setup_percpu.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. #include <linux/kernel.h>
  2. #include <linux/module.h>
  3. #include <linux/init.h>
  4. #include <linux/bootmem.h>
  5. #include <linux/percpu.h>
  6. #include <linux/kexec.h>
  7. #include <linux/crash_dump.h>
  8. #include <asm/smp.h>
  9. #include <asm/percpu.h>
  10. #include <asm/sections.h>
  11. #include <asm/processor.h>
  12. #include <asm/setup.h>
  13. #include <asm/topology.h>
  14. #include <asm/mpspec.h>
  15. #include <asm/apicdef.h>
  16. #include <asm/highmem.h>
  17. #ifdef CONFIG_X86_LOCAL_APIC
  18. unsigned int num_processors;
  19. unsigned disabled_cpus __cpuinitdata;
  20. /* Processor that is doing the boot up */
  21. unsigned int boot_cpu_physical_apicid = -1U;
  22. unsigned int max_physical_apicid;
  23. EXPORT_SYMBOL(boot_cpu_physical_apicid);
  24. /* Bitmask of physically existing CPUs */
  25. physid_mask_t phys_cpu_present_map;
  26. #endif
  27. /* map cpu index to physical APIC ID */
  28. DEFINE_EARLY_PER_CPU(u16, x86_cpu_to_apicid, BAD_APICID);
  29. DEFINE_EARLY_PER_CPU(u16, x86_bios_cpu_apicid, BAD_APICID);
  30. EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid);
  31. EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
  32. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  33. #define X86_64_NUMA 1
  34. /* map cpu index to node index */
  35. DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
  36. EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
  37. /* which logical CPUs are on which nodes */
  38. cpumask_t *node_to_cpumask_map;
  39. EXPORT_SYMBOL(node_to_cpumask_map);
  40. /* setup node_to_cpumask_map */
  41. static void __init setup_node_to_cpumask_map(void);
  42. #else
  43. static inline void setup_node_to_cpumask_map(void) { }
  44. #endif
  45. #if defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) && defined(CONFIG_X86_SMP)
  46. /*
  47. * Copy data used in early init routines from the initial arrays to the
  48. * per cpu data areas. These arrays then become expendable and the
  49. * *_early_ptr's are zeroed indicating that the static arrays are gone.
  50. */
  51. static void __init setup_per_cpu_maps(void)
  52. {
  53. int cpu;
  54. for_each_possible_cpu(cpu) {
  55. per_cpu(x86_cpu_to_apicid, cpu) =
  56. early_per_cpu_map(x86_cpu_to_apicid, cpu);
  57. per_cpu(x86_bios_cpu_apicid, cpu) =
  58. early_per_cpu_map(x86_bios_cpu_apicid, cpu);
  59. #ifdef X86_64_NUMA
  60. per_cpu(x86_cpu_to_node_map, cpu) =
  61. early_per_cpu_map(x86_cpu_to_node_map, cpu);
  62. #endif
  63. }
  64. /* indicate the early static arrays will soon be gone */
  65. early_per_cpu_ptr(x86_cpu_to_apicid) = NULL;
  66. early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL;
  67. #ifdef X86_64_NUMA
  68. early_per_cpu_ptr(x86_cpu_to_node_map) = NULL;
  69. #endif
  70. }
  71. #ifdef CONFIG_X86_32
  72. /*
  73. * Great future not-so-futuristic plan: make i386 and x86_64 do it
  74. * the same way
  75. */
  76. unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
  77. EXPORT_SYMBOL(__per_cpu_offset);
  78. static inline void setup_cpu_pda_map(void) { }
  79. #elif !defined(CONFIG_SMP)
  80. static inline void setup_cpu_pda_map(void) { }
  81. #else /* CONFIG_SMP && CONFIG_X86_64 */
  82. /*
  83. * Allocate cpu_pda pointer table and array via alloc_bootmem.
  84. */
  85. static void __init setup_cpu_pda_map(void)
  86. {
  87. char *pda;
  88. struct x8664_pda **new_cpu_pda;
  89. unsigned long size;
  90. int cpu;
  91. size = roundup(sizeof(struct x8664_pda), cache_line_size());
  92. /* allocate cpu_pda array and pointer table */
  93. {
  94. unsigned long tsize = nr_cpu_ids * sizeof(void *);
  95. unsigned long asize = size * (nr_cpu_ids - 1);
  96. tsize = roundup(tsize, cache_line_size());
  97. new_cpu_pda = alloc_bootmem(tsize + asize);
  98. pda = (char *)new_cpu_pda + tsize;
  99. }
  100. /* initialize pointer table to static pda's */
  101. for_each_possible_cpu(cpu) {
  102. if (cpu == 0) {
  103. /* leave boot cpu pda in place */
  104. new_cpu_pda[0] = cpu_pda(0);
  105. continue;
  106. }
  107. new_cpu_pda[cpu] = (struct x8664_pda *)pda;
  108. new_cpu_pda[cpu]->in_bootmem = 1;
  109. pda += size;
  110. }
  111. /* point to new pointer table */
  112. _cpu_pda = new_cpu_pda;
  113. }
  114. #endif
  115. /*
  116. * Great future plan:
  117. * Declare PDA itself and support (irqstack,tss,pgd) as per cpu data.
  118. * Always point %gs to its beginning
  119. */
  120. void __init setup_per_cpu_areas(void)
  121. {
  122. ssize_t size = PERCPU_ENOUGH_ROOM;
  123. char *ptr;
  124. int cpu;
  125. /* Setup cpu_pda map */
  126. setup_cpu_pda_map();
  127. /* Copy section for each CPU (we discard the original) */
  128. size = PERCPU_ENOUGH_ROOM;
  129. printk(KERN_INFO "PERCPU: Allocating %zd bytes of per cpu data\n",
  130. size);
  131. for_each_possible_cpu(cpu) {
  132. #ifndef CONFIG_NEED_MULTIPLE_NODES
  133. ptr = alloc_bootmem_pages(size);
  134. #else
  135. int node = early_cpu_to_node(cpu);
  136. if (!node_online(node) || !NODE_DATA(node)) {
  137. ptr = alloc_bootmem_pages(size);
  138. printk(KERN_INFO
  139. "cpu %d has no node %d or node-local memory\n",
  140. cpu, node);
  141. }
  142. else
  143. ptr = alloc_bootmem_pages_node(NODE_DATA(node), size);
  144. #endif
  145. per_cpu_offset(cpu) = ptr - __per_cpu_start;
  146. memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
  147. }
  148. printk(KERN_DEBUG "NR_CPUS: %d, nr_cpu_ids: %d, nr_node_ids %d\n",
  149. NR_CPUS, nr_cpu_ids, nr_node_ids);
  150. /* Setup percpu data maps */
  151. setup_per_cpu_maps();
  152. /* Setup node to cpumask map */
  153. setup_node_to_cpumask_map();
  154. }
  155. #endif
  156. #ifdef X86_64_NUMA
  157. /*
  158. * Allocate node_to_cpumask_map based on number of available nodes
  159. * Requires node_possible_map to be valid.
  160. *
  161. * Note: node_to_cpumask() is not valid until after this is done.
  162. */
  163. static void __init setup_node_to_cpumask_map(void)
  164. {
  165. unsigned int node, num = 0;
  166. cpumask_t *map;
  167. /* setup nr_node_ids if not done yet */
  168. if (nr_node_ids == MAX_NUMNODES) {
  169. for_each_node_mask(node, node_possible_map)
  170. num = node;
  171. nr_node_ids = num + 1;
  172. }
  173. /* allocate the map */
  174. map = alloc_bootmem_low(nr_node_ids * sizeof(cpumask_t));
  175. pr_debug(KERN_DEBUG "Node to cpumask map at %p for %d nodes\n",
  176. map, nr_node_ids);
  177. /* node_to_cpumask() will now work */
  178. node_to_cpumask_map = map;
  179. }
  180. void __cpuinit numa_set_node(int cpu, int node)
  181. {
  182. int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
  183. if (cpu_pda(cpu) && node != NUMA_NO_NODE)
  184. cpu_pda(cpu)->nodenumber = node;
  185. if (cpu_to_node_map)
  186. cpu_to_node_map[cpu] = node;
  187. else if (per_cpu_offset(cpu))
  188. per_cpu(x86_cpu_to_node_map, cpu) = node;
  189. else
  190. pr_debug("Setting node for non-present cpu %d\n", cpu);
  191. }
  192. void __cpuinit numa_clear_node(int cpu)
  193. {
  194. numa_set_node(cpu, NUMA_NO_NODE);
  195. }
  196. #ifndef CONFIG_DEBUG_PER_CPU_MAPS
  197. void __cpuinit numa_add_cpu(int cpu)
  198. {
  199. cpu_set(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  200. }
  201. void __cpuinit numa_remove_cpu(int cpu)
  202. {
  203. cpu_clear(cpu, node_to_cpumask_map[cpu_to_node(cpu)]);
  204. }
  205. #else /* CONFIG_DEBUG_PER_CPU_MAPS */
  206. /*
  207. * --------- debug versions of the numa functions ---------
  208. */
  209. static void __cpuinit numa_set_cpumask(int cpu, int enable)
  210. {
  211. int node = cpu_to_node(cpu);
  212. cpumask_t *mask;
  213. char buf[64];
  214. if (node_to_cpumask_map == NULL) {
  215. printk(KERN_ERR "node_to_cpumask_map NULL\n");
  216. dump_stack();
  217. return;
  218. }
  219. mask = &node_to_cpumask_map[node];
  220. if (enable)
  221. cpu_set(cpu, *mask);
  222. else
  223. cpu_clear(cpu, *mask);
  224. cpulist_scnprintf(buf, sizeof(buf), *mask);
  225. printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
  226. enable? "numa_add_cpu":"numa_remove_cpu", cpu, node, buf);
  227. }
  228. void __cpuinit numa_add_cpu(int cpu)
  229. {
  230. numa_set_cpumask(cpu, 1);
  231. }
  232. void __cpuinit numa_remove_cpu(int cpu)
  233. {
  234. numa_set_cpumask(cpu, 0);
  235. }
  236. int cpu_to_node(int cpu)
  237. {
  238. if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
  239. printk(KERN_WARNING
  240. "cpu_to_node(%d): usage too early!\n", cpu);
  241. dump_stack();
  242. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  243. }
  244. return per_cpu(x86_cpu_to_node_map, cpu);
  245. }
  246. EXPORT_SYMBOL(cpu_to_node);
  247. /*
  248. * Same function as cpu_to_node() but used if called before the
  249. * per_cpu areas are setup.
  250. */
  251. int early_cpu_to_node(int cpu)
  252. {
  253. if (early_per_cpu_ptr(x86_cpu_to_node_map))
  254. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  255. if (!per_cpu_offset(cpu)) {
  256. printk(KERN_WARNING
  257. "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
  258. dump_stack();
  259. return NUMA_NO_NODE;
  260. }
  261. return per_cpu(x86_cpu_to_node_map, cpu);
  262. }
  263. /* empty cpumask */
  264. static const cpumask_t cpu_mask_none;
  265. /*
  266. * Returns a pointer to the bitmask of CPUs on Node 'node'.
  267. */
  268. const cpumask_t *_node_to_cpumask_ptr(int node)
  269. {
  270. if (node_to_cpumask_map == NULL) {
  271. printk(KERN_WARNING
  272. "_node_to_cpumask_ptr(%d): no node_to_cpumask_map!\n",
  273. node);
  274. dump_stack();
  275. return (const cpumask_t *)&cpu_online_map;
  276. }
  277. if (node >= nr_node_ids) {
  278. printk(KERN_WARNING
  279. "_node_to_cpumask_ptr(%d): node > nr_node_ids(%d)\n",
  280. node, nr_node_ids);
  281. dump_stack();
  282. return &cpu_mask_none;
  283. }
  284. return &node_to_cpumask_map[node];
  285. }
  286. EXPORT_SYMBOL(_node_to_cpumask_ptr);
  287. /*
  288. * Returns a bitmask of CPUs on Node 'node'.
  289. *
  290. * Side note: this function creates the returned cpumask on the stack
  291. * so with a high NR_CPUS count, excessive stack space is used. The
  292. * node_to_cpumask_ptr function should be used whenever possible.
  293. */
  294. cpumask_t node_to_cpumask(int node)
  295. {
  296. if (node_to_cpumask_map == NULL) {
  297. printk(KERN_WARNING
  298. "node_to_cpumask(%d): no node_to_cpumask_map!\n", node);
  299. dump_stack();
  300. return cpu_online_map;
  301. }
  302. if (node >= nr_node_ids) {
  303. printk(KERN_WARNING
  304. "node_to_cpumask(%d): node > nr_node_ids(%d)\n",
  305. node, nr_node_ids);
  306. dump_stack();
  307. return cpu_mask_none;
  308. }
  309. return node_to_cpumask_map[node];
  310. }
  311. EXPORT_SYMBOL(node_to_cpumask);
  312. /*
  313. * --------- end of debug versions of the numa functions ---------
  314. */
  315. #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
  316. #endif /* X86_64_NUMA */