i);
  7245. }
  7246. list_add_rcu(&tg->list, &task_groups);
  7247. WARN_ON(!parent); /* root should already exist */
  7248. tg->parent = parent;
  7249. INIT_LIST_HEAD(&tg->children);
  7250. list_add_rcu(&tg->siblings, &parent->children);
  7251. spin_unlock_irqrestore(&task_group_lock, flags);
  7252. return tg;
  7253. err:
  7254. free_sched_group(tg);
  7255. return ERR_PTR(-ENOMEM);
  7256. }
  7257. /* rcu callback to free various structures associated with a task group */
  7258. static void free_sched_group_rcu(struct rcu_head *rhp)
  7259. {
  7260. /* now it should be safe to free those cfs_rqs */
  7261. free_sched_group(container_of(rhp, struct task_group, rcu));
  7262. }
  7263. /* Destroy runqueue etc associated with a task group */
  7264. void sched_destroy_group(struct task_group *tg)
  7265. {
  7266. unsigned long flags;
  7267. int i;
  7268. spin_lock_irqsave(&task_group_lock, flags);
  7269. for_each_possible_cpu(i) {
  7270. unregister_fair_sched_group(tg, i);
  7271. unregister_rt_sched_group(tg, i);
  7272. }
  7273. list_del_rcu(&tg->list);
  7274. list_del_rcu(&tg->siblings);
  7275. spin_unlock_irqrestore(&task_group_lock, flags);
  7276. /* wait for possible concurrent references to cfs_rqs complete */
  7277. call_rcu(&tg->rcu, free_sched_group_rcu);
  7278. }
  7279. /* change task's runqueue when it moves between groups.
  7280. * The caller of this function should have put the task in its new group
  7281. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7282. * reflect its new group.
  7283. */
  7284. void sched_move_task(struct task_struct *tsk)
  7285. {
  7286. int on_rq, running;
  7287. unsigned long flags;
  7288. struct rq *rq;
  7289. rq = task_rq_lock(tsk, &flags);
  7290. update_rq_clock(rq);
  7291. running = task_current(rq, tsk);
  7292. on_rq = tsk->se.on_rq;
  7293. if (on_rq)
  7294. dequeue_task(rq, tsk, 0);
  7295. if (unlikely(running))
  7296. tsk->sched_class->put_prev_task(rq, tsk);
  7297. set_task_rq(tsk, task_cpu(tsk));
  7298. #ifdef CONFIG_FAIR_GROUP_SCHED
  7299. if (tsk->sched_class->moved_group)
  7300. tsk->sched_class->moved_group(tsk);
  7301. #endif
  7302. if (unlikely(running))
  7303. tsk->sched_class->set_curr_task(rq);
  7304. if (on_rq)
  7305. enqueue_task(rq, tsk, 0);
  7306. task_rq_unlock(rq, &flags);
  7307. }
  7308. #endif /* CONFIG_GROUP_SCHED */
  7309. #ifdef CONFIG_FAIR_GROUP_SCHED
  7310. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7311. {
  7312. struct cfs_rq *cfs_rq = se->cfs_rq;
  7313. int on_rq;
  7314. on_rq = se->on_rq;
  7315. if (on_rq)
  7316. dequeue_entity(cfs_rq, se, 0);
  7317. se->load.weight = shares;
  7318. se->load.inv_weight = 0;
  7319. if (on_rq)
  7320. enqueue_entity(cfs_rq, se, 0);
  7321. }
  7322. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7323. {
  7324. struct cfs_rq *cfs_rq = se->cfs_rq;
  7325. struct rq *rq = cfs_rq->rq;
  7326. unsigned long flags;
  7327. spin_lock_irqsave(&rq->lock, flags);
  7328. __set_se_shares(se, shares);
  7329. spin_unlock_irqrestore(&rq->lock, flags);
  7330. }
  7331. static DEFINE_MUTEX(shares_mutex);
  7332. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7333. {
  7334. int i;
  7335. unsigned long flags;
  7336. /*
  7337. * We can't change the weight of the root cgroup.
  7338. */
  7339. if (!tg->se[0])
  7340. return -EINVAL;
  7341. if (shares < MIN_SHARES)
  7342. shares = MIN_SHARES;
  7343. else if (shares > MAX_SHARES)
  7344. shares = MAX_SHARES;
  7345. mutex_lock(&shares_mutex);
  7346. if (tg->shares == shares)
  7347. goto done;
  7348. spin_lock_irqsave(&task_group_lock, flags);
  7349. for_each_possible_cpu(i)
  7350. unregister_fair_sched_group(tg, i);
  7351. list_del_rcu(&tg->siblings);
  7352. spin_unlock_irqrestore(&task_group_lock, flags);
  7353. /* wait for any ongoing reference to this group to finish */
  7354. synchronize_sched();
  7355. /*
  7356. * Now we are free to modify the group's share on each cpu
  7357. * w/o tripping rebalance_share or load_balance_fair.
  7358. */
  7359. tg->shares = shares;
  7360. for_each_possible_cpu(i) {
  7361. /*
  7362. * force a rebalance
  7363. */
  7364. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7365. set_se_shares(tg->se[i], shares);
  7366. }
  7367. /*
  7368. * Enable load balance activity on this group, by inserting it back on
  7369. * each cpu's rq->leaf_cfs_rq_list.
  7370. */
  7371. spin_lock_irqsave(&task_group_lock, flags);
  7372. for_each_possible_cpu(i)
  7373. register_fair_sched_group(tg, i);
  7374. list_add_rcu(&tg->siblings, &tg->parent->children);
  7375. spin_unlock_irqrestore(&task_group_lock, flags);
  7376. done:
  7377. mutex_unlock(&shares_mutex);
  7378. return 0;
  7379. }
  7380. unsigned long sched_group_shares(struct task_group *tg)
  7381. {
  7382. return tg->shares;
  7383. }
  7384. #endif
  7385. #ifdef CONFIG_RT_GROUP_SCHED
  7386. /*
  7387. * Ensure that the real time constraints are schedulable.
  7388. */
  7389. static DEFINE_MUTEX(rt_constraints_mutex);
  7390. static unsigned long to_ratio(u64 period, u64 runtime)
  7391. {
  7392. if (runtime == RUNTIME_INF)
  7393. return 1ULL << 16;
  7394. return div64_u64(runtime << 16, period);
  7395. }
  7396. #ifdef CONFIG_CGROUP_SCHED
  7397. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7398. {
  7399. struct task_group *tgi, *parent = tg->parent;
  7400. unsigned long total = 0;
  7401. if (!parent) {
  7402. if (global_rt_period() < period)
  7403. return 0;
  7404. return to_ratio(period, runtime) <
  7405. to_ratio(global_rt_period(), global_rt_runtime());
  7406. }
  7407. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7408. return 0;
  7409. rcu_read_lock();
  7410. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7411. if (tgi == tg)
  7412. continue;
  7413. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7414. tgi->rt_bandwidth.rt_runtime);
  7415. }
  7416. rcu_read_unlock();
  7417. return total + to_ratio(period, runtime) <=
  7418. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7419. parent->rt_bandwidth.rt_runtime);
  7420. }
  7421. #elif defined CONFIG_USER_SCHED
  7422. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7423. {
  7424. struct task_group *tgi;
  7425. unsigned long total = 0;
  7426. unsigned long global_ratio =
  7427. to_ratio(global_rt_period(), global_rt_runtime());
  7428. rcu_read_lock();
  7429. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7430. if (tgi == tg)
  7431. continue;
  7432. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7433. tgi->rt_bandwidth.rt_runtime);
  7434. }
  7435. rcu_read_unlock();
  7436. return total + to_ratio(period, runtime) < global_ratio;
  7437. }
  7438. #endif
  7439. /* Must be called with tasklist_lock held */
  7440. static inline int tg_has_rt_tasks(struct task_group *tg)
  7441. {
  7442. struct task_struct *g, *p;
  7443. do_each_thread(g, p) {
  7444. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7445. return 1;
  7446. } while_each_thread(g, p);
  7447. return 0;
  7448. }
  7449. static int tg_set_bandwidth(struct task_group *tg,
  7450. u64 rt_period, u64 rt_runtime)
  7451. {
  7452. int i, err = 0;
  7453. mutex_lock(&rt_constraints_mutex);
  7454. read_lock(&tasklist_lock);
  7455. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7456. err = -EBUSY;
  7457. goto unlock;
  7458. }
  7459. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7460. err = -EINVAL;
  7461. goto unlock;
  7462. }
  7463. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7464. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7465. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7466. for_each_possible_cpu(i) {
  7467. struct rt_rq *rt_rq = tg->rt_rq[i];
  7468. spin_lock(&rt_rq->rt_runtime_lock);
  7469. rt_rq->rt_runtime = rt_runtime;
  7470. spin_unlock(&rt_rq->rt_runtime_lock);
  7471. }
  7472. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7473. unlock:
  7474. read_unlock(&tasklist_lock);
  7475. mutex_unlock(&rt_constraints_mutex);
  7476. return err;
  7477. }
  7478. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7479. {
  7480. u64 rt_runtime, rt_period;
  7481. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7482. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7483. if (rt_runtime_us < 0)
  7484. rt_runtime = RUNTIME_INF;
  7485. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7486. }
  7487. long sched_group_rt_runtime(struct task_group *tg)
  7488. {
  7489. u64 rt_runtime_us;
  7490. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7491. return -1;
  7492. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7493. do_div(rt_runtime_us, NSEC_PER_USEC);
  7494. return rt_runtime_us;
  7495. }
  7496. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7497. {
  7498. u64 rt_runtime, rt_period;
  7499. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7500. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7501. if (rt_period == 0)
  7502. return -EINVAL;
  7503. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7504. }
  7505. long sched_group_rt_period(struct task_group *tg)
  7506. {
  7507. u64 rt_period_us;
  7508. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7509. do_div(rt_period_us, NSEC_PER_USEC);
  7510. return rt_period_us;
  7511. }
  7512. static int sched_rt_global_constraints(void)
  7513. {
  7514. struct task_group *tg = &root_task_group;
  7515. u64 rt_runtime, rt_period;
  7516. int ret = 0;
  7517. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7518. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7519. mutex_lock(&rt_constraints_mutex);
  7520. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7521. ret = -EINVAL;
  7522. mutex_unlock(&rt_constraints_mutex);
  7523. return ret;
  7524. }
  7525. #else /* !CONFIG_RT_GROUP_SCHED */
  7526. static int sched_rt_global_constraints(void)
  7527. {
  7528. unsigned long flags;
  7529. int i;
  7530. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7531. for_each_possible_cpu(i) {
  7532. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7533. spin_lock(&rt_rq->rt_runtime_lock);
  7534. rt_rq->rt_runtime = global_rt_runtime();
  7535. spin_unlock(&rt_rq->rt_runtime_lock);
  7536. }
  7537. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7538. return 0;
  7539. }
  7540. #endif /* CONFIG_RT_GROUP_SCHED */
  7541. int sched_rt_handler(struct ctl_table *table, int write,
  7542. struct file *filp, void __user *buffer, size_t *lenp,
  7543. loff_t *ppos)
  7544. {
  7545. int ret;
  7546. int old_period, old_runtime;
  7547. static DEFINE_MUTEX(mutex);
  7548. mutex_lock(&mutex);
  7549. old_period = sysctl_sched_rt_period;
  7550. old_runtime = sysctl_sched_rt_runtime;
  7551. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7552. if (!ret && write) {
  7553. ret = sched_rt_global_constraints();
  7554. if (ret) {
  7555. sysctl_sched_rt_period = old_period;
  7556. sysctl_sched_rt_runtime = old_runtime;
  7557. } else {
  7558. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7559. def_rt_bandwidth.rt_period =
  7560. ns_to_ktime(global_rt_period());
  7561. }
  7562. }
  7563. mutex_unlock(&mutex);
  7564. return ret;
  7565. }
  7566. #ifdef CONFIG_CGROUP_SCHED
  7567. /* return corresponding task_group object of a cgroup */
  7568. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7569. {
  7570. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7571. struct task_group, css);
  7572. }
  7573. static struct cgroup_subsys_state *
  7574. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7575. {
  7576. struct task_group *tg, *parent;
  7577. if (!cgrp->parent) {
  7578. /* This is early initialization for the top cgroup */
  7579. init_task_group.css.cgroup = cgrp;
  7580. return &init_task_group.css;
  7581. }
  7582. parent = cgroup_tg(cgrp->parent);
  7583. tg = sched_create_group(parent);
  7584. if (IS_ERR(tg))
  7585. return ERR_PTR(-ENOMEM);
  7586. /* Bind the cgroup to task_group object we just created */
  7587. tg->css.cgroup = cgrp;
  7588. return &tg->css;
  7589. }
  7590. static void
  7591. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7592. {
  7593. struct task_group *tg = cgroup_tg(cgrp);
  7594. sched_destroy_group(tg);
  7595. }
  7596. static int
  7597. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7598. struct task_struct *tsk)
  7599. {
  7600. #ifdef CONFIG_RT_GROUP_SCHED
  7601. /* Don't accept realtime tasks when there is no way for them to run */
  7602. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7603. return -EINVAL;
  7604. #else
  7605. /* We don't support RT-tasks being in separate groups */
  7606. if (tsk->sched_class != &fair_sched_class)
  7607. return -EINVAL;
  7608. #endif
  7609. return 0;
  7610. }
  7611. static void
  7612. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7613. struct cgroup *old_cont, struct task_struct *tsk)
  7614. {
  7615. sched_move_task(tsk);
  7616. }
  7617. #ifdef CONFIG_FAIR_GROUP_SCHED
  7618. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7619. u64 shareval)
  7620. {
  7621. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7622. }
  7623. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7624. {
  7625. struct task_group *tg = cgroup_tg(cgrp);
  7626. return (u64) tg->shares;
  7627. }
  7628. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7629. #ifdef CONFIG_RT_GROUP_SCHED
  7630. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7631. s64 val)
  7632. {
  7633. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7634. }
  7635. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7636. {
  7637. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7638. }
  7639. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7640. u64 rt_period_us)
  7641. {
  7642. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7643. }
  7644. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7645. {
  7646. return sched_group_rt_period(cgroup_tg(cgrp));
  7647. }
  7648. #endif /* CONFIG_RT_GROUP_SCHED */
  7649. static struct cftype cpu_files[] = {
  7650. #ifdef CONFIG_FAIR_GROUP_SCHED
  7651. {
  7652. .name = "shares",
  7653. .read_u64 = cpu_shares_read_u64,
  7654. .write_u64 = cpu_shares_write_u64,
  7655. },
  7656. #endif
  7657. #ifdef CONFIG_RT_GROUP_SCHED
  7658. {
  7659. .name = "rt_runtime_us",
  7660. .read_s64 = cpu_rt_runtime_read,
  7661. .write_s64 = cpu_rt_runtime_write,
  7662. },
  7663. {
  7664. .name = "rt_period_us",
  7665. .read_u64 = cpu_rt_period_read_uint,
  7666. .write_u64 = cpu_rt_period_write_uint,
  7667. },
  7668. #endif
  7669. };
  7670. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7671. {
  7672. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7673. }
  7674. struct cgroup_subsys cpu_cgroup_subsys = {
  7675. .name = "cpu",
  7676. .create = cpu_cgroup_create,
  7677. .destroy = cpu_cgroup_destroy,
  7678. .can_attach = cpu_cgroup_can_attach,
  7679. .attach = cpu_cgroup_attach,
  7680. .populate = cpu_cgroup_populate,
  7681. .subsys_id = cpu_cgroup_subsys_id,
  7682. .early_init = 1,
  7683. };
  7684. #endif /* CONFIG_CGROUP_SCHED */
  7685. #ifdef CONFIG_CGROUP_CPUACCT
  7686. /*
  7687. * CPU accounting code for task groups.
  7688. *
  7689. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7690. * (balbir@in.ibm.com).
  7691. */
  7692. /* track cpu usage of a group of tasks */
  7693. struct cpuacct {
  7694. struct cgroup_subsys_state css;
  7695. /* cpuusage holds pointer to a u64-type object on every cpu */
  7696. u64 *cpuusage;
  7697. };
  7698. struct cgroup_subsys cpuacct_subsys;
  7699. /* return cpu accounting group corresponding to this container */
  7700. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7701. {
  7702. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7703. struct cpuacct, css);
  7704. }
  7705. /* return cpu accounting group to which this task belongs */
  7706. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7707. {
  7708. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7709. struct cpuacct, css);
  7710. }
  7711. /* create a new cpu accounting group */
  7712. static struct cgroup_subsys_state *cpuacct_create(
  7713. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7714. {
  7715. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7716. if (!ca)
  7717. return ERR_PTR(-ENOMEM);
  7718. ca->cpuusage = alloc_percpu(u64);
  7719. if (!ca->cpuusage) {
  7720. kfree(ca);
  7721. return ERR_PTR(-ENOMEM);
  7722. }
  7723. return &ca->css;
  7724. }
  7725. /* destroy an existing cpu accounting group */
  7726. static void
  7727. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7728. {
  7729. struct cpuacct *ca = cgroup_ca(cgrp);
  7730. free_percpu(ca->cpuusage);
  7731. kfree(ca);
  7732. }
  7733. /* return total cpu usage (in nanoseconds) of a group */
  7734. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7735. {
  7736. struct cpuacct *ca = cgroup_ca(cgrp);
  7737. u64 totalcpuusage = 0;
  7738. int i;
  7739. for_each_possible_cpu(i) {
  7740. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7741. /*
  7742. * Take rq->lock to make 64-bit addition safe on 32-bit
  7743. * platforms.
  7744. */
  7745. spin_lock_irq(&cpu_rq(i)->lock);
  7746. totalcpuusage += *cpuusage;
  7747. spin_unlock_irq(&cpu_rq(i)->lock);
  7748. }
  7749. return totalcpuusage;
  7750. }
  7751. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7752. u64 reset)
  7753. {
  7754. struct cpuacct *ca = cgroup_ca(cgrp);
  7755. int err = 0;
  7756. int i;
  7757. if (reset) {
  7758. err = -EINVAL;
  7759. goto out;
  7760. }
  7761. for_each_possible_cpu(i) {
  7762. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7763. spin_lock_irq(&cpu_rq(i)->lock);
  7764. *cpuusage = 0;
  7765. spin_unlock_irq(&cpu_rq(i)->lock);
  7766. }
  7767. out:
  7768. return err;
  7769. }
  7770. static struct cftype files[] = {
  7771. {
  7772. .name = "usage",
  7773. .read_u64 = cpuusage_read,
  7774. .write_u64 = cpuusage_write,
  7775. },
  7776. };
  7777. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7778. {
  7779. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7780. }
  7781. /*
  7782. * charge this task's execution time to its accounting group.
  7783. *
  7784. * called with rq->lock held.
  7785. */
  7786. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7787. {
  7788. struct cpuacct *ca;
  7789. if (!cpuacct_subsys.active)
  7790. return;
  7791. ca = task_ca(tsk);
  7792. if (ca) {
  7793. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7794. *cpuusage += cputime;
  7795. }
  7796. }
  7797. struct cgroup_subsys cpuacct_subsys = {
  7798. .name = "cpuacct",
  7799. .create = cpuacct_create,
  7800. .destroy = cpuacct_destroy,
  7801. .populate = cpuacct_populate,
  7802. .subsys_id = cpuacct_subsys_id,
  7803. };
  7804. #endif /* CONFIG_CGROUP_CPUACCT */