sched.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144
  1. /* sched.c - SPU scheduler.
  2. *
  3. * Copyright (C) IBM 2005
  4. * Author: Mark Nutter <mnutter@us.ibm.com>
  5. *
  6. * 2006-03-31 NUMA domains added.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #undef DEBUG
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/sched.h>
  26. #include <linux/kernel.h>
  27. #include <linux/mm.h>
  28. #include <linux/completion.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/smp.h>
  31. #include <linux/stddef.h>
  32. #include <linux/unistd.h>
  33. #include <linux/numa.h>
  34. #include <linux/mutex.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/pid_namespace.h>
  38. #include <linux/proc_fs.h>
  39. #include <linux/seq_file.h>
  40. #include <linux/marker.h>
  41. #include <asm/io.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/spu.h>
  44. #include <asm/spu_csa.h>
  45. #include <asm/spu_priv1.h>
  46. #include "spufs.h"
  47. struct spu_prio_array {
  48. DECLARE_BITMAP(bitmap, MAX_PRIO);
  49. struct list_head runq[MAX_PRIO];
  50. spinlock_t runq_lock;
  51. int nr_waiting;
  52. };
  53. static unsigned long spu_avenrun[3];
  54. static struct spu_prio_array *spu_prio;
  55. static struct task_struct *spusched_task;
  56. static struct timer_list spusched_timer;
  57. static struct timer_list spuloadavg_timer;
  58. /*
  59. * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
  60. */
  61. #define NORMAL_PRIO 120
  62. /*
  63. * Frequency of the spu scheduler tick. By default we do one SPU scheduler
  64. * tick for every 10 CPU scheduler ticks.
  65. */
  66. #define SPUSCHED_TICK (10)
  67. /*
  68. * These are the 'tuning knobs' of the scheduler:
  69. *
  70. * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
  71. * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  72. */
  73. #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
  74. #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
  75. #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
  76. #define SCALE_PRIO(x, prio) \
  77. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
  78. /*
  79. * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
  80. * [800ms ... 100ms ... 5ms]
  81. *
  82. * The higher a thread's priority, the bigger timeslices
  83. * it gets during one round of execution. But even the lowest
  84. * priority thread gets MIN_TIMESLICE worth of execution time.
  85. */
  86. void spu_set_timeslice(struct spu_context *ctx)
  87. {
  88. if (ctx->prio < NORMAL_PRIO)
  89. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
  90. else
  91. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
  92. }
  93. /*
  94. * Update scheduling information from the owning thread.
  95. */
  96. void __spu_update_sched_info(struct spu_context *ctx)
  97. {
  98. /*
  99. * assert that the context is not on the runqueue, so it is safe
  100. * to change its scheduling parameters.
  101. */
  102. BUG_ON(!list_empty(&ctx->rq));
  103. /*
  104. * 32-Bit assignments are atomic on powerpc, and we don't care about
  105. * memory ordering here because retrieving the controlling thread is
  106. * per definition racy.
  107. */
  108. ctx->tid = current->pid;
  109. /*
  110. * We do our own priority calculations, so we normally want
  111. * ->static_prio to start with. Unfortunately this field
  112. * contains junk for threads with a realtime scheduling
  113. * policy so we have to look at ->prio in this case.
  114. */
  115. if (rt_prio(current->prio))
  116. ctx->prio = current->prio;
  117. else
  118. ctx->prio = current->static_prio;
  119. ctx->policy = current->policy;
  120. /*
  121. * TO DO: the context may be loaded, so we may need to activate
  122. * it again on a different node. But it shouldn't hurt anything
  123. * to update its parameters, because we know that the scheduler
  124. * is not actively looking at this field, since it is not on the
  125. * runqueue. The context will be rescheduled on the proper node
  126. * if it is timesliced or preempted.
  127. */
  128. ctx->cpus_allowed = current->cpus_allowed;
  129. /* Save the current cpu id for spu interrupt routing. */
  130. ctx->last_ran = raw_smp_processor_id();
  131. }
  132. void spu_update_sched_info(struct spu_context *ctx)
  133. {
  134. int node;
  135. if (ctx->state == SPU_STATE_RUNNABLE) {
  136. node = ctx->spu->node;
  137. /*
  138. * Take list_mutex to sync with find_victim().
  139. */
  140. mutex_lock(&cbe_spu_info[node].list_mutex);
  141. __spu_update_sched_info(ctx);
  142. mutex_unlock(&cbe_spu_info[node].list_mutex);
  143. } else {
  144. __spu_update_sched_info(ctx);
  145. }
  146. }
  147. static int __node_allowed(struct spu_context *ctx, int node)
  148. {
  149. if (nr_cpus_node(node)) {
  150. cpumask_t mask = node_to_cpumask(node);
  151. if (cpus_intersects(mask, ctx->cpus_allowed))
  152. return 1;
  153. }
  154. return 0;
  155. }
  156. static int node_allowed(struct spu_context *ctx, int node)
  157. {
  158. int rval;
  159. spin_lock(&spu_prio->runq_lock);
  160. rval = __node_allowed(ctx, node);
  161. spin_unlock(&spu_prio->runq_lock);
  162. return rval;
  163. }
  164. void do_notify_spus_active(void)
  165. {
  166. int node;
  167. /*
  168. * Wake up the active spu_contexts.
  169. *
  170. * When the awakened processes see their "notify_active" flag is set,
  171. * they will call spu_switch_notify().
  172. */
  173. for_each_online_node(node) {
  174. struct spu *spu;
  175. mutex_lock(&cbe_spu_info[node].list_mutex);
  176. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  177. if (spu->alloc_state != SPU_FREE) {
  178. struct spu_context *ctx = spu->ctx;
  179. set_bit(SPU_SCHED_NOTIFY_ACTIVE,
  180. &ctx->sched_flags);
  181. mb();
  182. wake_up_all(&ctx->stop_wq);
  183. }
  184. }
  185. mutex_unlock(&cbe_spu_info[node].list_mutex);
  186. }
  187. }
  188. /**
  189. * spu_bind_context - bind spu context to physical spu
  190. * @spu: physical spu to bind to
  191. * @ctx: context to bind
  192. */
  193. static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
  194. {
  195. spu_context_trace(spu_bind_context__enter, ctx, spu);
  196. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  197. if (ctx->flags & SPU_CREATE_NOSCHED)
  198. atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
  199. ctx->stats.slb_flt_base = spu->stats.slb_flt;
  200. ctx->stats.class2_intr_base = spu->stats.class2_intr;
  201. spu_associate_mm(spu, ctx->owner);
  202. spin_lock_irq(&spu->register_lock);
  203. spu->ctx = ctx;
  204. spu->flags = 0;
  205. ctx->spu = spu;
  206. ctx->ops = &spu_hw_ops;
  207. spu->pid = current->pid;
  208. spu->tgid = current->tgid;
  209. spu->ibox_callback = spufs_ibox_callback;
  210. spu->wbox_callback = spufs_wbox_callback;
  211. spu->stop_callback = spufs_stop_callback;
  212. spu->mfc_callback = spufs_mfc_callback;
  213. spin_unlock_irq(&spu->register_lock);
  214. spu_unmap_mappings(ctx);
  215. spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
  216. spu_restore(&ctx->csa, spu);
  217. spu->timestamp = jiffies;
  218. spu_switch_notify(spu, ctx);
  219. ctx->state = SPU_STATE_RUNNABLE;
  220. spuctx_switch_state(ctx, SPU_UTIL_USER);
  221. }
  222. /*
  223. * Must be used with the list_mutex held.
  224. */
  225. static inline int sched_spu(struct spu *spu)
  226. {
  227. BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
  228. return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
  229. }
  230. static void aff_merge_remaining_ctxs(struct spu_gang *gang)
  231. {
  232. struct spu_context *ctx;
  233. list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
  234. if (list_empty(&ctx->aff_list))
  235. list_add(&ctx->aff_list, &gang->aff_list_head);
  236. }
  237. gang->aff_flags |= AFF_MERGED;
  238. }
  239. static void aff_set_offsets(struct spu_gang *gang)
  240. {
  241. struct spu_context *ctx;
  242. int offset;
  243. offset = -1;
  244. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  245. aff_list) {
  246. if (&ctx->aff_list == &gang->aff_list_head)
  247. break;
  248. ctx->aff_offset = offset--;
  249. }
  250. offset = 0;
  251. list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
  252. if (&ctx->aff_list == &gang->aff_list_head)
  253. break;
  254. ctx->aff_offset = offset++;
  255. }
  256. gang->aff_flags |= AFF_OFFSETS_SET;
  257. }
  258. static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
  259. int group_size, int lowest_offset)
  260. {
  261. struct spu *spu;
  262. int node, n;
  263. /*
  264. * TODO: A better algorithm could be used to find a good spu to be
  265. * used as reference location for the ctxs chain.
  266. */
  267. node = cpu_to_node(raw_smp_processor_id());
  268. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  269. int available_spus;
  270. node = (node < MAX_NUMNODES) ? node : 0;
  271. if (!node_allowed(ctx, node))
  272. continue;
  273. available_spus = 0;
  274. mutex_lock(&cbe_spu_info[node].list_mutex);
  275. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  276. if (spu->ctx && spu->ctx->gang
  277. && spu->ctx->aff_offset == 0)
  278. available_spus -=
  279. (spu->ctx->gang->contexts - 1);
  280. else
  281. available_spus++;
  282. }
  283. if (available_spus < ctx->gang->contexts) {
  284. mutex_unlock(&cbe_spu_info[node].list_mutex);
  285. continue;
  286. }
  287. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  288. if ((!mem_aff || spu->has_mem_affinity) &&
  289. sched_spu(spu)) {
  290. mutex_unlock(&cbe_spu_info[node].list_mutex);
  291. return spu;
  292. }
  293. }
  294. mutex_unlock(&cbe_spu_info[node].list_mutex);
  295. }
  296. return NULL;
  297. }
  298. static void aff_set_ref_point_location(struct spu_gang *gang)
  299. {
  300. int mem_aff, gs, lowest_offset;
  301. struct spu_context *ctx;
  302. struct spu *tmp;
  303. mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
  304. lowest_offset = 0;
  305. gs = 0;
  306. list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
  307. gs++;
  308. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  309. aff_list) {
  310. if (&ctx->aff_list == &gang->aff_list_head)
  311. break;
  312. lowest_offset = ctx->aff_offset;
  313. }
  314. gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
  315. lowest_offset);
  316. }
  317. static struct spu *ctx_location(struct spu *ref, int offset, int node)
  318. {
  319. struct spu *spu;
  320. spu = NULL;
  321. if (offset >= 0) {
  322. list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
  323. BUG_ON(spu->node != node);
  324. if (offset == 0)
  325. break;
  326. if (sched_spu(spu))
  327. offset--;
  328. }
  329. } else {
  330. list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
  331. BUG_ON(spu->node != node);
  332. if (offset == 0)
  333. break;
  334. if (sched_spu(spu))
  335. offset++;
  336. }
  337. }
  338. return spu;
  339. }
  340. /*
  341. * affinity_check is called each time a context is going to be scheduled.
  342. * It returns the spu ptr on which the context must run.
  343. */
  344. static int has_affinity(struct spu_context *ctx)
  345. {
  346. struct spu_gang *gang = ctx->gang;
  347. if (list_empty(&ctx->aff_list))
  348. return 0;
  349. if (atomic_read(&ctx->gang->aff_sched_count) == 0)
  350. ctx->gang->aff_ref_spu = NULL;
  351. if (!gang->aff_ref_spu) {
  352. if (!(gang->aff_flags & AFF_MERGED))
  353. aff_merge_remaining_ctxs(gang);
  354. if (!(gang->aff_flags & AFF_OFFSETS_SET))
  355. aff_set_offsets(gang);
  356. aff_set_ref_point_location(gang);
  357. }
  358. return gang->aff_ref_spu != NULL;
  359. }
  360. /**
  361. * spu_unbind_context - unbind spu context from physical spu
  362. * @spu: physical spu to unbind from
  363. * @ctx: context to unbind
  364. */
  365. static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
  366. {
  367. u32 status;
  368. spu_context_trace(spu_unbind_context__enter, ctx, spu);
  369. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  370. if (spu->ctx->flags & SPU_CREATE_NOSCHED)
  371. atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
  372. if (ctx->gang)
  373. atomic_dec_if_positive(&ctx->gang->aff_sched_count);
  374. spu_switch_notify(spu, NULL);
  375. spu_unmap_mappings(ctx);
  376. spu_save(&ctx->csa, spu);
  377. spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
  378. spin_lock_irq(&spu->register_lock);
  379. spu->timestamp = jiffies;
  380. ctx->state = SPU_STATE_SAVED;
  381. spu->ibox_callback = NULL;
  382. spu->wbox_callback = NULL;
  383. spu->stop_callback = NULL;
  384. spu->mfc_callback = NULL;
  385. spu->pid = 0;
  386. spu->tgid = 0;
  387. ctx->ops = &spu_backing_ops;
  388. spu->flags = 0;
  389. spu->ctx = NULL;
  390. spin_unlock_irq(&spu->register_lock);
  391. spu_associate_mm(spu, NULL);
  392. ctx->stats.slb_flt +=
  393. (spu->stats.slb_flt - ctx->stats.slb_flt_base);
  394. ctx->stats.class2_intr +=
  395. (spu->stats.class2_intr - ctx->stats.class2_intr_base);
  396. /* This maps the underlying spu state to idle */
  397. spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
  398. ctx->spu = NULL;
  399. if (spu_stopped(ctx, &status))
  400. wake_up_all(&ctx->stop_wq);
  401. }
  402. /**
  403. * spu_add_to_rq - add a context to the runqueue
  404. * @ctx: context to add
  405. */
  406. static void __spu_add_to_rq(struct spu_context *ctx)
  407. {
  408. /*
  409. * Unfortunately this code path can be called from multiple threads
  410. * on behalf of a single context due to the way the problem state
  411. * mmap support works.
  412. *
  413. * Fortunately we need to wake up all these threads at the same time
  414. * and can simply skip the runqueue addition for every but the first
  415. * thread getting into this codepath.
  416. *
  417. * It's still quite hacky, and long-term we should proxy all other
  418. * threads through the owner thread so that spu_run is in control
  419. * of all the scheduling activity for a given context.
  420. */
  421. if (list_empty(&ctx->rq)) {
  422. list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
  423. set_bit(ctx->prio, spu_prio->bitmap);
  424. if (!spu_prio->nr_waiting++)
  425. __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  426. }
  427. }
  428. static void spu_add_to_rq(struct spu_context *ctx)
  429. {
  430. spin_lock(&spu_prio->runq_lock);
  431. __spu_add_to_rq(ctx);
  432. spin_unlock(&spu_prio->runq_lock);
  433. }
  434. static void __spu_del_from_rq(struct spu_context *ctx)
  435. {
  436. int prio = ctx->prio;
  437. if (!list_empty(&ctx->rq)) {
  438. if (!--spu_prio->nr_waiting)
  439. del_timer(&spusched_timer);
  440. list_del_init(&ctx->rq);
  441. if (list_empty(&spu_prio->runq[prio]))
  442. clear_bit(prio, spu_prio->bitmap);
  443. }
  444. }
  445. void spu_del_from_rq(struct spu_context *ctx)
  446. {
  447. spin_lock(&spu_prio->runq_lock);
  448. __spu_del_from_rq(ctx);
  449. spin_unlock(&spu_prio->runq_lock);
  450. }
  451. static void spu_prio_wait(struct spu_context *ctx)
  452. {
  453. DEFINE_WAIT(wait);
  454. /*
  455. * The caller must explicitly wait for a context to be loaded
  456. * if the nosched flag is set. If NOSCHED is not set, the caller
  457. * queues the context and waits for an spu event or error.
  458. */
  459. BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
  460. spin_lock(&spu_prio->runq_lock);
  461. prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
  462. if (!signal_pending(current)) {
  463. __spu_add_to_rq(ctx);
  464. spin_unlock(&spu_prio->runq_lock);
  465. mutex_unlock(&ctx->state_mutex);
  466. schedule();
  467. mutex_lock(&ctx->state_mutex);
  468. spin_lock(&spu_prio->runq_lock);
  469. __spu_del_from_rq(ctx);
  470. }
  471. spin_unlock(&spu_prio->runq_lock);
  472. __set_current_state(TASK_RUNNING);
  473. remove_wait_queue(&ctx->stop_wq, &wait);
  474. }
  475. static struct spu *spu_get_idle(struct spu_context *ctx)
  476. {
  477. struct spu *spu, *aff_ref_spu;
  478. int node, n;
  479. spu_context_nospu_trace(spu_get_idle__enter, ctx);
  480. if (ctx->gang) {
  481. mutex_lock(&ctx->gang->aff_mutex);
  482. if (has_affinity(ctx)) {
  483. aff_ref_spu = ctx->gang->aff_ref_spu;
  484. atomic_inc(&ctx->gang->aff_sched_count);
  485. mutex_unlock(&ctx->gang->aff_mutex);
  486. node = aff_ref_spu->node;
  487. mutex_lock(&cbe_spu_info[node].list_mutex);
  488. spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
  489. if (spu && spu->alloc_state == SPU_FREE)
  490. goto found;
  491. mutex_unlock(&cbe_spu_info[node].list_mutex);
  492. atomic_dec(&ctx->gang->aff_sched_count);
  493. goto not_found;
  494. }
  495. mutex_unlock(&ctx->gang->aff_mutex);
  496. }
  497. node = cpu_to_node(raw_smp_processor_id());
  498. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  499. node = (node < MAX_NUMNODES) ? node : 0;
  500. if (!node_allowed(ctx, node))
  501. continue;
  502. mutex_lock(&cbe_spu_info[node].list_mutex);
  503. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  504. if (spu->alloc_state == SPU_FREE)
  505. goto found;
  506. }
  507. mutex_unlock(&cbe_spu_info[node].list_mutex);
  508. }
  509. not_found:
  510. spu_context_nospu_trace(spu_get_idle__not_found, ctx);
  511. return NULL;
  512. found:
  513. spu->alloc_state = SPU_USED;
  514. mutex_unlock(&cbe_spu_info[node].list_mutex);
  515. spu_context_trace(spu_get_idle__found, ctx, spu);
  516. spu_init_channels(spu);
  517. return spu;
  518. }
  519. /**
  520. * find_victim - find a lower priority context to preempt
  521. * @ctx: canidate context for running
  522. *
  523. * Returns the freed physical spu to run the new context on.
  524. */
  525. static struct spu *find_victim(struct spu_context *ctx)
  526. {
  527. struct spu_context *victim = NULL;
  528. struct spu *spu;
  529. int node, n;
  530. spu_context_nospu_trace(spu_find_victim__enter, ctx);
  531. /*
  532. * Look for a possible preemption candidate on the local node first.
  533. * If there is no candidate look at the other nodes. This isn't
  534. * exactly fair, but so far the whole spu scheduler tries to keep
  535. * a strong node affinity. We might want to fine-tune this in
  536. * the future.
  537. */
  538. restart:
  539. node = cpu_to_node(raw_smp_processor_id());
  540. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  541. node = (node < MAX_NUMNODES) ? node : 0;
  542. if (!node_allowed(ctx, node))
  543. continue;
  544. mutex_lock(&cbe_spu_info[node].list_mutex);
  545. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  546. struct spu_context *tmp = spu->ctx;
  547. if (tmp && tmp->prio > ctx->prio &&
  548. !(tmp->flags & SPU_CREATE_NOSCHED) &&
  549. (!victim || tmp->prio > victim->prio)) {
  550. victim = spu->ctx;
  551. get_spu_context(victim);
  552. }
  553. }
  554. mutex_unlock(&cbe_spu_info[node].list_mutex);
  555. if (victim) {
  556. /*
  557. * This nests ctx->state_mutex, but we always lock
  558. * higher priority contexts before lower priority
  559. * ones, so this is safe until we introduce
  560. * priority inheritance schemes.
  561. *
  562. * XXX if the highest priority context is locked,
  563. * this can loop a long time. Might be better to
  564. * look at another context or give up after X retries.
  565. */
  566. if (!mutex_trylock(&victim->state_mutex)) {
  567. put_spu_context(victim);
  568. victim = NULL;
  569. goto restart;
  570. }
  571. spu = victim->spu;
  572. if (!spu || victim->prio <= ctx->prio) {
  573. /*
  574. * This race can happen because we've dropped
  575. * the active list mutex. Not a problem, just
  576. * restart the search.
  577. */
  578. mutex_unlock(&victim->state_mutex);
  579. put_spu_context(victim);
  580. victim = NULL;
  581. goto restart;
  582. }
  583. spu_context_trace(__spu_deactivate__unload, ctx, spu);
  584. mutex_lock(&cbe_spu_info[node].list_mutex);
  585. cbe_spu_info[node].nr_active--;
  586. spu_unbind_context(spu, victim);
  587. mutex_unlock(&cbe_spu_info[node].list_mutex);
  588. victim->stats.invol_ctx_switch++;
  589. spu->stats.invol_ctx_switch++;
  590. if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
  591. spu_add_to_rq(victim);
  592. mutex_unlock(&victim->state_mutex);
  593. put_spu_context(victim);
  594. return spu;
  595. }
  596. }
  597. return NULL;
  598. }
  599. static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
  600. {
  601. int node = spu->node;
  602. int success = 0;
  603. spu_set_timeslice(ctx);
  604. mutex_lock(&cbe_spu_info[node].list_mutex);
  605. if (spu->ctx == NULL) {
  606. spu_bind_context(spu, ctx);
  607. cbe_spu_info[node].nr_active++;
  608. spu->alloc_state = SPU_USED;
  609. success = 1;
  610. }
  611. mutex_unlock(&cbe_spu_info[node].list_mutex);
  612. if (success)
  613. wake_up_all(&ctx->run_wq);
  614. else
  615. spu_add_to_rq(ctx);
  616. }
  617. static void spu_schedule(struct spu *spu, struct spu_context *ctx)
  618. {
  619. /* not a candidate for interruptible because it's called either
  620. from the scheduler thread or from spu_deactivate */
  621. mutex_lock(&ctx->state_mutex);
  622. __spu_schedule(spu, ctx);
  623. spu_release(ctx);
  624. }
  625. static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
  626. {
  627. int node = spu->node;
  628. mutex_lock(&cbe_spu_info[node].list_mutex);
  629. cbe_spu_info[node].nr_active--;
  630. spu->alloc_state = SPU_FREE;
  631. spu_unbind_context(spu, ctx);
  632. ctx->stats.invol_ctx_switch++;
  633. spu->stats.invol_ctx_switch++;
  634. mutex_unlock(&cbe_spu_info[node].list_mutex);
  635. }
  636. /**
  637. * spu_activate - find a free spu for a context and execute it
  638. * @ctx: spu context to schedule
  639. * @flags: flags (currently ignored)
  640. *
  641. * Tries to find a free spu to run @ctx. If no free spu is available
  642. * add the context to the runqueue so it gets woken up once an spu
  643. * is available.
  644. */
  645. int spu_activate(struct spu_context *ctx, unsigned long flags)
  646. {
  647. struct spu *spu;
  648. /*
  649. * If there are multiple threads waiting for a single context
  650. * only one actually binds the context while the others will
  651. * only be able to acquire the state_mutex once the context
  652. * already is in runnable state.
  653. */
  654. if (ctx->spu)
  655. return 0;
  656. spu_activate_top:
  657. if (signal_pending(current))
  658. return -ERESTARTSYS;
  659. spu = spu_get_idle(ctx);
  660. /*
  661. * If this is a realtime thread we try to get it running by
  662. * preempting a lower priority thread.
  663. */
  664. if (!spu && rt_prio(ctx->prio))
  665. spu = find_victim(ctx);
  666. if (spu) {
  667. unsigned long runcntl;
  668. runcntl = ctx->ops->runcntl_read(ctx);
  669. __spu_schedule(spu, ctx);
  670. if (runcntl & SPU_RUNCNTL_RUNNABLE)
  671. spuctx_switch_state(ctx, SPU_UTIL_USER);
  672. return 0;
  673. }
  674. if (ctx->flags & SPU_CREATE_NOSCHED) {
  675. spu_prio_wait(ctx);
  676. goto spu_activate_top;
  677. }
  678. spu_add_to_rq(ctx);
  679. return 0;
  680. }
  681. /**
  682. * grab_runnable_context - try to find a runnable context
  683. *
  684. * Remove the highest priority context on the runqueue and return it
  685. * to the caller. Returns %NULL if no runnable context was found.
  686. */
  687. static struct spu_context *grab_runnable_context(int prio, int node)
  688. {
  689. struct spu_context *ctx;
  690. int best;
  691. spin_lock(&spu_prio->runq_lock);
  692. best = find_first_bit(spu_prio->bitmap, prio);
  693. while (best < prio) {
  694. struct list_head *rq = &spu_prio->runq[best];
  695. list_for_each_entry(ctx, rq, rq) {
  696. /* XXX(hch): check for affinity here aswell */
  697. if (__node_allowed(ctx, node)) {
  698. __spu_del_from_rq(ctx);
  699. goto found;
  700. }
  701. }
  702. best++;
  703. }
  704. ctx = NULL;
  705. found:
  706. spin_unlock(&spu_prio->runq_lock);
  707. return ctx;
  708. }
  709. static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
  710. {
  711. struct spu *spu = ctx->spu;
  712. struct spu_context *new = NULL;
  713. if (spu) {
  714. new = grab_runnable_context(max_prio, spu->node);
  715. if (new || force) {
  716. spu_unschedule(spu, ctx);
  717. if (new) {
  718. if (new->flags & SPU_CREATE_NOSCHED)
  719. wake_up(&new->stop_wq);
  720. else {
  721. spu_release(ctx);
  722. spu_schedule(spu, new);
  723. /* this one can't easily be made
  724. interruptible */
  725. mutex_lock(&ctx->state_mutex);
  726. }
  727. }
  728. }
  729. }
  730. return new != NULL;
  731. }
  732. /**
  733. * spu_deactivate - unbind a context from it's physical spu
  734. * @ctx: spu context to unbind
  735. *
  736. * Unbind @ctx from the physical spu it is running on and schedule
  737. * the highest priority context to run on the freed physical spu.
  738. */
  739. void spu_deactivate(struct spu_context *ctx)
  740. {
  741. spu_context_nospu_trace(spu_deactivate__enter, ctx);
  742. __spu_deactivate(ctx, 1, MAX_PRIO);
  743. }
  744. /**
  745. * spu_yield - yield a physical spu if others are waiting
  746. * @ctx: spu context to yield
  747. *
  748. * Check if there is a higher priority context waiting and if yes
  749. * unbind @ctx from the physical spu and schedule the highest
  750. * priority context to run on the freed physical spu instead.
  751. */
  752. void spu_yield(struct spu_context *ctx)
  753. {
  754. spu_context_nospu_trace(spu_yield__enter, ctx);
  755. if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
  756. mutex_lock(&ctx->state_mutex);
  757. __spu_deactivate(ctx, 0, MAX_PRIO);
  758. mutex_unlock(&ctx->state_mutex);
  759. }
  760. }
  761. static noinline void spusched_tick(struct spu_context *ctx)
  762. {
  763. struct spu_context *new = NULL;
  764. struct spu *spu = NULL;
  765. if (spu_acquire(ctx))
  766. BUG(); /* a kernel thread never has signals pending */
  767. if (ctx->state != SPU_STATE_RUNNABLE)
  768. goto out;
  769. if (ctx->flags & SPU_CREATE_NOSCHED)
  770. goto out;
  771. if (ctx->policy == SCHED_FIFO)
  772. goto out;
  773. if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
  774. goto out;
  775. spu = ctx->spu;
  776. spu_context_trace(spusched_tick__preempt, ctx, spu);
  777. new = grab_runnable_context(ctx->prio + 1, spu->node);
  778. if (new) {
  779. spu_unschedule(spu, ctx);
  780. if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
  781. spu_add_to_rq(ctx);
  782. } else {
  783. spu_context_nospu_trace(spusched_tick__newslice, ctx);
  784. if (!ctx->time_slice)
  785. ctx->time_slice++;
  786. }
  787. out:
  788. spu_release(ctx);
  789. if (new)
  790. spu_schedule(spu, new);
  791. }
  792. /**
  793. * count_active_contexts - count nr of active tasks
  794. *
  795. * Return the number of tasks currently running or waiting to run.
  796. *
  797. * Note that we don't take runq_lock / list_mutex here. Reading
  798. * a single 32bit value is atomic on powerpc, and we don't care
  799. * about memory ordering issues here.
  800. */
  801. static unsigned long count_active_contexts(void)
  802. {
  803. int nr_active = 0, node;
  804. for (node = 0; node < MAX_NUMNODES; node++)
  805. nr_active += cbe_spu_info[node].nr_active;
  806. nr_active += spu_prio->nr_waiting;
  807. return nr_active;
  808. }
  809. /**
  810. * spu_calc_load - update the avenrun load estimates.
  811. *
  812. * No locking against reading these values from userspace, as for
  813. * the CPU loadavg code.
  814. */
  815. static void spu_calc_load(void)
  816. {
  817. unsigned long active_tasks; /* fixed-point */
  818. active_tasks = count_active_contexts() * FIXED_1;
  819. CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
  820. CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
  821. CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
  822. }
  823. static void spusched_wake(unsigned long data)
  824. {
  825. mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  826. wake_up_process(spusched_task);
  827. }
  828. static void spuloadavg_wake(unsigned long data)
  829. {
  830. mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
  831. spu_calc_load();
  832. }
  833. static int spusched_thread(void *unused)
  834. {
  835. struct spu *spu;
  836. int node;
  837. while (!kthread_should_stop()) {
  838. set_current_state(TASK_INTERRUPTIBLE);
  839. schedule();
  840. for (node = 0; node < MAX_NUMNODES; node++) {
  841. struct mutex *mtx = &cbe_spu_info[node].list_mutex;
  842. mutex_lock(mtx);
  843. list_for_each_entry(spu, &cbe_spu_info[node].spus,
  844. cbe_list) {
  845. struct spu_context *ctx = spu->ctx;
  846. if (ctx) {
  847. get_spu_context(ctx);
  848. mutex_unlock(mtx);
  849. spusched_tick(ctx);
  850. mutex_lock(mtx);
  851. put_spu_context(ctx);
  852. }
  853. }
  854. mutex_unlock(mtx);
  855. }
  856. }
  857. return 0;
  858. }
  859. void spuctx_switch_state(struct spu_context *ctx,
  860. enum spu_utilization_state new_state)
  861. {
  862. unsigned long long curtime;
  863. signed long long delta;
  864. struct timespec ts;
  865. struct spu *spu;
  866. enum spu_utilization_state old_state;
  867. int node;
  868. ktime_get_ts(&ts);
  869. curtime = timespec_to_ns(&ts);
  870. delta = curtime - ctx->stats.tstamp;
  871. WARN_ON(!mutex_is_locked(&ctx->state_mutex));
  872. WARN_ON(delta < 0);
  873. spu = ctx->spu;
  874. old_state = ctx->stats.util_state;
  875. ctx->stats.util_state = new_state;
  876. ctx->stats.tstamp = curtime;
  877. /*
  878. * Update the physical SPU utilization statistics.
  879. */
  880. if (spu) {
  881. ctx->stats.times[old_state] += delta;
  882. spu->stats.times[old_state] += delta;
  883. spu->stats.util_state = new_state;
  884. spu->stats.tstamp = curtime;
  885. node = spu->node;
  886. if (old_state == SPU_UTIL_USER)
  887. atomic_dec(&cbe_spu_info[node].busy_spus);
  888. if (new_state == SPU_UTIL_USER)
  889. atomic_inc(&cbe_spu_info[node].busy_spus);
  890. }
  891. }
  892. #define LOAD_INT(x) ((x) >> FSHIFT)
  893. #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
  894. static int show_spu_loadavg(struct seq_file *s, void *private)
  895. {
  896. int a, b, c;
  897. a = spu_avenrun[0] + (FIXED_1/200);
  898. b = spu_avenrun[1] + (FIXED_1/200);
  899. c = spu_avenrun[2] + (FIXED_1/200);
  900. /*
  901. * Note that last_pid doesn't really make much sense for the
  902. * SPU loadavg (it even seems very odd on the CPU side...),
  903. * but we include it here to have a 100% compatible interface.
  904. */
  905. seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
  906. LOAD_INT(a), LOAD_FRAC(a),
  907. LOAD_INT(b), LOAD_FRAC(b),
  908. LOAD_INT(c), LOAD_FRAC(c),
  909. count_active_contexts(),
  910. atomic_read(&nr_spu_contexts),
  911. current->nsproxy->pid_ns->last_pid);
  912. return 0;
  913. }
  914. static int spu_loadavg_open(struct inode *inode, struct file *file)
  915. {
  916. return single_open(file, show_spu_loadavg, NULL);
  917. }
  918. static const struct file_operations spu_loadavg_fops = {
  919. .open = spu_loadavg_open,
  920. .read = seq_read,
  921. .llseek = seq_lseek,
  922. .release = single_release,
  923. };
  924. int __init spu_sched_init(void)
  925. {
  926. struct proc_dir_entry *entry;
  927. int err = -ENOMEM, i;
  928. spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
  929. if (!spu_prio)
  930. goto out;
  931. for (i = 0; i < MAX_PRIO; i++) {
  932. INIT_LIST_HEAD(&spu_prio->runq[i]);
  933. __clear_bit(i, spu_prio->bitmap);
  934. }
  935. spin_lock_init(&spu_prio->runq_lock);
  936. setup_timer(&spusched_timer, spusched_wake, 0);
  937. setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
  938. spusched_task = kthread_run(spusched_thread, NULL, "spusched");
  939. if (IS_ERR(spusched_task)) {
  940. err = PTR_ERR(spusched_task);
  941. goto out_free_spu_prio;
  942. }
  943. mod_timer(&spuloadavg_timer, 0);
  944. entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
  945. if (!entry)
  946. goto out_stop_kthread;
  947. pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
  948. SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
  949. return 0;
  950. out_stop_kthread:
  951. kthread_stop(spusched_task);
  952. out_free_spu_prio:
  953. kfree(spu_prio);
  954. out:
  955. return err;
  956. }
  957. void spu_sched_exit(void)
  958. {
  959. struct spu *spu;
  960. int node;
  961. remove_proc_entry("spu_loadavg", NULL);
  962. del_timer_sync(&spusched_timer);
  963. del_timer_sync(&spuloadavg_timer);
  964. kthread_stop(spusched_task);
  965. for (node = 0; node < MAX_NUMNODES; node++) {
  966. mutex_lock(&cbe_spu_info[node].list_mutex);
  967. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
  968. if (spu->alloc_state != SPU_FREE)
  969. spu->alloc_state = SPU_FREE;
  970. mutex_unlock(&cbe_spu_info[node].list_mutex);
  971. }
  972. kfree(spu_prio);
  973. }