phy.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../pci.h"
  31. #include "../ps.h"
  32. #include "reg.h"
  33. #include "def.h"
  34. #include "phy.h"
  35. #include "rf.h"
  36. #include "dm.h"
  37. #include "fw.h"
  38. #include "hw.h"
  39. #include "table.h"
  40. static u32 _rtl92s_phy_calculate_bit_shift(u32 bitmask)
  41. {
  42. u32 i;
  43. for (i = 0; i <= 31; i++) {
  44. if (((bitmask >> i) & 0x1) == 1)
  45. break;
  46. }
  47. return i;
  48. }
  49. u32 rtl92s_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
  50. {
  51. struct rtl_priv *rtlpriv = rtl_priv(hw);
  52. u32 returnvalue = 0, originalvalue, bitshift;
  53. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, ("regaddr(%#x), bitmask(%#x)\n",
  54. regaddr, bitmask));
  55. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  56. bitshift = _rtl92s_phy_calculate_bit_shift(bitmask);
  57. returnvalue = (originalvalue & bitmask) >> bitshift;
  58. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  59. ("BBR MASK=0x%x Addr[0x%x]=0x%x\n",
  60. bitmask, regaddr, originalvalue));
  61. return returnvalue;
  62. }
  63. void rtl92s_phy_set_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask,
  64. u32 data)
  65. {
  66. struct rtl_priv *rtlpriv = rtl_priv(hw);
  67. u32 originalvalue, bitshift;
  68. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, ("regaddr(%#x), bitmask(%#x),"
  69. " data(%#x)\n", regaddr, bitmask, data));
  70. if (bitmask != MASKDWORD) {
  71. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  72. bitshift = _rtl92s_phy_calculate_bit_shift(bitmask);
  73. data = ((originalvalue & (~bitmask)) | (data << bitshift));
  74. }
  75. rtl_write_dword(rtlpriv, regaddr, data);
  76. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, ("regaddr(%#x), bitmask(%#x),"
  77. " data(%#x)\n", regaddr, bitmask, data));
  78. }
  79. static u32 _rtl92s_phy_rf_serial_read(struct ieee80211_hw *hw,
  80. enum radio_path rfpath, u32 offset)
  81. {
  82. struct rtl_priv *rtlpriv = rtl_priv(hw);
  83. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  84. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  85. u32 newoffset;
  86. u32 tmplong, tmplong2;
  87. u8 rfpi_enable = 0;
  88. u32 retvalue = 0;
  89. offset &= 0x3f;
  90. newoffset = offset;
  91. tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD);
  92. if (rfpath == RF90_PATH_A)
  93. tmplong2 = tmplong;
  94. else
  95. tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD);
  96. tmplong2 = (tmplong2 & (~BLSSI_READADDRESS)) | (newoffset << 23) |
  97. BLSSI_READEDGE;
  98. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
  99. tmplong & (~BLSSI_READEDGE));
  100. mdelay(1);
  101. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD, tmplong2);
  102. mdelay(1);
  103. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD, tmplong |
  104. BLSSI_READEDGE);
  105. mdelay(1);
  106. if (rfpath == RF90_PATH_A)
  107. rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
  108. BIT(8));
  109. else if (rfpath == RF90_PATH_B)
  110. rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
  111. BIT(8));
  112. if (rfpi_enable)
  113. retvalue = rtl_get_bbreg(hw, pphyreg->rflssi_readbackpi,
  114. BLSSI_READBACK_DATA);
  115. else
  116. retvalue = rtl_get_bbreg(hw, pphyreg->rflssi_readback,
  117. BLSSI_READBACK_DATA);
  118. retvalue = rtl_get_bbreg(hw, pphyreg->rflssi_readback,
  119. BLSSI_READBACK_DATA);
  120. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, ("RFR-%d Addr[0x%x]=0x%x\n",
  121. rfpath, pphyreg->rflssi_readback, retvalue));
  122. return retvalue;
  123. }
  124. static void _rtl92s_phy_rf_serial_write(struct ieee80211_hw *hw,
  125. enum radio_path rfpath, u32 offset,
  126. u32 data)
  127. {
  128. struct rtl_priv *rtlpriv = rtl_priv(hw);
  129. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  130. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  131. u32 data_and_addr = 0;
  132. u32 newoffset;
  133. offset &= 0x3f;
  134. newoffset = offset;
  135. data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
  136. rtl_set_bbreg(hw, pphyreg->rf3wire_offset, MASKDWORD, data_and_addr);
  137. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, ("RFW-%d Addr[0x%x]=0x%x\n",
  138. rfpath, pphyreg->rf3wire_offset, data_and_addr));
  139. }
  140. u32 rtl92s_phy_query_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath,
  141. u32 regaddr, u32 bitmask)
  142. {
  143. struct rtl_priv *rtlpriv = rtl_priv(hw);
  144. u32 original_value, readback_value, bitshift;
  145. unsigned long flags;
  146. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, ("regaddr(%#x), rfpath(%#x), "
  147. "bitmask(%#x)\n", regaddr, rfpath, bitmask));
  148. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  149. original_value = _rtl92s_phy_rf_serial_read(hw, rfpath, regaddr);
  150. bitshift = _rtl92s_phy_calculate_bit_shift(bitmask);
  151. readback_value = (original_value & bitmask) >> bitshift;
  152. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  153. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, ("regaddr(%#x), rfpath(%#x), "
  154. "bitmask(%#x), original_value(%#x)\n", regaddr, rfpath,
  155. bitmask, original_value));
  156. return readback_value;
  157. }
  158. void rtl92s_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath,
  159. u32 regaddr, u32 bitmask, u32 data)
  160. {
  161. struct rtl_priv *rtlpriv = rtl_priv(hw);
  162. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  163. u32 original_value, bitshift;
  164. unsigned long flags;
  165. if (!((rtlphy->rf_pathmap >> rfpath) & 0x1))
  166. return;
  167. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, ("regaddr(%#x), bitmask(%#x),"
  168. " data(%#x), rfpath(%#x)\n", regaddr, bitmask, data, rfpath));
  169. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  170. if (bitmask != RFREG_OFFSET_MASK) {
  171. original_value = _rtl92s_phy_rf_serial_read(hw, rfpath,
  172. regaddr);
  173. bitshift = _rtl92s_phy_calculate_bit_shift(bitmask);
  174. data = ((original_value & (~bitmask)) | (data << bitshift));
  175. }
  176. _rtl92s_phy_rf_serial_write(hw, rfpath, regaddr, data);
  177. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  178. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, ("regaddr(%#x), bitmask(%#x), "
  179. "data(%#x), rfpath(%#x)\n", regaddr, bitmask, data, rfpath));
  180. }
  181. void rtl92s_phy_scan_operation_backup(struct ieee80211_hw *hw,
  182. u8 operation)
  183. {
  184. struct rtl_priv *rtlpriv = rtl_priv(hw);
  185. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  186. if (!is_hal_stop(rtlhal)) {
  187. switch (operation) {
  188. case SCAN_OPT_BACKUP:
  189. rtl92s_phy_set_fw_cmd(hw, FW_CMD_PAUSE_DM_BY_SCAN);
  190. break;
  191. case SCAN_OPT_RESTORE:
  192. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RESUME_DM_BY_SCAN);
  193. break;
  194. default:
  195. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  196. ("Unknown operation.\n"));
  197. break;
  198. }
  199. }
  200. }
  201. void rtl92s_phy_set_bw_mode(struct ieee80211_hw *hw,
  202. enum nl80211_channel_type ch_type)
  203. {
  204. struct rtl_priv *rtlpriv = rtl_priv(hw);
  205. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  206. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  207. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  208. u8 reg_bw_opmode;
  209. u8 reg_prsr_rsc;
  210. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, ("Switch to %s bandwidth\n",
  211. rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
  212. "20MHz" : "40MHz"));
  213. if (rtlphy->set_bwmode_inprogress)
  214. return;
  215. if (is_hal_stop(rtlhal))
  216. return;
  217. rtlphy->set_bwmode_inprogress = true;
  218. reg_bw_opmode = rtl_read_byte(rtlpriv, BW_OPMODE);
  219. reg_prsr_rsc = rtl_read_byte(rtlpriv, RRSR + 2);
  220. switch (rtlphy->current_chan_bw) {
  221. case HT_CHANNEL_WIDTH_20:
  222. reg_bw_opmode |= BW_OPMODE_20MHZ;
  223. rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
  224. break;
  225. case HT_CHANNEL_WIDTH_20_40:
  226. reg_bw_opmode &= ~BW_OPMODE_20MHZ;
  227. rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
  228. break;
  229. default:
  230. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  231. ("unknown bandwidth: %#X\n",
  232. rtlphy->current_chan_bw));
  233. break;
  234. }
  235. switch (rtlphy->current_chan_bw) {
  236. case HT_CHANNEL_WIDTH_20:
  237. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
  238. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
  239. if (rtlhal->version >= VERSION_8192S_BCUT)
  240. rtl_write_byte(rtlpriv, RFPGA0_ANALOGPARAMETER2, 0x58);
  241. break;
  242. case HT_CHANNEL_WIDTH_20_40:
  243. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
  244. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
  245. rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND,
  246. (mac->cur_40_prime_sc >> 1));
  247. rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
  248. if (rtlhal->version >= VERSION_8192S_BCUT)
  249. rtl_write_byte(rtlpriv, RFPGA0_ANALOGPARAMETER2, 0x18);
  250. break;
  251. default:
  252. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  253. ("unknown bandwidth: %#X\n", rtlphy->current_chan_bw));
  254. break;
  255. }
  256. rtl92s_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
  257. rtlphy->set_bwmode_inprogress = false;
  258. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, ("<==\n"));
  259. }
  260. static bool _rtl92s_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
  261. u32 cmdtableidx, u32 cmdtablesz, enum swchnlcmd_id cmdid,
  262. u32 para1, u32 para2, u32 msdelay)
  263. {
  264. struct swchnlcmd *pcmd;
  265. if (cmdtable == NULL) {
  266. RT_ASSERT(false, ("cmdtable cannot be NULL.\n"));
  267. return false;
  268. }
  269. if (cmdtableidx >= cmdtablesz)
  270. return false;
  271. pcmd = cmdtable + cmdtableidx;
  272. pcmd->cmdid = cmdid;
  273. pcmd->para1 = para1;
  274. pcmd->para2 = para2;
  275. pcmd->msdelay = msdelay;
  276. return true;
  277. }
  278. static bool _rtl92s_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
  279. u8 channel, u8 *stage, u8 *step, u32 *delay)
  280. {
  281. struct rtl_priv *rtlpriv = rtl_priv(hw);
  282. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  283. struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
  284. u32 precommoncmdcnt;
  285. struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
  286. u32 postcommoncmdcnt;
  287. struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
  288. u32 rfdependcmdcnt;
  289. struct swchnlcmd *currentcmd = NULL;
  290. u8 rfpath;
  291. u8 num_total_rfpath = rtlphy->num_total_rfpath;
  292. precommoncmdcnt = 0;
  293. _rtl92s_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  294. MAX_PRECMD_CNT, CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
  295. _rtl92s_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  296. MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
  297. postcommoncmdcnt = 0;
  298. _rtl92s_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
  299. MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
  300. rfdependcmdcnt = 0;
  301. RT_ASSERT((channel >= 1 && channel <= 14),
  302. ("illegal channel for Zebra: %d\n", channel));
  303. _rtl92s_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  304. MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
  305. RF_CHNLBW, channel, 10);
  306. _rtl92s_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  307. MAX_RFDEPENDCMD_CNT, CMDID_END, 0, 0, 0);
  308. do {
  309. switch (*stage) {
  310. case 0:
  311. currentcmd = &precommoncmd[*step];
  312. break;
  313. case 1:
  314. currentcmd = &rfdependcmd[*step];
  315. break;
  316. case 2:
  317. currentcmd = &postcommoncmd[*step];
  318. break;
  319. }
  320. if (currentcmd->cmdid == CMDID_END) {
  321. if ((*stage) == 2) {
  322. return true;
  323. } else {
  324. (*stage)++;
  325. (*step) = 0;
  326. continue;
  327. }
  328. }
  329. switch (currentcmd->cmdid) {
  330. case CMDID_SET_TXPOWEROWER_LEVEL:
  331. rtl92s_phy_set_txpower(hw, channel);
  332. break;
  333. case CMDID_WRITEPORT_ULONG:
  334. rtl_write_dword(rtlpriv, currentcmd->para1,
  335. currentcmd->para2);
  336. break;
  337. case CMDID_WRITEPORT_USHORT:
  338. rtl_write_word(rtlpriv, currentcmd->para1,
  339. (u16)currentcmd->para2);
  340. break;
  341. case CMDID_WRITEPORT_UCHAR:
  342. rtl_write_byte(rtlpriv, currentcmd->para1,
  343. (u8)currentcmd->para2);
  344. break;
  345. case CMDID_RF_WRITEREG:
  346. for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
  347. rtlphy->rfreg_chnlval[rfpath] =
  348. ((rtlphy->rfreg_chnlval[rfpath] &
  349. 0xfffffc00) | currentcmd->para2);
  350. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  351. currentcmd->para1,
  352. RFREG_OFFSET_MASK,
  353. rtlphy->rfreg_chnlval[rfpath]);
  354. }
  355. break;
  356. default:
  357. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  358. ("switch case not process\n"));
  359. break;
  360. }
  361. break;
  362. } while (true);
  363. (*delay) = currentcmd->msdelay;
  364. (*step)++;
  365. return false;
  366. }
  367. u8 rtl92s_phy_sw_chnl(struct ieee80211_hw *hw)
  368. {
  369. struct rtl_priv *rtlpriv = rtl_priv(hw);
  370. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  371. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  372. u32 delay;
  373. bool ret;
  374. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
  375. ("switch to channel%d\n",
  376. rtlphy->current_channel));
  377. if (rtlphy->sw_chnl_inprogress)
  378. return 0;
  379. if (rtlphy->set_bwmode_inprogress)
  380. return 0;
  381. if (is_hal_stop(rtlhal))
  382. return 0;
  383. rtlphy->sw_chnl_inprogress = true;
  384. rtlphy->sw_chnl_stage = 0;
  385. rtlphy->sw_chnl_step = 0;
  386. do {
  387. if (!rtlphy->sw_chnl_inprogress)
  388. break;
  389. ret = _rtl92s_phy_sw_chnl_step_by_step(hw,
  390. rtlphy->current_channel,
  391. &rtlphy->sw_chnl_stage,
  392. &rtlphy->sw_chnl_step, &delay);
  393. if (!ret) {
  394. if (delay > 0)
  395. mdelay(delay);
  396. else
  397. continue;
  398. } else {
  399. rtlphy->sw_chnl_inprogress = false;
  400. }
  401. break;
  402. } while (true);
  403. rtlphy->sw_chnl_inprogress = false;
  404. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, ("<==\n"));
  405. return 1;
  406. }
  407. static void _rtl92se_phy_set_rf_sleep(struct ieee80211_hw *hw)
  408. {
  409. struct rtl_priv *rtlpriv = rtl_priv(hw);
  410. u8 u1btmp;
  411. u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
  412. u1btmp |= BIT(0);
  413. rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
  414. rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
  415. rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
  416. rtl_write_word(rtlpriv, CMDR, 0x57FC);
  417. udelay(100);
  418. rtl_write_word(rtlpriv, CMDR, 0x77FC);
  419. rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
  420. udelay(10);
  421. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  422. udelay(10);
  423. rtl_write_word(rtlpriv, CMDR, 0x77FC);
  424. udelay(10);
  425. rtl_write_word(rtlpriv, CMDR, 0x57FC);
  426. /* we should chnge GPIO to input mode
  427. * this will drop away current about 25mA*/
  428. rtl8192se_gpiobit3_cfg_inputmode(hw);
  429. }
  430. bool rtl92s_phy_set_rf_power_state(struct ieee80211_hw *hw,
  431. enum rf_pwrstate rfpwr_state)
  432. {
  433. struct rtl_priv *rtlpriv = rtl_priv(hw);
  434. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  435. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  436. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  437. bool bresult = true;
  438. u8 i, queue_id;
  439. struct rtl8192_tx_ring *ring = NULL;
  440. if (rfpwr_state == ppsc->rfpwr_state)
  441. return false;
  442. ppsc->set_rfpowerstate_inprogress = true;
  443. switch (rfpwr_state) {
  444. case ERFON:{
  445. if ((ppsc->rfpwr_state == ERFOFF) &&
  446. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
  447. bool rtstatus;
  448. u32 InitializeCount = 0;
  449. do {
  450. InitializeCount++;
  451. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  452. ("IPS Set eRf nic enable\n"));
  453. rtstatus = rtl_ps_enable_nic(hw);
  454. } while ((rtstatus != true) &&
  455. (InitializeCount < 10));
  456. RT_CLEAR_PS_LEVEL(ppsc,
  457. RT_RF_OFF_LEVL_HALT_NIC);
  458. } else {
  459. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  460. ("awake, sleeped:%d ms "
  461. "state_inap:%x\n",
  462. jiffies_to_msecs(jiffies -
  463. ppsc->last_sleep_jiffies),
  464. rtlpriv->psc.state_inap));
  465. ppsc->last_awake_jiffies = jiffies;
  466. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  467. rtl_write_byte(rtlpriv, TXPAUSE, 0x00);
  468. rtl_write_byte(rtlpriv, PHY_CCA, 0x3);
  469. }
  470. if (mac->link_state == MAC80211_LINKED)
  471. rtlpriv->cfg->ops->led_control(hw,
  472. LED_CTL_LINK);
  473. else
  474. rtlpriv->cfg->ops->led_control(hw,
  475. LED_CTL_NO_LINK);
  476. break;
  477. }
  478. case ERFOFF:{
  479. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
  480. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  481. ("IPS Set eRf nic disable\n"));
  482. rtl_ps_disable_nic(hw);
  483. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  484. } else {
  485. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  486. rtlpriv->cfg->ops->led_control(hw,
  487. LED_CTL_NO_LINK);
  488. else
  489. rtlpriv->cfg->ops->led_control(hw,
  490. LED_CTL_POWER_OFF);
  491. }
  492. break;
  493. }
  494. case ERFSLEEP:
  495. if (ppsc->rfpwr_state == ERFOFF)
  496. break;
  497. for (queue_id = 0, i = 0;
  498. queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
  499. ring = &pcipriv->dev.tx_ring[queue_id];
  500. if (skb_queue_len(&ring->queue) == 0 ||
  501. queue_id == BEACON_QUEUE) {
  502. queue_id++;
  503. continue;
  504. } else {
  505. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  506. ("eRf Off/Sleep: "
  507. "%d times TcbBusyQueue[%d] = "
  508. "%d before doze!\n",
  509. (i + 1), queue_id,
  510. skb_queue_len(&ring->queue)));
  511. udelay(10);
  512. i++;
  513. }
  514. if (i >= MAX_DOZE_WAITING_TIMES_9x) {
  515. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  516. ("\nERFOFF: %d times"
  517. "TcbBusyQueue[%d] = %d !\n",
  518. MAX_DOZE_WAITING_TIMES_9x,
  519. queue_id,
  520. skb_queue_len(&ring->queue)));
  521. break;
  522. }
  523. }
  524. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  525. ("Set ERFSLEEP awaked:%d ms\n",
  526. jiffies_to_msecs(jiffies -
  527. ppsc->last_awake_jiffies)));
  528. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  529. ("sleep awaked:%d ms "
  530. "state_inap:%x\n", jiffies_to_msecs(jiffies -
  531. ppsc->last_awake_jiffies),
  532. rtlpriv->psc.state_inap));
  533. ppsc->last_sleep_jiffies = jiffies;
  534. _rtl92se_phy_set_rf_sleep(hw);
  535. break;
  536. default:
  537. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  538. ("switch case not process\n"));
  539. bresult = false;
  540. break;
  541. }
  542. if (bresult)
  543. ppsc->rfpwr_state = rfpwr_state;
  544. ppsc->set_rfpowerstate_inprogress = false;
  545. return bresult;
  546. }
  547. static bool _rtl92s_phy_config_rfpa_bias_current(struct ieee80211_hw *hw,
  548. enum radio_path rfpath)
  549. {
  550. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  551. bool rtstatus = true;
  552. u32 tmpval = 0;
  553. /* If inferiority IC, we have to increase the PA bias current */
  554. if (rtlhal->ic_class != IC_INFERIORITY_A) {
  555. tmpval = rtl92s_phy_query_rf_reg(hw, rfpath, RF_IPA, 0xf);
  556. rtl92s_phy_set_rf_reg(hw, rfpath, RF_IPA, 0xf, tmpval + 1);
  557. }
  558. return rtstatus;
  559. }
  560. static void _rtl92s_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw,
  561. u32 reg_addr, u32 bitmask, u32 data)
  562. {
  563. struct rtl_priv *rtlpriv = rtl_priv(hw);
  564. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  565. if (reg_addr == RTXAGC_RATE18_06)
  566. rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][0] =
  567. data;
  568. if (reg_addr == RTXAGC_RATE54_24)
  569. rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][1] =
  570. data;
  571. if (reg_addr == RTXAGC_CCK_MCS32)
  572. rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][6] =
  573. data;
  574. if (reg_addr == RTXAGC_MCS03_MCS00)
  575. rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][2] =
  576. data;
  577. if (reg_addr == RTXAGC_MCS07_MCS04)
  578. rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][3] =
  579. data;
  580. if (reg_addr == RTXAGC_MCS11_MCS08)
  581. rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][4] =
  582. data;
  583. if (reg_addr == RTXAGC_MCS15_MCS12) {
  584. rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][5] =
  585. data;
  586. rtlphy->pwrgroup_cnt++;
  587. }
  588. }
  589. static void _rtl92s_phy_init_register_definition(struct ieee80211_hw *hw)
  590. {
  591. struct rtl_priv *rtlpriv = rtl_priv(hw);
  592. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  593. /*RF Interface Sowrtware Control */
  594. rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  595. rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  596. rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  597. rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  598. /* RF Interface Readback Value */
  599. rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  600. rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  601. rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  602. rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  603. /* RF Interface Output (and Enable) */
  604. rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
  605. rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;
  606. rtlphy->phyreg_def[RF90_PATH_C].rfintfo = RFPGA0_XC_RFINTERFACEOE;
  607. rtlphy->phyreg_def[RF90_PATH_D].rfintfo = RFPGA0_XD_RFINTERFACEOE;
  608. /* RF Interface (Output and) Enable */
  609. rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
  610. rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;
  611. rtlphy->phyreg_def[RF90_PATH_C].rfintfe = RFPGA0_XC_RFINTERFACEOE;
  612. rtlphy->phyreg_def[RF90_PATH_D].rfintfe = RFPGA0_XD_RFINTERFACEOE;
  613. /* Addr of LSSI. Wirte RF register by driver */
  614. rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
  615. RFPGA0_XA_LSSIPARAMETER;
  616. rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
  617. RFPGA0_XB_LSSIPARAMETER;
  618. rtlphy->phyreg_def[RF90_PATH_C].rf3wire_offset =
  619. RFPGA0_XC_LSSIPARAMETER;
  620. rtlphy->phyreg_def[RF90_PATH_D].rf3wire_offset =
  621. RFPGA0_XD_LSSIPARAMETER;
  622. /* RF parameter */
  623. rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  624. rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  625. rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  626. rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  627. /* Tx AGC Gain Stage (same for all path. Should we remove this?) */
  628. rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  629. rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  630. rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  631. rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  632. /* Tranceiver A~D HSSI Parameter-1 */
  633. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
  634. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
  635. rtlphy->phyreg_def[RF90_PATH_C].rfhssi_para1 = RFPGA0_XC_HSSIPARAMETER1;
  636. rtlphy->phyreg_def[RF90_PATH_D].rfhssi_para1 = RFPGA0_XD_HSSIPARAMETER1;
  637. /* Tranceiver A~D HSSI Parameter-2 */
  638. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
  639. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
  640. rtlphy->phyreg_def[RF90_PATH_C].rfhssi_para2 = RFPGA0_XC_HSSIPARAMETER2;
  641. rtlphy->phyreg_def[RF90_PATH_D].rfhssi_para2 = RFPGA0_XD_HSSIPARAMETER2;
  642. /* RF switch Control */
  643. rtlphy->phyreg_def[RF90_PATH_A].rfswitch_control =
  644. RFPGA0_XAB_SWITCHCONTROL;
  645. rtlphy->phyreg_def[RF90_PATH_B].rfswitch_control =
  646. RFPGA0_XAB_SWITCHCONTROL;
  647. rtlphy->phyreg_def[RF90_PATH_C].rfswitch_control =
  648. RFPGA0_XCD_SWITCHCONTROL;
  649. rtlphy->phyreg_def[RF90_PATH_D].rfswitch_control =
  650. RFPGA0_XCD_SWITCHCONTROL;
  651. /* AGC control 1 */
  652. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
  653. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
  654. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
  655. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
  656. /* AGC control 2 */
  657. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
  658. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
  659. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
  660. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
  661. /* RX AFE control 1 */
  662. rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbalance =
  663. ROFDM0_XARXIQIMBALANCE;
  664. rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbalance =
  665. ROFDM0_XBRXIQIMBALANCE;
  666. rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbalance =
  667. ROFDM0_XCRXIQIMBALANCE;
  668. rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbalance =
  669. ROFDM0_XDRXIQIMBALANCE;
  670. /* RX AFE control 1 */
  671. rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
  672. rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
  673. rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
  674. rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
  675. /* Tx AFE control 1 */
  676. rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbalance =
  677. ROFDM0_XATXIQIMBALANCE;
  678. rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbalance =
  679. ROFDM0_XBTXIQIMBALANCE;
  680. rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbalance =
  681. ROFDM0_XCTXIQIMBALANCE;
  682. rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbalance =
  683. ROFDM0_XDTXIQIMBALANCE;
  684. /* Tx AFE control 2 */
  685. rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATXAFE;
  686. rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTXAFE;
  687. rtlphy->phyreg_def[RF90_PATH_C].rftx_afe = ROFDM0_XCTXAFE;
  688. rtlphy->phyreg_def[RF90_PATH_D].rftx_afe = ROFDM0_XDTXAFE;
  689. /* Tranceiver LSSI Readback */
  690. rtlphy->phyreg_def[RF90_PATH_A].rflssi_readback =
  691. RFPGA0_XA_LSSIREADBACK;
  692. rtlphy->phyreg_def[RF90_PATH_B].rflssi_readback =
  693. RFPGA0_XB_LSSIREADBACK;
  694. rtlphy->phyreg_def[RF90_PATH_C].rflssi_readback =
  695. RFPGA0_XC_LSSIREADBACK;
  696. rtlphy->phyreg_def[RF90_PATH_D].rflssi_readback =
  697. RFPGA0_XD_LSSIREADBACK;
  698. /* Tranceiver LSSI Readback PI mode */
  699. rtlphy->phyreg_def[RF90_PATH_A].rflssi_readbackpi =
  700. TRANSCEIVERA_HSPI_READBACK;
  701. rtlphy->phyreg_def[RF90_PATH_B].rflssi_readbackpi =
  702. TRANSCEIVERB_HSPI_READBACK;
  703. }
  704. static bool _rtl92s_phy_config_bb(struct ieee80211_hw *hw, u8 configtype)
  705. {
  706. int i;
  707. u32 *phy_reg_table;
  708. u32 *agc_table;
  709. u16 phy_reg_len, agc_len;
  710. agc_len = AGCTAB_ARRAYLENGTH;
  711. agc_table = rtl8192seagctab_array;
  712. /* Default RF_type: 2T2R */
  713. phy_reg_len = PHY_REG_2T2RARRAYLENGTH;
  714. phy_reg_table = rtl8192sephy_reg_2t2rarray;
  715. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  716. for (i = 0; i < phy_reg_len; i = i + 2) {
  717. if (phy_reg_table[i] == 0xfe)
  718. mdelay(50);
  719. else if (phy_reg_table[i] == 0xfd)
  720. mdelay(5);
  721. else if (phy_reg_table[i] == 0xfc)
  722. mdelay(1);
  723. else if (phy_reg_table[i] == 0xfb)
  724. udelay(50);
  725. else if (phy_reg_table[i] == 0xfa)
  726. udelay(5);
  727. else if (phy_reg_table[i] == 0xf9)
  728. udelay(1);
  729. /* Add delay for ECS T20 & LG malow platform, */
  730. udelay(1);
  731. rtl92s_phy_set_bb_reg(hw, phy_reg_table[i], MASKDWORD,
  732. phy_reg_table[i + 1]);
  733. }
  734. } else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
  735. for (i = 0; i < agc_len; i = i + 2) {
  736. rtl92s_phy_set_bb_reg(hw, agc_table[i], MASKDWORD,
  737. agc_table[i + 1]);
  738. /* Add delay for ECS T20 & LG malow platform */
  739. udelay(1);
  740. }
  741. }
  742. return true;
  743. }
  744. static bool _rtl92s_phy_set_bb_to_diff_rf(struct ieee80211_hw *hw,
  745. u8 configtype)
  746. {
  747. struct rtl_priv *rtlpriv = rtl_priv(hw);
  748. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  749. u32 *phy_regarray2xtxr_table;
  750. u16 phy_regarray2xtxr_len;
  751. int i;
  752. if (rtlphy->rf_type == RF_1T1R) {
  753. phy_regarray2xtxr_table = rtl8192sephy_changeto_1t1rarray;
  754. phy_regarray2xtxr_len = PHY_CHANGETO_1T1RARRAYLENGTH;
  755. } else if (rtlphy->rf_type == RF_1T2R) {
  756. phy_regarray2xtxr_table = rtl8192sephy_changeto_1t2rarray;
  757. phy_regarray2xtxr_len = PHY_CHANGETO_1T2RARRAYLENGTH;
  758. } else {
  759. return false;
  760. }
  761. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  762. for (i = 0; i < phy_regarray2xtxr_len; i = i + 3) {
  763. if (phy_regarray2xtxr_table[i] == 0xfe)
  764. mdelay(50);
  765. else if (phy_regarray2xtxr_table[i] == 0xfd)
  766. mdelay(5);
  767. else if (phy_regarray2xtxr_table[i] == 0xfc)
  768. mdelay(1);
  769. else if (phy_regarray2xtxr_table[i] == 0xfb)
  770. udelay(50);
  771. else if (phy_regarray2xtxr_table[i] == 0xfa)
  772. udelay(5);
  773. else if (phy_regarray2xtxr_table[i] == 0xf9)
  774. udelay(1);
  775. rtl92s_phy_set_bb_reg(hw, phy_regarray2xtxr_table[i],
  776. phy_regarray2xtxr_table[i + 1],
  777. phy_regarray2xtxr_table[i + 2]);
  778. }
  779. }
  780. return true;
  781. }
  782. static bool _rtl92s_phy_config_bb_with_pg(struct ieee80211_hw *hw,
  783. u8 configtype)
  784. {
  785. int i;
  786. u32 *phy_table_pg;
  787. u16 phy_pg_len;
  788. phy_pg_len = PHY_REG_ARRAY_PGLENGTH;
  789. phy_table_pg = rtl8192sephy_reg_array_pg;
  790. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  791. for (i = 0; i < phy_pg_len; i = i + 3) {
  792. if (phy_table_pg[i] == 0xfe)
  793. mdelay(50);
  794. else if (phy_table_pg[i] == 0xfd)
  795. mdelay(5);
  796. else if (phy_table_pg[i] == 0xfc)
  797. mdelay(1);
  798. else if (phy_table_pg[i] == 0xfb)
  799. udelay(50);
  800. else if (phy_table_pg[i] == 0xfa)
  801. udelay(5);
  802. else if (phy_table_pg[i] == 0xf9)
  803. udelay(1);
  804. _rtl92s_store_pwrindex_diffrate_offset(hw,
  805. phy_table_pg[i],
  806. phy_table_pg[i + 1],
  807. phy_table_pg[i + 2]);
  808. rtl92s_phy_set_bb_reg(hw, phy_table_pg[i],
  809. phy_table_pg[i + 1],
  810. phy_table_pg[i + 2]);
  811. }
  812. }
  813. return true;
  814. }
  815. static bool _rtl92s_phy_bb_config_parafile(struct ieee80211_hw *hw)
  816. {
  817. struct rtl_priv *rtlpriv = rtl_priv(hw);
  818. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  819. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  820. bool rtstatus = true;
  821. /* 1. Read PHY_REG.TXT BB INIT!! */
  822. /* We will separate as 1T1R/1T2R/1T2R_GREEN/2T2R */
  823. if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_2T2R ||
  824. rtlphy->rf_type == RF_1T1R || rtlphy->rf_type == RF_2T2R_GREEN) {
  825. rtstatus = _rtl92s_phy_config_bb(hw, BASEBAND_CONFIG_PHY_REG);
  826. if (rtlphy->rf_type != RF_2T2R &&
  827. rtlphy->rf_type != RF_2T2R_GREEN)
  828. /* so we should reconfig BB reg with the right
  829. * PHY parameters. */
  830. rtstatus = _rtl92s_phy_set_bb_to_diff_rf(hw,
  831. BASEBAND_CONFIG_PHY_REG);
  832. } else {
  833. rtstatus = false;
  834. }
  835. if (rtstatus != true) {
  836. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  837. ("Write BB Reg Fail!!"));
  838. goto phy_BB8190_Config_ParaFile_Fail;
  839. }
  840. /* 2. If EEPROM or EFUSE autoload OK, We must config by
  841. * PHY_REG_PG.txt */
  842. if (rtlefuse->autoload_failflag == false) {
  843. rtlphy->pwrgroup_cnt = 0;
  844. rtstatus = _rtl92s_phy_config_bb_with_pg(hw,
  845. BASEBAND_CONFIG_PHY_REG);
  846. }
  847. if (rtstatus != true) {
  848. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  849. ("_rtl92s_phy_bb_config_parafile(): "
  850. "BB_PG Reg Fail!!"));
  851. goto phy_BB8190_Config_ParaFile_Fail;
  852. }
  853. /* 3. BB AGC table Initialization */
  854. rtstatus = _rtl92s_phy_config_bb(hw, BASEBAND_CONFIG_AGC_TAB);
  855. if (rtstatus != true) {
  856. printk(KERN_ERR "_rtl92s_phy_bb_config_parafile(): "
  857. "AGC Table Fail\n");
  858. goto phy_BB8190_Config_ParaFile_Fail;
  859. }
  860. /* Check if the CCK HighPower is turned ON. */
  861. /* This is used to calculate PWDB. */
  862. rtlphy->cck_high_power = (bool)(rtl92s_phy_query_bb_reg(hw,
  863. RFPGA0_XA_HSSIPARAMETER2, 0x200));
  864. phy_BB8190_Config_ParaFile_Fail:
  865. return rtstatus;
  866. }
  867. u8 rtl92s_phy_config_rf(struct ieee80211_hw *hw, enum radio_path rfpath)
  868. {
  869. struct rtl_priv *rtlpriv = rtl_priv(hw);
  870. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  871. int i;
  872. bool rtstatus = true;
  873. u32 *radio_a_table;
  874. u32 *radio_b_table;
  875. u16 radio_a_tblen, radio_b_tblen;
  876. radio_a_tblen = RADIOA_1T_ARRAYLENGTH;
  877. radio_a_table = rtl8192seradioa_1t_array;
  878. /* Using Green mode array table for RF_2T2R_GREEN */
  879. if (rtlphy->rf_type == RF_2T2R_GREEN) {
  880. radio_b_table = rtl8192seradiob_gm_array;
  881. radio_b_tblen = RADIOB_GM_ARRAYLENGTH;
  882. } else {
  883. radio_b_table = rtl8192seradiob_array;
  884. radio_b_tblen = RADIOB_ARRAYLENGTH;
  885. }
  886. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Radio No %x\n", rfpath));
  887. rtstatus = true;
  888. switch (rfpath) {
  889. case RF90_PATH_A:
  890. for (i = 0; i < radio_a_tblen; i = i + 2) {
  891. if (radio_a_table[i] == 0xfe)
  892. /* Delay specific ms. Only RF configuration
  893. * requires delay. */
  894. mdelay(50);
  895. else if (radio_a_table[i] == 0xfd)
  896. mdelay(5);
  897. else if (radio_a_table[i] == 0xfc)
  898. mdelay(1);
  899. else if (radio_a_table[i] == 0xfb)
  900. udelay(50);
  901. else if (radio_a_table[i] == 0xfa)
  902. udelay(5);
  903. else if (radio_a_table[i] == 0xf9)
  904. udelay(1);
  905. else
  906. rtl92s_phy_set_rf_reg(hw, rfpath,
  907. radio_a_table[i],
  908. MASK20BITS,
  909. radio_a_table[i + 1]);
  910. /* Add delay for ECS T20 & LG malow platform */
  911. udelay(1);
  912. }
  913. /* PA Bias current for inferiority IC */
  914. _rtl92s_phy_config_rfpa_bias_current(hw, rfpath);
  915. break;
  916. case RF90_PATH_B:
  917. for (i = 0; i < radio_b_tblen; i = i + 2) {
  918. if (radio_b_table[i] == 0xfe)
  919. /* Delay specific ms. Only RF configuration
  920. * requires delay.*/
  921. mdelay(50);
  922. else if (radio_b_table[i] == 0xfd)
  923. mdelay(5);
  924. else if (radio_b_table[i] == 0xfc)
  925. mdelay(1);
  926. else if (radio_b_table[i] == 0xfb)
  927. udelay(50);
  928. else if (radio_b_table[i] == 0xfa)
  929. udelay(5);
  930. else if (radio_b_table[i] == 0xf9)
  931. udelay(1);
  932. else
  933. rtl92s_phy_set_rf_reg(hw, rfpath,
  934. radio_b_table[i],
  935. MASK20BITS,
  936. radio_b_table[i + 1]);
  937. /* Add delay for ECS T20 & LG malow platform */
  938. udelay(1);
  939. }
  940. break;
  941. case RF90_PATH_C:
  942. ;
  943. break;
  944. case RF90_PATH_D:
  945. ;
  946. break;
  947. default:
  948. break;
  949. }
  950. return rtstatus;
  951. }
  952. bool rtl92s_phy_mac_config(struct ieee80211_hw *hw)
  953. {
  954. struct rtl_priv *rtlpriv = rtl_priv(hw);
  955. u32 i;
  956. u32 arraylength;
  957. u32 *ptraArray;
  958. arraylength = MAC_2T_ARRAYLENGTH;
  959. ptraArray = rtl8192semac_2t_array;
  960. for (i = 0; i < arraylength; i = i + 2)
  961. rtl_write_byte(rtlpriv, ptraArray[i], (u8)ptraArray[i + 1]);
  962. return true;
  963. }
  964. bool rtl92s_phy_bb_config(struct ieee80211_hw *hw)
  965. {
  966. struct rtl_priv *rtlpriv = rtl_priv(hw);
  967. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  968. bool rtstatus = true;
  969. u8 pathmap, index, rf_num = 0;
  970. u8 path1, path2;
  971. _rtl92s_phy_init_register_definition(hw);
  972. /* Config BB and AGC */
  973. rtstatus = _rtl92s_phy_bb_config_parafile(hw);
  974. /* Check BB/RF confiuration setting. */
  975. /* We only need to configure RF which is turned on. */
  976. path1 = (u8)(rtl92s_phy_query_bb_reg(hw, RFPGA0_TXINFO, 0xf));
  977. mdelay(10);
  978. path2 = (u8)(rtl92s_phy_query_bb_reg(hw, ROFDM0_TRXPATHENABLE, 0xf));
  979. pathmap = path1 | path2;
  980. rtlphy->rf_pathmap = pathmap;
  981. for (index = 0; index < 4; index++) {
  982. if ((pathmap >> index) & 0x1)
  983. rf_num++;
  984. }
  985. if ((rtlphy->rf_type == RF_1T1R && rf_num != 1) ||
  986. (rtlphy->rf_type == RF_1T2R && rf_num != 2) ||
  987. (rtlphy->rf_type == RF_2T2R && rf_num != 2) ||
  988. (rtlphy->rf_type == RF_2T2R_GREEN && rf_num != 2)) {
  989. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  990. ("RF_Type(%x) does not match "
  991. "RF_Num(%x)!!\n", rtlphy->rf_type, rf_num));
  992. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  993. ("path1 0x%x, path2 0x%x, pathmap "
  994. "0x%x\n", path1, path2, pathmap));
  995. }
  996. return rtstatus;
  997. }
  998. bool rtl92s_phy_rf_config(struct ieee80211_hw *hw)
  999. {
  1000. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1001. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1002. /* Initialize general global value */
  1003. if (rtlphy->rf_type == RF_1T1R)
  1004. rtlphy->num_total_rfpath = 1;
  1005. else
  1006. rtlphy->num_total_rfpath = 2;
  1007. /* Config BB and RF */
  1008. return rtl92s_phy_rf6052_config(hw);
  1009. }
  1010. void rtl92s_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
  1011. {
  1012. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1013. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1014. /* read rx initial gain */
  1015. rtlphy->default_initialgain[0] = rtl_get_bbreg(hw,
  1016. ROFDM0_XAAGCCORE1, MASKBYTE0);
  1017. rtlphy->default_initialgain[1] = rtl_get_bbreg(hw,
  1018. ROFDM0_XBAGCCORE1, MASKBYTE0);
  1019. rtlphy->default_initialgain[2] = rtl_get_bbreg(hw,
  1020. ROFDM0_XCAGCCORE1, MASKBYTE0);
  1021. rtlphy->default_initialgain[3] = rtl_get_bbreg(hw,
  1022. ROFDM0_XDAGCCORE1, MASKBYTE0);
  1023. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Default initial gain "
  1024. "(c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x)\n",
  1025. rtlphy->default_initialgain[0],
  1026. rtlphy->default_initialgain[1],
  1027. rtlphy->default_initialgain[2],
  1028. rtlphy->default_initialgain[3]));
  1029. /* read framesync */
  1030. rtlphy->framesync = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3, MASKBYTE0);
  1031. rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
  1032. MASKDWORD);
  1033. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1034. ("Default framesync (0x%x) = 0x%x\n",
  1035. ROFDM0_RXDETECTOR3, rtlphy->framesync));
  1036. }
  1037. static void _rtl92s_phy_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
  1038. u8 *cckpowerlevel, u8 *ofdmpowerLevel)
  1039. {
  1040. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1041. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1042. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1043. u8 index = (channel - 1);
  1044. /* 1. CCK */
  1045. /* RF-A */
  1046. cckpowerlevel[0] = rtlefuse->txpwrlevel_cck[0][index];
  1047. /* RF-B */
  1048. cckpowerlevel[1] = rtlefuse->txpwrlevel_cck[1][index];
  1049. /* 2. OFDM for 1T or 2T */
  1050. if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) {
  1051. /* Read HT 40 OFDM TX power */
  1052. ofdmpowerLevel[0] = rtlefuse->txpwrlevel_ht40_1s[0][index];
  1053. ofdmpowerLevel[1] = rtlefuse->txpwrlevel_ht40_1s[1][index];
  1054. } else if (rtlphy->rf_type == RF_2T2R) {
  1055. /* Read HT 40 OFDM TX power */
  1056. ofdmpowerLevel[0] = rtlefuse->txpwrlevel_ht40_2s[0][index];
  1057. ofdmpowerLevel[1] = rtlefuse->txpwrlevel_ht40_2s[1][index];
  1058. }
  1059. }
  1060. static void _rtl92s_phy_ccxpower_indexcheck(struct ieee80211_hw *hw,
  1061. u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerlevel)
  1062. {
  1063. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1064. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1065. rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
  1066. rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
  1067. }
  1068. void rtl92s_phy_set_txpower(struct ieee80211_hw *hw, u8 channel)
  1069. {
  1070. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1071. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1072. /* [0]:RF-A, [1]:RF-B */
  1073. u8 cckpowerlevel[2], ofdmpowerLevel[2];
  1074. if (rtlefuse->txpwr_fromeprom == false)
  1075. return;
  1076. /* Mainly we use RF-A Tx Power to write the Tx Power registers,
  1077. * but the RF-B Tx Power must be calculated by the antenna diff.
  1078. * So we have to rewrite Antenna gain offset register here.
  1079. * Please refer to BB register 0x80c
  1080. * 1. For CCK.
  1081. * 2. For OFDM 1T or 2T */
  1082. _rtl92s_phy_get_txpower_index(hw, channel, &cckpowerlevel[0],
  1083. &ofdmpowerLevel[0]);
  1084. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  1085. ("Channel-%d, cckPowerLevel (A / B) = "
  1086. "0x%x / 0x%x, ofdmPowerLevel (A / B) = 0x%x / 0x%x\n",
  1087. channel, cckpowerlevel[0], cckpowerlevel[1],
  1088. ofdmpowerLevel[0], ofdmpowerLevel[1]));
  1089. _rtl92s_phy_ccxpower_indexcheck(hw, channel, &cckpowerlevel[0],
  1090. &ofdmpowerLevel[0]);
  1091. rtl92s_phy_rf6052_set_ccktxpower(hw, cckpowerlevel[0]);
  1092. rtl92s_phy_rf6052_set_ofdmtxpower(hw, &ofdmpowerLevel[0], channel);
  1093. }
  1094. void rtl92s_phy_chk_fwcmd_iodone(struct ieee80211_hw *hw)
  1095. {
  1096. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1097. u16 pollingcnt = 10000;
  1098. u32 tmpvalue;
  1099. /* Make sure that CMD IO has be accepted by FW. */
  1100. do {
  1101. udelay(10);
  1102. tmpvalue = rtl_read_dword(rtlpriv, WFM5);
  1103. if (tmpvalue == 0)
  1104. break;
  1105. } while (--pollingcnt);
  1106. if (pollingcnt == 0)
  1107. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Set FW Cmd fail!!\n"));
  1108. }
  1109. static void _rtl92s_phy_set_fwcmd_io(struct ieee80211_hw *hw)
  1110. {
  1111. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1112. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1113. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1114. u32 input, current_aid = 0;
  1115. if (is_hal_stop(rtlhal))
  1116. return;
  1117. /* We re-map RA related CMD IO to combinational ones */
  1118. /* if FW version is v.52 or later. */
  1119. switch (rtlhal->current_fwcmd_io) {
  1120. case FW_CMD_RA_REFRESH_N:
  1121. rtlhal->current_fwcmd_io = FW_CMD_RA_REFRESH_N_COMB;
  1122. break;
  1123. case FW_CMD_RA_REFRESH_BG:
  1124. rtlhal->current_fwcmd_io = FW_CMD_RA_REFRESH_BG_COMB;
  1125. break;
  1126. default:
  1127. break;
  1128. }
  1129. switch (rtlhal->current_fwcmd_io) {
  1130. case FW_CMD_RA_RESET:
  1131. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
  1132. ("FW_CMD_RA_RESET\n"));
  1133. rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
  1134. rtl92s_phy_chk_fwcmd_iodone(hw);
  1135. break;
  1136. case FW_CMD_RA_ACTIVE:
  1137. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
  1138. ("FW_CMD_RA_ACTIVE\n"));
  1139. rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
  1140. rtl92s_phy_chk_fwcmd_iodone(hw);
  1141. break;
  1142. case FW_CMD_RA_REFRESH_N:
  1143. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
  1144. ("FW_CMD_RA_REFRESH_N\n"));
  1145. input = FW_RA_REFRESH;
  1146. rtl_write_dword(rtlpriv, WFM5, input);
  1147. rtl92s_phy_chk_fwcmd_iodone(hw);
  1148. rtl_write_dword(rtlpriv, WFM5, FW_RA_ENABLE_RSSI_MASK);
  1149. rtl92s_phy_chk_fwcmd_iodone(hw);
  1150. break;
  1151. case FW_CMD_RA_REFRESH_BG:
  1152. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
  1153. ("FW_CMD_RA_REFRESH_BG\n"));
  1154. rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
  1155. rtl92s_phy_chk_fwcmd_iodone(hw);
  1156. rtl_write_dword(rtlpriv, WFM5, FW_RA_DISABLE_RSSI_MASK);
  1157. rtl92s_phy_chk_fwcmd_iodone(hw);
  1158. break;
  1159. case FW_CMD_RA_REFRESH_N_COMB:
  1160. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
  1161. ("FW_CMD_RA_REFRESH_N_COMB\n"));
  1162. input = FW_RA_IOT_N_COMB;
  1163. rtl_write_dword(rtlpriv, WFM5, input);
  1164. rtl92s_phy_chk_fwcmd_iodone(hw);
  1165. break;
  1166. case FW_CMD_RA_REFRESH_BG_COMB:
  1167. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
  1168. ("FW_CMD_RA_REFRESH_BG_COMB\n"));
  1169. input = FW_RA_IOT_BG_COMB;
  1170. rtl_write_dword(rtlpriv, WFM5, input);
  1171. rtl92s_phy_chk_fwcmd_iodone(hw);
  1172. break;
  1173. case FW_CMD_IQK_ENABLE:
  1174. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
  1175. ("FW_CMD_IQK_ENABLE\n"));
  1176. rtl_write_dword(rtlpriv, WFM5, FW_IQK_ENABLE);
  1177. rtl92s_phy_chk_fwcmd_iodone(hw);
  1178. break;
  1179. case FW_CMD_PAUSE_DM_BY_SCAN:
  1180. /* Lower initial gain */
  1181. rtl_set_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0, 0x17);
  1182. rtl_set_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0, 0x17);
  1183. /* CCA threshold */
  1184. rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0x40);
  1185. break;
  1186. case FW_CMD_RESUME_DM_BY_SCAN:
  1187. /* CCA threshold */
  1188. rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0xcd);
  1189. rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
  1190. break;
  1191. case FW_CMD_HIGH_PWR_DISABLE:
  1192. if (rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE)
  1193. break;
  1194. /* Lower initial gain */
  1195. rtl_set_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0, 0x17);
  1196. rtl_set_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0, 0x17);
  1197. /* CCA threshold */
  1198. rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0x40);
  1199. break;
  1200. case FW_CMD_HIGH_PWR_ENABLE:
  1201. if ((rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE) ||
  1202. (rtlpriv->dm.dynamic_txpower_enable == true))
  1203. break;
  1204. /* CCA threshold */
  1205. rtl_set_bbreg(hw, RCCK0_CCA, MASKBYTE2, 0xcd);
  1206. break;
  1207. case FW_CMD_LPS_ENTER:
  1208. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
  1209. ("FW_CMD_LPS_ENTER\n"));
  1210. current_aid = rtlpriv->mac80211.assoc_id;
  1211. rtl_write_dword(rtlpriv, WFM5, (FW_LPS_ENTER |
  1212. ((current_aid | 0xc000) << 8)));
  1213. rtl92s_phy_chk_fwcmd_iodone(hw);
  1214. /* FW set TXOP disable here, so disable EDCA
  1215. * turbo mode until driver leave LPS */
  1216. break;
  1217. case FW_CMD_LPS_LEAVE:
  1218. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
  1219. ("FW_CMD_LPS_LEAVE\n"));
  1220. rtl_write_dword(rtlpriv, WFM5, FW_LPS_LEAVE);
  1221. rtl92s_phy_chk_fwcmd_iodone(hw);
  1222. break;
  1223. case FW_CMD_ADD_A2_ENTRY:
  1224. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
  1225. ("FW_CMD_ADD_A2_ENTRY\n"));
  1226. rtl_write_dword(rtlpriv, WFM5, FW_ADD_A2_ENTRY);
  1227. rtl92s_phy_chk_fwcmd_iodone(hw);
  1228. break;
  1229. case FW_CMD_CTRL_DM_BY_DRIVER:
  1230. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
  1231. ("FW_CMD_CTRL_DM_BY_DRIVER\n"));
  1232. rtl_write_dword(rtlpriv, WFM5, FW_CTRL_DM_BY_DRIVER);
  1233. rtl92s_phy_chk_fwcmd_iodone(hw);
  1234. break;
  1235. default:
  1236. break;
  1237. }
  1238. rtl92s_phy_chk_fwcmd_iodone(hw);
  1239. /* Clear FW CMD operation flag. */
  1240. rtlhal->set_fwcmd_inprogress = false;
  1241. }
  1242. bool rtl92s_phy_set_fw_cmd(struct ieee80211_hw *hw, enum fwcmd_iotype fw_cmdio)
  1243. {
  1244. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1245. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1246. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1247. u32 fw_param = FW_CMD_IO_PARA_QUERY(rtlpriv);
  1248. u16 fw_cmdmap = FW_CMD_IO_QUERY(rtlpriv);
  1249. bool bPostProcessing = false;
  1250. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
  1251. ("Set FW Cmd(%#x), set_fwcmd_inprogress(%d)\n",
  1252. fw_cmdio, rtlhal->set_fwcmd_inprogress));
  1253. do {
  1254. /* We re-map to combined FW CMD ones if firmware version */
  1255. /* is v.53 or later. */
  1256. switch (fw_cmdio) {
  1257. case FW_CMD_RA_REFRESH_N:
  1258. fw_cmdio = FW_CMD_RA_REFRESH_N_COMB;
  1259. break;
  1260. case FW_CMD_RA_REFRESH_BG:
  1261. fw_cmdio = FW_CMD_RA_REFRESH_BG_COMB;
  1262. break;
  1263. default:
  1264. break;
  1265. }
  1266. /* If firmware version is v.62 or later,
  1267. * use FW_CMD_IO_SET for FW_CMD_CTRL_DM_BY_DRIVER */
  1268. if (hal_get_firmwareversion(rtlpriv) >= 0x3E) {
  1269. if (fw_cmdio == FW_CMD_CTRL_DM_BY_DRIVER)
  1270. fw_cmdio = FW_CMD_CTRL_DM_BY_DRIVER_NEW;
  1271. }
  1272. /* We shall revise all FW Cmd IO into Reg0x364
  1273. * DM map table in the future. */
  1274. switch (fw_cmdio) {
  1275. case FW_CMD_RA_INIT:
  1276. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, ("RA init!!\n"));
  1277. fw_cmdmap |= FW_RA_INIT_CTL;
  1278. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1279. /* Clear control flag to sync with FW. */
  1280. FW_CMD_IO_CLR(rtlpriv, FW_RA_INIT_CTL);
  1281. break;
  1282. case FW_CMD_DIG_DISABLE:
  1283. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
  1284. ("Set DIG disable!!\n"));
  1285. fw_cmdmap &= ~FW_DIG_ENABLE_CTL;
  1286. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1287. break;
  1288. case FW_CMD_DIG_ENABLE:
  1289. case FW_CMD_DIG_RESUME:
  1290. if (!(rtlpriv->dm.dm_flag & HAL_DM_DIG_DISABLE)) {
  1291. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
  1292. ("Set DIG enable or resume!!\n"));
  1293. fw_cmdmap |= (FW_DIG_ENABLE_CTL | FW_SS_CTL);
  1294. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1295. }
  1296. break;
  1297. case FW_CMD_DIG_HALT:
  1298. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
  1299. ("Set DIG halt!!\n"));
  1300. fw_cmdmap &= ~(FW_DIG_ENABLE_CTL | FW_SS_CTL);
  1301. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1302. break;
  1303. case FW_CMD_TXPWR_TRACK_THERMAL: {
  1304. u8 thermalval = 0;
  1305. fw_cmdmap |= FW_PWR_TRK_CTL;
  1306. /* Clear FW parameter in terms of thermal parts. */
  1307. fw_param &= FW_PWR_TRK_PARAM_CLR;
  1308. thermalval = rtlpriv->dm.thermalvalue;
  1309. fw_param |= ((thermalval << 24) |
  1310. (rtlefuse->thermalmeter[0] << 16));
  1311. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
  1312. ("Set TxPwr tracking!! "
  1313. "FwCmdMap(%#x), FwParam(%#x)\n",
  1314. fw_cmdmap, fw_param));
  1315. FW_CMD_PARA_SET(rtlpriv, fw_param);
  1316. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1317. /* Clear control flag to sync with FW. */
  1318. FW_CMD_IO_CLR(rtlpriv, FW_PWR_TRK_CTL);
  1319. }
  1320. break;
  1321. /* The following FW CMDs are only compatible to
  1322. * v.53 or later. */
  1323. case FW_CMD_RA_REFRESH_N_COMB:
  1324. fw_cmdmap |= FW_RA_N_CTL;
  1325. /* Clear RA BG mode control. */
  1326. fw_cmdmap &= ~(FW_RA_BG_CTL | FW_RA_INIT_CTL);
  1327. /* Clear FW parameter in terms of RA parts. */
  1328. fw_param &= FW_RA_PARAM_CLR;
  1329. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
  1330. ("[FW CMD] [New Version] "
  1331. "Set RA/IOT Comb in n mode!! FwCmdMap(%#x), "
  1332. "FwParam(%#x)\n", fw_cmdmap, fw_param));
  1333. FW_CMD_PARA_SET(rtlpriv, fw_param);
  1334. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1335. /* Clear control flag to sync with FW. */
  1336. FW_CMD_IO_CLR(rtlpriv, FW_RA_N_CTL);
  1337. break;
  1338. case FW_CMD_RA_REFRESH_BG_COMB:
  1339. fw_cmdmap |= FW_RA_BG_CTL;
  1340. /* Clear RA n-mode control. */
  1341. fw_cmdmap &= ~(FW_RA_N_CTL | FW_RA_INIT_CTL);
  1342. /* Clear FW parameter in terms of RA parts. */
  1343. fw_param &= FW_RA_PARAM_CLR;
  1344. FW_CMD_PARA_SET(rtlpriv, fw_param);
  1345. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1346. /* Clear control flag to sync with FW. */
  1347. FW_CMD_IO_CLR(rtlpriv, FW_RA_BG_CTL);
  1348. break;
  1349. case FW_CMD_IQK_ENABLE:
  1350. fw_cmdmap |= FW_IQK_CTL;
  1351. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1352. /* Clear control flag to sync with FW. */
  1353. FW_CMD_IO_CLR(rtlpriv, FW_IQK_CTL);
  1354. break;
  1355. /* The following FW CMD is compatible to v.62 or later. */
  1356. case FW_CMD_CTRL_DM_BY_DRIVER_NEW:
  1357. fw_cmdmap |= FW_DRIVER_CTRL_DM_CTL;
  1358. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1359. break;
  1360. /* The followed FW Cmds needs post-processing later. */
  1361. case FW_CMD_RESUME_DM_BY_SCAN:
  1362. fw_cmdmap |= (FW_DIG_ENABLE_CTL |
  1363. FW_HIGH_PWR_ENABLE_CTL |
  1364. FW_SS_CTL);
  1365. if (rtlpriv->dm.dm_flag & HAL_DM_DIG_DISABLE ||
  1366. !digtable.dig_enable_flag)
  1367. fw_cmdmap &= ~FW_DIG_ENABLE_CTL;
  1368. if ((rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE) ||
  1369. (rtlpriv->dm.dynamic_txpower_enable == true))
  1370. fw_cmdmap &= ~FW_HIGH_PWR_ENABLE_CTL;
  1371. if ((digtable.dig_ext_port_stage ==
  1372. DIG_EXT_PORT_STAGE_0) ||
  1373. (digtable.dig_ext_port_stage ==
  1374. DIG_EXT_PORT_STAGE_1))
  1375. fw_cmdmap &= ~FW_DIG_ENABLE_CTL;
  1376. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1377. bPostProcessing = true;
  1378. break;
  1379. case FW_CMD_PAUSE_DM_BY_SCAN:
  1380. fw_cmdmap &= ~(FW_DIG_ENABLE_CTL |
  1381. FW_HIGH_PWR_ENABLE_CTL |
  1382. FW_SS_CTL);
  1383. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1384. bPostProcessing = true;
  1385. break;
  1386. case FW_CMD_HIGH_PWR_DISABLE:
  1387. fw_cmdmap &= ~FW_HIGH_PWR_ENABLE_CTL;
  1388. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1389. bPostProcessing = true;
  1390. break;
  1391. case FW_CMD_HIGH_PWR_ENABLE:
  1392. if (!(rtlpriv->dm.dm_flag & HAL_DM_HIPWR_DISABLE) &&
  1393. (rtlpriv->dm.dynamic_txpower_enable != true)) {
  1394. fw_cmdmap |= (FW_HIGH_PWR_ENABLE_CTL |
  1395. FW_SS_CTL);
  1396. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1397. bPostProcessing = true;
  1398. }
  1399. break;
  1400. case FW_CMD_DIG_MODE_FA:
  1401. fw_cmdmap |= FW_FA_CTL;
  1402. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1403. break;
  1404. case FW_CMD_DIG_MODE_SS:
  1405. fw_cmdmap &= ~FW_FA_CTL;
  1406. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1407. break;
  1408. case FW_CMD_PAPE_CONTROL:
  1409. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD,
  1410. ("[FW CMD] Set PAPE Control\n"));
  1411. fw_cmdmap &= ~FW_PAPE_CTL_BY_SW_HW;
  1412. FW_CMD_IO_SET(rtlpriv, fw_cmdmap);
  1413. break;
  1414. default:
  1415. /* Pass to original FW CMD processing callback
  1416. * routine. */
  1417. bPostProcessing = true;
  1418. break;
  1419. }
  1420. } while (false);
  1421. /* We shall post processing these FW CMD if
  1422. * variable bPostProcessing is set. */
  1423. if (bPostProcessing && !rtlhal->set_fwcmd_inprogress) {
  1424. rtlhal->set_fwcmd_inprogress = true;
  1425. /* Update current FW Cmd for callback use. */
  1426. rtlhal->current_fwcmd_io = fw_cmdio;
  1427. } else {
  1428. return false;
  1429. }
  1430. _rtl92s_phy_set_fwcmd_io(hw);
  1431. return true;
  1432. }
  1433. static void _rtl92s_phy_check_ephy_switchready(struct ieee80211_hw *hw)
  1434. {
  1435. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1436. u32 delay = 100;
  1437. u8 regu1;
  1438. regu1 = rtl_read_byte(rtlpriv, 0x554);
  1439. while ((regu1 & BIT(5)) && (delay > 0)) {
  1440. regu1 = rtl_read_byte(rtlpriv, 0x554);
  1441. delay--;
  1442. /* We delay only 50us to prevent
  1443. * being scheduled out. */
  1444. udelay(50);
  1445. }
  1446. }
  1447. void rtl92s_phy_switch_ephy_parameter(struct ieee80211_hw *hw)
  1448. {
  1449. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1450. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1451. /* The way to be capable to switch clock request
  1452. * when the PG setting does not support clock request.
  1453. * This is the backdoor solution to switch clock
  1454. * request before ASPM or D3. */
  1455. rtl_write_dword(rtlpriv, 0x540, 0x73c11);
  1456. rtl_write_dword(rtlpriv, 0x548, 0x2407c);
  1457. /* Switch EPHY parameter!!!! */
  1458. rtl_write_word(rtlpriv, 0x550, 0x1000);
  1459. rtl_write_byte(rtlpriv, 0x554, 0x20);
  1460. _rtl92s_phy_check_ephy_switchready(hw);
  1461. rtl_write_word(rtlpriv, 0x550, 0xa0eb);
  1462. rtl_write_byte(rtlpriv, 0x554, 0x3e);
  1463. _rtl92s_phy_check_ephy_switchready(hw);
  1464. rtl_write_word(rtlpriv, 0x550, 0xff80);
  1465. rtl_write_byte(rtlpriv, 0x554, 0x39);
  1466. _rtl92s_phy_check_ephy_switchready(hw);
  1467. /* Delay L1 enter time */
  1468. if (ppsc->support_aspm && !ppsc->support_backdoor)
  1469. rtl_write_byte(rtlpriv, 0x560, 0x40);
  1470. else
  1471. rtl_write_byte(rtlpriv, 0x560, 0x00);
  1472. }
  1473. void rtl92s_phy_set_beacon_hwreg(struct ieee80211_hw *hw, u16 BeaconInterval)
  1474. {
  1475. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1476. rtl_write_dword(rtlpriv, WFM5, 0xF1000000 | (BeaconInterval << 8));
  1477. }