cpuset.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. *
  18. * This file is subject to the terms and conditions of the GNU General Public
  19. * License. See the file COPYING in the main directory of the Linux
  20. * distribution for more details.
  21. */
  22. #include <linux/cpu.h>
  23. #include <linux/cpumask.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/err.h>
  26. #include <linux/errno.h>
  27. #include <linux/file.h>
  28. #include <linux/fs.h>
  29. #include <linux/init.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/kernel.h>
  32. #include <linux/kmod.h>
  33. #include <linux/list.h>
  34. #include <linux/mempolicy.h>
  35. #include <linux/mm.h>
  36. #include <linux/module.h>
  37. #include <linux/mount.h>
  38. #include <linux/namei.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/proc_fs.h>
  41. #include <linux/rcupdate.h>
  42. #include <linux/sched.h>
  43. #include <linux/seq_file.h>
  44. #include <linux/security.h>
  45. #include <linux/slab.h>
  46. #include <linux/spinlock.h>
  47. #include <linux/stat.h>
  48. #include <linux/string.h>
  49. #include <linux/time.h>
  50. #include <linux/backing-dev.h>
  51. #include <linux/sort.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/atomic.h>
  54. #include <linux/mutex.h>
  55. #include <linux/workqueue.h>
  56. #include <linux/cgroup.h>
  57. /*
  58. * Tracks how many cpusets are currently defined in system.
  59. * When there is only one cpuset (the root cpuset) we can
  60. * short circuit some hooks.
  61. */
  62. int number_of_cpusets __read_mostly;
  63. /* Forward declare cgroup structures */
  64. struct cgroup_subsys cpuset_subsys;
  65. struct cpuset;
  66. /* See "Frequency meter" comments, below. */
  67. struct fmeter {
  68. int cnt; /* unprocessed events count */
  69. int val; /* most recent output value */
  70. time_t time; /* clock (secs) when val computed */
  71. spinlock_t lock; /* guards read or write of above */
  72. };
  73. struct cpuset {
  74. struct cgroup_subsys_state css;
  75. unsigned long flags; /* "unsigned long" so bitops work */
  76. cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  77. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  78. struct cpuset *parent; /* my parent */
  79. /*
  80. * Copy of global cpuset_mems_generation as of the most
  81. * recent time this cpuset changed its mems_allowed.
  82. */
  83. int mems_generation;
  84. struct fmeter fmeter; /* memory_pressure filter */
  85. /* partition number for rebuild_sched_domains() */
  86. int pn;
  87. /* for custom sched domain */
  88. int relax_domain_level;
  89. /* used for walking a cpuset heirarchy */
  90. struct list_head stack_list;
  91. };
  92. /* Retrieve the cpuset for a cgroup */
  93. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  94. {
  95. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  96. struct cpuset, css);
  97. }
  98. /* Retrieve the cpuset for a task */
  99. static inline struct cpuset *task_cs(struct task_struct *task)
  100. {
  101. return container_of(task_subsys_state(task, cpuset_subsys_id),
  102. struct cpuset, css);
  103. }
  104. struct cpuset_hotplug_scanner {
  105. struct cgroup_scanner scan;
  106. struct cgroup *to;
  107. };
  108. /* bits in struct cpuset flags field */
  109. typedef enum {
  110. CS_CPU_EXCLUSIVE,
  111. CS_MEM_EXCLUSIVE,
  112. CS_MEM_HARDWALL,
  113. CS_MEMORY_MIGRATE,
  114. CS_SCHED_LOAD_BALANCE,
  115. CS_SPREAD_PAGE,
  116. CS_SPREAD_SLAB,
  117. } cpuset_flagbits_t;
  118. /* convenient tests for these bits */
  119. static inline int is_cpu_exclusive(const struct cpuset *cs)
  120. {
  121. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  122. }
  123. static inline int is_mem_exclusive(const struct cpuset *cs)
  124. {
  125. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  126. }
  127. static inline int is_mem_hardwall(const struct cpuset *cs)
  128. {
  129. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  130. }
  131. static inline int is_sched_load_balance(const struct cpuset *cs)
  132. {
  133. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  134. }
  135. static inline int is_memory_migrate(const struct cpuset *cs)
  136. {
  137. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  138. }
  139. static inline int is_spread_page(const struct cpuset *cs)
  140. {
  141. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  142. }
  143. static inline int is_spread_slab(const struct cpuset *cs)
  144. {
  145. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  146. }
  147. /*
  148. * Increment this integer everytime any cpuset changes its
  149. * mems_allowed value. Users of cpusets can track this generation
  150. * number, and avoid having to lock and reload mems_allowed unless
  151. * the cpuset they're using changes generation.
  152. *
  153. * A single, global generation is needed because cpuset_attach_task() could
  154. * reattach a task to a different cpuset, which must not have its
  155. * generation numbers aliased with those of that tasks previous cpuset.
  156. *
  157. * Generations are needed for mems_allowed because one task cannot
  158. * modify another's memory placement. So we must enable every task,
  159. * on every visit to __alloc_pages(), to efficiently check whether
  160. * its current->cpuset->mems_allowed has changed, requiring an update
  161. * of its current->mems_allowed.
  162. *
  163. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  164. * there is no need to mark it atomic.
  165. */
  166. static int cpuset_mems_generation;
  167. static struct cpuset top_cpuset = {
  168. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  169. .cpus_allowed = CPU_MASK_ALL,
  170. .mems_allowed = NODE_MASK_ALL,
  171. };
  172. /*
  173. * There are two global mutexes guarding cpuset structures. The first
  174. * is the main control groups cgroup_mutex, accessed via
  175. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  176. * callback_mutex, below. They can nest. It is ok to first take
  177. * cgroup_mutex, then nest callback_mutex. We also require taking
  178. * task_lock() when dereferencing a task's cpuset pointer. See "The
  179. * task_lock() exception", at the end of this comment.
  180. *
  181. * A task must hold both mutexes to modify cpusets. If a task
  182. * holds cgroup_mutex, then it blocks others wanting that mutex,
  183. * ensuring that it is the only task able to also acquire callback_mutex
  184. * and be able to modify cpusets. It can perform various checks on
  185. * the cpuset structure first, knowing nothing will change. It can
  186. * also allocate memory while just holding cgroup_mutex. While it is
  187. * performing these checks, various callback routines can briefly
  188. * acquire callback_mutex to query cpusets. Once it is ready to make
  189. * the changes, it takes callback_mutex, blocking everyone else.
  190. *
  191. * Calls to the kernel memory allocator can not be made while holding
  192. * callback_mutex, as that would risk double tripping on callback_mutex
  193. * from one of the callbacks into the cpuset code from within
  194. * __alloc_pages().
  195. *
  196. * If a task is only holding callback_mutex, then it has read-only
  197. * access to cpusets.
  198. *
  199. * The task_struct fields mems_allowed and mems_generation may only
  200. * be accessed in the context of that task, so require no locks.
  201. *
  202. * The cpuset_common_file_read() handlers only hold callback_mutex across
  203. * small pieces of code, such as when reading out possibly multi-word
  204. * cpumasks and nodemasks.
  205. *
  206. * Accessing a task's cpuset should be done in accordance with the
  207. * guidelines for accessing subsystem state in kernel/cgroup.c
  208. */
  209. static DEFINE_MUTEX(callback_mutex);
  210. /* This is ugly, but preserves the userspace API for existing cpuset
  211. * users. If someone tries to mount the "cpuset" filesystem, we
  212. * silently switch it to mount "cgroup" instead */
  213. static int cpuset_get_sb(struct file_system_type *fs_type,
  214. int flags, const char *unused_dev_name,
  215. void *data, struct vfsmount *mnt)
  216. {
  217. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  218. int ret = -ENODEV;
  219. if (cgroup_fs) {
  220. char mountopts[] =
  221. "cpuset,noprefix,"
  222. "release_agent=/sbin/cpuset_release_agent";
  223. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  224. unused_dev_name, mountopts, mnt);
  225. put_filesystem(cgroup_fs);
  226. }
  227. return ret;
  228. }
  229. static struct file_system_type cpuset_fs_type = {
  230. .name = "cpuset",
  231. .get_sb = cpuset_get_sb,
  232. };
  233. /*
  234. * Return in *pmask the portion of a cpusets's cpus_allowed that
  235. * are online. If none are online, walk up the cpuset hierarchy
  236. * until we find one that does have some online cpus. If we get
  237. * all the way to the top and still haven't found any online cpus,
  238. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  239. * task, return cpu_online_map.
  240. *
  241. * One way or another, we guarantee to return some non-empty subset
  242. * of cpu_online_map.
  243. *
  244. * Call with callback_mutex held.
  245. */
  246. static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
  247. {
  248. while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
  249. cs = cs->parent;
  250. if (cs)
  251. cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
  252. else
  253. *pmask = cpu_online_map;
  254. BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
  255. }
  256. /*
  257. * Return in *pmask the portion of a cpusets's mems_allowed that
  258. * are online, with memory. If none are online with memory, walk
  259. * up the cpuset hierarchy until we find one that does have some
  260. * online mems. If we get all the way to the top and still haven't
  261. * found any online mems, return node_states[N_HIGH_MEMORY].
  262. *
  263. * One way or another, we guarantee to return some non-empty subset
  264. * of node_states[N_HIGH_MEMORY].
  265. *
  266. * Call with callback_mutex held.
  267. */
  268. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  269. {
  270. while (cs && !nodes_intersects(cs->mems_allowed,
  271. node_states[N_HIGH_MEMORY]))
  272. cs = cs->parent;
  273. if (cs)
  274. nodes_and(*pmask, cs->mems_allowed,
  275. node_states[N_HIGH_MEMORY]);
  276. else
  277. *pmask = node_states[N_HIGH_MEMORY];
  278. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  279. }
  280. /**
  281. * cpuset_update_task_memory_state - update task memory placement
  282. *
  283. * If the current tasks cpusets mems_allowed changed behind our
  284. * backs, update current->mems_allowed, mems_generation and task NUMA
  285. * mempolicy to the new value.
  286. *
  287. * Task mempolicy is updated by rebinding it relative to the
  288. * current->cpuset if a task has its memory placement changed.
  289. * Do not call this routine if in_interrupt().
  290. *
  291. * Call without callback_mutex or task_lock() held. May be
  292. * called with or without cgroup_mutex held. Thanks in part to
  293. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  294. * be NULL. This routine also might acquire callback_mutex during
  295. * call.
  296. *
  297. * Reading current->cpuset->mems_generation doesn't need task_lock
  298. * to guard the current->cpuset derefence, because it is guarded
  299. * from concurrent freeing of current->cpuset using RCU.
  300. *
  301. * The rcu_dereference() is technically probably not needed,
  302. * as I don't actually mind if I see a new cpuset pointer but
  303. * an old value of mems_generation. However this really only
  304. * matters on alpha systems using cpusets heavily. If I dropped
  305. * that rcu_dereference(), it would save them a memory barrier.
  306. * For all other arch's, rcu_dereference is a no-op anyway, and for
  307. * alpha systems not using cpusets, another planned optimization,
  308. * avoiding the rcu critical section for tasks in the root cpuset
  309. * which is statically allocated, so can't vanish, will make this
  310. * irrelevant. Better to use RCU as intended, than to engage in
  311. * some cute trick to save a memory barrier that is impossible to
  312. * test, for alpha systems using cpusets heavily, which might not
  313. * even exist.
  314. *
  315. * This routine is needed to update the per-task mems_allowed data,
  316. * within the tasks context, when it is trying to allocate memory
  317. * (in various mm/mempolicy.c routines) and notices that some other
  318. * task has been modifying its cpuset.
  319. */
  320. void cpuset_update_task_memory_state(void)
  321. {
  322. int my_cpusets_mem_gen;
  323. struct task_struct *tsk = current;
  324. struct cpuset *cs;
  325. if (task_cs(tsk) == &top_cpuset) {
  326. /* Don't need rcu for top_cpuset. It's never freed. */
  327. my_cpusets_mem_gen = top_cpuset.mems_generation;
  328. } else {
  329. rcu_read_lock();
  330. my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
  331. rcu_read_unlock();
  332. }
  333. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  334. mutex_lock(&callback_mutex);
  335. task_lock(tsk);
  336. cs = task_cs(tsk); /* Maybe changed when task not locked */
  337. guarantee_online_mems(cs, &tsk->mems_allowed);
  338. tsk->cpuset_mems_generation = cs->mems_generation;
  339. if (is_spread_page(cs))
  340. tsk->flags |= PF_SPREAD_PAGE;
  341. else
  342. tsk->flags &= ~PF_SPREAD_PAGE;
  343. if (is_spread_slab(cs))
  344. tsk->flags |= PF_SPREAD_SLAB;
  345. else
  346. tsk->flags &= ~PF_SPREAD_SLAB;
  347. task_unlock(tsk);
  348. mutex_unlock(&callback_mutex);
  349. mpol_rebind_task(tsk, &tsk->mems_allowed);
  350. }
  351. }
  352. /*
  353. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  354. *
  355. * One cpuset is a subset of another if all its allowed CPUs and
  356. * Memory Nodes are a subset of the other, and its exclusive flags
  357. * are only set if the other's are set. Call holding cgroup_mutex.
  358. */
  359. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  360. {
  361. return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
  362. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  363. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  364. is_mem_exclusive(p) <= is_mem_exclusive(q);
  365. }
  366. /*
  367. * validate_change() - Used to validate that any proposed cpuset change
  368. * follows the structural rules for cpusets.
  369. *
  370. * If we replaced the flag and mask values of the current cpuset
  371. * (cur) with those values in the trial cpuset (trial), would
  372. * our various subset and exclusive rules still be valid? Presumes
  373. * cgroup_mutex held.
  374. *
  375. * 'cur' is the address of an actual, in-use cpuset. Operations
  376. * such as list traversal that depend on the actual address of the
  377. * cpuset in the list must use cur below, not trial.
  378. *
  379. * 'trial' is the address of bulk structure copy of cur, with
  380. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  381. * or flags changed to new, trial values.
  382. *
  383. * Return 0 if valid, -errno if not.
  384. */
  385. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  386. {
  387. struct cgroup *cont;
  388. struct cpuset *c, *par;
  389. /* Each of our child cpusets must be a subset of us */
  390. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  391. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  392. return -EBUSY;
  393. }
  394. /* Remaining checks don't apply to root cpuset */
  395. if (cur == &top_cpuset)
  396. return 0;
  397. par = cur->parent;
  398. /* We must be a subset of our parent cpuset */
  399. if (!is_cpuset_subset(trial, par))
  400. return -EACCES;
  401. /*
  402. * If either I or some sibling (!= me) is exclusive, we can't
  403. * overlap
  404. */
  405. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  406. c = cgroup_cs(cont);
  407. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  408. c != cur &&
  409. cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
  410. return -EINVAL;
  411. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  412. c != cur &&
  413. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  414. return -EINVAL;
  415. }
  416. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  417. if (cgroup_task_count(cur->css.cgroup)) {
  418. if (cpus_empty(trial->cpus_allowed) ||
  419. nodes_empty(trial->mems_allowed)) {
  420. return -ENOSPC;
  421. }
  422. }
  423. return 0;
  424. }
  425. /*
  426. * Helper routine for rebuild_sched_domains().
  427. * Do cpusets a, b have overlapping cpus_allowed masks?
  428. */
  429. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  430. {
  431. return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
  432. }
  433. static void
  434. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  435. {
  436. if (dattr->relax_domain_level < c->relax_domain_level)
  437. dattr->relax_domain_level = c->relax_domain_level;
  438. return;
  439. }
  440. static void
  441. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  442. {
  443. LIST_HEAD(q);
  444. list_add(&c->stack_list, &q);
  445. while (!list_empty(&q)) {
  446. struct cpuset *cp;
  447. struct cgroup *cont;
  448. struct cpuset *child;
  449. cp = list_first_entry(&q, struct cpuset, stack_list);
  450. list_del(q.next);
  451. if (cpus_empty(cp->cpus_allowed))
  452. continue;
  453. if (is_sched_load_balance(cp))
  454. update_domain_attr(dattr, cp);
  455. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  456. child = cgroup_cs(cont);
  457. list_add_tail(&child->stack_list, &q);
  458. }
  459. }
  460. }
  461. /*
  462. * rebuild_sched_domains()
  463. *
  464. * This routine will be called to rebuild the scheduler's dynamic
  465. * sched domains:
  466. * - if the flag 'sched_load_balance' of any cpuset with non-empty
  467. * 'cpus' changes,
  468. * - or if the 'cpus' allowed changes in any cpuset which has that
  469. * flag enabled,
  470. * - or if the 'sched_relax_domain_level' of any cpuset which has
  471. * that flag enabled and with non-empty 'cpus' changes,
  472. * - or if any cpuset with non-empty 'cpus' is removed,
  473. * - or if a cpu gets offlined.
  474. *
  475. * This routine builds a partial partition of the systems CPUs
  476. * (the set of non-overlappping cpumask_t's in the array 'part'
  477. * below), and passes that partial partition to the kernel/sched.c
  478. * partition_sched_domains() routine, which will rebuild the
  479. * schedulers load balancing domains (sched domains) as specified
  480. * by that partial partition. A 'partial partition' is a set of
  481. * non-overlapping subsets whose union is a subset of that set.
  482. *
  483. * See "What is sched_load_balance" in Documentation/cpusets.txt
  484. * for a background explanation of this.
  485. *
  486. * Does not return errors, on the theory that the callers of this
  487. * routine would rather not worry about failures to rebuild sched
  488. * domains when operating in the severe memory shortage situations
  489. * that could cause allocation failures below.
  490. *
  491. * Call with cgroup_mutex held. May take callback_mutex during
  492. * call due to the kfifo_alloc() and kmalloc() calls. May nest
  493. * a call to the get_online_cpus()/put_online_cpus() pair.
  494. * Must not be called holding callback_mutex, because we must not
  495. * call get_online_cpus() while holding callback_mutex. Elsewhere
  496. * the kernel nests callback_mutex inside get_online_cpus() calls.
  497. * So the reverse nesting would risk an ABBA deadlock.
  498. *
  499. * The three key local variables below are:
  500. * q - a linked-list queue of cpuset pointers, used to implement a
  501. * top-down scan of all cpusets. This scan loads a pointer
  502. * to each cpuset marked is_sched_load_balance into the
  503. * array 'csa'. For our purposes, rebuilding the schedulers
  504. * sched domains, we can ignore !is_sched_load_balance cpusets.
  505. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  506. * that need to be load balanced, for convenient iterative
  507. * access by the subsequent code that finds the best partition,
  508. * i.e the set of domains (subsets) of CPUs such that the
  509. * cpus_allowed of every cpuset marked is_sched_load_balance
  510. * is a subset of one of these domains, while there are as
  511. * many such domains as possible, each as small as possible.
  512. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  513. * the kernel/sched.c routine partition_sched_domains() in a
  514. * convenient format, that can be easily compared to the prior
  515. * value to determine what partition elements (sched domains)
  516. * were changed (added or removed.)
  517. *
  518. * Finding the best partition (set of domains):
  519. * The triple nested loops below over i, j, k scan over the
  520. * load balanced cpusets (using the array of cpuset pointers in
  521. * csa[]) looking for pairs of cpusets that have overlapping
  522. * cpus_allowed, but which don't have the same 'pn' partition
  523. * number and gives them in the same partition number. It keeps
  524. * looping on the 'restart' label until it can no longer find
  525. * any such pairs.
  526. *
  527. * The union of the cpus_allowed masks from the set of
  528. * all cpusets having the same 'pn' value then form the one
  529. * element of the partition (one sched domain) to be passed to
  530. * partition_sched_domains().
  531. */
  532. void rebuild_sched_domains(void)
  533. {
  534. LIST_HEAD(q); /* queue of cpusets to be scanned*/
  535. struct cpuset *cp; /* scans q */
  536. struct cpuset **csa; /* array of all cpuset ptrs */
  537. int csn; /* how many cpuset ptrs in csa so far */
  538. int i, j, k; /* indices for partition finding loops */
  539. cpumask_t *doms; /* resulting partition; i.e. sched domains */
  540. struct sched_domain_attr *dattr; /* attributes for custom domains */
  541. int ndoms; /* number of sched domains in result */
  542. int nslot; /* next empty doms[] cpumask_t slot */
  543. csa = NULL;
  544. doms = NULL;
  545. dattr = NULL;
  546. /* Special case for the 99% of systems with one, full, sched domain */
  547. if (is_sched_load_balance(&top_cpuset)) {
  548. ndoms = 1;
  549. doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  550. if (!doms)
  551. goto rebuild;
  552. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  553. if (dattr) {
  554. *dattr = SD_ATTR_INIT;
  555. update_domain_attr_tree(dattr, &top_cpuset);
  556. }
  557. *doms = top_cpuset.cpus_allowed;
  558. goto rebuild;
  559. }
  560. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  561. if (!csa)
  562. goto done;
  563. csn = 0;
  564. list_add(&top_cpuset.stack_list, &q);
  565. while (!list_empty(&q)) {
  566. struct cgroup *cont;
  567. struct cpuset *child; /* scans child cpusets of cp */
  568. cp = list_first_entry(&q, struct cpuset, stack_list);
  569. list_del(q.next);
  570. if (cpus_empty(cp->cpus_allowed))
  571. continue;
  572. /*
  573. * All child cpusets contain a subset of the parent's cpus, so
  574. * just skip them, and then we call update_domain_attr_tree()
  575. * to calc relax_domain_level of the corresponding sched
  576. * domain.
  577. */
  578. if (is_sched_load_balance(cp)) {
  579. csa[csn++] = cp;
  580. continue;
  581. }
  582. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  583. child = cgroup_cs(cont);
  584. list_add_tail(&child->stack_list, &q);
  585. }
  586. }
  587. for (i = 0; i < csn; i++)
  588. csa[i]->pn = i;
  589. ndoms = csn;
  590. restart:
  591. /* Find the best partition (set of sched domains) */
  592. for (i = 0; i < csn; i++) {
  593. struct cpuset *a = csa[i];
  594. int apn = a->pn;
  595. for (j = 0; j < csn; j++) {
  596. struct cpuset *b = csa[j];
  597. int bpn = b->pn;
  598. if (apn != bpn && cpusets_overlap(a, b)) {
  599. for (k = 0; k < csn; k++) {
  600. struct cpuset *c = csa[k];
  601. if (c->pn == bpn)
  602. c->pn = apn;
  603. }
  604. ndoms--; /* one less element */
  605. goto restart;
  606. }
  607. }
  608. }
  609. /* Convert <csn, csa> to <ndoms, doms> */
  610. doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
  611. if (!doms)
  612. goto rebuild;
  613. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  614. for (nslot = 0, i = 0; i < csn; i++) {
  615. struct cpuset *a = csa[i];
  616. int apn = a->pn;
  617. if (apn >= 0) {
  618. cpumask_t *dp = doms + nslot;
  619. if (nslot == ndoms) {
  620. static int warnings = 10;
  621. if (warnings) {
  622. printk(KERN_WARNING
  623. "rebuild_sched_domains confused:"
  624. " nslot %d, ndoms %d, csn %d, i %d,"
  625. " apn %d\n",
  626. nslot, ndoms, csn, i, apn);
  627. warnings--;
  628. }
  629. continue;
  630. }
  631. cpus_clear(*dp);
  632. if (dattr)
  633. *(dattr + nslot) = SD_ATTR_INIT;
  634. for (j = i; j < csn; j++) {
  635. struct cpuset *b = csa[j];
  636. if (apn == b->pn) {
  637. cpus_or(*dp, *dp, b->cpus_allowed);
  638. b->pn = -1;
  639. if (dattr)
  640. update_domain_attr_tree(dattr
  641. + nslot, b);
  642. }
  643. }
  644. nslot++;
  645. }
  646. }
  647. BUG_ON(nslot != ndoms);
  648. rebuild:
  649. /* Have scheduler rebuild sched domains */
  650. get_online_cpus();
  651. partition_sched_domains(ndoms, doms, dattr);
  652. put_online_cpus();
  653. done:
  654. kfree(csa);
  655. /* Don't kfree(doms) -- partition_sched_domains() does that. */
  656. /* Don't kfree(dattr) -- partition_sched_domains() does that. */
  657. }
  658. /**
  659. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  660. * @tsk: task to test
  661. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  662. *
  663. * Call with cgroup_mutex held. May take callback_mutex during call.
  664. * Called for each task in a cgroup by cgroup_scan_tasks().
  665. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  666. * words, if its mask is not equal to its cpuset's mask).
  667. */
  668. static int cpuset_test_cpumask(struct task_struct *tsk,
  669. struct cgroup_scanner *scan)
  670. {
  671. return !cpus_equal(tsk->cpus_allowed,
  672. (cgroup_cs(scan->cg))->cpus_allowed);
  673. }
  674. /**
  675. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  676. * @tsk: task to test
  677. * @scan: struct cgroup_scanner containing the cgroup of the task
  678. *
  679. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  680. * cpus_allowed mask needs to be changed.
  681. *
  682. * We don't need to re-check for the cgroup/cpuset membership, since we're
  683. * holding cgroup_lock() at this point.
  684. */
  685. static void cpuset_change_cpumask(struct task_struct *tsk,
  686. struct cgroup_scanner *scan)
  687. {
  688. set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
  689. }
  690. /**
  691. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  692. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  693. *
  694. * Called with cgroup_mutex held
  695. *
  696. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  697. * calling callback functions for each.
  698. *
  699. * Return 0 if successful, -errno if not.
  700. */
  701. static int update_tasks_cpumask(struct cpuset *cs)
  702. {
  703. struct cgroup_scanner scan;
  704. struct ptr_heap heap;
  705. int retval;
  706. /*
  707. * cgroup_scan_tasks() will initialize heap->gt for us.
  708. * heap_init() is still needed here for we should not change
  709. * cs->cpus_allowed when heap_init() fails.
  710. */
  711. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  712. if (retval)
  713. return retval;
  714. scan.cg = cs->css.cgroup;
  715. scan.test_task = cpuset_test_cpumask;
  716. scan.process_task = cpuset_change_cpumask;
  717. scan.heap = &heap;
  718. retval = cgroup_scan_tasks(&scan);
  719. heap_free(&heap);
  720. return retval;
  721. }
  722. /**
  723. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  724. * @cs: the cpuset to consider
  725. * @buf: buffer of cpu numbers written to this cpuset
  726. */
  727. static int update_cpumask(struct cpuset *cs, const char *buf)
  728. {
  729. struct cpuset trialcs;
  730. int retval;
  731. int is_load_balanced;
  732. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  733. if (cs == &top_cpuset)
  734. return -EACCES;
  735. trialcs = *cs;
  736. /*
  737. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  738. * Since cpulist_parse() fails on an empty mask, we special case
  739. * that parsing. The validate_change() call ensures that cpusets
  740. * with tasks have cpus.
  741. */
  742. if (!*buf) {
  743. cpus_clear(trialcs.cpus_allowed);
  744. } else {
  745. retval = cpulist_parse(buf, trialcs.cpus_allowed);
  746. if (retval < 0)
  747. return retval;
  748. if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
  749. return -EINVAL;
  750. }
  751. retval = validate_change(cs, &trialcs);
  752. if (retval < 0)
  753. return retval;
  754. /* Nothing to do if the cpus didn't change */
  755. if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
  756. return 0;
  757. is_load_balanced = is_sched_load_balance(&trialcs);
  758. mutex_lock(&callback_mutex);
  759. cs->cpus_allowed = trialcs.cpus_allowed;
  760. mutex_unlock(&callback_mutex);
  761. /*
  762. * Scan tasks in the cpuset, and update the cpumasks of any
  763. * that need an update.
  764. */
  765. retval = update_tasks_cpumask(cs);
  766. if (retval < 0)
  767. return retval;
  768. if (is_load_balanced)
  769. rebuild_sched_domains();
  770. return 0;
  771. }
  772. /*
  773. * cpuset_migrate_mm
  774. *
  775. * Migrate memory region from one set of nodes to another.
  776. *
  777. * Temporarilly set tasks mems_allowed to target nodes of migration,
  778. * so that the migration code can allocate pages on these nodes.
  779. *
  780. * Call holding cgroup_mutex, so current's cpuset won't change
  781. * during this call, as manage_mutex holds off any cpuset_attach()
  782. * calls. Therefore we don't need to take task_lock around the
  783. * call to guarantee_online_mems(), as we know no one is changing
  784. * our task's cpuset.
  785. *
  786. * Hold callback_mutex around the two modifications of our tasks
  787. * mems_allowed to synchronize with cpuset_mems_allowed().
  788. *
  789. * While the mm_struct we are migrating is typically from some
  790. * other task, the task_struct mems_allowed that we are hacking
  791. * is for our current task, which must allocate new pages for that
  792. * migrating memory region.
  793. *
  794. * We call cpuset_update_task_memory_state() before hacking
  795. * our tasks mems_allowed, so that we are assured of being in
  796. * sync with our tasks cpuset, and in particular, callbacks to
  797. * cpuset_update_task_memory_state() from nested page allocations
  798. * won't see any mismatch of our cpuset and task mems_generation
  799. * values, so won't overwrite our hacked tasks mems_allowed
  800. * nodemask.
  801. */
  802. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  803. const nodemask_t *to)
  804. {
  805. struct task_struct *tsk = current;
  806. cpuset_update_task_memory_state();
  807. mutex_lock(&callback_mutex);
  808. tsk->mems_allowed = *to;
  809. mutex_unlock(&callback_mutex);
  810. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  811. mutex_lock(&callback_mutex);
  812. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  813. mutex_unlock(&callback_mutex);
  814. }
  815. static void *cpuset_being_rebound;
  816. /**
  817. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  818. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  819. * @oldmem: old mems_allowed of cpuset cs
  820. *
  821. * Called with cgroup_mutex held
  822. * Return 0 if successful, -errno if not.
  823. */
  824. static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
  825. {
  826. struct task_struct *p;
  827. struct mm_struct **mmarray;
  828. int i, n, ntasks;
  829. int migrate;
  830. int fudge;
  831. struct cgroup_iter it;
  832. int retval;
  833. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  834. fudge = 10; /* spare mmarray[] slots */
  835. fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
  836. retval = -ENOMEM;
  837. /*
  838. * Allocate mmarray[] to hold mm reference for each task
  839. * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
  840. * tasklist_lock. We could use GFP_ATOMIC, but with a
  841. * few more lines of code, we can retry until we get a big
  842. * enough mmarray[] w/o using GFP_ATOMIC.
  843. */
  844. while (1) {
  845. ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
  846. ntasks += fudge;
  847. mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
  848. if (!mmarray)
  849. goto done;
  850. read_lock(&tasklist_lock); /* block fork */
  851. if (cgroup_task_count(cs->css.cgroup) <= ntasks)
  852. break; /* got enough */
  853. read_unlock(&tasklist_lock); /* try again */
  854. kfree(mmarray);
  855. }
  856. n = 0;
  857. /* Load up mmarray[] with mm reference for each task in cpuset. */
  858. cgroup_iter_start(cs->css.cgroup, &it);
  859. while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
  860. struct mm_struct *mm;
  861. if (n >= ntasks) {
  862. printk(KERN_WARNING
  863. "Cpuset mempolicy rebind incomplete.\n");
  864. break;
  865. }
  866. mm = get_task_mm(p);
  867. if (!mm)
  868. continue;
  869. mmarray[n++] = mm;
  870. }
  871. cgroup_iter_end(cs->css.cgroup, &it);
  872. read_unlock(&tasklist_lock);
  873. /*
  874. * Now that we've dropped the tasklist spinlock, we can
  875. * rebind the vma mempolicies of each mm in mmarray[] to their
  876. * new cpuset, and release that mm. The mpol_rebind_mm()
  877. * call takes mmap_sem, which we couldn't take while holding
  878. * tasklist_lock. Forks can happen again now - the mpol_dup()
  879. * cpuset_being_rebound check will catch such forks, and rebind
  880. * their vma mempolicies too. Because we still hold the global
  881. * cgroup_mutex, we know that no other rebind effort will
  882. * be contending for the global variable cpuset_being_rebound.
  883. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  884. * is idempotent. Also migrate pages in each mm to new nodes.
  885. */
  886. migrate = is_memory_migrate(cs);
  887. for (i = 0; i < n; i++) {
  888. struct mm_struct *mm = mmarray[i];
  889. mpol_rebind_mm(mm, &cs->mems_allowed);
  890. if (migrate)
  891. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  892. mmput(mm);
  893. }
  894. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  895. kfree(mmarray);
  896. cpuset_being_rebound = NULL;
  897. retval = 0;
  898. done:
  899. return retval;
  900. }
  901. /*
  902. * Handle user request to change the 'mems' memory placement
  903. * of a cpuset. Needs to validate the request, update the
  904. * cpusets mems_allowed and mems_generation, and for each
  905. * task in the cpuset, rebind any vma mempolicies and if
  906. * the cpuset is marked 'memory_migrate', migrate the tasks
  907. * pages to the new memory.
  908. *
  909. * Call with cgroup_mutex held. May take callback_mutex during call.
  910. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  911. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  912. * their mempolicies to the cpusets new mems_allowed.
  913. */
  914. static int update_nodemask(struct cpuset *cs, const char *buf)
  915. {
  916. struct cpuset trialcs;
  917. nodemask_t oldmem;
  918. int retval;
  919. /*
  920. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  921. * it's read-only
  922. */
  923. if (cs == &top_cpuset)
  924. return -EACCES;
  925. trialcs = *cs;
  926. /*
  927. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  928. * Since nodelist_parse() fails on an empty mask, we special case
  929. * that parsing. The validate_change() call ensures that cpusets
  930. * with tasks have memory.
  931. */
  932. if (!*buf) {
  933. nodes_clear(trialcs.mems_allowed);
  934. } else {
  935. retval = nodelist_parse(buf, trialcs.mems_allowed);
  936. if (retval < 0)
  937. goto done;
  938. if (!nodes_subset(trialcs.mems_allowed,
  939. node_states[N_HIGH_MEMORY]))
  940. return -EINVAL;
  941. }
  942. oldmem = cs->mems_allowed;
  943. if (nodes_equal(oldmem, trialcs.mems_allowed)) {
  944. retval = 0; /* Too easy - nothing to do */
  945. goto done;
  946. }
  947. retval = validate_change(cs, &trialcs);
  948. if (retval < 0)
  949. goto done;
  950. mutex_lock(&callback_mutex);
  951. cs->mems_allowed = trialcs.mems_allowed;
  952. cs->mems_generation = cpuset_mems_generation++;
  953. mutex_unlock(&callback_mutex);
  954. retval = update_tasks_nodemask(cs, &oldmem);
  955. done:
  956. return retval;
  957. }
  958. int current_cpuset_is_being_rebound(void)
  959. {
  960. return task_cs(current) == cpuset_being_rebound;
  961. }
  962. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  963. {
  964. if (val < -1 || val >= SD_LV_MAX)
  965. return -EINVAL;
  966. if (val != cs->relax_domain_level) {
  967. cs->relax_domain_level = val;
  968. if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
  969. rebuild_sched_domains();
  970. }
  971. return 0;
  972. }
  973. /*
  974. * update_flag - read a 0 or a 1 in a file and update associated flag
  975. * bit: the bit to update (see cpuset_flagbits_t)
  976. * cs: the cpuset to update
  977. * turning_on: whether the flag is being set or cleared
  978. *
  979. * Call with cgroup_mutex held.
  980. */
  981. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  982. int turning_on)
  983. {
  984. struct cpuset trialcs;
  985. int err;
  986. int cpus_nonempty, balance_flag_changed;
  987. trialcs = *cs;
  988. if (turning_on)
  989. set_bit(bit, &trialcs.flags);
  990. else
  991. clear_bit(bit, &trialcs.flags);
  992. err = validate_change(cs, &trialcs);
  993. if (err < 0)
  994. return err;
  995. cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
  996. balance_flag_changed = (is_sched_load_balance(cs) !=
  997. is_sched_load_balance(&trialcs));
  998. mutex_lock(&callback_mutex);
  999. cs->flags = trialcs.flags;
  1000. mutex_unlock(&callback_mutex);
  1001. if (cpus_nonempty && balance_flag_changed)
  1002. rebuild_sched_domains();
  1003. return 0;
  1004. }
  1005. /*
  1006. * Frequency meter - How fast is some event occurring?
  1007. *
  1008. * These routines manage a digitally filtered, constant time based,
  1009. * event frequency meter. There are four routines:
  1010. * fmeter_init() - initialize a frequency meter.
  1011. * fmeter_markevent() - called each time the event happens.
  1012. * fmeter_getrate() - returns the recent rate of such events.
  1013. * fmeter_update() - internal routine used to update fmeter.
  1014. *
  1015. * A common data structure is passed to each of these routines,
  1016. * which is used to keep track of the state required to manage the
  1017. * frequency meter and its digital filter.
  1018. *
  1019. * The filter works on the number of events marked per unit time.
  1020. * The filter is single-pole low-pass recursive (IIR). The time unit
  1021. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1022. * simulate 3 decimal digits of precision (multiplied by 1000).
  1023. *
  1024. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1025. * has a half-life of 10 seconds, meaning that if the events quit
  1026. * happening, then the rate returned from the fmeter_getrate()
  1027. * will be cut in half each 10 seconds, until it converges to zero.
  1028. *
  1029. * It is not worth doing a real infinitely recursive filter. If more
  1030. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1031. * just compute FM_MAXTICKS ticks worth, by which point the level
  1032. * will be stable.
  1033. *
  1034. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1035. * arithmetic overflow in the fmeter_update() routine.
  1036. *
  1037. * Given the simple 32 bit integer arithmetic used, this meter works
  1038. * best for reporting rates between one per millisecond (msec) and
  1039. * one per 32 (approx) seconds. At constant rates faster than one
  1040. * per msec it maxes out at values just under 1,000,000. At constant
  1041. * rates between one per msec, and one per second it will stabilize
  1042. * to a value N*1000, where N is the rate of events per second.
  1043. * At constant rates between one per second and one per 32 seconds,
  1044. * it will be choppy, moving up on the seconds that have an event,
  1045. * and then decaying until the next event. At rates slower than
  1046. * about one in 32 seconds, it decays all the way back to zero between
  1047. * each event.
  1048. */
  1049. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1050. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1051. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1052. #define FM_SCALE 1000 /* faux fixed point scale */
  1053. /* Initialize a frequency meter */
  1054. static void fmeter_init(struct fmeter *fmp)
  1055. {
  1056. fmp->cnt = 0;
  1057. fmp->val = 0;
  1058. fmp->time = 0;
  1059. spin_lock_init(&fmp->lock);
  1060. }
  1061. /* Internal meter update - process cnt events and update value */
  1062. static void fmeter_update(struct fmeter *fmp)
  1063. {
  1064. time_t now = get_seconds();
  1065. time_t ticks = now - fmp->time;
  1066. if (ticks == 0)
  1067. return;
  1068. ticks = min(FM_MAXTICKS, ticks);
  1069. while (ticks-- > 0)
  1070. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1071. fmp->time = now;
  1072. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1073. fmp->cnt = 0;
  1074. }
  1075. /* Process any previous ticks, then bump cnt by one (times scale). */
  1076. static void fmeter_markevent(struct fmeter *fmp)
  1077. {
  1078. spin_lock(&fmp->lock);
  1079. fmeter_update(fmp);
  1080. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1081. spin_unlock(&fmp->lock);
  1082. }
  1083. /* Process any previous ticks, then return current value. */
  1084. static int fmeter_getrate(struct fmeter *fmp)
  1085. {
  1086. int val;
  1087. spin_lock(&fmp->lock);
  1088. fmeter_update(fmp);
  1089. val = fmp->val;
  1090. spin_unlock(&fmp->lock);
  1091. return val;
  1092. }
  1093. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1094. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1095. struct cgroup *cont, struct task_struct *tsk)
  1096. {
  1097. struct cpuset *cs = cgroup_cs(cont);
  1098. if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1099. return -ENOSPC;
  1100. if (tsk->flags & PF_THREAD_BOUND) {
  1101. cpumask_t mask;
  1102. mutex_lock(&callback_mutex);
  1103. mask = cs->cpus_allowed;
  1104. mutex_unlock(&callback_mutex);
  1105. if (!cpus_equal(tsk->cpus_allowed, mask))
  1106. return -EINVAL;
  1107. }
  1108. return security_task_setscheduler(tsk, 0, NULL);
  1109. }
  1110. static void cpuset_attach(struct cgroup_subsys *ss,
  1111. struct cgroup *cont, struct cgroup *oldcont,
  1112. struct task_struct *tsk)
  1113. {
  1114. cpumask_t cpus;
  1115. nodemask_t from, to;
  1116. struct mm_struct *mm;
  1117. struct cpuset *cs = cgroup_cs(cont);
  1118. struct cpuset *oldcs = cgroup_cs(oldcont);
  1119. int err;
  1120. mutex_lock(&callback_mutex);
  1121. guarantee_online_cpus(cs, &cpus);
  1122. err = set_cpus_allowed_ptr(tsk, &cpus);
  1123. mutex_unlock(&callback_mutex);
  1124. if (err)
  1125. return;
  1126. from = oldcs->mems_allowed;
  1127. to = cs->mems_allowed;
  1128. mm = get_task_mm(tsk);
  1129. if (mm) {
  1130. mpol_rebind_mm(mm, &to);
  1131. if (is_memory_migrate(cs))
  1132. cpuset_migrate_mm(mm, &from, &to);
  1133. mmput(mm);
  1134. }
  1135. }
  1136. /* The various types of files and directories in a cpuset file system */
  1137. typedef enum {
  1138. FILE_MEMORY_MIGRATE,
  1139. FILE_CPULIST,
  1140. FILE_MEMLIST,
  1141. FILE_CPU_EXCLUSIVE,
  1142. FILE_MEM_EXCLUSIVE,
  1143. FILE_MEM_HARDWALL,
  1144. FILE_SCHED_LOAD_BALANCE,
  1145. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1146. FILE_MEMORY_PRESSURE_ENABLED,
  1147. FILE_MEMORY_PRESSURE,
  1148. FILE_SPREAD_PAGE,
  1149. FILE_SPREAD_SLAB,
  1150. } cpuset_filetype_t;
  1151. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1152. {
  1153. int retval = 0;
  1154. struct cpuset *cs = cgroup_cs(cgrp);
  1155. cpuset_filetype_t type = cft->private;
  1156. if (!cgroup_lock_live_group(cgrp))
  1157. return -ENODEV;
  1158. switch (type) {
  1159. case FILE_CPU_EXCLUSIVE:
  1160. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1161. break;
  1162. case FILE_MEM_EXCLUSIVE:
  1163. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1164. break;
  1165. case FILE_MEM_HARDWALL:
  1166. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1167. break;
  1168. case FILE_SCHED_LOAD_BALANCE:
  1169. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1170. break;
  1171. case FILE_MEMORY_MIGRATE:
  1172. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1173. break;
  1174. case FILE_MEMORY_PRESSURE_ENABLED:
  1175. cpuset_memory_pressure_enabled = !!val;
  1176. break;
  1177. case FILE_MEMORY_PRESSURE:
  1178. retval = -EACCES;
  1179. break;
  1180. case FILE_SPREAD_PAGE:
  1181. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1182. cs->mems_generation = cpuset_mems_generation++;
  1183. break;
  1184. case FILE_SPREAD_SLAB:
  1185. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1186. cs->mems_generation = cpuset_mems_generation++;
  1187. break;
  1188. default:
  1189. retval = -EINVAL;
  1190. break;
  1191. }
  1192. cgroup_unlock();
  1193. return retval;
  1194. }
  1195. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1196. {
  1197. int retval = 0;
  1198. struct cpuset *cs = cgroup_cs(cgrp);
  1199. cpuset_filetype_t type = cft->private;
  1200. if (!cgroup_lock_live_group(cgrp))
  1201. return -ENODEV;
  1202. switch (type) {
  1203. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1204. retval = update_relax_domain_level(cs, val);
  1205. break;
  1206. default:
  1207. retval = -EINVAL;
  1208. break;
  1209. }
  1210. cgroup_unlock();
  1211. return retval;
  1212. }
  1213. /*
  1214. * Common handling for a write to a "cpus" or "mems" file.
  1215. */
  1216. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1217. const char *buf)
  1218. {
  1219. int retval = 0;
  1220. if (!cgroup_lock_live_group(cgrp))
  1221. return -ENODEV;
  1222. switch (cft->private) {
  1223. case FILE_CPULIST:
  1224. retval = update_cpumask(cgroup_cs(cgrp), buf);
  1225. break;
  1226. case FILE_MEMLIST:
  1227. retval = update_nodemask(cgroup_cs(cgrp), buf);
  1228. break;
  1229. default:
  1230. retval = -EINVAL;
  1231. break;
  1232. }
  1233. cgroup_unlock();
  1234. return retval;
  1235. }
  1236. /*
  1237. * These ascii lists should be read in a single call, by using a user
  1238. * buffer large enough to hold the entire map. If read in smaller
  1239. * chunks, there is no guarantee of atomicity. Since the display format
  1240. * used, list of ranges of sequential numbers, is variable length,
  1241. * and since these maps can change value dynamically, one could read
  1242. * gibberish by doing partial reads while a list was changing.
  1243. * A single large read to a buffer that crosses a page boundary is
  1244. * ok, because the result being copied to user land is not recomputed
  1245. * across a page fault.
  1246. */
  1247. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1248. {
  1249. cpumask_t mask;
  1250. mutex_lock(&callback_mutex);
  1251. mask = cs->cpus_allowed;
  1252. mutex_unlock(&callback_mutex);
  1253. return cpulist_scnprintf(page, PAGE_SIZE, mask);
  1254. }
  1255. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1256. {
  1257. nodemask_t mask;
  1258. mutex_lock(&callback_mutex);
  1259. mask = cs->mems_allowed;
  1260. mutex_unlock(&callback_mutex);
  1261. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1262. }
  1263. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1264. struct cftype *cft,
  1265. struct file *file,
  1266. char __user *buf,
  1267. size_t nbytes, loff_t *ppos)
  1268. {
  1269. struct cpuset *cs = cgroup_cs(cont);
  1270. cpuset_filetype_t type = cft->private;
  1271. char *page;
  1272. ssize_t retval = 0;
  1273. char *s;
  1274. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1275. return -ENOMEM;
  1276. s = page;
  1277. switch (type) {
  1278. case FILE_CPULIST:
  1279. s += cpuset_sprintf_cpulist(s, cs);
  1280. break;
  1281. case FILE_MEMLIST:
  1282. s += cpuset_sprintf_memlist(s, cs);
  1283. break;
  1284. default:
  1285. retval = -EINVAL;
  1286. goto out;
  1287. }
  1288. *s++ = '\n';
  1289. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1290. out:
  1291. free_page((unsigned long)page);
  1292. return retval;
  1293. }
  1294. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1295. {
  1296. struct cpuset *cs = cgroup_cs(cont);
  1297. cpuset_filetype_t type = cft->private;
  1298. switch (type) {
  1299. case FILE_CPU_EXCLUSIVE:
  1300. return is_cpu_exclusive(cs);
  1301. case FILE_MEM_EXCLUSIVE:
  1302. return is_mem_exclusive(cs);
  1303. case FILE_MEM_HARDWALL:
  1304. return is_mem_hardwall(cs);
  1305. case FILE_SCHED_LOAD_BALANCE:
  1306. return is_sched_load_balance(cs);
  1307. case FILE_MEMORY_MIGRATE:
  1308. return is_memory_migrate(cs);
  1309. case FILE_MEMORY_PRESSURE_ENABLED:
  1310. return cpuset_memory_pressure_enabled;
  1311. case FILE_MEMORY_PRESSURE:
  1312. return fmeter_getrate(&cs->fmeter);
  1313. case FILE_SPREAD_PAGE:
  1314. return is_spread_page(cs);
  1315. case FILE_SPREAD_SLAB:
  1316. return is_spread_slab(cs);
  1317. default:
  1318. BUG();
  1319. }
  1320. }
  1321. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1322. {
  1323. struct cpuset *cs = cgroup_cs(cont);
  1324. cpuset_filetype_t type = cft->private;
  1325. switch (type) {
  1326. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1327. return cs->relax_domain_level;
  1328. default:
  1329. BUG();
  1330. }
  1331. }
  1332. /*
  1333. * for the common functions, 'private' gives the type of file
  1334. */
  1335. static struct cftype files[] = {
  1336. {
  1337. .name = "cpus",
  1338. .read = cpuset_common_file_read,
  1339. .write_string = cpuset_write_resmask,
  1340. .max_write_len = (100U + 6 * NR_CPUS),
  1341. .private = FILE_CPULIST,
  1342. },
  1343. {
  1344. .name = "mems",
  1345. .read = cpuset_common_file_read,
  1346. .write_string = cpuset_write_resmask,
  1347. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1348. .private = FILE_MEMLIST,
  1349. },
  1350. {
  1351. .name = "cpu_exclusive",
  1352. .read_u64 = cpuset_read_u64,
  1353. .write_u64 = cpuset_write_u64,
  1354. .private = FILE_CPU_EXCLUSIVE,
  1355. },
  1356. {
  1357. .name = "mem_exclusive",
  1358. .read_u64 = cpuset_read_u64,
  1359. .write_u64 = cpuset_write_u64,
  1360. .private = FILE_MEM_EXCLUSIVE,
  1361. },
  1362. {
  1363. .name = "mem_hardwall",
  1364. .read_u64 = cpuset_read_u64,
  1365. .write_u64 = cpuset_write_u64,
  1366. .private = FILE_MEM_HARDWALL,
  1367. },
  1368. {
  1369. .name = "sched_load_balance",
  1370. .read_u64 = cpuset_read_u64,
  1371. .write_u64 = cpuset_write_u64,
  1372. .private = FILE_SCHED_LOAD_BALANCE,
  1373. },
  1374. {
  1375. .name = "sched_relax_domain_level",
  1376. .read_s64 = cpuset_read_s64,
  1377. .write_s64 = cpuset_write_s64,
  1378. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1379. },
  1380. {
  1381. .name = "memory_migrate",
  1382. .read_u64 = cpuset_read_u64,
  1383. .write_u64 = cpuset_write_u64,
  1384. .private = FILE_MEMORY_MIGRATE,
  1385. },
  1386. {
  1387. .name = "memory_pressure",
  1388. .read_u64 = cpuset_read_u64,
  1389. .write_u64 = cpuset_write_u64,
  1390. .private = FILE_MEMORY_PRESSURE,
  1391. },
  1392. {
  1393. .name = "memory_spread_page",
  1394. .read_u64 = cpuset_read_u64,
  1395. .write_u64 = cpuset_write_u64,
  1396. .private = FILE_SPREAD_PAGE,
  1397. },
  1398. {
  1399. .name = "memory_spread_slab",
  1400. .read_u64 = cpuset_read_u64,
  1401. .write_u64 = cpuset_write_u64,
  1402. .private = FILE_SPREAD_SLAB,
  1403. },
  1404. };
  1405. static struct cftype cft_memory_pressure_enabled = {
  1406. .name = "memory_pressure_enabled",
  1407. .read_u64 = cpuset_read_u64,
  1408. .write_u64 = cpuset_write_u64,
  1409. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1410. };
  1411. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1412. {
  1413. int err;
  1414. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1415. if (err)
  1416. return err;
  1417. /* memory_pressure_enabled is in root cpuset only */
  1418. if (!cont->parent)
  1419. err = cgroup_add_file(cont, ss,
  1420. &cft_memory_pressure_enabled);
  1421. return err;
  1422. }
  1423. /*
  1424. * post_clone() is called at the end of cgroup_clone().
  1425. * 'cgroup' was just created automatically as a result of
  1426. * a cgroup_clone(), and the current task is about to
  1427. * be moved into 'cgroup'.
  1428. *
  1429. * Currently we refuse to set up the cgroup - thereby
  1430. * refusing the task to be entered, and as a result refusing
  1431. * the sys_unshare() or clone() which initiated it - if any
  1432. * sibling cpusets have exclusive cpus or mem.
  1433. *
  1434. * If this becomes a problem for some users who wish to
  1435. * allow that scenario, then cpuset_post_clone() could be
  1436. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1437. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1438. * held.
  1439. */
  1440. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1441. struct cgroup *cgroup)
  1442. {
  1443. struct cgroup *parent, *child;
  1444. struct cpuset *cs, *parent_cs;
  1445. parent = cgroup->parent;
  1446. list_for_each_entry(child, &parent->children, sibling) {
  1447. cs = cgroup_cs(child);
  1448. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1449. return;
  1450. }
  1451. cs = cgroup_cs(cgroup);
  1452. parent_cs = cgroup_cs(parent);
  1453. cs->mems_allowed = parent_cs->mems_allowed;
  1454. cs->cpus_allowed = parent_cs->cpus_allowed;
  1455. return;
  1456. }
  1457. /*
  1458. * cpuset_create - create a cpuset
  1459. * ss: cpuset cgroup subsystem
  1460. * cont: control group that the new cpuset will be part of
  1461. */
  1462. static struct cgroup_subsys_state *cpuset_create(
  1463. struct cgroup_subsys *ss,
  1464. struct cgroup *cont)
  1465. {
  1466. struct cpuset *cs;
  1467. struct cpuset *parent;
  1468. if (!cont->parent) {
  1469. /* This is early initialization for the top cgroup */
  1470. top_cpuset.mems_generation = cpuset_mems_generation++;
  1471. return &top_cpuset.css;
  1472. }
  1473. parent = cgroup_cs(cont->parent);
  1474. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1475. if (!cs)
  1476. return ERR_PTR(-ENOMEM);
  1477. cpuset_update_task_memory_state();
  1478. cs->flags = 0;
  1479. if (is_spread_page(parent))
  1480. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1481. if (is_spread_slab(parent))
  1482. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1483. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1484. cpus_clear(cs->cpus_allowed);
  1485. nodes_clear(cs->mems_allowed);
  1486. cs->mems_generation = cpuset_mems_generation++;
  1487. fmeter_init(&cs->fmeter);
  1488. cs->relax_domain_level = -1;
  1489. cs->parent = parent;
  1490. number_of_cpusets++;
  1491. return &cs->css ;
  1492. }
  1493. /*
  1494. * Locking note on the strange update_flag() call below:
  1495. *
  1496. * If the cpuset being removed has its flag 'sched_load_balance'
  1497. * enabled, then simulate turning sched_load_balance off, which
  1498. * will call rebuild_sched_domains(). The get_online_cpus()
  1499. * call in rebuild_sched_domains() must not be made while holding
  1500. * callback_mutex. Elsewhere the kernel nests callback_mutex inside
  1501. * get_online_cpus() calls. So the reverse nesting would risk an
  1502. * ABBA deadlock.
  1503. */
  1504. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1505. {
  1506. struct cpuset *cs = cgroup_cs(cont);
  1507. cpuset_update_task_memory_state();
  1508. if (is_sched_load_balance(cs))
  1509. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1510. number_of_cpusets--;
  1511. kfree(cs);
  1512. }
  1513. struct cgroup_subsys cpuset_subsys = {
  1514. .name = "cpuset",
  1515. .create = cpuset_create,
  1516. .destroy = cpuset_destroy,
  1517. .can_attach = cpuset_can_attach,
  1518. .attach = cpuset_attach,
  1519. .populate = cpuset_populate,
  1520. .post_clone = cpuset_post_clone,
  1521. .subsys_id = cpuset_subsys_id,
  1522. .early_init = 1,
  1523. };
  1524. /*
  1525. * cpuset_init_early - just enough so that the calls to
  1526. * cpuset_update_task_memory_state() in early init code
  1527. * are harmless.
  1528. */
  1529. int __init cpuset_init_early(void)
  1530. {
  1531. top_cpuset.mems_generation = cpuset_mems_generation++;
  1532. return 0;
  1533. }
  1534. /**
  1535. * cpuset_init - initialize cpusets at system boot
  1536. *
  1537. * Description: Initialize top_cpuset and the cpuset internal file system,
  1538. **/
  1539. int __init cpuset_init(void)
  1540. {
  1541. int err = 0;
  1542. cpus_setall(top_cpuset.cpus_allowed);
  1543. nodes_setall(top_cpuset.mems_allowed);
  1544. fmeter_init(&top_cpuset.fmeter);
  1545. top_cpuset.mems_generation = cpuset_mems_generation++;
  1546. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1547. top_cpuset.relax_domain_level = -1;
  1548. err = register_filesystem(&cpuset_fs_type);
  1549. if (err < 0)
  1550. return err;
  1551. number_of_cpusets = 1;
  1552. return 0;
  1553. }
  1554. /**
  1555. * cpuset_do_move_task - move a given task to another cpuset
  1556. * @tsk: pointer to task_struct the task to move
  1557. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1558. *
  1559. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1560. * Return nonzero to stop the walk through the tasks.
  1561. */
  1562. static void cpuset_do_move_task(struct task_struct *tsk,
  1563. struct cgroup_scanner *scan)
  1564. {
  1565. struct cpuset_hotplug_scanner *chsp;
  1566. chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
  1567. cgroup_attach_task(chsp->to, tsk);
  1568. }
  1569. /**
  1570. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1571. * @from: cpuset in which the tasks currently reside
  1572. * @to: cpuset to which the tasks will be moved
  1573. *
  1574. * Called with cgroup_mutex held
  1575. * callback_mutex must not be held, as cpuset_attach() will take it.
  1576. *
  1577. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1578. * calling callback functions for each.
  1579. */
  1580. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1581. {
  1582. struct cpuset_hotplug_scanner scan;
  1583. scan.scan.cg = from->css.cgroup;
  1584. scan.scan.test_task = NULL; /* select all tasks in cgroup */
  1585. scan.scan.process_task = cpuset_do_move_task;
  1586. scan.scan.heap = NULL;
  1587. scan.to = to->css.cgroup;
  1588. if (cgroup_scan_tasks(&scan.scan))
  1589. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1590. "cgroup_scan_tasks failed\n");
  1591. }
  1592. /*
  1593. * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
  1594. * or memory nodes, we need to walk over the cpuset hierarchy,
  1595. * removing that CPU or node from all cpusets. If this removes the
  1596. * last CPU or node from a cpuset, then move the tasks in the empty
  1597. * cpuset to its next-highest non-empty parent.
  1598. *
  1599. * Called with cgroup_mutex held
  1600. * callback_mutex must not be held, as cpuset_attach() will take it.
  1601. */
  1602. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1603. {
  1604. struct cpuset *parent;
  1605. /*
  1606. * The cgroup's css_sets list is in use if there are tasks
  1607. * in the cpuset; the list is empty if there are none;
  1608. * the cs->css.refcnt seems always 0.
  1609. */
  1610. if (list_empty(&cs->css.cgroup->css_sets))
  1611. return;
  1612. /*
  1613. * Find its next-highest non-empty parent, (top cpuset
  1614. * has online cpus, so can't be empty).
  1615. */
  1616. parent = cs->parent;
  1617. while (cpus_empty(parent->cpus_allowed) ||
  1618. nodes_empty(parent->mems_allowed))
  1619. parent = parent->parent;
  1620. move_member_tasks_to_cpuset(cs, parent);
  1621. }
  1622. /*
  1623. * Walk the specified cpuset subtree and look for empty cpusets.
  1624. * The tasks of such cpuset must be moved to a parent cpuset.
  1625. *
  1626. * Called with cgroup_mutex held. We take callback_mutex to modify
  1627. * cpus_allowed and mems_allowed.
  1628. *
  1629. * This walk processes the tree from top to bottom, completing one layer
  1630. * before dropping down to the next. It always processes a node before
  1631. * any of its children.
  1632. *
  1633. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1634. * that has tasks along with an empty 'mems'. But if we did see such
  1635. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1636. */
  1637. static void scan_for_empty_cpusets(const struct cpuset *root)
  1638. {
  1639. LIST_HEAD(queue);
  1640. struct cpuset *cp; /* scans cpusets being updated */
  1641. struct cpuset *child; /* scans child cpusets of cp */
  1642. struct cgroup *cont;
  1643. nodemask_t oldmems;
  1644. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1645. while (!list_empty(&queue)) {
  1646. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1647. list_del(queue.next);
  1648. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1649. child = cgroup_cs(cont);
  1650. list_add_tail(&child->stack_list, &queue);
  1651. }
  1652. /* Continue past cpusets with all cpus, mems online */
  1653. if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
  1654. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1655. continue;
  1656. oldmems = cp->mems_allowed;
  1657. /* Remove offline cpus and mems from this cpuset. */
  1658. mutex_lock(&callback_mutex);
  1659. cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
  1660. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1661. node_states[N_HIGH_MEMORY]);
  1662. mutex_unlock(&callback_mutex);
  1663. /* Move tasks from the empty cpuset to a parent */
  1664. if (cpus_empty(cp->cpus_allowed) ||
  1665. nodes_empty(cp->mems_allowed))
  1666. remove_tasks_in_empty_cpuset(cp);
  1667. else {
  1668. update_tasks_cpumask(cp);
  1669. update_tasks_nodemask(cp, &oldmems);
  1670. }
  1671. }
  1672. }
  1673. /*
  1674. * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
  1675. * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
  1676. * track what's online after any CPU or memory node hotplug or unplug event.
  1677. *
  1678. * Since there are two callers of this routine, one for CPU hotplug
  1679. * events and one for memory node hotplug events, we could have coded
  1680. * two separate routines here. We code it as a single common routine
  1681. * in order to minimize text size.
  1682. */
  1683. static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
  1684. {
  1685. cgroup_lock();
  1686. top_cpuset.cpus_allowed = cpu_online_map;
  1687. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1688. scan_for_empty_cpusets(&top_cpuset);
  1689. /*
  1690. * Scheduler destroys domains on hotplug events.
  1691. * Rebuild them based on the current settings.
  1692. */
  1693. if (rebuild_sd)
  1694. rebuild_sched_domains();
  1695. cgroup_unlock();
  1696. }
  1697. /*
  1698. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1699. * period. This is necessary in order to make cpusets transparent
  1700. * (of no affect) on systems that are actively using CPU hotplug
  1701. * but making no active use of cpusets.
  1702. *
  1703. * This routine ensures that top_cpuset.cpus_allowed tracks
  1704. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1705. */
  1706. static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
  1707. unsigned long phase, void *unused_cpu)
  1708. {
  1709. switch (phase) {
  1710. case CPU_UP_CANCELED:
  1711. case CPU_UP_CANCELED_FROZEN:
  1712. case CPU_DOWN_FAILED:
  1713. case CPU_DOWN_FAILED_FROZEN:
  1714. case CPU_ONLINE:
  1715. case CPU_ONLINE_FROZEN:
  1716. case CPU_DEAD:
  1717. case CPU_DEAD_FROZEN:
  1718. common_cpu_mem_hotplug_unplug(1);
  1719. break;
  1720. default:
  1721. return NOTIFY_DONE;
  1722. }
  1723. return NOTIFY_OK;
  1724. }
  1725. #ifdef CONFIG_MEMORY_HOTPLUG
  1726. /*
  1727. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1728. * Call this routine anytime after you change
  1729. * node_states[N_HIGH_MEMORY].
  1730. * See also the previous routine cpuset_handle_cpuhp().
  1731. */
  1732. void cpuset_track_online_nodes(void)
  1733. {
  1734. common_cpu_mem_hotplug_unplug(0);
  1735. }
  1736. #endif
  1737. /**
  1738. * cpuset_init_smp - initialize cpus_allowed
  1739. *
  1740. * Description: Finish top cpuset after cpu, node maps are initialized
  1741. **/
  1742. void __init cpuset_init_smp(void)
  1743. {
  1744. top_cpuset.cpus_allowed = cpu_online_map;
  1745. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1746. hotcpu_notifier(cpuset_handle_cpuhp, 0);
  1747. }
  1748. /**
  1749. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1750. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1751. * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
  1752. *
  1753. * Description: Returns the cpumask_t cpus_allowed of the cpuset
  1754. * attached to the specified @tsk. Guaranteed to return some non-empty
  1755. * subset of cpu_online_map, even if this means going outside the
  1756. * tasks cpuset.
  1757. **/
  1758. void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
  1759. {
  1760. mutex_lock(&callback_mutex);
  1761. cpuset_cpus_allowed_locked(tsk, pmask);
  1762. mutex_unlock(&callback_mutex);
  1763. }
  1764. /**
  1765. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1766. * Must be called with callback_mutex held.
  1767. **/
  1768. void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
  1769. {
  1770. task_lock(tsk);
  1771. guarantee_online_cpus(task_cs(tsk), pmask);
  1772. task_unlock(tsk);
  1773. }
  1774. void cpuset_init_current_mems_allowed(void)
  1775. {
  1776. nodes_setall(current->mems_allowed);
  1777. }
  1778. /**
  1779. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1780. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1781. *
  1782. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1783. * attached to the specified @tsk. Guaranteed to return some non-empty
  1784. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1785. * tasks cpuset.
  1786. **/
  1787. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1788. {
  1789. nodemask_t mask;
  1790. mutex_lock(&callback_mutex);
  1791. task_lock(tsk);
  1792. guarantee_online_mems(task_cs(tsk), &mask);
  1793. task_unlock(tsk);
  1794. mutex_unlock(&callback_mutex);
  1795. return mask;
  1796. }
  1797. /**
  1798. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1799. * @nodemask: the nodemask to be checked
  1800. *
  1801. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1802. */
  1803. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1804. {
  1805. return nodes_intersects(*nodemask, current->mems_allowed);
  1806. }
  1807. /*
  1808. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1809. * mem_hardwall ancestor to the specified cpuset. Call holding
  1810. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1811. * (an unusual configuration), then returns the root cpuset.
  1812. */
  1813. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1814. {
  1815. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1816. cs = cs->parent;
  1817. return cs;
  1818. }
  1819. /**
  1820. * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
  1821. * @z: is this zone on an allowed node?
  1822. * @gfp_mask: memory allocation flags
  1823. *
  1824. * If we're in interrupt, yes, we can always allocate. If
  1825. * __GFP_THISNODE is set, yes, we can always allocate. If zone
  1826. * z's node is in our tasks mems_allowed, yes. If it's not a
  1827. * __GFP_HARDWALL request and this zone's nodes is in the nearest
  1828. * hardwalled cpuset ancestor to this tasks cpuset, yes.
  1829. * If the task has been OOM killed and has access to memory reserves
  1830. * as specified by the TIF_MEMDIE flag, yes.
  1831. * Otherwise, no.
  1832. *
  1833. * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
  1834. * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
  1835. * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
  1836. * from an enclosing cpuset.
  1837. *
  1838. * cpuset_zone_allowed_hardwall() only handles the simpler case of
  1839. * hardwall cpusets, and never sleeps.
  1840. *
  1841. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1842. * by forcibly using a zonelist starting at a specified node, and by
  1843. * (in get_page_from_freelist()) refusing to consider the zones for
  1844. * any node on the zonelist except the first. By the time any such
  1845. * calls get to this routine, we should just shut up and say 'yes'.
  1846. *
  1847. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1848. * and do not allow allocations outside the current tasks cpuset
  1849. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1850. * GFP_KERNEL allocations are not so marked, so can escape to the
  1851. * nearest enclosing hardwalled ancestor cpuset.
  1852. *
  1853. * Scanning up parent cpusets requires callback_mutex. The
  1854. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1855. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1856. * current tasks mems_allowed came up empty on the first pass over
  1857. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1858. * cpuset are short of memory, might require taking the callback_mutex
  1859. * mutex.
  1860. *
  1861. * The first call here from mm/page_alloc:get_page_from_freelist()
  1862. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1863. * so no allocation on a node outside the cpuset is allowed (unless
  1864. * in interrupt, of course).
  1865. *
  1866. * The second pass through get_page_from_freelist() doesn't even call
  1867. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1868. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1869. * in alloc_flags. That logic and the checks below have the combined
  1870. * affect that:
  1871. * in_interrupt - any node ok (current task context irrelevant)
  1872. * GFP_ATOMIC - any node ok
  1873. * TIF_MEMDIE - any node ok
  1874. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1875. * GFP_USER - only nodes in current tasks mems allowed ok.
  1876. *
  1877. * Rule:
  1878. * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
  1879. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1880. * the code that might scan up ancestor cpusets and sleep.
  1881. */
  1882. int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
  1883. {
  1884. int node; /* node that zone z is on */
  1885. const struct cpuset *cs; /* current cpuset ancestors */
  1886. int allowed; /* is allocation in zone z allowed? */
  1887. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1888. return 1;
  1889. node = zone_to_nid(z);
  1890. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  1891. if (node_isset(node, current->mems_allowed))
  1892. return 1;
  1893. /*
  1894. * Allow tasks that have access to memory reserves because they have
  1895. * been OOM killed to get memory anywhere.
  1896. */
  1897. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1898. return 1;
  1899. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  1900. return 0;
  1901. if (current->flags & PF_EXITING) /* Let dying task have memory */
  1902. return 1;
  1903. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  1904. mutex_lock(&callback_mutex);
  1905. task_lock(current);
  1906. cs = nearest_hardwall_ancestor(task_cs(current));
  1907. task_unlock(current);
  1908. allowed = node_isset(node, cs->mems_allowed);
  1909. mutex_unlock(&callback_mutex);
  1910. return allowed;
  1911. }
  1912. /*
  1913. * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
  1914. * @z: is this zone on an allowed node?
  1915. * @gfp_mask: memory allocation flags
  1916. *
  1917. * If we're in interrupt, yes, we can always allocate.
  1918. * If __GFP_THISNODE is set, yes, we can always allocate. If zone
  1919. * z's node is in our tasks mems_allowed, yes. If the task has been
  1920. * OOM killed and has access to memory reserves as specified by the
  1921. * TIF_MEMDIE flag, yes. Otherwise, no.
  1922. *
  1923. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1924. * by forcibly using a zonelist starting at a specified node, and by
  1925. * (in get_page_from_freelist()) refusing to consider the zones for
  1926. * any node on the zonelist except the first. By the time any such
  1927. * calls get to this routine, we should just shut up and say 'yes'.
  1928. *
  1929. * Unlike the cpuset_zone_allowed_softwall() variant, above,
  1930. * this variant requires that the zone be in the current tasks
  1931. * mems_allowed or that we're in interrupt. It does not scan up the
  1932. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  1933. * It never sleeps.
  1934. */
  1935. int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
  1936. {
  1937. int node; /* node that zone z is on */
  1938. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1939. return 1;
  1940. node = zone_to_nid(z);
  1941. if (node_isset(node, current->mems_allowed))
  1942. return 1;
  1943. /*
  1944. * Allow tasks that have access to memory reserves because they have
  1945. * been OOM killed to get memory anywhere.
  1946. */
  1947. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1948. return 1;
  1949. return 0;
  1950. }
  1951. /**
  1952. * cpuset_lock - lock out any changes to cpuset structures
  1953. *
  1954. * The out of memory (oom) code needs to mutex_lock cpusets
  1955. * from being changed while it scans the tasklist looking for a
  1956. * task in an overlapping cpuset. Expose callback_mutex via this
  1957. * cpuset_lock() routine, so the oom code can lock it, before
  1958. * locking the task list. The tasklist_lock is a spinlock, so
  1959. * must be taken inside callback_mutex.
  1960. */
  1961. void cpuset_lock(void)
  1962. {
  1963. mutex_lock(&callback_mutex);
  1964. }
  1965. /**
  1966. * cpuset_unlock - release lock on cpuset changes
  1967. *
  1968. * Undo the lock taken in a previous cpuset_lock() call.
  1969. */
  1970. void cpuset_unlock(void)
  1971. {
  1972. mutex_unlock(&callback_mutex);
  1973. }
  1974. /**
  1975. * cpuset_mem_spread_node() - On which node to begin search for a page
  1976. *
  1977. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  1978. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  1979. * and if the memory allocation used cpuset_mem_spread_node()
  1980. * to determine on which node to start looking, as it will for
  1981. * certain page cache or slab cache pages such as used for file
  1982. * system buffers and inode caches, then instead of starting on the
  1983. * local node to look for a free page, rather spread the starting
  1984. * node around the tasks mems_allowed nodes.
  1985. *
  1986. * We don't have to worry about the returned node being offline
  1987. * because "it can't happen", and even if it did, it would be ok.
  1988. *
  1989. * The routines calling guarantee_online_mems() are careful to
  1990. * only set nodes in task->mems_allowed that are online. So it
  1991. * should not be possible for the following code to return an
  1992. * offline node. But if it did, that would be ok, as this routine
  1993. * is not returning the node where the allocation must be, only
  1994. * the node where the search should start. The zonelist passed to
  1995. * __alloc_pages() will include all nodes. If the slab allocator
  1996. * is passed an offline node, it will fall back to the local node.
  1997. * See kmem_cache_alloc_node().
  1998. */
  1999. int cpuset_mem_spread_node(void)
  2000. {
  2001. int node;
  2002. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  2003. if (node == MAX_NUMNODES)
  2004. node = first_node(current->mems_allowed);
  2005. current->cpuset_mem_spread_rotor = node;
  2006. return node;
  2007. }
  2008. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2009. /**
  2010. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2011. * @tsk1: pointer to task_struct of some task.
  2012. * @tsk2: pointer to task_struct of some other task.
  2013. *
  2014. * Description: Return true if @tsk1's mems_allowed intersects the
  2015. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2016. * one of the task's memory usage might impact the memory available
  2017. * to the other.
  2018. **/
  2019. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2020. const struct task_struct *tsk2)
  2021. {
  2022. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2023. }
  2024. /*
  2025. * Collection of memory_pressure is suppressed unless
  2026. * this flag is enabled by writing "1" to the special
  2027. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2028. */
  2029. int cpuset_memory_pressure_enabled __read_mostly;
  2030. /**
  2031. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2032. *
  2033. * Keep a running average of the rate of synchronous (direct)
  2034. * page reclaim efforts initiated by tasks in each cpuset.
  2035. *
  2036. * This represents the rate at which some task in the cpuset
  2037. * ran low on memory on all nodes it was allowed to use, and
  2038. * had to enter the kernels page reclaim code in an effort to
  2039. * create more free memory by tossing clean pages or swapping
  2040. * or writing dirty pages.
  2041. *
  2042. * Display to user space in the per-cpuset read-only file
  2043. * "memory_pressure". Value displayed is an integer
  2044. * representing the recent rate of entry into the synchronous
  2045. * (direct) page reclaim by any task attached to the cpuset.
  2046. **/
  2047. void __cpuset_memory_pressure_bump(void)
  2048. {
  2049. task_lock(current);
  2050. fmeter_markevent(&task_cs(current)->fmeter);
  2051. task_unlock(current);
  2052. }
  2053. #ifdef CONFIG_PROC_PID_CPUSET
  2054. /*
  2055. * proc_cpuset_show()
  2056. * - Print tasks cpuset path into seq_file.
  2057. * - Used for /proc/<pid>/cpuset.
  2058. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2059. * doesn't really matter if tsk->cpuset changes after we read it,
  2060. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2061. * anyway.
  2062. */
  2063. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2064. {
  2065. struct pid *pid;
  2066. struct task_struct *tsk;
  2067. char *buf;
  2068. struct cgroup_subsys_state *css;
  2069. int retval;
  2070. retval = -ENOMEM;
  2071. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2072. if (!buf)
  2073. goto out;
  2074. retval = -ESRCH;
  2075. pid = m->private;
  2076. tsk = get_pid_task(pid, PIDTYPE_PID);
  2077. if (!tsk)
  2078. goto out_free;
  2079. retval = -EINVAL;
  2080. cgroup_lock();
  2081. css = task_subsys_state(tsk, cpuset_subsys_id);
  2082. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2083. if (retval < 0)
  2084. goto out_unlock;
  2085. seq_puts(m, buf);
  2086. seq_putc(m, '\n');
  2087. out_unlock:
  2088. cgroup_unlock();
  2089. put_task_struct(tsk);
  2090. out_free:
  2091. kfree(buf);
  2092. out:
  2093. return retval;
  2094. }
  2095. static int cpuset_open(struct inode *inode, struct file *file)
  2096. {
  2097. struct pid *pid = PROC_I(inode)->pid;
  2098. return single_open(file, proc_cpuset_show, pid);
  2099. }
  2100. const struct file_operations proc_cpuset_operations = {
  2101. .open = cpuset_open,
  2102. .read = seq_read,
  2103. .llseek = seq_lseek,
  2104. .release = single_release,
  2105. };
  2106. #endif /* CONFIG_PROC_PID_CPUSET */
  2107. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2108. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2109. {
  2110. seq_printf(m, "Cpus_allowed:\t");
  2111. m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
  2112. task->cpus_allowed);
  2113. seq_printf(m, "\n");
  2114. seq_printf(m, "Cpus_allowed_list:\t");
  2115. m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
  2116. task->cpus_allowed);
  2117. seq_printf(m, "\n");
  2118. seq_printf(m, "Mems_allowed:\t");
  2119. m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
  2120. task->mems_allowed);
  2121. seq_printf(m, "\n");
  2122. seq_printf(m, "Mems_allowed_list:\t");
  2123. m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
  2124. task->mems_allowed);
  2125. seq_printf(m, "\n");
  2126. }