irq.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036
  1. /* irq.c: UltraSparc IRQ handling/init/registry.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
  6. */
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/ptrace.h>
  10. #include <linux/errno.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/signal.h>
  13. #include <linux/mm.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/slab.h>
  16. #include <linux/random.h>
  17. #include <linux/init.h>
  18. #include <linux/delay.h>
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/irq.h>
  23. #include <asm/ptrace.h>
  24. #include <asm/processor.h>
  25. #include <asm/atomic.h>
  26. #include <asm/system.h>
  27. #include <asm/irq.h>
  28. #include <asm/io.h>
  29. #include <asm/sbus.h>
  30. #include <asm/iommu.h>
  31. #include <asm/upa.h>
  32. #include <asm/oplib.h>
  33. #include <asm/prom.h>
  34. #include <asm/timer.h>
  35. #include <asm/smp.h>
  36. #include <asm/starfire.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/cache.h>
  39. #include <asm/cpudata.h>
  40. #include <asm/auxio.h>
  41. #include <asm/head.h>
  42. #include <asm/hypervisor.h>
  43. #include <asm/cacheflush.h>
  44. #include "entry.h"
  45. #define NUM_IVECS (IMAP_INR + 1)
  46. struct ino_bucket *ivector_table;
  47. unsigned long ivector_table_pa;
  48. /* On several sun4u processors, it is illegal to mix bypass and
  49. * non-bypass accesses. Therefore we access all INO buckets
  50. * using bypass accesses only.
  51. */
  52. static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
  53. {
  54. unsigned long ret;
  55. __asm__ __volatile__("ldxa [%1] %2, %0"
  56. : "=&r" (ret)
  57. : "r" (bucket_pa +
  58. offsetof(struct ino_bucket,
  59. __irq_chain_pa)),
  60. "i" (ASI_PHYS_USE_EC));
  61. return ret;
  62. }
  63. static void bucket_clear_chain_pa(unsigned long bucket_pa)
  64. {
  65. __asm__ __volatile__("stxa %%g0, [%0] %1"
  66. : /* no outputs */
  67. : "r" (bucket_pa +
  68. offsetof(struct ino_bucket,
  69. __irq_chain_pa)),
  70. "i" (ASI_PHYS_USE_EC));
  71. }
  72. static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
  73. {
  74. unsigned int ret;
  75. __asm__ __volatile__("lduwa [%1] %2, %0"
  76. : "=&r" (ret)
  77. : "r" (bucket_pa +
  78. offsetof(struct ino_bucket,
  79. __virt_irq)),
  80. "i" (ASI_PHYS_USE_EC));
  81. return ret;
  82. }
  83. static void bucket_set_virt_irq(unsigned long bucket_pa,
  84. unsigned int virt_irq)
  85. {
  86. __asm__ __volatile__("stwa %0, [%1] %2"
  87. : /* no outputs */
  88. : "r" (virt_irq),
  89. "r" (bucket_pa +
  90. offsetof(struct ino_bucket,
  91. __virt_irq)),
  92. "i" (ASI_PHYS_USE_EC));
  93. }
  94. #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
  95. static struct {
  96. unsigned int dev_handle;
  97. unsigned int dev_ino;
  98. unsigned int in_use;
  99. } virt_irq_table[NR_IRQS];
  100. static DEFINE_SPINLOCK(virt_irq_alloc_lock);
  101. unsigned char virt_irq_alloc(unsigned int dev_handle,
  102. unsigned int dev_ino)
  103. {
  104. unsigned long flags;
  105. unsigned char ent;
  106. BUILD_BUG_ON(NR_IRQS >= 256);
  107. spin_lock_irqsave(&virt_irq_alloc_lock, flags);
  108. for (ent = 1; ent < NR_IRQS; ent++) {
  109. if (!virt_irq_table[ent].in_use)
  110. break;
  111. }
  112. if (ent >= NR_IRQS) {
  113. printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
  114. ent = 0;
  115. } else {
  116. virt_irq_table[ent].dev_handle = dev_handle;
  117. virt_irq_table[ent].dev_ino = dev_ino;
  118. virt_irq_table[ent].in_use = 1;
  119. }
  120. spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
  121. return ent;
  122. }
  123. #ifdef CONFIG_PCI_MSI
  124. void virt_irq_free(unsigned int virt_irq)
  125. {
  126. unsigned long flags;
  127. if (virt_irq >= NR_IRQS)
  128. return;
  129. spin_lock_irqsave(&virt_irq_alloc_lock, flags);
  130. virt_irq_table[virt_irq].in_use = 0;
  131. spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
  132. }
  133. #endif
  134. /*
  135. * /proc/interrupts printing:
  136. */
  137. int show_interrupts(struct seq_file *p, void *v)
  138. {
  139. int i = *(loff_t *) v, j;
  140. struct irqaction * action;
  141. unsigned long flags;
  142. if (i == 0) {
  143. seq_printf(p, " ");
  144. for_each_online_cpu(j)
  145. seq_printf(p, "CPU%d ",j);
  146. seq_putc(p, '\n');
  147. }
  148. if (i < NR_IRQS) {
  149. spin_lock_irqsave(&irq_desc[i].lock, flags);
  150. action = irq_desc[i].action;
  151. if (!action)
  152. goto skip;
  153. seq_printf(p, "%3d: ",i);
  154. #ifndef CONFIG_SMP
  155. seq_printf(p, "%10u ", kstat_irqs(i));
  156. #else
  157. for_each_online_cpu(j)
  158. seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
  159. #endif
  160. seq_printf(p, " %9s", irq_desc[i].chip->typename);
  161. seq_printf(p, " %s", action->name);
  162. for (action=action->next; action; action = action->next)
  163. seq_printf(p, ", %s", action->name);
  164. seq_putc(p, '\n');
  165. skip:
  166. spin_unlock_irqrestore(&irq_desc[i].lock, flags);
  167. }
  168. return 0;
  169. }
  170. static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
  171. {
  172. unsigned int tid;
  173. if (this_is_starfire) {
  174. tid = starfire_translate(imap, cpuid);
  175. tid <<= IMAP_TID_SHIFT;
  176. tid &= IMAP_TID_UPA;
  177. } else {
  178. if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  179. unsigned long ver;
  180. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  181. if ((ver >> 32UL) == __JALAPENO_ID ||
  182. (ver >> 32UL) == __SERRANO_ID) {
  183. tid = cpuid << IMAP_TID_SHIFT;
  184. tid &= IMAP_TID_JBUS;
  185. } else {
  186. unsigned int a = cpuid & 0x1f;
  187. unsigned int n = (cpuid >> 5) & 0x1f;
  188. tid = ((a << IMAP_AID_SHIFT) |
  189. (n << IMAP_NID_SHIFT));
  190. tid &= (IMAP_AID_SAFARI |
  191. IMAP_NID_SAFARI);;
  192. }
  193. } else {
  194. tid = cpuid << IMAP_TID_SHIFT;
  195. tid &= IMAP_TID_UPA;
  196. }
  197. }
  198. return tid;
  199. }
  200. struct irq_handler_data {
  201. unsigned long iclr;
  202. unsigned long imap;
  203. void (*pre_handler)(unsigned int, void *, void *);
  204. void *arg1;
  205. void *arg2;
  206. };
  207. #ifdef CONFIG_SMP
  208. static int irq_choose_cpu(unsigned int virt_irq)
  209. {
  210. cpumask_t mask = irq_desc[virt_irq].affinity;
  211. int cpuid;
  212. if (cpus_equal(mask, CPU_MASK_ALL)) {
  213. static int irq_rover;
  214. static DEFINE_SPINLOCK(irq_rover_lock);
  215. unsigned long flags;
  216. /* Round-robin distribution... */
  217. do_round_robin:
  218. spin_lock_irqsave(&irq_rover_lock, flags);
  219. while (!cpu_online(irq_rover)) {
  220. if (++irq_rover >= NR_CPUS)
  221. irq_rover = 0;
  222. }
  223. cpuid = irq_rover;
  224. do {
  225. if (++irq_rover >= NR_CPUS)
  226. irq_rover = 0;
  227. } while (!cpu_online(irq_rover));
  228. spin_unlock_irqrestore(&irq_rover_lock, flags);
  229. } else {
  230. cpumask_t tmp;
  231. cpus_and(tmp, cpu_online_map, mask);
  232. if (cpus_empty(tmp))
  233. goto do_round_robin;
  234. cpuid = first_cpu(tmp);
  235. }
  236. return cpuid;
  237. }
  238. #else
  239. static int irq_choose_cpu(unsigned int virt_irq)
  240. {
  241. return real_hard_smp_processor_id();
  242. }
  243. #endif
  244. static void sun4u_irq_enable(unsigned int virt_irq)
  245. {
  246. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  247. if (likely(data)) {
  248. unsigned long cpuid, imap, val;
  249. unsigned int tid;
  250. cpuid = irq_choose_cpu(virt_irq);
  251. imap = data->imap;
  252. tid = sun4u_compute_tid(imap, cpuid);
  253. val = upa_readq(imap);
  254. val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
  255. IMAP_AID_SAFARI | IMAP_NID_SAFARI);
  256. val |= tid | IMAP_VALID;
  257. upa_writeq(val, imap);
  258. upa_writeq(ICLR_IDLE, data->iclr);
  259. }
  260. }
  261. static void sun4u_set_affinity(unsigned int virt_irq, cpumask_t mask)
  262. {
  263. sun4u_irq_enable(virt_irq);
  264. }
  265. static void sun4u_irq_disable(unsigned int virt_irq)
  266. {
  267. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  268. if (likely(data)) {
  269. unsigned long imap = data->imap;
  270. unsigned long tmp = upa_readq(imap);
  271. tmp &= ~IMAP_VALID;
  272. upa_writeq(tmp, imap);
  273. }
  274. }
  275. static void sun4u_irq_eoi(unsigned int virt_irq)
  276. {
  277. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  278. struct irq_desc *desc = irq_desc + virt_irq;
  279. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  280. return;
  281. if (likely(data))
  282. upa_writeq(ICLR_IDLE, data->iclr);
  283. }
  284. static void sun4v_irq_enable(unsigned int virt_irq)
  285. {
  286. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  287. unsigned long cpuid = irq_choose_cpu(virt_irq);
  288. int err;
  289. err = sun4v_intr_settarget(ino, cpuid);
  290. if (err != HV_EOK)
  291. printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
  292. "err(%d)\n", ino, cpuid, err);
  293. err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
  294. if (err != HV_EOK)
  295. printk(KERN_ERR "sun4v_intr_setstate(%x): "
  296. "err(%d)\n", ino, err);
  297. err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
  298. if (err != HV_EOK)
  299. printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
  300. ino, err);
  301. }
  302. static void sun4v_set_affinity(unsigned int virt_irq, cpumask_t mask)
  303. {
  304. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  305. unsigned long cpuid = irq_choose_cpu(virt_irq);
  306. int err;
  307. err = sun4v_intr_settarget(ino, cpuid);
  308. if (err != HV_EOK)
  309. printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
  310. "err(%d)\n", ino, cpuid, err);
  311. }
  312. static void sun4v_irq_disable(unsigned int virt_irq)
  313. {
  314. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  315. int err;
  316. err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
  317. if (err != HV_EOK)
  318. printk(KERN_ERR "sun4v_intr_setenabled(%x): "
  319. "err(%d)\n", ino, err);
  320. }
  321. static void sun4v_irq_eoi(unsigned int virt_irq)
  322. {
  323. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  324. struct irq_desc *desc = irq_desc + virt_irq;
  325. int err;
  326. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  327. return;
  328. err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
  329. if (err != HV_EOK)
  330. printk(KERN_ERR "sun4v_intr_setstate(%x): "
  331. "err(%d)\n", ino, err);
  332. }
  333. static void sun4v_virq_enable(unsigned int virt_irq)
  334. {
  335. unsigned long cpuid, dev_handle, dev_ino;
  336. int err;
  337. cpuid = irq_choose_cpu(virt_irq);
  338. dev_handle = virt_irq_table[virt_irq].dev_handle;
  339. dev_ino = virt_irq_table[virt_irq].dev_ino;
  340. err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
  341. if (err != HV_EOK)
  342. printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
  343. "err(%d)\n",
  344. dev_handle, dev_ino, cpuid, err);
  345. err = sun4v_vintr_set_state(dev_handle, dev_ino,
  346. HV_INTR_STATE_IDLE);
  347. if (err != HV_EOK)
  348. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  349. "HV_INTR_STATE_IDLE): err(%d)\n",
  350. dev_handle, dev_ino, err);
  351. err = sun4v_vintr_set_valid(dev_handle, dev_ino,
  352. HV_INTR_ENABLED);
  353. if (err != HV_EOK)
  354. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  355. "HV_INTR_ENABLED): err(%d)\n",
  356. dev_handle, dev_ino, err);
  357. }
  358. static void sun4v_virt_set_affinity(unsigned int virt_irq, cpumask_t mask)
  359. {
  360. unsigned long cpuid, dev_handle, dev_ino;
  361. int err;
  362. cpuid = irq_choose_cpu(virt_irq);
  363. dev_handle = virt_irq_table[virt_irq].dev_handle;
  364. dev_ino = virt_irq_table[virt_irq].dev_ino;
  365. err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
  366. if (err != HV_EOK)
  367. printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
  368. "err(%d)\n",
  369. dev_handle, dev_ino, cpuid, err);
  370. }
  371. static void sun4v_virq_disable(unsigned int virt_irq)
  372. {
  373. unsigned long dev_handle, dev_ino;
  374. int err;
  375. dev_handle = virt_irq_table[virt_irq].dev_handle;
  376. dev_ino = virt_irq_table[virt_irq].dev_ino;
  377. err = sun4v_vintr_set_valid(dev_handle, dev_ino,
  378. HV_INTR_DISABLED);
  379. if (err != HV_EOK)
  380. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  381. "HV_INTR_DISABLED): err(%d)\n",
  382. dev_handle, dev_ino, err);
  383. }
  384. static void sun4v_virq_eoi(unsigned int virt_irq)
  385. {
  386. struct irq_desc *desc = irq_desc + virt_irq;
  387. unsigned long dev_handle, dev_ino;
  388. int err;
  389. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  390. return;
  391. dev_handle = virt_irq_table[virt_irq].dev_handle;
  392. dev_ino = virt_irq_table[virt_irq].dev_ino;
  393. err = sun4v_vintr_set_state(dev_handle, dev_ino,
  394. HV_INTR_STATE_IDLE);
  395. if (err != HV_EOK)
  396. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  397. "HV_INTR_STATE_IDLE): err(%d)\n",
  398. dev_handle, dev_ino, err);
  399. }
  400. static struct irq_chip sun4u_irq = {
  401. .typename = "sun4u",
  402. .enable = sun4u_irq_enable,
  403. .disable = sun4u_irq_disable,
  404. .eoi = sun4u_irq_eoi,
  405. .set_affinity = sun4u_set_affinity,
  406. };
  407. static struct irq_chip sun4v_irq = {
  408. .typename = "sun4v",
  409. .enable = sun4v_irq_enable,
  410. .disable = sun4v_irq_disable,
  411. .eoi = sun4v_irq_eoi,
  412. .set_affinity = sun4v_set_affinity,
  413. };
  414. static struct irq_chip sun4v_virq = {
  415. .typename = "vsun4v",
  416. .enable = sun4v_virq_enable,
  417. .disable = sun4v_virq_disable,
  418. .eoi = sun4v_virq_eoi,
  419. .set_affinity = sun4v_virt_set_affinity,
  420. };
  421. static void pre_flow_handler(unsigned int virt_irq,
  422. struct irq_desc *desc)
  423. {
  424. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  425. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  426. data->pre_handler(ino, data->arg1, data->arg2);
  427. handle_fasteoi_irq(virt_irq, desc);
  428. }
  429. void irq_install_pre_handler(int virt_irq,
  430. void (*func)(unsigned int, void *, void *),
  431. void *arg1, void *arg2)
  432. {
  433. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  434. struct irq_desc *desc = irq_desc + virt_irq;
  435. data->pre_handler = func;
  436. data->arg1 = arg1;
  437. data->arg2 = arg2;
  438. desc->handle_irq = pre_flow_handler;
  439. }
  440. unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
  441. {
  442. struct ino_bucket *bucket;
  443. struct irq_handler_data *data;
  444. unsigned int virt_irq;
  445. int ino;
  446. BUG_ON(tlb_type == hypervisor);
  447. ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
  448. bucket = &ivector_table[ino];
  449. virt_irq = bucket_get_virt_irq(__pa(bucket));
  450. if (!virt_irq) {
  451. virt_irq = virt_irq_alloc(0, ino);
  452. bucket_set_virt_irq(__pa(bucket), virt_irq);
  453. set_irq_chip_and_handler_name(virt_irq,
  454. &sun4u_irq,
  455. handle_fasteoi_irq,
  456. "IVEC");
  457. }
  458. data = get_irq_chip_data(virt_irq);
  459. if (unlikely(data))
  460. goto out;
  461. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  462. if (unlikely(!data)) {
  463. prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
  464. prom_halt();
  465. }
  466. set_irq_chip_data(virt_irq, data);
  467. data->imap = imap;
  468. data->iclr = iclr;
  469. out:
  470. return virt_irq;
  471. }
  472. static unsigned int sun4v_build_common(unsigned long sysino,
  473. struct irq_chip *chip)
  474. {
  475. struct ino_bucket *bucket;
  476. struct irq_handler_data *data;
  477. unsigned int virt_irq;
  478. BUG_ON(tlb_type != hypervisor);
  479. bucket = &ivector_table[sysino];
  480. virt_irq = bucket_get_virt_irq(__pa(bucket));
  481. if (!virt_irq) {
  482. virt_irq = virt_irq_alloc(0, sysino);
  483. bucket_set_virt_irq(__pa(bucket), virt_irq);
  484. set_irq_chip_and_handler_name(virt_irq, chip,
  485. handle_fasteoi_irq,
  486. "IVEC");
  487. }
  488. data = get_irq_chip_data(virt_irq);
  489. if (unlikely(data))
  490. goto out;
  491. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  492. if (unlikely(!data)) {
  493. prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
  494. prom_halt();
  495. }
  496. set_irq_chip_data(virt_irq, data);
  497. /* Catch accidental accesses to these things. IMAP/ICLR handling
  498. * is done by hypervisor calls on sun4v platforms, not by direct
  499. * register accesses.
  500. */
  501. data->imap = ~0UL;
  502. data->iclr = ~0UL;
  503. out:
  504. return virt_irq;
  505. }
  506. unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
  507. {
  508. unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
  509. return sun4v_build_common(sysino, &sun4v_irq);
  510. }
  511. unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
  512. {
  513. struct irq_handler_data *data;
  514. unsigned long hv_err, cookie;
  515. struct ino_bucket *bucket;
  516. struct irq_desc *desc;
  517. unsigned int virt_irq;
  518. bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
  519. if (unlikely(!bucket))
  520. return 0;
  521. __flush_dcache_range((unsigned long) bucket,
  522. ((unsigned long) bucket +
  523. sizeof(struct ino_bucket)));
  524. virt_irq = virt_irq_alloc(devhandle, devino);
  525. bucket_set_virt_irq(__pa(bucket), virt_irq);
  526. set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
  527. handle_fasteoi_irq,
  528. "IVEC");
  529. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  530. if (unlikely(!data))
  531. return 0;
  532. /* In order to make the LDC channel startup sequence easier,
  533. * especially wrt. locking, we do not let request_irq() enable
  534. * the interrupt.
  535. */
  536. desc = irq_desc + virt_irq;
  537. desc->status |= IRQ_NOAUTOEN;
  538. set_irq_chip_data(virt_irq, data);
  539. /* Catch accidental accesses to these things. IMAP/ICLR handling
  540. * is done by hypervisor calls on sun4v platforms, not by direct
  541. * register accesses.
  542. */
  543. data->imap = ~0UL;
  544. data->iclr = ~0UL;
  545. cookie = ~__pa(bucket);
  546. hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
  547. if (hv_err) {
  548. prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
  549. "err=%lu\n", devhandle, devino, hv_err);
  550. prom_halt();
  551. }
  552. return virt_irq;
  553. }
  554. void ack_bad_irq(unsigned int virt_irq)
  555. {
  556. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  557. if (!ino)
  558. ino = 0xdeadbeef;
  559. printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
  560. ino, virt_irq);
  561. }
  562. void *hardirq_stack[NR_CPUS];
  563. void *softirq_stack[NR_CPUS];
  564. static __attribute__((always_inline)) void *set_hardirq_stack(void)
  565. {
  566. void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
  567. __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
  568. if (orig_sp < sp ||
  569. orig_sp > (sp + THREAD_SIZE)) {
  570. sp += THREAD_SIZE - 192 - STACK_BIAS;
  571. __asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
  572. }
  573. return orig_sp;
  574. }
  575. static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
  576. {
  577. __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
  578. }
  579. void handler_irq(int irq, struct pt_regs *regs)
  580. {
  581. unsigned long pstate, bucket_pa;
  582. struct pt_regs *old_regs;
  583. void *orig_sp;
  584. clear_softint(1 << irq);
  585. old_regs = set_irq_regs(regs);
  586. irq_enter();
  587. /* Grab an atomic snapshot of the pending IVECs. */
  588. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  589. "wrpr %0, %3, %%pstate\n\t"
  590. "ldx [%2], %1\n\t"
  591. "stx %%g0, [%2]\n\t"
  592. "wrpr %0, 0x0, %%pstate\n\t"
  593. : "=&r" (pstate), "=&r" (bucket_pa)
  594. : "r" (irq_work_pa(smp_processor_id())),
  595. "i" (PSTATE_IE)
  596. : "memory");
  597. orig_sp = set_hardirq_stack();
  598. while (bucket_pa) {
  599. struct irq_desc *desc;
  600. unsigned long next_pa;
  601. unsigned int virt_irq;
  602. next_pa = bucket_get_chain_pa(bucket_pa);
  603. virt_irq = bucket_get_virt_irq(bucket_pa);
  604. bucket_clear_chain_pa(bucket_pa);
  605. desc = irq_desc + virt_irq;
  606. desc->handle_irq(virt_irq, desc);
  607. bucket_pa = next_pa;
  608. }
  609. restore_hardirq_stack(orig_sp);
  610. irq_exit();
  611. set_irq_regs(old_regs);
  612. }
  613. void do_softirq(void)
  614. {
  615. unsigned long flags;
  616. if (in_interrupt())
  617. return;
  618. local_irq_save(flags);
  619. if (local_softirq_pending()) {
  620. void *orig_sp, *sp = softirq_stack[smp_processor_id()];
  621. sp += THREAD_SIZE - 192 - STACK_BIAS;
  622. __asm__ __volatile__("mov %%sp, %0\n\t"
  623. "mov %1, %%sp"
  624. : "=&r" (orig_sp)
  625. : "r" (sp));
  626. __do_softirq();
  627. __asm__ __volatile__("mov %0, %%sp"
  628. : : "r" (orig_sp));
  629. }
  630. local_irq_restore(flags);
  631. }
  632. #ifdef CONFIG_HOTPLUG_CPU
  633. void fixup_irqs(void)
  634. {
  635. unsigned int irq;
  636. for (irq = 0; irq < NR_IRQS; irq++) {
  637. unsigned long flags;
  638. spin_lock_irqsave(&irq_desc[irq].lock, flags);
  639. if (irq_desc[irq].action &&
  640. !(irq_desc[irq].status & IRQ_PER_CPU)) {
  641. if (irq_desc[irq].chip->set_affinity)
  642. irq_desc[irq].chip->set_affinity(irq,
  643. irq_desc[irq].affinity);
  644. }
  645. spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
  646. }
  647. }
  648. #endif
  649. struct sun5_timer {
  650. u64 count0;
  651. u64 limit0;
  652. u64 count1;
  653. u64 limit1;
  654. };
  655. static struct sun5_timer *prom_timers;
  656. static u64 prom_limit0, prom_limit1;
  657. static void map_prom_timers(void)
  658. {
  659. struct device_node *dp;
  660. const unsigned int *addr;
  661. /* PROM timer node hangs out in the top level of device siblings... */
  662. dp = of_find_node_by_path("/");
  663. dp = dp->child;
  664. while (dp) {
  665. if (!strcmp(dp->name, "counter-timer"))
  666. break;
  667. dp = dp->sibling;
  668. }
  669. /* Assume if node is not present, PROM uses different tick mechanism
  670. * which we should not care about.
  671. */
  672. if (!dp) {
  673. prom_timers = (struct sun5_timer *) 0;
  674. return;
  675. }
  676. /* If PROM is really using this, it must be mapped by him. */
  677. addr = of_get_property(dp, "address", NULL);
  678. if (!addr) {
  679. prom_printf("PROM does not have timer mapped, trying to continue.\n");
  680. prom_timers = (struct sun5_timer *) 0;
  681. return;
  682. }
  683. prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
  684. }
  685. static void kill_prom_timer(void)
  686. {
  687. if (!prom_timers)
  688. return;
  689. /* Save them away for later. */
  690. prom_limit0 = prom_timers->limit0;
  691. prom_limit1 = prom_timers->limit1;
  692. /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
  693. * We turn both off here just to be paranoid.
  694. */
  695. prom_timers->limit0 = 0;
  696. prom_timers->limit1 = 0;
  697. /* Wheee, eat the interrupt packet too... */
  698. __asm__ __volatile__(
  699. " mov 0x40, %%g2\n"
  700. " ldxa [%%g0] %0, %%g1\n"
  701. " ldxa [%%g2] %1, %%g1\n"
  702. " stxa %%g0, [%%g0] %0\n"
  703. " membar #Sync\n"
  704. : /* no outputs */
  705. : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
  706. : "g1", "g2");
  707. }
  708. void init_irqwork_curcpu(void)
  709. {
  710. int cpu = hard_smp_processor_id();
  711. trap_block[cpu].irq_worklist_pa = 0UL;
  712. }
  713. /* Please be very careful with register_one_mondo() and
  714. * sun4v_register_mondo_queues().
  715. *
  716. * On SMP this gets invoked from the CPU trampoline before
  717. * the cpu has fully taken over the trap table from OBP,
  718. * and it's kernel stack + %g6 thread register state is
  719. * not fully cooked yet.
  720. *
  721. * Therefore you cannot make any OBP calls, not even prom_printf,
  722. * from these two routines.
  723. */
  724. static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
  725. {
  726. unsigned long num_entries = (qmask + 1) / 64;
  727. unsigned long status;
  728. status = sun4v_cpu_qconf(type, paddr, num_entries);
  729. if (status != HV_EOK) {
  730. prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
  731. "err %lu\n", type, paddr, num_entries, status);
  732. prom_halt();
  733. }
  734. }
  735. void __cpuinit sun4v_register_mondo_queues(int this_cpu)
  736. {
  737. struct trap_per_cpu *tb = &trap_block[this_cpu];
  738. register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
  739. tb->cpu_mondo_qmask);
  740. register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
  741. tb->dev_mondo_qmask);
  742. register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
  743. tb->resum_qmask);
  744. register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
  745. tb->nonresum_qmask);
  746. }
  747. static void __init alloc_one_mondo(unsigned long *pa_ptr, unsigned long qmask)
  748. {
  749. unsigned long size = PAGE_ALIGN(qmask + 1);
  750. void *p = __alloc_bootmem(size, size, 0);
  751. if (!p) {
  752. prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
  753. prom_halt();
  754. }
  755. *pa_ptr = __pa(p);
  756. }
  757. static void __init alloc_one_kbuf(unsigned long *pa_ptr, unsigned long qmask)
  758. {
  759. unsigned long size = PAGE_ALIGN(qmask + 1);
  760. void *p = __alloc_bootmem(size, size, 0);
  761. if (!p) {
  762. prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
  763. prom_halt();
  764. }
  765. *pa_ptr = __pa(p);
  766. }
  767. static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
  768. {
  769. #ifdef CONFIG_SMP
  770. void *page;
  771. BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
  772. page = alloc_bootmem_pages(PAGE_SIZE);
  773. if (!page) {
  774. prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
  775. prom_halt();
  776. }
  777. tb->cpu_mondo_block_pa = __pa(page);
  778. tb->cpu_list_pa = __pa(page + 64);
  779. #endif
  780. }
  781. /* Allocate mondo and error queues for all possible cpus. */
  782. static void __init sun4v_init_mondo_queues(void)
  783. {
  784. int cpu;
  785. for_each_possible_cpu(cpu) {
  786. struct trap_per_cpu *tb = &trap_block[cpu];
  787. alloc_one_mondo(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
  788. alloc_one_mondo(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
  789. alloc_one_mondo(&tb->resum_mondo_pa, tb->resum_qmask);
  790. alloc_one_kbuf(&tb->resum_kernel_buf_pa, tb->resum_qmask);
  791. alloc_one_mondo(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
  792. alloc_one_kbuf(&tb->nonresum_kernel_buf_pa,
  793. tb->nonresum_qmask);
  794. }
  795. }
  796. static void __init init_send_mondo_info(void)
  797. {
  798. int cpu;
  799. for_each_possible_cpu(cpu) {
  800. struct trap_per_cpu *tb = &trap_block[cpu];
  801. init_cpu_send_mondo_info(tb);
  802. }
  803. }
  804. static struct irqaction timer_irq_action = {
  805. .name = "timer",
  806. };
  807. /* Only invoked on boot processor. */
  808. void __init init_IRQ(void)
  809. {
  810. unsigned long size;
  811. map_prom_timers();
  812. kill_prom_timer();
  813. size = sizeof(struct ino_bucket) * NUM_IVECS;
  814. ivector_table = alloc_bootmem(size);
  815. if (!ivector_table) {
  816. prom_printf("Fatal error, cannot allocate ivector_table\n");
  817. prom_halt();
  818. }
  819. __flush_dcache_range((unsigned long) ivector_table,
  820. ((unsigned long) ivector_table) + size);
  821. ivector_table_pa = __pa(ivector_table);
  822. if (tlb_type == hypervisor)
  823. sun4v_init_mondo_queues();
  824. init_send_mondo_info();
  825. if (tlb_type == hypervisor) {
  826. /* Load up the boot cpu's entries. */
  827. sun4v_register_mondo_queues(hard_smp_processor_id());
  828. }
  829. /* We need to clear any IRQ's pending in the soft interrupt
  830. * registers, a spurious one could be left around from the
  831. * PROM timer which we just disabled.
  832. */
  833. clear_softint(get_softint());
  834. /* Now that ivector table is initialized, it is safe
  835. * to receive IRQ vector traps. We will normally take
  836. * one or two right now, in case some device PROM used
  837. * to boot us wants to speak to us. We just ignore them.
  838. */
  839. __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
  840. "or %%g1, %0, %%g1\n\t"
  841. "wrpr %%g1, 0x0, %%pstate"
  842. : /* No outputs */
  843. : "i" (PSTATE_IE)
  844. : "g1");
  845. irq_desc[0].action = &timer_irq_action;
  846. }